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ABSTRACT
Background. Common phylogenomic approaches for recovering phylogenies are often
time-consuming and require annotations for orthologous gene relationships that are
not always available. In contrast, alignment-free phylogenomic approaches typically
use structure and oligomer frequencies to calculate pairwise distances between species.
We have developed an approach to quickly calculate distances between species based
on codon aversion.
Methods. Utilizing a novel alignment-free character state, we present CAM, an
alignment-free approach to recover phylogenies by comparing differences in codon
aversion motifs (i.e., the set of unused codons within each gene) across all genes within
a species. Synonymous codon usage is non-random and differs between organisms,
between genes, and even within a single gene, and many genes do not use all possible
codons. We report a comprehensive analysis of codon aversion within 229,742,339
genes from 23,428 species across all kingdoms of life, and we provide an alignment-free
framework for its use in a phylogenetic construct. For each species, we first construct
a set of codon aversion motifs spanning all genes within that species. We define the
pairwise distance between two species, A and B, as one minus the number of shared
codon aversion motifs divided by the total codon aversion motifs of the species, A or
B, containing the fewest motifs. This approach allows us to calculate pairwise distances
even when substantial differences in the number of genes or a high rate of divergence
between species exists. Finally, we use neighbor-joining to recover phylogenies.
Results. Using the Open Tree of Life and NCBI Taxonomy Database as expected
phylogenies, our approach compares well, recovering phylogenies that largely match
expected trees and are comparable to trees recovered using maximum likelihood
and other alignment-free approaches. Our technique is much faster than maximum
likelihood and similar in accuracy to other alignment-free approaches. Therefore, we
propose that codon aversion be considered a phylogenetically conserved character that
may be used in future phylogenomic studies.
Availability. CAM, documentation, and test files are freely available on GitHub at
https://github.com/ridgelab/cam.
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INTRODUCTION
Phylogenies allow biologists to analyze similar characters between species by providing
an evolutionary framework to infer homology (Haszprunar, 1992; Soltis & Soltis, 2003).
Although Next Generation Sequencing (NGS) facilitates placement of novel species
on the Tree of Life, many regions of the genome display contradictory phylogenetic
signals (Philippe et al., 2011). Furthermore, typical alignment-based phylogenetic methods
require ortholog annotations to recover the phylogeny, and assembled genes without
orthologous pairs provide no information for species relatedness using a traditional
approach (Pais et al., 2014). Annotating a genome with orthologous relationships can
often be costly and time-consuming, and some genes are currently impossible to annotate
(Yandell & Ence, 2012). As complete genomes of more non-model organisms become
available, correctly identifying orthologs will continue to impede accurate identification
of taxonomic relationships. Common errors in recovering phylogenies include incorrect
ortholog identification, erroneous alignments, and model violations for the phylogenetic
tree reconstruction method (Philippe et al., 2011).

Alignment-free approaches were developed to address these, and other, issues.
Since alignment-free methods do not use an alignment at any point in the algorithm,
they can recover phylogenetic relationships even when recombination renders an
alignment impossible (Zielezinski et al., 2017). Additionally, alignment-free algorithms
are computationally less expensive, generally computed in linear time (Bonham-Carter,
Steele & Bastola, 2014), are not subject to potential errors in orthology (Zielezinski et al.,
2017), are resistant to shuffling and recombination events (Vinga, 2014), and are not
dependent on assumptions regarding the correlation between sequence changes and
evolutionary time (Zielezinski et al., 2017).

Alignment-free methods are based on sets of short oligonucleotides taken from the
genome to infer phylogenies and often produce similar results as traditional methods
(Chapus et al., 2005). The basic principle behind alignment-free phylogenetic tree
reconstruction techniques is that genomic subsequences exhibit similar characteristics
as the whole genome (Deschavanne et al., 1999). These genomic signatures are most
prominent in highly divergent species arising from deep phylogenetic splits (Edwards et al.,
2002). For example, since oligomer mutation rates vary dramatically between taxonomic
groups, certain simple sequence repeats (SSRs) and long interspersed elements (LINEs)
can sometimes be used to recover phylogenies (Shedlock et al., 2007).

More than 100 alignment-free methods have been developed. These methods use
a widespread variety of approaches to make phylogenetic inferences. However, most
methods are based on one of three principles: the frequencies of words of a certain length,
the match lengths between sequences, or the calculation of informational content between
two sequences (Zielezinski et al., 2017; Haubold, 2014). Additionally, novel approaches
create ‘‘micro-alignments’’ to compare sequences. In our analysis, we limit our search
space to coding sequences and compare the codon usages between species, ignoring
all gene name annotations. We compare our algorithm to the word-based approaches,
FFP (Jun etal., 2010; Sims et al., 2009) and CVTree (Zuo & Hao, 2015), the match-length
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approaches, ACS (Ulitsky et al., 2006), KMACS (Leimeister & Morgenstern, 2014), and Kr
(Haubold et al., 2009), and the micro-alignment based approaches, Co-phylog (Yi & Jin,
2013), FSWM (Leimeister, Sohrabi-Jahromi & Morgenstern, 2017), and andi (Haubold,
Klotzl & Pfaffelhuber, 2015). In addition to these comparisons with previous alignment-
free techniques, we also provide a comparison with Maximum Likelihood, a common
alignment-based technique. We analyze the performances of these algorithms based on
accuracy and computational runtime.

Our approach exploits the Central Dogma of biology: three consecutive nucleotides
of coding DNA, called codons, are used as a template for protein translation, where
each codon encodes a single amino acid (Crick, 1970). The genetic code is degenerate
because 64 canonical codons are used to form 20 amino acids and the stop signal (Crick
et al., 1961). Gene expression is fine-tuned, in part, by the skewed occurrence of certain
codons over others, called codon usage bias, because some codons are translated more
efficiently than others (Quax et al., 2015). Differences in codon translational efficiencies
are explained by unequal tRNA expression within different species and tissues, limiting
the supply of anticodons directly complementing the codons (Quax et al., 2015). Complete
codon aversion (i.e., when a codon is not used in a gene) can also be advantageous in
certain genes, and is phylogenetically conserved within orthologs (Miller et al., 2017a). A
significant portion of synonymous codon usage can also be explained by GC-biased gene
conversion (gBGC), which occurs when transmission of GC alleles is favored over AT
alleles during meiotic recombination (Duret & Galtier, 2009).

