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ABSTRACT
A phylogenomic analysis of 42 complete plastid genomes (plastomes), including 16
that were newly sequenced, was conducted. Plastomes were sampled from 19 subtribes
of Pooideae, to investigate relationships within and between Chloroplast Group 1
(Aveneae) and Group 2 (Poeae) species. Two data partitions: complete plastomes, and
a combined plastome and rare genomic change (RGC) data matrix, were analyzed.
Overall, 156 non-ambiguous RGC were identified, of which homology was inferred
for 38 RGC. Among the 38 RGC identified, six were synapomorphic among the
Group 1 subtribes: Aveninae, Agrostidinae, and Anthoxanthinae, (Phalaridinae +
Torreyochloinae), and 27 were synapomorphic among the Group 2 subtribes: Loli-
inae, (Ammochloinae + Parapholiinae + Dactylidinae), Parapholiinae, Dactylidinae,
Poinae, and Coleanthinae. Four RGC were determined to be homoplasious in Groups
1 and 2. Two other RGC originated through intrastrand deletion events. The remaining
RGC events likely originated through recombination given their size and lack of
sequence evidence for other types of mutations. This study also determined that
relationships between taxa, even those only weakly supported in previous studies, could
be inferred with strong support when utilizing complete plastomes.

Subjects Bioinformatics, Evolutionary Studies, Genomics, Plant Science
Keywords Poeae, Chloroplast, Phylogenomics, Taxonomic markers, Rare genomic changes,
Intrastrand deletion

INTRODUCTION
As one of the economically significant lineages in Poaceae, Pooideae is the largest of the
12 grass subfamilies and has been particularly studied with regard to crop production.
Over 70% of the human population depends on wheat, oat, barley, or rye as a staple in
daily dietary nutrition (USDA, 2016). In 2016, global wheat yields exceeded 754 million
metric tons, 22.5 million metric tons of oats were harvested, global barley production was
approximately 150 million metric tons (USDA, 2017b), and rye accounted for an estimated
13 million metric tons (FAOSTAT, 2019).

Pooideae comprise over 4,000 species, 200 genera, and 14 tribes of cool season,
C3 photosynthetic grasses (Soreng et al., 2015; Saarela et al., 2015). Distribution of the
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Pooideae subfamily of grasses naturally ranges from Arctic North America to South
America, Europe, and into other temperate climates through introduction (Soreng et al.,
2015). In spite of the lack of robust morphological synapomorphies, Pooideae exhibit
some morphological trends (Kellogg, 2015): ligules are typically membranous, a fringed
membrane, or a fringe of hairs, and lodicules are also membranous. The subsidiary cells
generally have parallel sides, and veins in the leaf are widely spaced, as is typical in C3

species (Kellogg, 2015). Extensive research has been conducted to better understand the
phylogenetics of this subfamily (Soreng et al., 2017; Saarela et al., 2017).

Within Pooideae, the tribe Poeae is of particular interest. The Poeae is the largest
tribe of grasses with over 2,800 species and 121 genera (Soreng et al., 2015; Soreng et al.,
2017). Many common lawn, pasture, and crop grasses are members of this group. Poeae
grasses are distributed mainly across the Western Hemisphere and Eurasia, although many
genera maintain broad distributions including areas of Africa, Asia, and Australia (Soreng
et al., 2017). A division exists in the Poeae in which phylogenetic analyses of plastid loci
cluster taxa into either ‘‘Chloroplast Group 1’’ (Aveneae-type, containing 41 genera)
or ‘‘Chloroplast Group 2’’ (Poeae-type, containing 80 genera). In this paper, these clade
names are shortened to the capitalized ‘‘Group 1 and 2.’’ This division was first identified by
Soreng, Davis & Doyle (1990) on the basis of restriction site variation in chloroplast DNA,
and substantiated in later publications of plastid characters (Davis & Soreng, 1993; Soreng
& Davis, 1998; Soreng & Davis, 2000; Döring et al., 2007; Winterfeld, Doring & Röser, 2009;
Saarela et al., 2015; Saarela et al., 2017; Saarela et al., 2018; Hodkinson, 2018). Aveneae
sensu Dumortier & Charles (1824) was once recognized as a tribe, but later absorbed
into the Poeae (Tzvelev, 1989; Soreng et al., 2015). In spite of considerable research, no
morphological synapomorphies have been reported for Group 1 or 2 (e.g., Kellogg,
2015; Saarela et al., 2017). Neither is there a clear biogeographical basis for separation of
these taxa (Soreng et al., 2015; Soreng et al., 2017). This same taxonomic division does not
exist as clearly in analyses conducted with nuclear sequence data (Quintanar, Castroviejo
& Catalán, 2007; Schneider et al., 2009; Hochbach, Schneider & Röser, 2015; Saarela et al.,
2017). In earlier multi-gene studies, the fundamental diagnostic characters for Groups 1
and 2 appeared to be exclusively selected plastid loci (Soreng et al., 2015; used two plastid
genes,matK and ndhF for analysis); (Saarela et al., 2017; used five plastid sequence regions
and nrDNA: ITS and ETS). Complete plastomes infer the same two monophyletic groups,
although taxonomic sampling is somewhat limited (Saarela et al., 2015; with 21 Poeae
species in 18 genera), (Saarela et al., 2018; with 29 species in 24 genera).

