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ABSTRACT
This paper presents the CellCycler, a model of a growing tumour which aims to
simulate and predict the effect of treatment on xenograft studies or in the clinic.
The model, which is freely available as a web application, uses ordinary differential
equations (ODEs) to simulate cells as they pass through the phases of the cell cycle.
However the guiding philosophy of the model is that it should only use parameters
that can be observed or reasonably well approximated. There is no representation of
the complex internal dynamics of each cell; instead the level of analysis is limited to
cell state observables such as cell phase, apoptosis, and damage. We show that this
approach, while limited in many respects, still naturally accounts for a heteregenous
cell population with varying doubling time, and closely captures the dynamics of a
growing tumour as it is exposed to treatment. The program is demonstrated using
three case studies.

Subjects Computational Biology, Mathematical Biology, Oncology, Pharmacology
Keywords Cancer, Pharmacology, Mathematical modeling, Drug combinations, Tumour
dynamics

INTRODUCTION
The CellCycler is an ODE-based model of a growing tumour, that is available as a web
application. The model uses a novel approach to capture the cell population dynamics as
individual cells grow and progress through the cell cycle, and can be used to plot overall
tumour growth in response to the effects of anti-cancer drugs. The model is intended as
a tool to help researchers simulate existing data, understand the effects of treatment on
tumour dynamics, and make basic predictions.

While as discussed in the next section more sophisticated modelling tools exist, the
CellCycler was designed to be as simple as possible in terms of the number of parameters
(as opposed to the number of equations), while capturing the main necessary features. For
example, there is no attempt made to model the complex dynamics of the cell interior. One
reason is that these dynamics are difficult to measure, but more important is the fact that
we are only interested in how they are expressed through cell growth, arrest, or death, and
these effects can be adequately parameterised at the level of the cell. (In other words, the
level of analysis here is the cell, or actually groups of cells, rather than the interior of the
cell.) If, for example, a drug creates cell damage during a particular phase, then it is usually
isn’t necessary to simulate exactly how the damage occurs, because what counts here is the
amount of cell damage, which can be parameterised in a straightforward manner.
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It can also be argued that introducing too many parameters actually makes a model less
useful, both because of the problem of over-fitting, and because models tend to become
unstable as they become increasingly intricate. Indeed the empirical evidence shows that
simple models tend to do better in predictive tests (Makridakis & Hibon, 2000). Finally,
keeping the model simple also makes it much easier and faster to use, and can help make
the results easier to interpret. For example, the program could be used as a pedagogical tool
to explore the dynamic effects of tumour treatment. The CellCycler therefore is limited to
basic parameters that can be observed or approximated reasonably accurately.

Of course, given the complexity of biological systems, simple models like the CellCycler
can only ever provide a partial approximation to the underlying dynamics, and can be
misleading if used in situations where their assumptions break down. If further detail is
desired, and adequate data exists, then it is possible to extend the model, but this should
only be done if it is consistent with the model assumptions and adds some predictive
value. Otherwise it may make more sense to adopt a more flexible agent-based approach
as discussed below.

The paper begins by deriving the basic equations for the different components of
the model, including the mathematical treatment of cell population behaviour and
tumour growth. An interesting feature of the model is the way that it naturally accounts
for a spread in tumour cell doubling times. We then explain how the CellCycler web
application is run. Finally, we demonstrate how the CellCycler can be used for exploring
combination schedules through three examples. The first example explores a hypothesis
around combining two drugs, where one affects cells in G1 phase and the other in M phase.
The other two case studies look in a more quantitative manner at the predictivity of the
CellCycler for preclinical combination experiments.

MATERIALS AND METHODS
Cell population model
The CellCycler model consists of three separate components: a cell population model, a
PK model, and a tumour growth model. The cell population model, which is the most
complex part of the CellCycler, needs to reflect the growth and phases of the cells as they
progress through the cell cycle, and effects such as cell damage and death. It also needs to
allow for a spread of cell cycle times within the population.

A number of approaches to modelling a cell population can be found in the literature.
One is to model cells individually, using an agent-based model (Bayrak et al., 2016). This
technique is the most general and powerful since it offers the ability to track and tailor
the dynamics of individual cells, but can be complicated and is computationally rather
slow. Use and interpretation of such models also often requires significant training and
experience.