Our research explores the conservation of codon aversion and determines if sets of codon
aversionmotifs (i.e., the set of codons not used in each gene) are phylogenetically conserved.
We also analyze amino acid aversion across all taxonomic groups, and we compare its
phylogenetic conservation to that of codon aversion. We present a novel alignment-free
algorithm, CAM, which we use to recover a phylogeny using the codon aversion or amino
acid aversion of 229,742,339 genes from 23,428 species across the Open Tree of Life (OTL)
(Hinchliff et al., 2015) and theNCBI taxonomy (Sayers et al., 2012; Sayers et al., 2011; Sayers
et al., 2010; Sayers et al., 2009). CAM determines phylogenetic relationships by using only
the overall differences in codon aversion within each gene across all available genes from
a given species. Therefore, CAM does not require orthologous gene annotations. Our
results suggest that codon and amino acid aversion patterns are conserved across all genes
within a species and can be utilized to reconstruct phylogenetic trees without a sequence
alignment.

MATERIALS & METHODS
Defining codon aversion motifs
We define a codon aversion motif as a set of codons that are not present in an individual
gene. For example, a gene that uses all codons except for AAA and ATA would have a
codon aversion motif of (AAA, ATA). We construct codon aversion motifs for each gene
in a species, considering only each unique motif. For example, consider a species with
four genes that have the following codon aversion motifs: (AAA, ATA), (AAA, ACG,
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CTC), (AAA, ATA), and (CGC). For this species, we would construct the following set of
unique motifs: {(AAA, ATA), (AAA, ACG, CTC), (CGC)}. We constructed codon aversion
motifs for all available genes of each species. Each gene was considered with equal weight,
regardless of any orthologous annotations.

Defining amino acid aversion motifs
Similar to codon aversion motifs, we also calculated amino acid aversion motifs. We first
translated the DNA/RNA sequences to protein sequences. We then used the same process
mentioned above to make sets of unused amino acids from each gene. After constructing
amino acid/codon aversion motifs, all analyses are identical.

Distance calculation and implementation
We constructed codon aversion motifs using all available genes in each species. Each
gene, both annotated and unannotated, was given equal weight in our algorithm. We
use differences in sets of codon aversion motifs found in each species to calculate the
phylogenetic distances between species.

We calculate the pairwise distance between two species, A and B, as one minus the
proportion of shared codon aversion motifs between the species. We define overlapping
motifs as the intersection of codon aversion motifs in the two sets (i.e., codon aversion
motifs that are found in both species). It is expected that a higher number of overlapping
motifs will be present in closely related species because codon aversion is phylogenetically
conserved in orthologs (Miller et al., 2017a). The proportion of shared codon aversion
motifs is calculated by dividing the number of overlapping motifs between the two species
by the number of possible overlapping motifs, where the number of possible overlapping
motifs is defined as the number of motifs in the set, for species A or species B, containing
the fewest motifs. We therefore calculate distances between two species, A and B, with sets
of codon aversion motifs, a and b, respectively, with the following equation:

Dist (A,B)= 1−
|a∩b|

min(|a|,|b|)
.

This approach allows us to calculate pairwise distances (with a maximum distance of
one), where smaller distances reflect species that share a large proportion of codon aversion
motifs, and larger distances reflect species that share few codon aversion motifs. We also
require that 5% of motifs between species overlap to limit any bias due to a small genome
(e.g., it would not be unusual if a species with five genes has at least one codon usage motif
that randomly overlaps with a motif from a species with 20,000 genes without directly
inheriting 20% of its motifs from the same most recent common ancestor). This process
is depicted in Fig. 1. We developed CAM in Python 3.5. CAM takes as input any number
of species FASTA files, and creates a matrix of distances between species based on either
codon aversion or amino acid aversion.

The most common way to run CAM is by using the following command, where ${DIR}
is a directory with all compressed or uncompressed species FASTA files, one for each
species, and ${MATRIX} is the path to a distance matrix that will be created:

python cam.py -i ${DIR}/* >${MATRIX}
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Figure 1 Flow charts for calculating the distance matrix and comparing the recovered phylogenies.
(A) Calculate Distance Matrix: Start with two FASTA files of the DNA coding sequences of two species.
For each species, find the unused codons within each gene, alphabetize them, and make those codons
into a tuple. Add the tuple to an unordered set for that species. The distance is calculated by dividing the
number of tuples in the intersection of the two sets by the minimum number of tuples in the two origi-
nal sets. (B) Recover and Compare Phylogenies: From the distance matrix, use neighbor-joining to recover
a phylogeny. We do not use a model of evolution to compute distances because distance is a function of
the number of shared codon aversion motifs within a species. This technique allows a fair comparison of
diverse or unknown species. Using the compare method within the Environment for Tree Exploration
(ETE3), we then compare the unrooted tree with the OTL and the NCBI taxonomy. Finally, we report the
percentage of the phylogenies that overlap.

Full-size DOI: 10.7717/peerj.6984/fig-1

For a summary of optional parameters when running CAM, see Supplemental
Information 1.