In recent work, Agrostidinae, a Group 1 taxon, has been variously redefined at least
partly in an effort to make the subtribe monophyletic. Kellogg (2015) recognized 21 genera,
but Soreng et al. (2017) constrained it to 11. In part, these differing circumscriptions reflect
paraphyly with other Group 1 taxa and the classification schemes used to accommodate
differing phylogenetic results. Within Agrostidinae the affinities of the Gastridium +
Triplachne clade are also uncertain, partly because of low support values in phylogenetic
topologies inferred from multi-locus data (Saarela et al., 2017). The increase in support
generally seen in plastome phylogenomic analyses of grasses could potentially address this
uncertainty. The monophyly of Polypogon has also been questioned. Saarela et al. (2017)
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found Polypogon to be nonmonophyletic in nrDNA and plastid trees, and Soreng et al.
(2017) indicated that the genus is reticulate. In Group 2, the relationships of Loliinae are
also unclear partly because certain genera, such as Castellia and Ammochloa, have not
been included in contemporary phylogenies. However, when using only a small portion of
the genome, an incomplete picture is created and lack of phylogenetic information may
impact the analysis (Burke, Grennan & Duvall, 2012; Burke et al., 2016a; Burke et al., 2016b;
Saarela et al., 2015; Saarela et al., 2017; Saarela et al., 2018).

Plastid genes are quite conserved, however intergenic spacers (IGS) are less so, and
are of greater potential phylogenetic utility. IGS regions are more likely to develop
insertion/deletion mutations (indels), other microstructural changes (MC), or rare
genomic changes (RGC) than coding sequences (CDS; Orton et al., 2017). The two classes
of mutations, RGC and MC, are distinguished by mutational mechanism, size, and
frequency. Most RGC are the result of nonreciprocal site-specific recombinations that
cause large indels (>50 bp) and which occur infrequently. By contrast, MC are often due
to slipped-strand mispairings or other interactions between repeated sequences affecting
shorter regions (<50 bp), and are also more likely to be masked by succeeding mutation
events because they occur with higher frequency (Graur, Sater & Cooper, 2016;Orton et al.,
2017). In this study, the analysis of RGC additionally allows us to survey plastid characters
less likely to be skewed by positive selection in coding sequences, especially those most
commonly used in phylogenetic studies (Burke et al., 2016a; Burke et al., 2016b; Piot et al.,
2018; Saarela et al., 2018). Identifying RGC, as defined by Rokas & Holland (2000), Jones,
Burke & Duvall (2014),Duvall et al. (2016),Orton et al. (2017), may offer insights into how
such unique mutations occur and persist. Given the diversity of species represented in this
project, microstructural changes (MC) would likely fail to produce useful and inferential
data because of saturation causing difficulties in homology assessment (Orton et al., 2017).
However, RGC are more readily identified and interpreted in diverse groups of species
due to their larger size and rarity (Wysocki et al., 2015; Burke et al., 2016a; Burke et al.,
2016b; Duvall et al., 2016; Jones, Burke & Duvall, 2014; Orton et al., 2017). In this study,
we hypothesized that RGC will provide additional insight into the Group 1 and Group
2 relationships in Poeae, and we will be able to explore RGC as a basis that may explain
the division between chloroplast types. Additionally, phylogenies based on RGC data,
sequence data, and combined data sets were compared to assess the degree of topological
congruence, and determine if plastome-scale RGC are a useful phylogenomic tool either
alone or in combination with complete plastome sequences.

