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ABSTRACT
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide.
High mortality in LUAD motivates us to stratify the patients into high- and low-
risk groups, which is beneficial for the clinicians to design a personalized therapeutic
regimen. To robustly predict the risk, we identified a set of robust prognostic gene
signatures and critical pathways based on ten gene expression datasets by the meta-
analysis-based Cox regression model, 25 of which were selected as predictors of
multivariable Cox regressionmodel byMMPC algorithm. Gene set enrichment analysis
(GSEA) identified the Aurora-A pathway, the Aurora-B pathway, and the FOXM1
transcription factor network as prognostic pathways in LUAD. Moreover, the three
prognostic pathways were also the biological processes of G2-M transition, suggesting
that hyperactive G2-M transition in cell cycle was an indicator of poor prognosis
in LUAD. The validation in the independent datasets suggested that overall survival
differences were observed not only in all LUAD patients, but also in those with a
specific TNM stage, gender, and age group. The comprehensive analysis demonstrated
that prognostic signatures and the prognostic model by the large-scale gene expression
analysis were more robust than models built by single data based gene signatures in
LUAD overall survival prediction.

Subjects Cell Biology, Molecular Biology, Oncology, Data Science
Keywords Large-scale gene expression analysis, Hyperactive G2-M transition, MMPC algorithm,
Overall survival, Lung adenocarcinoma (LUAD)

INTRODUCTION
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide
(Siegel, Miller & Jemal, 2015). Risk factors include smoking, age, family history, air
pollution, etc. (Malhotra et al., 2016). The lung adenocarcinoma is most commonly
diagnosed at a late stage, which results in a poor patient survival rate (Salomaa et al., 2005).
Current therapies incorporate surgical, medical, and radio-therapeutic interventions.
However, the long-term survival rate of patients diagnosed with primary LUAD has not
been improved (Field & Raji, 2010).
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The prognosis of lung cancer mainly depends on the probability of recurrence and
metastasis (Yang, 2009). Although the TNM staging system had the potential to predict the
prognosis, its performance was still not satisfactory (Marchevsky, 2006). Recently, many
efforts weremade to identify the potential molecules that are the prognosticmarkers of lung
cancer patients (Chen et al., 2018; Li et al., 2017; Park et al., 2012; Shukla et al., 2017). With
the advances in microarray and RNA sequencing technologies, gene expression signatures
were widely applied to predicting the prognosis of lung adenocarcinoma. For example,
Dama et al. reported a 10-gene signature able to predict prognosis of patients with stage I
lung adenocarcinoma (Dama et al., 2017), which distinguishes an aggressive subtype from
the early-stage LUAD. Wan et al. (2010) identified a 12-gene signature for lung cancer
prognosis and chemo-response prediction. Moreover, Xu et al. identified a five-gene and
corresponding protein signature for stage-I lung adenocarcinoma prognosis (Kadara et al.,
2011). However, the gene signatures used for prognostic prediction by different studies
are diverse from each other due to different methodologies, experimental platforms, batch
effect, and other factors, which motivates us that a set of robust prognostic gene signatures
are urgently needed for clinical study and application.

In the present study, we collected ten gene expression datasets of lung cancer from
Gene Expression Omnibus (GEO) or ArrayExpress databases, which comprised 1,308
adenocarcinoma and 903 other etiologies. The meta-analysis-based Cox regression analysis
identified a set of robust gene signatures and critical pathways associated with LUAD
overall survival. Moreover, we also employedMMPC algorithm, which stands forMax-Min
Parents and Children, to select gene signatures for multivariable Cox regression model.
The multivariable Cox regression model not only exhibited robust performance in the
training and validation sets, but also had the capability of predicting LUAD prognosis
within TNM stages. The present study not only provided a set of robust gene signatures for
prognosis prediction, but also facilitated our understanding of the mechanism of LUAD
progression.