Phylogeny reconstruction
After the distance matrix was created, we use a Biopython (Talevich et al., 2012)
implementation of neighbor-joining to recover the phylogenetic tree. Neighbor-joining was
used to combine the pairwise species distances because each pairwise distance represented a
distance based on codon aversion motifs present in a species, not homologous locations of
the codon aversion motifs. We provide a Python script, makeNewick.py, that calculates the
phylogenetic tree from the output matrix created by CAM using the following command:

python makeNewick.py -i ${MATRIX} -o ${OUTPUT}
All algorithms, with accompanying README and test files, are freely available from

GitHub at: https://github.com/ridgelab/cam.
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Data collection and processing
We downloaded all coding sequences (CDS) from the National Center for Biotechnology
Information (NCBI) in September, 2017 (Pruitt et al., 2014; Pruitt et al., 2000; Wheeler et
al., 2007). The CDS regions of the reference genomes were derived from the most common
alleleswithin each species (Pruitt et al., 2000;Wheeler et al., 2007).Whenmultiple transcript
isoforms were annotated, we used the longest isoform in order to include the most possible
codons used in a gene. Additionally, we removed any annotated exceptions from the gene
dataset (e.g., translational exceptions, unclassified transcription discrepancies, suspected
errors, etc.). Most sequences do not have annotated exceptions, and these filters removed
fewer than 5% of sequences from each species. Partial gene annotations were included in
the analysis. Although not present in most species, some species included large numbers
of partial gene sequences, so we included partial gene sequences in the main analysis (See
Fig. S1 for the percentage of partial protein sequences in each taxonomic group). We also
compared the phylogenies recovered with and without partial gene sequences to determine
the robustness of this method to partial gene inclusion.

Data analyzed
Our analyses included 23,428 species, which were divided into the following taxonomic
groups based on annotations within the NCBI database: 418 archaea, 15,058 bacteria,
234 fungi, 149 invertebrates, 89 plants, 75 protozoa, 107 mammalian vertebrates, 123
other vertebrates, and 7,233 viruses. Sixty-eight species are included in both bacteria and
viruses because they are annotated in both taxonomic groups in RefSeq. Using CAM, we
reconstructed phylogenetic trees for each of these taxonomic groups.We also reconstructed
a phylogenetic tree for all 23,428 species.

Reference phylogenies
In order to determine the accuracy of our phylogenetic trees, we compared them to
reference trees from both the OTL and the NCBI Taxonomy Browser. Although the
NCBI Taxonomy Browser is not considered a primary source for taxonomic phylogenetic
information because it gathers phylogenetic annotations from many sources, it provides
useful information for our analyses because it includes more species than the OTL.
Although the OTL and the NCBI reference trees are biased by the tree reconstruction
methods originally used to assemble the trees, they provide comprehensive trees spanning
all species that can be used in our comparisons. Both trees combine the results from
multiple studies and are based on multiple phylogenomic approaches. We assessed the
accuracy of codon aversion by comparing recovered phylogenies to trees from each of these
databases.

Extracting phylogenies from the Open Tree of Life
We used the OTL documentation for programmatically inferring subtrees to develop
a Python 3.5 program, getOTLtree.py, that retrieves subtrees from the OTL. Although
other OTL parsers, such as ROTL (Michonneau, Brown &Winter, 2015), are available,
getOTLtree allows users to obtain a subtree of any number of species from the OTL in a
single step. Inferring subtrees from a set of species requires accessing the OTL database
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Figure 2 A flow chart depicting the process getOTLtree takes to infer a subtree phylogeny from the
OTL. All steps are done with a single command at runtime.

Full-size DOI: 10.7717/peerj.6984/fig-2

twice: first to retrieve OTL Taxonomy Identifiers (OTT ids) for each species, and second to
retrieve the phylogenetic tree. getOTLtree does both commands in a single step at runtime,
prompting the user to manually select the correct domain of life when duplicates are found
in the OTL database (e.g., Nannospalax galili is listed as a eukaryote [OTT id: 207281]
and as a bacterium [OTT id: 5909124]). Furthermore, we account for the OTL command,
match_names, which limits identical matching of species to 1,000 names, by combining
results from multiple queries of fewer than 1,000 species. This process makes large-scale
species analyses easier and takes only a few seconds to extract a phylogeny of 2,000 species
on a single processing core. If each species is listed on a different line (or CSV or Newick
format) in a file called ${INPUT}, the typical usage for extracting the tree from the OTL is:

python getOTLtree.py -i ${INPUT}
getOTLtree, accompanying test files, and a READMEwith more detailed explanations of

how to run the programwith different parameters are also available in theGitHub repository
at https://github.com/ridgelab/cam. A summary of the process used by getOTLtree is
depicted in Fig. 2.

Extracting phylogenies from the NCBI Taxonomy Browser
The NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/
wwwcmt.cgi) has many tools to enable large queries of its database. We opted to include
unranked taxa in our analyses tomaximize the number of included species.We downloaded
the phylogeny in PHYLIP (Felsenstein, 1989) format directly from the website, and used
the extracted phylogenies in our analyses.

Tree comparison
We used the ete-compare module from the Environment for Tree Exploration toolkit
(ETE3) (Huerta-Cepas, Dopazo & Gabaldon, 2010; Huerta-Cepas, Serra & Bork, 2016)
to quantify the similarity between the tree constructed using codon aversion and the
corresponding reference trees from the OTL and the NCBI taxonomy. The following
command calculates edge similarity of an unrooted tree, where ${INPUT} is the path to
the recovered tree and ${REF} is the path to the reference tree from the OTL or the NCBI
taxonomy:

ete3 compare -t {INPUT} -r {REF} –unrooted
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We selected the percentage of edge similarity (i.e., the number of branches in one tree
that are present in the other tree) to compute the topological distance between the trees.
This metric was selected based on the following criteria: capability to efficiently compare
very large trees, capability to compare unrooted trees (neighbor-joining is unrooted by
definition (Saitou & Nei, 1987) and we wanted to account for potential variations at the
root node in the reference tree), and capability to compare trees with polytomies. Although
several tree-comparison metrics exist, many suffer from problems ranging from high
computational cost to lack of robustness (Lin, Rajan & Moret, 2012). Advantages for using
the percentage of edge similarity metric from the compare method in ETE3 include:
clarity in comparing the output as a percentage of congruent branches between trees,
optimization for large datasets, capability to compare unrooted trees, and robustness
to polytomies (Huerta-Cepas, Serra & Bork, 2016). The advantages and disadvantages of
several common tree comparison techniques are listed in Table S1.