Another method is to use ordinary differential equations, where each equation models
cells in a particular state (Checkley et al., 2015). For example theremay be separate equations
for cells in G1 phase, or S phase, or damaged cells. However suchmodels may not accurately
capture the time-dependent effect of certain drugs, which can be important when exploring
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phenomena such as synchronisation. For example, if a drug damages cells in S phase, then
to determine the effect of the drug on cells, we need to know exactly where cells are in
the cycle: if they are just starting S phase when exposed to drug, then they will get more
exposure than cells which are about to exit.

The CellCycler model addresses this problem by dividing the cell cycle up into a large
number of separate compartments of equal length. As discussed further below, typically
N = 50 compartments have been found to give adequate resolution. (Note this number
does not affect the number of parameters, which are the same for each compartment.) In
the absence of drug, the equation for the volume Vn of each compartment is very simple:

dVn

dt
= k1Vn−1−k2Vn.

Here k1 represents the change in volume due to cells transiting from compartment n−1
to compartment n, and k2 represents the change in volume due to cells transiting from
compartment n to compartment n+1 (note the indices are cyclic, so Vn = VN+n).

As shown in the Appendix, the rate constants are closely approximated by the formulas

k1∼=

(
N + log(2)

)
td

,k2∼=
N
td
.

The rate constants therefore simply reflect the fact that the cells pass through N
compartments in time td , with an additional growth term appearing in k1 which accounts
for cell growth.

The initial condition assumes that each compartment has an identical volume of cells,
which is consistent with the assumption that cells grow at a constant rate. For example, if
mitosis occurs in the last compartment, then there will be twice as many cells in the first
compartment, but the same volume.

Discretisation effects
Because the CellCycler divides the cell cycle into a fixed number of compartments, one
consequence is that the effective doubling time has a degree of uncertainty. This is illustrated
by Fig. 1, which shows how a perturbation at time zero in one compartment tends to blur
out over time, for models with N = 25, 50, and 100 compartments, and a doubling time of
td = 24 hours. In each case a perturbation of size N

td
is made to the volume of compartment

1 at the beginning of the cell cycle (note that each compartment has a volume which varies
inversely with N, so this scaling ensures that the perturbation represents the same change
in volume for any choice of N ). For the case with 50 compartments, the curve is closely
approximated by a normal distribution with standard deviation of 3.5 h or about 15 percent
(dashed green line).

The initial perturbation to a single compartment therefore spreads out with time, in
a manner which depends on the number of compartments N. This blurring effect due
to discretisation is a desirable feature (if it didn’t exist, we would have to add it) because
it is equivalent to saying that the cell population has a variable doubling time, as is the
case in growing tumours. One implication is that synchronisation effects caused by drugs
reduce over time. While we don’t usually have exact data on the spread of doubling times
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Figure 1 Plot showing volume in compartment 1 (ofN ) following a perturbation to that compartment
alone, after one cell doubling period of 24 h. The cases shown are with N = 25, 50, and 100 compart-
ments. The black dots show the estimated peak volumes for the three cases, using the formula developed
below. Dashed lines are the corresponding normal distributions. The distribution becomes more concen-
trated as the number of compartments increases.

Full-size DOI: 10.7717/peerj.6983/fig-1

in the growing layer, a choice in the region of 50 compartments gives what appears to be a
reasonable degree of spread.

It is possible to obtain a very simple analytic expression for the curves shown in the
figure. As shown in the Appendix, the peak of the distribution, shown by the black dots in
Fig. 1, is given by

V1(td)∼=
1
td

√
2N
π
.

Note this will increase only slowly with the square root ofN. It is therefore impractical to
obtain a highly peaked distribution; however as mentioned above this would be unrealistic
because it would imply a near-perfect degree of cell synchronisation which does not occur
in growing tumours.

The distributions in the figure can be approximated by a normal distribution (shown
by dashed lines), with peak given by the above formula, and a corresponding standard
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deviation, normalised to doubling time, of

σ =
1
√
N
.

So for example using 25 compartments gives a normalised standard deviation of about
0.02 or 20 percent, while using 100 compartments decreases this to 0.01 or 10 percent. The
default value is 50 compartments, which gives a standard deviation in doubling times of
about 14 percent.