MATERIALS & METHODS
Data collection and pre-processing
Gene expression datasets were obtained from the NCBI Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo) and ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/) databases. Prior to downstream analysis, we firstly mapped the array
probes to the respective gene symbol by using the array annotations. To calculate the gene
expression more conveniently, we used the average expression values of genes matching
multiple probes.

Binarization of gene expression levels from multiple datasets
The first seven datasets used in this study was merged by Lim’s merging method to remove
batch effect as they were produced by the samemicroarray platform (Table 1). For each gene
of the merged dataset and the 3 additional datasets, the expression values were binarized as
high or low expression when the expression values higher or lower than its corresponding
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Table 1 Sample size and number of deceased patients for the ten lung adenocarcinoma gene expression datasets.

Datasets # of
patients

# of deceased
patients

Stage (percent
of stage I and II)

Age Gender
(percent
of male)

Smoking

5%
quantile

median 95%
quantile

GSE10245 14 7 NA NA NA NA NA NA
GSE10445 21 13 85.71% 48 53 56 74.19% (n= 21) 74.47% (n= 17)
GSE19188 87 64 100% NA NA NA 74.6% (n= 81) 55.17% (n= 87)
GSE28571 80 80 100% NA NA NA NA 42.5% (n= 80)
GSE31210 57 33 98.25% 49 52 55 40.35% (n= 57) 82.69% (n= 52)
GSE33356 18 10 94.44% 47.25 51.5 55 0% (n= 18) 61.54% (n= 13)
GSE50081 32 16 46.88% 51.635 73.125 74.515 46.88% (n= 32) 85.71% (n= 14)
GSE68465 443 236 NA 58 64 72 50.34% (n= 443) 85.96% (n= 349)
GSE67639 439 233 84.21% 54 63 67 49.58% (n= 439) NA
GSE13213 117 49 80.34% 55 61 67 51.28% (n= 117) NA

median, respectively. Based on the binarized gene expression pattern for each gene and
each sample, we then merged the seven datasets and three addition datasets.

Overrepresentation enrichment analysis (ORA)
Overrepresentation enrichment analysis, which used hypergeometric test, was also
implemented at WEB-based Gene Set Analysis Toolkit (WebGestalt) (Wang et al., 2017).
The Reactome pathways were selected as the functional database (Fabregat et al., 2018).
We chose 0.05 as the threshold of the p-value for significant pathways.

Gene set enrichment analysis
The gene set enrichment analysis was implemented in javaGSEA (Subramanian et al., 2005)
(version 3.0). The database with GMT files was customized by NCI-PID pathways (Schaefer
et al., 2009) selected from all canonical pathways. The genes were pre-ranked based on
the Z statistic in Cox model. 10,000 permutations were used to calculate the enrichment
significance.

Cox-regression based survival analysis
Cox-regression model was used to evaluate the differences of overall survival between
patients from two conditions. This analysis was implemented in R programming software
(R Core Team, 2018) with the survdiff function. To visualize the overall survival for each
group, we used Kaplan–Meier curves to estimate the survival probability. The hazard.ratio
function in survcomp package (Haibe-Kains et al., 2008) was used to calculate the hazard
ratios and corresponding p-values. The risk score for each patient was predicted by the Cox
model with ‘‘linear predictor’’ type based on the 25 genes selected by MMPC algorithm
(Brown, Tsamardinos & Aliferis, 2004), which was implemented in predict.coxph function.
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RESULTS
Summary of enrolled datasets for discovery
A total of 10 non-small cell lung cancer (NSCLC) gene expression datasets were collected
from Gene Expression Omnibus (GEO) or ArrayExpress database. Tumor samples should
be characterized by primary lung adenocarcinoma histology, and with overall survival.
Notably, 309 tumor samples from seven datasets, including GSE10245 (Kuner et al.,
2009), GSE10445 (Broet et al., 2009), GSE19188 (Hou et al., 2010), GSE28571 (Micke et
al., 2011), GSE31210 (Okayama et al., 2012), GSE33356 (Lu et al., 2011), and GSE50081
(Der et al., 2014), were produced by the same microarray platform (Affymetrix Human
Genome U133 Plus 2.0 Array), which were merged and normalized by Lim et al. (2018).
In addition, another three datasets, GSE68465 (Director’s Challenge Consortium for
the Molecular Classification of Lung et al., 2008), GSE67639 (Roepman et al., 2009), and
GSE13213 (Tomida et al., 2009), were also incorporated in the present study. Finally, a
total of 1,308 LUAD cases were collected for further analysis, 741 (56.65%) of whom were
dead (Table 1).