Validation using maximum likelihood
Sincemaximum likelihood (Felsenstein, 1981) has been widely used to construct the current
version of the OTL, there is a potential confirmation bias when comparing it to the OTL
(i.e., it is likely to have an artificially high percent overlap with the species relationships
found in the OTL since it was used to create the OTL). However, it is still widely used
and should be evaluated against our alignment-free technique. Using ortholog annotations
from NCBI, which combines annotations from species-specific nomenclature committees
(e.g., the HUGO Gene Nomenclature Committee (HGNC) (Gray et al., 2015)), NCBI
staff curations, and the NCBI annotation pipeline, we extracted the most commonly used
orthologs in each taxonomic group. Although we performed no formal tests for orthology,
in cases where duplicated genes with the same gene names existed (e.g., RPS4 in the
mitochondrion and rps4 in the chloroplast are both listed in Arabidopsis thaliana), both
genes were removed. After this filtering, we performed a multiple sequence alignment
(MSA) on the DNA sequences of each ortholog using the following CLUSTAL OMEGA
(Sievers & Higgins, 2018) command:

clustalo -i ${INPUT} >${OUTPUT}
We used CLUSTAL OMEGA because it performed very well in full-length sequence

comparisons Pais et al. (2014), andwe used full-length gene sequences in our analyses. After
eachMSA was completed, we created a super-matrix by concatenating the alignments from
all orthologs for each species (if an ortholog was not annotated for a species, all nucleotide
characters for that ortholog were expressed as ‘‘-’’ for that species). After the super-
matrix was created, we used the following IQ-TREE (Nguyen et al., 2015) command to
automatically choose the correct model (Posada & Crandall, 1998) and perform maximum
likelihood to recover the phylogeny:

iqtree -s ${INPUT} -m TEST -pre ${OUTPUT}
The recovered phylogeny was then compared to the OTL and the NCBI Taxonomy

using the unrooted compare method from ETE3 to identify branch similarities.
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Comparison with traditional k-mer approach
One alignment-free technique to recover phylogenies is to create a feature frequency profile
(FFP) which consists of counting the occurrences of different k-mers and comparing those
profiles between species (Jun etal., 2010; Sims et al., 2009). Although FFP is often used on
the whole genome, it can also be used on the proteome (Jun etal., 2010), which allowed us
to do a direct comparison of this approach using our dataset, which consists of all CDS
regions. All analyses were done using the step-by-step procedures outlined in the FFP
software README. Since the FFP software requires uncompressed data, we uncompressed
all FASTA files before conducting the analysis. Preprocessing time was not included in the
comparison results.

We included all species FASTA files in a single directory, ${DIR}. If all species names
are shorter than 10 characters, they can be included in a single file called ${SPECIES}.
However, if any species names are longer than 10 characters, then a list of numbers
(IDs) can be substituted for the species names. We used unique IDs for this step and
then converted them back to species names after the tree was recovered. We used the
recommended command from the FFP README (https://sourceforge.net/projects/ffp-
phylogeny/files/Documentation/) to create the distance matrix, ${MATRIX}:

ffpry -l 5 ${DIR}/* | ffpcol | ffprwn | ffpjsd -p ${SPECIES >${MATRIX}

Comparison with CVTree approach
CVtree is an example of a word-based approach (Zuo & Hao, 2015). The algorithm uses
composition vectors to compute frequencies of words of a given length. It then normalizes
these frequencies by the expected frequencies predicted by random chance. Finally, it
compares these frequencies between species to compute a distance.

We ran CVTree across each taxonomic group by following the procedure outlined
in the CVTree README (https://github.com/ghzuo/CVTree). We first created a file
containing the names of each species to be compared called ${SPECIESLIST}. We also
created a directory of the species FASTA files called ${DIR}. We retained the default
settings for word length, which counts words of lengths five, six, and seven. We then used
the recommended command to compute the distance matrix, ${MATRIX}:

./build/bin/cvtree -g ffn -G ${DIR} -i ${SPECIESLIST} -t ${MATRIX}

Comparison with Average Common Substring Approach (ACS)
ACS is based on substring match lengths (Ulitsky et al., 2006). This algorithm finds the
longest substring, beginning at each index of a sequence, that is also found in a second
sequence. They use the average of these matching substrings to calculate a distance.

We ran ACS using an implementation described by Leimeister & Morgenstern (2014),
and can be found at http://kmacs.gobics.de/. This algorithm takes a single sequence as input
for each species. In order to do a whole-genome analysis of the species, we first created an
input FASTA file called ${INPUT} for each dataset containing a single sequence for each
species. We created this single sequence by concatenating all genes together, separating
each gene by ten ‘N’ characters to limit potential biases based on the order that the genes
were concatenated. We then followed the steps found in the ACS README file. This
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implementation allows the user to specify a k-value for the number of mismatches allowed,
we ran the algorithm with a k-value of 0, which calculates ACS distances. We used the
recommended command to compute the distance matrix:

./kmacs ${INPUT} 0

Comparison with K-mismatch Average Common Substring Approach
(KMACS)
KMACS is another approach based on match lengths (Leimeister & Morgenstern, 2014).
This algorithm is similar to ACS, but it differs by allowing k number of mismatches in the
common substrings.

We ran KMACS using the same implementation that we used to compute ACS
(http://kmacs.gobics.de/). We used the same input FASTA files, ${INPUT}, described
in our ACS comparisons. Each input file contained a single sequence for each species. We
ran KMACS with a k-value of 1, using the following command:

./kmacs ${INPUT} 1

Comparison with Kr approach
Kr is also based on match lengths (Haubold et al., 2009). This algorithm estimates the
number of mutations per site. It reduces the computational runtime of the algorithm by
creating a generalized suffix tree of all input sequences to identify the match lengths.