Effect of drug
When drug is present, some cells will be damaged and possibly repaired, or killed outright.
Tomodel these effects, we include in themodel an additionalN compartments for damaged
cells, and one additional variable which represents cells lost to apoptosis. The volume of
the damaged cells Dn is then given by

dDn

dt
= kdVn−kr

where kd is the drug-dependent rate of damage, and kr is the repair rate. The rate for
the volume A of cells lost to apoptosis is given by

dA
dt
= kaVn.

The equation for proliferating cells is correspondingly modified to give

dVn

dt
= k1Vn−1−k2Vn−kdVn+kr−kaVn.

Since k1 and k2 are determined from the cell doubling time, the only additional
parameters required by the model are the drug-dependent properties kd , kr and ka, as well
as the allocation of compartments between the different phases.

Tumour growth
Tumour growth is caused by the proliferation of dividing cells. For example, if cells have a
cell cycle length td , then the total number of cells will double every td hours, so the volume
will be given by

V = 2
t
td = eat

where

a=
log(2)
td

.

However, in general only the cells in the periphery of the tumour will be growing, since
cells in the inner core do not have access to the necessary nutrients.

Following a number of other models, we therefore assume for simplicity that tumour
growth is driven by an outer layer of proliferating cells, surrounding a quiescent or necrotic
core. The computational details were presented in a previous paper, but we recap the
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argument here (Mistry, Orrell & Eftimie, 2018). If the proliferating layer has thickness
d < r , and is growing at a rate a, then the volume of the layer is

Vp= 4πr2d

and it is growing at a rate

dVp

dt
= aVp= a4πr2d.

The total volume of the tumour is

V =Vp+Vc

where Vc is the volume of the necrotic core. The growth equation for the radius of the
whole tumour is given by

dr
dt
=

dr
dV

dV
dt
=

dr
dV

(
dVp

dt
+

dVc

dt

)
but since

dVc

dt
= 0

the growth equation of the radius becomes

dr
dt
=

dr
dV

dV
dt
=

dr
dV

dVp

dt
=

(
1

4πr2

)
a4πr2d = ad

which is solved to give the linear equation

r =R0+adt .

To translate from cell population growth (with growth rate a) to tumour growth, we
therefore need just two additional parameters, which are the thickness of the growing layer
d, and the initial volume R0. Note that the equation assumes d < r so holds only when the
tumour is sufficiently large that it has developed a non-growing core.

This growth equation, which is not new but has been known since at least the 1930s, is
consistent with the empirical observation that in the absence of treatment tumour diameter
tends to increase in a roughly linear fashion (Mayneord, 1932). The model will of course
not be a perfect fit for the growth of all tumours, but has the advantage that it can be easily
parameterised and fit to noisy data. It can also be extended to more complex cases, for
example where drug resistance leads to a modified growth rate after treatment.

Using the CellCycler
The CellCycler model has been incorporated into a freely accessible Shiny web application
(Orrell & MIstry, 2019). The starting point for the program is the Cells page, which is used
to model the dynamics of a growing cell population. The key parameters are the average
cell doubling time, and the fraction spent in each phase (G2 is set automatically since the
proportions must add to 1). The doubling time is assumed to be variable, with a range that
depends on the number of model compartments. This can be adjusted in the Advanced tab:
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25 compartments gives a standard deviation for cell doubling times of about 20 percent,
50 compartments gives 14 percent, and 100 compartments gives 10 percent. Note that the
number of compartments affects both the simulation time (more compartments is slower),
and the discretisation of the cell cycle. For example with 50 compartments the proportional
phase times will be rounded off to the nearest 1/50=0.02.

In addition the user selects the simulation time, and plotting choices such as growing or
damaged cells. The plot will then show the volume of cells in each phase, as well as the total
volume, normalised to an initial volume of 1. Model settings can be saved to or loaded
from a csv file.

The next pages, PK1 and PK2, are used to parameterise the PK models and drug effects.
The program has a choice of three PK model types. The first is a simple decay model
(K-PD), where the drug is introduced at a certain concentration (as in intravenous bolus
injection) and then decays. The second is a step model, where the drug is assumed to
be held at a fixed level over specified time intervals, as in infusion. The third option is a
one-compartment model which includes absorption and decay rates (a schematic is given
in the online documentation—a project for future work is to add other options such as
multi-compartment models). In addition the phase of action (choices are G1, S, G2, M,
or all), and rates for death, damage, and repair can be adjusted. Units are in terms of free
concentration. Finally, the Tumor page uses the model simulation to generate a plot of
tumor radius, given an initial radius and growing layer. A table is shown giving total radius
gain; the maximum gain that would be obtained in the absence of drug; the radius loss due
to drug; and the proportions of this loss that are due to death or cell damage.