Identification of prognostic genes by meta-analysis-based Cox
regression model
To robustly identify the prognostic genes associated with overall survival of lung
adenocarcinoma, we integrated the ten gene expression datasets, and discretized the
normalized expression value for each gene as high and low expression status within each
dataset, which could avoid the batch effect by different platforms. Cox proportional hazard
regression analysis was then performed on the discretized expression status for each gene.
Given a stringent threshold at BH-adjusted p-value < 0.01, we successfully identified 42
genes significantly associated with LUAD overall survival, including 21 positively and 21
reversely correlated genes (Fig. 1A).

To further investigate functional roles of the prognostic genes, we performed
overrepresentation enrichment analysis (ORA) on these genes. We identified seven
pathways significantly enriched by the prognostic genes (Fig. 1B, p-value < 0.05).
Remarkably, the cell cycle genes, such as CHEK1, PCNA, RRM2, BUB1B, and CDC6,
were reversely correlated with patients’ overall survival, which were significantly enriched
in pathways, such as G1/S-specific transcription, G1/S transition, cell cycle checkpoints,
and cell cycle. Moreover, GALNT3 and GALNT12, also reversely correlated with overall
survival, were involved in O-linked glycosylation of mucins, indicating that O-linked
glycosylation of mucins played key roles in LUAD progression. In addition, we also
identified two prognostic genes, ABAT and STX1A, which participated in GABA synthesis,
release, reuptake and degradation. Notably, cell cycle (Sithanandam et al., 2003), O-
linked glycosylation of mucins (Hauselmann & Borsig, 2014), and GABA synthesis, release,
reuptake, and degradation (Al-Wadei et al., 2012) have been reported to be involved in
tumorigenesis or tumor progression. The results based on the enrichment analysis indicated
that pathways such as cell cycle, O-linked glycosylation of mucins, and GABA synthesis,
release, reuptake and degradation were the hallmarks of tumor progression and short
overall survival.
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Figure 1 Prognostic genes identified by meta-analysis-based Cox regression analysis. (A) 42 prognos-
tic genes are ordered by hazard ratio. (B) The significance (−log10 (p-value)) of seven pathways enriched
by the 42 prognostic genes are represented by the bars.

Full-size DOI: 10.7717/peerj.6980/fig-1

Identification of prognostic pathways by GSEA
To identify the prognostic pathways for LUAD patients, we ranked the genes based on their
significance levels by Cox regression-based meta-analysis. The gene set enrichment analysis
was then performed on the ranked gene set. Given the stringent thresholds (FDR < 0.05
for pathways, and log-rank test p-value < 0.05 for pathway genes in core enrichment), we
identified the Aurora-A pathway, the Aurora-B pathway, and the FOXM1 transcription
factor network as prognostic pathways in LUAD (Fig. 2).

The Aurora-A and Aurora-B pathways were responsible for G2-M transition in cell cycle
(Sithanandam et al., 2003), and the expression levels of two key kinases, Aurora-A and
Aurora-B, were significantly higher in high-risk group than low-risk group (Figs. 2A–2C).
As FOXM1 is a transcription factor, which was a famous oncogene (Gartel, 2017), its target
genes, such as CCNA2, CCNB1, CCNB2, CCNE1, TGFA, BIRC5, CDK2, CENPF, CENPA,
and AURKB, were closely associated with overall survival of LUAD patients. Particularly,
the transcription factor FOXM1, overexpression of which could significantly shorten the
overall survival of LUAD patients, was also involved in G2-M transition (Fig. 2C). The
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Figure 2 Prognostic pathways identified by gene set enrichment analysis (GSEA). The enrichment
plots for Aurora-A signaling, Aurora-B signaling, and FOXM1 transcription network were illustrated in
(A), (B), and (C).