We ran Kr using the steps outlined in the README (http://guanine.evolbio.mpg.de/kr/).
We used the same input FASTA files for single sequences that were previously used in the
ACS and KMACS comparisons (${INPUT}). We used the following command for each
comparison:

./kr ${INPUT}

Comparison with co-phylog
Co-Phylog is considered a novel alignment-free approach (Yi & Jin, 2013). Co-phylog
creates ‘‘micro-alignments’’ that enclose a maximum of one mismatch across all species.
Instead of conducting a global sequence alignment, co-phylog combines the mismatches
frommultiple local alignments into a single matrix that is then used to estimate a mutation
rate.

We ran Co-Phylog using the steps found in the README (https://github.com/yhg926/
co-phylog). The first step was to make ‘‘co-files’’ for each of the species FASTA files. We
created co-files with the following command:

./fasta2co ${SPECIES_FASTA}${SPECIES_CO_FILE}
The second step was to use the directory of co-files, ${DIR}, to create a distance matrix

called ${MATRIX}. We used the following command:
./co2dist ${DIR} >${MATRIX}

Comparison with andi
Andi is another novel alignment-free approach (Haubold, Klotzl & Pfaffelhuber, 2015).
Andi uses a similar approach to Co-phylog, but it allows the local ‘‘micro-alignments’’ to
include more than a single mismatch. It searches for mismatches that are bracketed by long
exact matches, referred to as anchors.
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We ran andi using the steps found in the README (https://github.com/evolbioinf/
andi/).We used as input each of the species FASTA files in our original dataset (${INPUT}).
We ran andi using the default parameters. We also include the –join parameter to indicate
that each sequence in the individual FASTA files is part of the same species. We performed
this analysis with the following command:

./andi –join ${INPUT}

Comparison with filtered spaced-word matches
Filtered spaced-word matches (FSWM) is another novel alignment-free approach
that, similar to Co-Phylog and andi, finds matching-spaced words between sequences
(Leimeister, Sohrabi-Jahromi & Morgenstern, 2017). It differs from these previous methods
by accounting for pattern matches caused by random chance.

We ran FSWM using the steps found in the README (https://github.com/evolbioinf/
andi/). We used the same input FASTA files, ${INPUT}, described in the ACS and KMACS
comparisons because the input files are required to contain a single sequence for each
species. We used the following recommended command to compute the distance matrix:

./fswm ${INPUT}

Using neighbor-joining to infer phylogenetic trees
The methods above (FFP, CVTree, ACS, KMACS, Kr, Co-Phylog, andi, and FSWM) each
created a distance matrix, ${MATRIX}, in PHYLIP format. We used the same Biopython
implementation of the neighbor-joining algorithm that CAM used by specifying the
PHYLIP input format option (-p) of makeNewick.py (provided in the GitHub repository
for CAM):

python makeNewick.py -p -i ${MATRIX} -o ${OUTPUT}
After the Newick tree was recovered and the species IDs were converted back to species

names, we compared the recovered tree with the OTL and the NCBI taxonomy using the
unrooted compare method in ETE3.

RESULTS
Frequency of codon aversion motifs
Since 64 codons exist, and each species typically uses only one of three possible stop codons
and the one start codon per gene, there are 61 degrees of freedom (64 –2 unused stop
codons –1 start codon), allowing for 261 possible motifs. Similarly, amino acid aversion
motifs have 20 degrees of freedom (for 20 amino acids), allowing for 220 possible motifs.
We observed 54,336,494 (∼226) codon motifs across all genomes, with significant overlap
between species (see Table 1). When including counts for multiple occurrences of a motif
within the same species, there are still more than 5x as many completely unique motifs (i.e.,
motifs that occur in a single gene within a single species) as overlapping motifs (i.e., motifs
that occur in multiple genes or multiple species) (See Figs. S2–S11). We also note that not
all codons have equal probabilities of being present in a gene, and we show the frequency
of codon aversion per codon within each taxonomic group in Figs. S12–S21. Although
most genes use most codons, some genes exclude significantly more codons than others.
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Table 1 Unique tuples in each taxonomic group.Unique tuples were calculated by adding all tuples of
unused codons from all genes within each species from a taxonomic group to a set, and then counting
the number of elements in that set. The All group includes all species in the same analysis. Total (with-
out all) sums the number of motifs and genes from each taxonomic group, calculated individually. Since
most species in this analysis are bacteria, Total (without all and without bacteria) summed the values from
each taxonomic group without including bacteria or all species combined. Note: 23,983 viral and bacterial
genes overlap and 1,048,861 motifs span different taxonomic groups (difference between values in All and
Total (without all).

Taxonomic group Number of
unique motifs

Number of
genes

Average number
of genes with
a given motif

All 54,336,494 229,742,339 4.228
Archaea 1,057 898 1,903,114 1.799
Bacteria 49,177,047 215,581,296 4.384
Fungi 904,513 2,194,206 2.426
Invertebrates 951,901 2,153,164 2.262
Plants 1,009,268 2,510,219 2.487
Protozoa 510,582 841,682 1.648
Mammals 732,868 2,004,675 2.735
Other vertebrates 806,510 2,274,837 2.821
Viruses 234,768 303,129 1.291
Total (without all) 55,385,355 229,766,322 4.149
Total (without all and without bacteria) 5,159,447 14,161,043 2.745

Across all species, the mean number of codons not used within a sequence is 14.4819, with
a standard deviation of 8.6881 codons. The number of codons included in each codon
aversion motif is depicted in Figs. S22–S31. In Figs. S32–S41, we also show that relatively
few motifs are present in more than a few genes.