The results can be compared with experimental results in the Tumor page by using
the ‘‘Read data for overlay from file’’ option, and checking the ‘‘overlay’’ box. A sample
file, consisting of data from an adenoid cystic carcinoma study, is currently loaded by
default for demonstration purposes (Moskaluk et al., 2011). If the user selects ‘‘show linear
fit’’ then the plot will include a linear interpolation, with estimates for initial volume and
growing layer thickness given in a table. If the data corresponds to control curves with no
drug, then these values can be used to parameterise the growth rate of the model.

RESULTS
In the following sections, we present three case studies which show how the CellCycler can
be applied in drug combination studies. The first is a fairly qualitative analysis of a drug
combination, while the next two show the CellCycler’s use as a predictive tool.

Case Study 1: EGFR/Chemotherapy combinations
EGFR inhibitors are now widely used within the clinic as a monotherapy agent for treating
patients with non-small cell lung cancer who harbour a specific EGFR mutation. During
their clinical development, however, EGFR inhibitors were also studied in combination
with chemotherapy within the lung cancer setting. The results of the combination were not
as efficacious as hoped given the strong preclinical results. One explanation has centred
on the antagonism between the two drugs at the cell-cycle level (Davies et al., 2006). EGFR
inhibitors are known to exert their effect during G1 phase of the cell cycle, whereas the
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Table 1 EGFRi/Chemotherapy combination study. Parameter values used for the EGFR inhibitor in
combination with Chemotherapy example.

Parameter Value

Cell-Cycle (Default Settings)
Doubling Time (hours) 24
Cell-Cycle Phases
G1 0.2
S 0.3
G2 0.4
M 0.1

Tumour Size (Default Settings)
Initial Diameter (mm) 6.8
Growing Layer (mm) 0.24

Drug PK (Default Settings)
EGFR Inhibitor
Dose/V 1
Elimination Rate 0.1
Taxol
Dose/V 1
Elimination Rate 0.1

Drug Cell-Cycle (Default Settings)
EGFR Inhibitor
G1 Phase Damage 1
G1 Phase Repair 0.1
G1 Phase Apoptosis 0
Taxol
M Phase Damage 1
M Phase Repair 0.1
M Phase Apoptosis 1

Taxol based chemotherapy treatments affect cells in M phase. Furthermore, the effect of
EGFR inhibitors on G1 phase of the cell-cycle involves arresting the cells in that phase, thus
delaying progression through the cell-cycle. If both agents are given at the same time, there
could therefore be a degree of antagonism which may reduce the effect of the combination.

An obvious solution to this problem is to sequence the treatments in such a way as
to prevent this antagonism. We therefore used the CellCycler to explore how much of a
difference sequencing makes, versus giving both agents at the same time, in a hypothetical
xenograft experiment.

The parameter values used for this case study can be seen in Table 1. They represent the
default settings of the CellCycler. For the two drugs of interest we have used the default
settings for the K-PD model. The EGFR inhibitor was modelled as causing damage to
cells in G1-phase. For a Taxol based inhibitor we modelled the drug as affecting cells in
M-phase, and assumed both cell damage and cell death can occur.
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Figure 2 Temporal evolution of cell-cycle voumes. Plot showing how a single dose of an agent effecting
cells in G1-phase of the cell-cycle effects the cell-cycle distribution over time.

Full-size DOI: 10.7717/peerj.6983/fig-2

We first performed a single dose simulation to highlight the gain and loss of cell-cycle
synchronisation effectswith theCellCycler, see Fig. 2. The plot shows the temporal evolution
of the relative volumes in different phases of the cell-cycle after a single administration of
the EGFRi. We can see that the proportion of cells in G1 phase of the cell-cycle (blue line)
first drop before re-bounding as the drug clears and cells recover from the treatment effect.
The simulation highlights that giving a drug that works within M-phase of the cell-cycle
(yellow line) at 24 h is not optimal as that is when the proportion of cells in that phase of
the cell-cycle is at its lowest.