Full-size DOI: 10.7717/peerj.6980/fig-2

result suggested that hyperactive G2-M transition in cell cycle was an indicator of poor
prognosis in LUAD.

Development of a gene expression signature-based prognostic model
in LUAD
As we described above, the univariate Cox proportional hazard regression analysis
successfully identified 42 prognostic genes. To further select signatures used for
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Table 2 The estimation and hypothesis testing for the parameters of the gene signatures in multivari-
ate Coxmodel.

Gene coef exp(coef) se(coef) z Pr(>|z|) Signif. codes

ABAT −0.14 0.87 0.04 −3.50 4.65E−04 ***
BCAR3 0.08 1.08 0.04 1.98 4.83E−02 *
CTSF −0.06 0.94 0.04 −1.5 1.34E−01
DEAF1 −0.09 0.92 0.04 −2.21 2.70E−02 *
ENC1 −0.12 0.89 0.04 −3.08 2.05E−03 **
ETV5 −0.09 0.92 0.04 −2.15 3.14E−02 *
FAM117A 0.08 1.08 0.04 2.03 4.29E−02 *
FZD2 −0.12 0.89 0.04 −3.09 2.02E−03 **
GALNT12 0.19 1.21 0.04 4.80 1.58E−06 ***
GALNT3 0.02 1.02 0.04 0.47 6.37E−01
GJB3 0.04 1.04 0.04 0.95 3.43E−01
KDM6A −0.14 0.87 0.04 −3.52 4.39E−04 ***
KYNU 0.07 1.07 0.04 1.71 8.91E−02
PCNA 0.06 1.07 0.04 1.60 1.09E−01
PFKP 0.05 1.05 0.04 1.19 2.33E−01
PLEK2 0.10 1.11 0.04 2.51 1.22E−02 *
RASGRP2 −0.05 0.95 0.04 −1.22 2.24E−01
SERPIND1 −0.08 0.93 0.04 −1.90 5.79E−02
SGSH −0.06 0.94 0.04 −1.56 1.19E−01
TLE1 0.05 1.05 0.04 1.33 1.84E−01
TMEM38B 0.07 1.07 0.04 1.63 1.04E−01
TMEM57 −0.08 0.92 0.04 −2.10 3.60E−02 *
TRIM45 0.16 1.17 0.04 3.97 7.32E−05 ***
USP47 −0.07 0.93 0.04 −1.81 7.10E−02
VWA1 −0.06 0.94 0.04 −1.51 1.30E−01

multivariable Cox regression model, we employed MMPC algorithm, which is a constraint
based feature selection algorithm (Brown, Tsamardinos & Aliferis, 2004). We then selected
25 genes from the 42 prognostic genes, including ABAT, BCAR3, CTSF, DEAF1, ENC1,
ETV5, FAM117A, FZD2, GALNT12, GALNT3, GJB3, KDM6A, KYNU, PCNA, PFKP,
PLEK2, RASGRP2, SERPIND1, SGSH, TLE1, TMEM38B, TMEM57, TRIM45, USP47,
and VWA1, at the threshold of p-value < 0.1 for MMPC algorithm. Finally, we built
a multivariable Cox regression model on the 25 genes for overall survival prediction
(Table 2). Based on the multivariable Cox regression model, risk score for each patient
in the training set was calculated, and the 1,308 patients were classified into high- and
low-risk groups. Kaplan–Meier curves showed that patients in the high-risk group had
significantly shorter overall survival than those in the low-risk group (log-rank test P
< 0.0001) (Fig. 3A).