Trees constructed by CAM, amino acid motifs,
maximum-Likelihood and alignment free techniques
We ran each alignment-free algorithm on a 24-core Intel Broadwell (2.4 GHz) compute
node. For each analysis, we allowed the algorithms to run for a maximum of 3 days on 24
processing cores with a maximum of 256 GB of RAM.With these constraints, CAM, amino
acid motifs, and FFP each recovered a tree for all 23,428 species. ACS, CVTree, andi, and
FSWM recovered trees for most of the analyses. ACS and andi exceeded the time limitation
for all species and bacteria. CVTree had a segmentation fault on comparisons for all species
and bacteria. FSWM exceeded the memory limitation for all species and bacteria. KMACS
exceeded the three-day time limit for all of the analyses except for protozoa. In addition,
Co-phylog was not able to complete any of the analyses in the allotted time. Kr exceeded the
maximum memory allocation for each analysis. Maximum likelihood recovered trees for
most of the analyses, although insufficient ortholog annotations were available in bacterial
species and all species. The maximum likelihood trees included relatively few fungi (25%),
protozoa (32%), invertebrates (38%), and plants (67%) because many of the species did
not have ortholog annotations. The NCBI taxonomy included almost all species found
in RefSeq, missing only two archaea, 456 bacteria, and 188 viruses. Since the OTL does
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Table 2 Number of species included in phylogenies. For each algorithm, we report the number of species used to recover the phylogeny.

Taxonomic
group

CAM Amino acid
motifs

FFP CVTree ACS Andi FSWM Maximum
likelihood

NCBI
taxonomy

OTL

All 23,428 23,428 23,428 N/A N/A N/A N/A N/A 22,794 12,337
Archaea 418 418 418 418 418 418 418 418 416 362
Bacteriaa 15,068 15,068 15,068 N/A N/A N/A N/A N/A 14,612 11,227
Fungi 234 234 234 232 232 232 232 58 234 214
Invertebrates 149 149 149 149 149 149 149 57 149 147
Plants 89 89 89 89 89 89 89 60 89 87
Protozoa 75 75 75 75 75 71 75 24 75 75
Mammals 107 107 107 107 107 107 107 100 107 105
Other vertebrates 123 123 123 123 123 123 123 118 123 120
Virusesa 7,233 7,233 7,233 6,996 7,230 6,996 6,996 N/A 7,045 N/A

Notes.
aSome species are included in both bacteria and viruses.

not include viruses, it contains significantly fewer species, with the inferred phylogeny
containing only 12,337 species out of the possible 23,428 species. We show the number
of species included in the phylogenies recovered by each algorithm in Table 2, excluding
KMACS, Co-Phylog, and Kr which were unable to complete the analyses.

Percent similarity compared to reference trees
We compared the recovered phylogenies from each of the algorithms with the reference
phylogenies from the OTL (Table 3) and the NCBI taxonomy (Table 4). Of the CAM
analyses, bacteria and viruses have the highest similarity with the reference phylogenies
(84–91%), and invertebrates have the lowest similarity (60–70%). In most instances, amino
acid aversion motifs performed comparably to codon aversion motifs when compared
against the OTL and the NCBI taxonomy. However, the percent overlap between the NCBI
taxonomy and amino acid aversion motifs in mammals, other vertebrates, and viruses was
much lower than the percent overlap with CAM (9–25% lower). The same trend exists when
comparing the recovered trees with the OTL, with amino acid motifs recovering 10–14%
fewer species relationships than CAM. The other taxonomic groups did not appear to vary
significantly between the recovered trees using amino acids or codons, with the difference
between the two methods being −3% to +3% for the NCBI taxonomy and −5% to +2%
different for the OTL. CAM and the other alignment-free algorithms all had similar percent
similarities to the reference trees. There was no single algorithm that consistently had the
highest percent similarity compared to the references. Maximum likelihood also recovered
trees with comparable branch percent similarities with the alignment-free methods.

As expected, the NCBI taxonomy and the OTL are highly similar (Table 3), although
6–9% of species relationships disagree outside of invertebrates, plants, and mammals. Even
though the NCBI and OTL reference trees are similar to each other, our analyses lend
support to the NCBI taxonomy in every taxonomic group –70 out of the 71 completed
analyses reported phylogenies being 2–15% more similar to the NCBI taxonomy than the
OTL.
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Table 3 Comparison to the OTL. Percent edge overlap of an unrooted tree comparison of each algorithm versus the established phylogeny from
the OTL for each taxonomic group. Maximum likelihood could not compute a tree for bacteria or all species because insufficient ortholog anno-
tations were available for the majority of these species. ACS, andi, and FSWM could not complete bacteria and all species analyses due to time or
memory constraints.

Taxonomic
group

CAM Amino acid
motifs

FFP CVTree ACS Andi FSWM Maximum
likelihood

NCBI
taxonomy

All 82 84 83 N/A N/A N/A N/A N/A 95
Archaea 75 77 74 80 80 68 82 89 94
Bacteria 84 84 85 N/A N/A N/A N/A N/A 95
Fungi 69 67 67 73 75 65 69 65 91
Invertebrates 60 57 55 65 68 63 78 73 98
Plants 64 63 54 72 79 70 85 73 98
Protozoa 65 65 64 72 68 60 75 64 93
Mammals 77 63 52 69 90 95 94 93 99
Other vertebrates 66 56 54 68 76 81 80 81 94

Table 4 Comparison to the NCBI taxonomy. Percent edge overlap of an unrooted tree comparison of each algorithm versus the established phy-
logeny from the NCBI taxonomy for each taxonomic group. Maximum likelihood could not compute a tree for bacteria, viruses, or all species be-
cause insufficient ortholog annotations were available for the majority of these species. ACS, andi, and FSWM could not complete bacteria and all
species analyses due to time or memory constraints.

Taxonomic
Group

CAM Amino acid
motifs

FFP CVTree ACS Andi FSWM Maximum
likelihood

All 89 90 90 N/A N/A N/A N/A N/A
Archaea 81 84 80 85 86 76 89 92
Bacteria 91 90 91 N/A N/A N/A N/A N/A
Fungi 73 69 69 75 77 67 72 70
Invertebrates 70 68 65 75 78 71 70 78
Plants 71 70 61 80 84 78 92 79
Protozoa 72 71 72 82 78 68 85 73
Mammals 87 73 63 80 95 98 98 98
Other vertebrates 79 70 67 83 90 93 93 95
Viruses 90 65 91 91 92 89 60 N/A

We also ran the entire CAM analysis excluding partial sequences. Excluding partial genes
had a minimal effect on the overall percent overlap with the OTL (minus 2% to plus 5%
similarity) and the NCBI taxonomy (minus 2% to plus 3% similarity).