We then moved onto the repeat dosing studies. The overall simulation time used
was three weeks, which is considered a reasonable time for a xenograft experiment. The
schedules explored, and the results of the simulations, can be seen in Table 2. We see that
the combination effect is indeed sequence dependent. Giving Taxol first, followed by the
EGFRi, gives modest improvement over the combination given at the same time. However,
reversing the order—with the EGFRi first, followed by Taxol—is less efficacious then the
two drugs given together.

These results show that the CellCycler can be used to explore sequencing effects for
combination therapies. The next two examples we shall consider are more quantitative
ones.

Case study 2: CDK4/6 inhibitor combination with Gemcitabine
In this example we apply the CellCycler to a combination involving a CDK4/6 inhibitor
(LY2835219) and Gemcitabine. The experiment of interest is taken from Gelbert et al.
(2014) which tested the sequencing effect of the two drugs in a Calu-6 xenograft model
(see Fig. 5 in that paper). We will consider three of the experiments as a training set for
model parameterisation: control (without drug), LY2835219 as monotherapy (50 mg/Kg
once daily for 21 days), and Gemcitabine (60 mg/Kg once every 3rd of a 7 day cycle)
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Table 2 CellCycler simulation results. Simulation results in terms of diameter loss for the drugs as
monotherapy and in combination.

Drug schedule Diameter loss

Taxol
Day 1 weekly 0.57 mm
EGFRi
Days 1–5 every week 0.90 mm
Taxol + EGFRi
Taxol (Day 1) + EGFRi (Days 1–5) weekly 1.38 mm
Taxol ->EGFRi:
Taxol (Day 1) + EGFRi (Days 2–6) weekly 1.44 mm
EGFRi ->Taxol:
EGFRi (Days 1–5) + Taxol (Day 6) weekly 1.31 mm

as monotherapy. These studies together with literature information on Calu-6 doubling
time (Lemaire et al., 2008) and cell-cycle phase durations (Han et al., 2008) were used to
calibrate all the parameters in the model; see Table 3. We assumed that LY2835219 exerts
its effect on cells when in G1 phase of the cell-cycle, this is consistent with what is known
about the compound from Gelbert et al. Gemcitabine is well known to cause damage to
cells in S phase of the cell-cycle which can lead to apoptosis, and so we model the drug in
this way. The model fits to the training data, obtained by adjusting parameters until the
simulated growth curve adequately agreed with the data, can be seen in Fig. 3.

It is noticeable in Fig. 3 that the CellCycler is underestimating the diameter curves
after the treatment has stopped, post day 21. However, we are using the mean value at
each experimental time-point and so this must be taken into account when judging the
model fits. Individual mice data were not available in the literature. The CellCycler can be
considered to be well-calibrated to the experimental data up to the last dosing day, day 21,
for the treated xenografts which was our aim.

We then simulated the dosing schedules for the combination schedules, i.e., sequenced
(LY first: 50 mg/Kg once daily for 12 days; then Gemcitabine: 60 mg/Kg every 3rd day of a
4 day cycle) versus both compounds taken together (LY, 50 mg/Kg once daily for 21 days,
and Gemcitabine, 60 mg/Kg every 3rd day of a 7 day cycle), which formed our testing set.
The results can be seen in Fig. 4. The CellCycler predictions for the testing sets are in good
agreement with the experimental data. The results show that there is little difference in
terms of efficacy between the two dosing schedules, even though the schedules are quite
different.

Case study 3: MEK inhibitor combination with Docetaxel
In this example we apply the CellCycler to a combination involving a MEK inhibitor
(Selumetinib) and Docetaxel. The experiment of interest is taken from Holt et al. which
tested the sequencing effect of the two drugs in a HCT-116 xenograft model (see Fig.
3C in that paper) (Holt et al., 2012). Similar to case study 2 we will consider three of
the experiments as a training set for model parameterisation: control (without drug),
Selumetinib as monotherapy (twice daily for 7 days), and Docetaxel as monotherapy
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Table 3 CDKi/Gemcitabine combination study. Parameter values for the CDK inhibitor in combination
with Gemcitabine example.