In addition, we also investigated the performance of our stratification in specific stage,
gender, and age group of LUAD in the training set. As no samples were stratified into
TNM stage IV group in the training set, we only focused on the performance of the model
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Figure 3 The performance of the stratification for the lung adenocarcinoma in training set based on
the prognostic model. (A) The Kaplan–Meier curves of the poor and good prognosis groups show signif-
icant overall survival difference. (B, C, and D) showed the prognostic significance of the stratification in
specific TNM stage, and (E and F) and (G and H) showed the survival difference between patients of high-
and low-risk group from specific gender and age group, respectively.
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in another three stages (I, II, and III). The overall survival difference between high- and
low-risk groups in training set was observed in TNM stages I, II, and III, male/female,
and old/young groups (Figs. 3B–3H, log-rank test, P < 0.005), in accordance with the
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performance in all samples. These results indicated that our stratification in training set
was independent on TNM stages, gender, and age.

Evaluation of the gene expression signature-based prognostic model
in the validation sets
To evaluate the performance of the prognostic model in independent datasets, we
collected two LUAD gene expression datasets, TCGA-LUAD (The Cancer Genome Atlas-
lung adenocarcinoma, n= 502) (Cancer Genome Atlas Research N, 2014) and GSE37745
(n= 106) (Botling et al., 2013). The risk scores for the patients from validation sets based
on the prognostic model were calculated. By using the same model and criteria, patients in
the validation sets were classified into high-risk and low-risk groups. Similar with that in
training set, the overall survival of the patients in high-risk group was significantly worse
than that of low-risk group patients in the two validation sets (P < 0.001) (Figs. 4A–4B).
Notably, the stratification still showed significant predictive ability in overall survival by
adjusting the cofactors including age, gender, smoking status, tumor stage in TCGA cohort
(P < 0.0001, Table 3). The distribution of the risk score, overall survival status along with
the corresponding expression profiles of the 25 prognostic genes from two validation sets
were showed in Figs. 4C–4D, which were ranked according to the risk score value. The 25
prognostic genes were significantly differentially expressed between the two risk groups (P
< 0.05). The results indicated that the 25-gene signature based prognostic model showed
high and robust performance in both training and the two validation sets.

Evaluating the performance of gene expression signature-based
prognostic model within TNM stages, gender, and age groups
With high performance of the gene expression signature-based prognostic model in all
LUAD patients from both training and validation sets, it was also necessary to investigate
its performance in specific stage, gender, and age group of LUAD. As no samples were
stratified into TNM stage IV group in the training set, we only focused on the performance
of the model in another three stages (I, II, and III). For validation of the prognostic
prediction value within TNM stages, gender, and age groups, Cox regression coefficients
and dichotomization cut-off threshold generated from the training set were directly applied
to the two validation sets. Similarly, significant overall survival difference was observed
between high- and low-risk groups with each TNM stage, male/female, and old/young age
groups in both of the validation datasets (Fig. 5, P < 0.05), except samples in male and
old group of GSE37745, which may be resulted from its small sample size. These findings
further validate the robustness of the gene expression-based signatures in predicting
survival in lung adenocarcinoma.

Comparing signatures of 25 genes with known prognostic signatures
in predicting LUAD prognosis
To demonstrate the robustness of the signatures of 25 genes in predicting LUAD prognosis,
we built threemoreCoxmodels based on three signature gene sets found by previous studies
(Der et al., 2014; Guo et al., 2006; Zhao, Li & Tian, 2018), which were selected from single
dataset, and predicted the stratification of the two validation sets. We found that the three
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Table 3 The association adjusted by cofactors including age, gender, smoking status, and TNM stage
between the stratification and the overall survival in TCGA-LUAD cohort.

coef exp(coef) se(coef) z Pr(>|z|) Signif.