Comparing algorithm runtimes
Table 5 shows the CPU runtime of each algorithm in hours. The alignment-free techniques
had significantly faster runtimes than the maximum likelihood approach. FFP and CVTree
consistently had the fastest runtimes. CAM and amino acid motifs also ran quickly with
runtimes ranging from less than 2 minutes for the smaller datasets, such as protozoa, to
approximately 20 hours for all species. Runtime was always longer for amino acid motifs
than CAM because the DNA sequences were translated into protein sequences before being
evaluated for amino acid usage. Runtimes for adni ranged from 1 to 2 hours for the smaller
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Table 5 CPU runtime of each algorithm in hours. CVTree and FFP were the fastest algorithms. CAM and Amino acid motifs had comparable
runtimes and were faster than ACS, andi, FSWM, and maximum likelihood.

Taxonomic
group

CAM Amino acid
motifs

FFP CVTree ACS Andi FSWM Maximum
likelihood

All 17.2794 20.2692 3.9072 N/A N/A N/A N/A N/A
Archaea 0.0667 0.1436 0.0408 0.0236 28.87 8.05 28.83 161.5
Bacteria 14.6994 17.4458 3.7442 N/A N/A N/A N/A N/A
Fungi 0.0783 0.2167 0.0294 0.0028 42.12 8.75 56.92 199.75
Invertebrates 0.0763 0.2126 0.0447 0.0150 28.75 5.88 54.93 2.5
Plants 0.0781 0.2211 0.0383 0.0217 22.17 4.21 49.77 6.0
Protozoa 0.0287 0.0833 0.0183 0.0078 4.88 1.01 20.65 4.0
Mammals 0.0718 0.2101 0.0294 0.0122 22.32 4.32 63.25 2.5
Other vertebrates 0.0872 0.2356 0.0322 0.0206 27.03 5.63 61.35 6.75
Viruses 0.1028 0.1161 0.1019 0.2906 42.53 12.67 6.03 N/A

taxonomic groups excluding bacteria. ACS ran slightly slower with a range of 4 to 42 hours.
FSWM was the slowest alignment-free method with CPU runtimes ranging from 20 to 63
hours, excluding bacteria. Maximum likelihood required between 2.5 and 200 hours of
CPU time to compute a tree for each taxonomic group.

Although the maximum likelihood analysis was not possible on bacteria or all species
because insufficient ortholog gene annotations exist to accurately compare the majority
of the bacterial species, it would have also been infeasible based on CPU runtime. As
more species and orthologs are included in the maximum likelihood analysis, the runtime
increases exponentially. The fastest iteration of maximum likelihood finished in 2.5 hour
on 100mammals, using 18 orthologous genes which were each present in at least 97 species.
In contrast, CAM used all genes in 107 mammals and finished in 0.2101 hours (12 minutes,
36 seconds). The slowest iteration of maximum likelihood finished in 199.75 hours on 58
fungi using 648 orthologs, which were each annotated in at least five species. CAM again
analyzed all genes, both annotated and unannotated, across 234 fungi, finishing in 0.2167
hours (13 minutes).

Ortholog frequency for maximum likelihood analysis
Maximum likelihood is highly dependent on the number of orthologs annotated in the
analysis. In Table 6, we report theminimumnumber of species with an ortholog annotation,
the number of orthologs used, and the total number of characters in the super-matrix for
each taxonomic group. All orthologous genes with gene annotations spanning at least the
number of species noted in column 2 (minimum number of species with orthologs) were
included in the analysis. Differences in the minimum number of species with an ortholog
are due to differences in the breadth of gene annotations within a taxonomic group.
For instance, few orthologous gene annotations spanned more than five species in fungi,
invertebrates, and protozoa; however, many orthologs were annotated in 100 vertebrate
species. We did not filter the orthologs on any metric besides the number of species with
that gene annotation.
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Table 6 Matrix statistics for maximum likelihood analysis. The first column is the taxonomic group.
The second column is the minimum number of species that must include an ortholog annotation for it
to be included in the matrix. The third column is the number of orthologs with the minimum number of
species annotations. The fourth column is the number of nucleotide characters in the combined alignment
of all orthologs included in the analysis.

Taxonomic Group Minimum number
of species
with ortholog

Number of orthologs
in super-matrix

Characters in
super-matrix

Archaea 95 45 62,442
Fungi 5 648 1,403,618
Invertebrates 5 20 17,665
Plants 40 75 87,764
Protozoa 5 200 411,028
Mammals 97 18 24,767
Other vertebrates 108 28 30,900

DISCUSSION
The advent of Next Generation Sequencing (NGS) enables researchers to quickly and
inexpensively sequence genomes faster than orthologous relationships and species
phylogenies can be annotated and examined. Therefore, alignment-free algorithms are
becoming increasingly more important in determining phylogenetic trees in a cost-effective
and time-efficient manner. The results of our CAM analyses show that CAM produces
comparable trees to other alignment-free algorithms, performs quickly, and has the ability
to compare vastly divergent species.

CAM accuracy
Although alignment-free methods are not currently considered as accurate as alignment-
based methods, as more alignment-free methods and phylogenetically conserved
characters are discovered and combined, their accuracy increases. We recognize that
the OTL and the NCBI reference trees suffer from biases based on the phylogenetic tree
reconstruction methods used to create them. However, they provide researchers with
the most comprehensive number of species by combining the results of various studies.
Therefore, similarity to the reference trees is a relative metric that can be used to assess each
algorithm against the results from all other algorithms. Furthermore, all algorithms are
subject to the same potential biases that exist by performing this type of analysis because
they are each compared to the same reference phylogenies.