Parameter Value

Cell-Cycle (Default Settings)
Doubling Time (hours) 30
Cell-Cycle Phases
G1 0.5
S 0.25
G2 0.15
M 0.1

Tumour Size (Default Settings)
Initial Diameter (mm) 6.32
Growing Layer (mm) 0.46

Drug PK (Default Settings)
LY2835219
Dose/V 1
Elimination Rate 0.1
Gemcitabine
Dose/V 1
Elimination Rate 0.1

Drug Cell-Cycle
LY2835219
G1 Phase Damage 0.4
G1 Phase Repair 0.1
G1 Phase Apoptosis 0
Gemcitabine
S Phase Damage 10
S Phase Repair 0.1
S Phase Apoptosis 0.8

(single dose). These studies were combined with literature information on HCT-116
doubling time (Li, Nelsen & Hendrickson, 2002) and cell-cycle phase durations (Hemmati
et al., 2005) to calibrate all the parameters in the model; see Table 4. We assumed that
Selumetinib exerts its effect on cells when in G1 phase of the cell-cycle, this is consistent
with what is known about the compound (Holt et al., 2012). Docetaxel is known to cause
damage to cells in M phase of the cell-cycle which can lead to both cell damage and
apoptosis, and so we model the drug in this way.

The model fits to the training data, obtained by adjusting parameters until the simulated
growth curve adequately agreed with the data, can be seen in Fig. 5. The control data
curve appears to grow linearly until the last time-point at which the mean value drops.
This could well be due to the effect of drop-outs. Individual mice growth curves would
be needed to account for this. We therefore chose to fit to the earlier time-points with the
final data-point ignored. The model fit to Selumetinib is in good agreement with the mean
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Figure 3 Plot showing the calibration of the CellCycler to the control (A) andmonotherapy data (B
and C). Simulation (red line) overlaid on top of the experimental data (black line) used for training the
CellCycler. The original volume data has been converted to diameter values through a cube-root transfor-
mation. The original volume data has been converted to diameter values through a cube-root transforma-
tion.

Full-size DOI: 10.7717/peerj.6983/fig-3

Figure 4 Plot showing the prediction of the combination studies using the CellCycler. Simulation
(red line) overlaid on top of the experimental data (black line) used for testing the CellCycler. (A) shows
LY283519 (LY) given first followed by Gemcitabine (Gem) whereas (B) shows LY given in combination
with Gem up-front. The doses of LY and Gem were the same as that used for monotherapy studies. The
original volume data has been converted to diameter values through a cube-root transformation.

Full-size DOI: 10.7717/peerj.6983/fig-4

data. The fits to Docetaxel data are not as good, however again it must be noted that we
are using mean data.

We then simulated two different combination schedules: (i) Selumetinib given first,
twice daily for 7 days, then after 24 h of the last dose of Selumetinib a single dose of
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Table 4 MEKi/Docetaxel combination study. Parameter values used for the MEK inhibitor (MEKi) in
combination with Docetaxel example.

Parameter Value

Cell-Cycle (Default Settings)
Doubling Time 18
Cell-Cycle Phases
G1 0.49
S 0.33
G2 0.09
M 0.09

Tumour Size (Default Settings)
Initial Diameter (mm) 8.30
Growing Layer (mm) 0.50

Drug PK (Default Settings)
MEKi
Dose/V 1
Elimination Rate 0.1
Docetaxel
Dose/V 1
Elimination Rate 0.0025

Drug Cell-Cycle
MEKi
G1 Phase Damage 0.1
G1 Phase Repair 0.001
G1 Phase Apoptosis 0
Docetaxel
M Phase Damage 0.5
M Phase Repair 0.001
M Phase Apoptosis 0.1

Docetaxel was given; ii) single dose of Docetaxel then after 24 h 7 days of twice daily
dosing of Selumetinib. The simulations overlayed on top of the experimental data can
be seen in Fig. 6. Schedule (i) is in good agreement with the experimental data with a
slight under prediction. Schedule (ii) is well predicted until the first data-point after which
we over-predict the tumour volume. To better understand the difference between model
prediction and mean observation, individual mice growth curves would be necessary.
Although the quantitative predictions were not as good as those for case study 2, the
qualitative result that there is a modest difference between the two schedules observed in
the experiment was also observed in the model predictions.

DISCUSSION
In summary, the three case studies presented highlight the potential of the CellCycler to be
used to explore hypotheses and also as a predictive tool. The model is conceptually simple,
and the minimal number of parameters mean that it is both less vulnerable to over-fitting,
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Figure 5 Plot showing the calibration of the CellCycler to the control (A) andmonotherapy data (B
and C). Simulation (red line) overlaid on top of the experimental data (black line) used for training the
CellCycler. The original volume data has been converted to diameter values through a cube-root transfor-
mation.