Stratitification (HighRisk) 9.65E−01 2.63E+00 2.46E−01 3.922 8.79E−05 ***
Age 1.83E−02 1.02E+00 1.21E−02 1.517 0.1292
Gender (Male) 8.35E−02 1.09E+00 2.41E−01 0.346 0.72947
Smoking (Yes) −5.52E−01 5.76E−01 3.25E−01 −1.699 0.08939
Stage (II) 8.11E−01 2.25E+00 2.96E−01 2.738 0.00618 **
Stage (III) 1.16E+00 3.20E+00 2.91E−01 3.997 6.41E−05 ***
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Figure 5 The performance of the prognostic model within TNM stages, age and gender group in the
validation set.Overall survival differences between high- and low-risk groups are observed within specific
TNM stage (A–F), gender (G–J), and age group (K–N).
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models showed worse ability in predicting the prognosis of patients in GSE37745 (Figs. 6B,
6D, and 6F), as compared with our signatures of 25 genes based Coxmodel (Fig. 4B), which
may be caused by small sample size (n= 106). Although they had improved performance
in TCGA-LUAD cohort (n= 502) (Figs. 6A, 6C and 6E), the significance levels of the
three models were still worse than our model (Fig. 4A). These results suggested that the
signatures of 25 genes were more robust than those selected by only one dataset.

DISCUSSION
The prognostic models for LUAD has been widely studied in the context of metastasis-free,
organ-specific metastasis-free, and overall survival (Chen et al., 2018; Li et al., 2017; Park et
al., 2012; Shukla et al., 2017). Despite extensive researches about the combinations of gene
signatures selected for prognosis prediction, the lack of robust gene signatures for LUAD
overall survival prediction is still not thoroughly solved. Meanwhile, the widespread use of
high-throughput technologies produced a series of lung cancer gene expression datasets,
which allowed us to integrate multiple datasets to comprehensively identify prognostic
genes.

The present study aims to uncover a set of robust prognostic gene signatures and
critical pathways. The ten LUAD gene expression datasets had long-term follow-up, which
was more beneficial for us to carry out this research. To our knowledge, this is the first
study that collects more than 1,300 samples for identification of prognostic signature
and construction of prognostic model. The meta-analysis-based Cox regression analysis
found 42 prognostic genes associated with overall survival, 25 of which were selected as
predictors of multivariable Cox regression model by MMPC algorithm. GSEA identified
Aurora-A pathway, Aurora-B pathway, and FOXM1 transcription factor network as
prognostic pathways in LUAD. Moreover, the three prognostic pathways were also the
biological processes of G2-M transition. It is well established that dysregulation of cell cycle
checkpoints was a hallmark of cancer (Kastan & Bartek, 2004; Lam et al., 2004), suggesting
that hyperactive G2-M transition in cell cycle was an indicator of poor prognosis in LUAD.

To examine the robustness of the prognostic model, we also calculated the risk scores for
the patients from two validation sets. The further analysis suggested that overall survival
differences were observed not only in all LUAD patients, but also in those with a specific
stage, gender, and age group. Moreover, we also compared our signatures of 25 genes with
those reported by three previous studies, and found that the significance levels of the three
sets of signatures were still worse than our signatures of 25 genes (Fig. 6). In addition,
the multivariable Cox model also highlights four highly predictive genes (p-value < 0.001,
ABAT, GALNT12, KDM6A, and TRIM45), which may be useful for further experimental
validation. The comprehensive analysis demonstrated that the prognostic signatures and
prognostic model were robust in overall survival prediction.

In this study, our analysis demonstrated that large scale gene expression datasets could
identify a set of robust gene signatures for overall survival prediction. Moreover, we
also validated their predictive value in two independent datasets. This study indicates
that meta-analysis-based prognostic feature selection might be an ideal strategy for the
identification of prognostic gene signatures and construction of prognostic models.
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CONCLUSIONS
In summary, the prognostic gene signatures selected bymeta-analysis-based Cox regression
model and MMPC algorithm was more robust that those selected by single dataset. It is
suggested that prognostic models based on these gene signatures could efficiently predict
overall survival of LUAD patients.
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