CAM recovered trees that were 60–82% similar to the OTL and 70–91% similar to the
NCBI Taxonomy. Although CAM does not recover identical phylogenies to the OTL or the
NCBI taxonomy, the recovered phylogenies have comparable percent branch similarities
as phylogenies recovered using traditional ortholog-based maximum likelihood estimates.
For protozoa, the percent similarity with the OTL and the NCBI taxonomy was only 1%
different between maximum likelihood and CAM. Species relationships recovered for
archaea, mammals, and other vertebrates were more similar to established phylogenies
using maximum likelihood. However, since traditional ortholog-based techniques were
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used to construct the current representation of the OTL, it is expected that taxonomic
groups with well-documented orthologs should recover very similar trees to the reference.
CAM recovered trees were comparable in percent similarity to other alignment-free
algorithms. No single algorithm outperformed all other algorithms in terms of percent
similarity with the OTL or the NCBI taxonomy. Since CAM performed comparably
to all other alignment-free algorithms, codon aversion motifs should be considered in
conjunction with these other methods in phylogenomic analyses.

Amino acid aversion motifs also recovered trees that were comparable to the OTL and
NCBI taxonomy. Since amino acid aversion recovered trees with similar percent identities
as the other alignment-free algorithms, amino acids might be sufficient to determine
phylogenetic relationships when only protein sequences are available. However, CAM
performed slightly better than amino acid aversion in themajority of the analyses, indicating
that codon aversion provides additional phylogenetic information. This difference may
be due to the larger number of possible codon aversion motifs (261) as opposed to amino
acid aversion motifs (220). This additional information allows CAM to distinguish the
relationships between species at a higher resolution in the majority of analyses, indicating
that codon aversion provides additional phylogenetic information.

We considered the possibility that gene lengths influence CAM’s algorithm. Since fewer
codons are present in short genes, there are potentially more codons that are avoided by
random chance. This potential bias could cause genomes with a preponderance of short
genes to be clustered based on gene size as opposed to a codon or amino acid bias within
the gene. To determine if this bias affected our analysis, we analyzed the frequency of the
number of codons excluded in each codon aversion motif (Figs. S22–S31). If short gene
bias were prevalent, we would expect to observe an evenly distributed number of codons
in each codon aversion motif, ranging from two to about sixty (indicating that long genes
used all available codons and short genes used few available codons). We graphed these
frequencies and determined that each of the taxonomic groups showed the same trend
of codon aversion motifs. On average, relatively few codons were included in each motif
(14.4819 codons with a standard deviation of 8.6881).

CAM is also robust to partial gene annotations. Including or excluding partial gene
sequences in the analysis had a minimal effect on the overall species relationships. This
analysis indicates that missing data or incomplete data has a minimal effect on the
algorithm. Furthermore, without relying on gene alignments, the recovered phylogeny is
not dependent on the accuracy of the aligner or ortholog annotations. This property of
all alignment-free algorithms facilitates a more universal technique to compare distantly
related species that might have incorrectly labeled genes or highly mutated orthologs.

CAM runtime
Although CAM requires genomes to be assembled with CDS regions annotated, it does
not require an alignment of the genes against other species, nor does it require the
time-consuming approaches of traditional methods such as maximum likelihood. Codon
aversion motifs provide a basis for alignment-free methods to recover robust phylogenies
quickly and with sufficient resolution to account for future species discovery. In contrast to
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maximum likelihood, most cladal relationships were recovered using CAMwithinminutes.
CAM had comparable runtimes to FFP and CVTree, and faster runtimes by several orders
of magnitude than some of the alignment-free methods, including ACS, Andi, and FSWM.
Therefore, we show that CAM is a time-efficient alignment-free method that is comparable
or faster than other alignment-free algorithms.

CAM applies to more species than maximum likelihood
Since alignment-free methods, such as CAM, are not dependent on ortholog annotations,
they are able to recover species relationships when gene sequences lack ortholog
annotations. For example, ortholog annotations in protozoa were sufficient for only
24 species, whereas CAM recovered 75 taxonomic relationships. Maximum likelihood
recovered only 58 species relationships for fungi, whereas CAM recovered 234 relationships.
Since ortholog annotations are a limiting factor in phylogenomic studies, alignment-free
methods provide the ability to recover a higher number of species relationships than
traditional techniques.

CAM consistently recovers comparable phylogenies compared with other alignment-free
techniques. Since CAM uses a single character state, codon aversion, across all domains of
life, it limits ad hoc hypotheses by facilitating a single analysis of all species instead of piecing
together the phylogenetic signal from different genes. Additionally, codon aversion motifs
can be used to examine coevolutionary forces between different domains, such as viruses
and hosts. Since similarities in codon usages have previously been identified between some
viruses and their respective hosts (Chantawannakul & Cutler, 2008; Miller et al., 2017b),
this technique could facilitate coevolutionary analyses by identifying overlapping motifs in
distantly related species, which can then be analyzed using traditional techniques.

CONCLUSIONS
Weunderstand that certain limitations to our study exist. For instance, while we have shown
that CAM successfully recovers most species relationships with similar accuracy as other
alignment-free methods, we do not fully understand the biological mechanisms that govern
the phylogenetic signal we identified. One potential explanation is that codon aversion is
conserved due to selection on translational efficiency. A limited supply of tRNA exist in a
given organism, and codons that do not directly complement all three anti-codons in the
tRNA are generally considered suboptimal. Although suboptimal codons are sometimes
preferred (Tuller et al., 2010), they generally slow translation and decrease gene expression
(Quax et al., 2015).

The phylogenetic signal could also be attributed to neutral processes such as GC biased
gene conversion, since GC content changes during meiosis and is therefore likely to vary
directly with evolutionary time. We also note that alignment-free methods often appear as
a ‘‘black box’’ to researchers who are accustomed to homologous character analyses that
allow for directly identifying nucleotide differences in sequences. While CAM presents
a paradigm shift, it has the potential to be as informative as analyses of homologous
character states. Since CAM is based in codon usages within each gene, we propose
that percent similarities in codon aversions between species represents similarities in the
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mechanisms that maintain these codon usages. Although these mechanisms are presently
not fully understood, we show that they are phylogenetically conserved and can be utilized
to recover a phylogeny using our method.
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