Full-size DOI: 10.7717/peerj.6983/fig-5

and easier to interpret and compare across cases, than more complicated models. The
model may also be of use as a pedagogical tool.

The model uses cells as the units of analysis, and does not attempt to simulate
intra-cellular dynamics, but can still capture effects such as cell death or damage in a
straightforward way. Three case studies were explored which highlight how the sequence
in which drugs are used can affect the tumour growth time-series. The core model can
also be extended in a number of ways to include specific checkpoints, or to capture effects
such as drug resistance or growth saturation. However as a rule this should only be done
if it makes the model simulations more accurate and predictive (rather than simply for
completeness) since additional parameters make the model more prone to over-fitting.
Readers are invited to try out the program for themselves by accessing it online, either with
the sample data set provided or with their own data.

APPENDIX
Derivation of rate equations
We assume that cells grow constantly as they progress through the cell cycle. As cells enter
from the previous compartment, their volume therefore expands by a factor 2

1
N . So after

passing through all N compartments, the cells will have grown by a factor 2 as expected
(after which they divide in two). It follows that the volume change rate k1 corresponding
to cells entering from the previous compartment must be a factor 2

1
N greater than the

corresponding rate k2 for cells leaving the current compartment, i.e., k1= 2
1
N k2.

If we now sum the rate equations for the separate compartments, we obtain the growth
rate for the total volume VT which is

dVT

dt
= (k1−k2)VT .
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Figure 6 Plot showing the prediction of the combination studies using the CellCycler. Simulation
(red line) overlaid on top of the experimental data (black line) used for testing the CellCycler. The dashed
lines represent Selumetinib (MEKi) given first followed by Docetaxel (DOC) whereas the solid line rep-
resents DOC given first and then the MEKi. The doses of MEKi and DOC were the same as that used for
monotherapy studies. The original volume data has been converted to diameter values through a cube-
root transformation.

Full-size DOI: 10.7717/peerj.6983/fig-6

If the average length of the cell cycle is td , then the total number of cells is doubling in
time td , and we can also express the growth rate as an exponential equation

dVT

dt
= eat

where

a=
log(2)
td

We therefore have two equations for the two unknowns k1 and k2, which can be solved
to give

k1=
log(2)
td

21/n

21/n−1
,k2=

log(2)
td

1
21/n−1

Using the approximation, valid for large n, that

21/n

21/n−1
∼=

1
log(2)
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we note that the rates are roughly

k1∼=

(
N + log(2)

)
td

,k2∼=
N
td
.

Derivation of approximate formula for doubling time variability
The model equations for growing cells can be written:

dV
dt
= (k1J−k2I)V

where I is the identity matrix, and J is the identity matrix with columns permuted once to
the left. For example, for the case with only four compartments, we would have

J=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

.
This equation has as its solution

V= e(k1t J−k2t I)V0= e−k2t ek1t JV0.

To determine the effect after one doubling time, we use the approximations for k1 and
k2 above, and set t = td to obtain

k1td ∼=N + log(2),k2∼=
N
td

so

V∼= e−N e(N+log(2))JV(0)

Taking a Taylor expression, we have

e(N+log(2))J= I+
(
N + log(2)

)
J+

1
2!
(
N + log(2)

)2J2+ 1
3!
(
N + log(2)

)3J3+ ...
Consider a step perturbation so that the vector V(0) is 0 in all elements except for the

first, normalised for the total volume being perturbed so that

V1(0)=
N
td
.

In this case all powers of the matrix J, when multiplied by V(0), are zero except for those
powers that are divisible byN, so the expression for the volumeV 1 in the first compartment
after time td reduces to

V1(td)∼= e−N
(
1+

1
N !
(
N + log(2)

)N)N
td

plus higher terms which can be neglected over time scales of a single cycle.
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Using Stirling’s approximation

N ! ∼=
√
2πN

(
N
e

)N

then gives

V1(td)∼=
1

√
2πN

(
N + log(2)

N

)N N
td
.

The term in brackets converges for largeN to 2 (this can be seen by taking the logarithm
and using a first-order approximation), so

V1(td)∼=
1
td

√
2N
π
.
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