We examined Groups 1 and 2 with plastome phylogenomics in two ways that both
emphasize deep sampling ofmolecular characters. (1)We conducted an expanded plastome
phylogenomic study with the largest number of plastomes from Poeae analyzed to date (40
species of Poeae in 32 genera ofwhich 16were newly sequenced) to see if the two subclades of
Poeae are consistently inferred when plastome-scale data matrices are analyzed in different
ways. (2) We surveyed rare genomic changes (RGC) across all plastomes to determine
if specific regions or unusual mutation events in the plastome were disproportionately
responsible for the resulting inferences of the Group 1 and Group 2 clades.
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Table 1 Sequencing methods & sample procurement information.

Species Single/
paired end

Library
prep. method

Voucher/PI/MSB/W6

Amelichloa brachychaeta Single Nextera XT PI 197978
Ammochloa palaestina Paired Nextera R. Lazaro, s.n. (US)
Arrhenatherum elatius Single Nextera XT PI 665562
Castellia tuberculosa Single Nextera XT PI 238257
Catapodium marinum Single Nextera XT MSB 53132
Desmazeria sicula Paired Nextera MSB 17332
Dichelachne crinita Single Nextera XT W6 22474
Festuca ovina Paired Nextera PI 655206
Kengyilia melanthera Single Nextera XT PI 639856
Koeleria nitidula Single Nextera XT PI 206688
Nephelochloa orientalis Single Nextera XT W6 19223
Poa subgen. Stenopoaa Paired Nextera PI 374046
Polypogon fugax Single Nextera XT PI 220619
Scolochloa festucacea Paired Nextera Thompson, 866 (ISC)
Triplachne nitens Single Nextera XT MSB 26060
Ventenata macra Single Nextera XT PI 204431

Notes.
T1. Sequencing methods for species included in this study. Procurement information for species sequenced for this study ei-
ther as seed accessions or as herbarium vouchers. Seed accessions procured from: USDA Plant Introduction (PI), West Re-
gional PI Group (W6), MSB (Kew Millenium Seed Bank).

aPoa subgen. Stenopoa was originally misidentified as Festuca pseudovina (USDA, 2017a). After DNA barcoding of ETS and ITS
nuclear genes, additional plastid genes/IGS (trnT-trnL-trnF, matK, trnC-rpoB) were also examined, as well as a morphological
assessment; it was determined that this grass is identified as a member of the subgenus Stenopoa, however no specific determi-
nation could be made as to the exact species.

MATERIALS & METHODS
Sampling
The sampling strategy of this study sought to include complete plastomes from all Group
1 and Group 2 genera which (1) had not previously been sequenced, and (2) were situated
in positions that were previously under-sampled or contained nonmonophyletic genera.

Specimens were obtained through the USDA, Millennium Seed Bank at the KEW Royal
Botanic Gardens (London, United Kingdom), or through collections by colleagues with
applicable voucher information (Table 1). This study also expands the Group 2 sampling
from the Saarela et al. (2017) study which focused mainly on the Group 1 type species
and utilized five selected regions as opposed to the complete plastome analyses as were
conducted in this study.

DNA extraction
Leaf tissues dried in silica gel were obtained from 16 Poeae species (Table 1) and DNA
was extracted by manually homogenizing tissue in liquid nitrogen, followed by using the
DNeasy Plant Mini Kit protocol. The Qubit assay (Invitrogen, Thermo Fisher Scientific,
Wilmington, DE, USA) was used to quantify total genomic DNAs in the extracts, which
were then diluted to 2.5 ng/µl in 20 µl sterile water.
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Illumina Library Prep
The Nextera Prep Kit (Illumina Inc., San Diego, CA, USA; Caruccio, 2011) was used
to prepare single-end read DNA libraries for sequencing. Five species (Festuca ovina,
Poa subgen. Stenopoa, Scolochloa festucacea, Desmazeria sicula, Ammochloa palaestina)
were also prepared and sequenced from paired-end Nextera libraries because of a lower
multiplexing level (Table 1). DNA was purified using the DNA Clean and Concentrator kit
(Zymo Research, Irvine, CA, USA), and libraries were prepared using the standard protocol
for the respective sample preparation kit. Iowa State University’s Core DNA Facility, Ames,
IA, USA, sequenced the libraries on the HiSeq 2500 instrument.

Plastome Assembly/Annotation
Sequenced plastomes were assembled with exclusively de novo methods, followingWysocki
et al. (2014). In processing the next-generation sequencing (NGS) data, DynamicTrim
v2.1 of the SolexaQA software suite (Cox, Peterson & Biggs, 2010) was used to perform
initial quality trimming on the 99 bp reads using default settings. CutAdapt was used to
remove remaining adapter sequences (Martin, 2011). LengthSort v2.1 (Cox, Peterson &
Biggs, 2010) was used to remove any sequences shorter than 25 bp in length. CDHit-EST
of the CDHit package (Fu et al., 2012) identified and removed redundant sequences; the
sequence identity threshold was set at the maximum (parameter: -c 1). This process was
automated using a proprietary pipeline script written in Python language (Van Rossum,
1995). The SPAdes v. 3.8.1 software suite (Bankevich et al., 2012) was used for contig
assembly. The anchored conserved region extension method was used to scaffold the
remaining contigs (Wysocki et al., 2014). Gaps between large contigs were then manually
resolved by locating regions of overlap in the quality-trimmed reads until the plastome
was completed. Assemblies were verified by mapping the quality-trimmed read pool to the
assembled plastome in the Geneious Pro v. 7.1.9 software program (Kearse et al., 2012). Any
evidence of apparent errors in the assembly process were identified during verification and
manually resolved. Inverted-repeat (IR) boundaries were located by following the methods
of Burke, Grennan & Duvall (2012). Each completed plastome assembly was then annotated
by initially aligning to closely related Pooideae species, and annotations were transferred
from the reference to the newly assembled plastome (Wysocki et al., 2014). Protein coding
sequences were adjusted when necessary to correctly position coding sequence boundaries
and preserve reading frames.

Mutation analyses
A matrix of 16 newly completed (Table 2) and 26 previously published Poeae plastomes
(Table 3) were aligned in Geneious Pro using the MAFFT v6.814b plug-in (Katoh &
Standley, 2013), and all column gaps that were introduced by the alignment process were
removed before analysis, but after RGCs had been characterized. The second copy of the
inverted repeat (IRa) was also removed to eliminate redundancies. This strippedmatrix was
analyzed together with outgroups (Triticeae: Kengyilia melanthera and Stipeae: Amelichloa
brachychaeta) to determine initial groupmembership. This complete analysis of all taxa was
done to reduce any biases due to sampling, taxonomy, or outgroup selection. Outgroup
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Table 2 Plastome characteristics for sequenced species.

Species GenBank
accession

Plastome
length

IR
length

LSC SSC %AT

Amelichloa brachychaeta MH569074 139,946 21,571 83,936 12,868 62.0
Ammochloa palaestina MH569075 135,887 21,543 80,156 12,646 61.7
Arrhenatherum elatius MH569076 136,233 21,633 80,399 12,569 61.6
Castellia tuberculosa MH569077 133,798 21,241 78,820 12,497 61.6
Catapodium marinum MH569078 134,366 21,565 78,567 12,670 61.8
Desmazeria sicula MH569079 133,982 21,565 78,204 12,649 61.7
Dichelachne crinita MH569080 136,278 21,663 80,315 12,638 61.4
Festuca ovina MH569081 133,569 21,237 78,698 12,398 61.7
Kengyilia melanthera MH569082 135,642 21,562 79,773 12,747 61.6
Koeleria nitidula MH569083 136,085 21,635 80,251 12,564 61.4
Nephelochloa orientalis MH569084 135,468 21,504 79,788 12,673 61.8
Poa subgen. Stenopoaa MH569085 135,362 21,544 79,626 12,649 61.6
Polypogon fugax MH569086 136,639 21,670 80,540 12,759 61.2
Scolochloa festucacea MH569087 134,087 19,402 82,569 12,715 61.5
Triplachne nitens MH569088 134,457 19,563 82,737 12,594 61.5
Ventenata macra MH569089 135,784 21,512 80,067 12,694 61.7

Notes.
T2. Information defining species sequenced for this study; including: GB accession number and relevant plastome statistics.

aRefer to Table 1 for additional information on the identification of Poa subgen. Stenopoa.

species were chosen based on the results of previous studies (Soreng et al., 2015; Soreng et
al., 2017; Saarela et al., 2015).

RGCs were identified manually, following the methods of Leseberg & Duvall (2009)
and Orton et al. (2017), and evaluated to determine if the event was non-ambiguous
and whether or not homology could be reliably assessed across the dataset. Ambiguous
events were defined as an event that could not be reliably inferred as either ancestral or
derived based on sequence evidence across multiple species exhibiting a specific event.
This ambiguity is likely an artifact of multiple mutations occurring in the same region
of sequence, obscuring any ability to infer a mutational mechanism or clearly identify a
RGC event. RGCs identified as ambiguous were subjected to stringent culling procedures
to ensure that no biases (either through the alignment, or manual recognition) existed in
determination of ambiguous events. The RGC were then examined to determine if they
were attributed to a specific cause such as slipped-strand mispairing (SSM) or intrastrand
deletion (ISD) events.

SSM events occur when there are tandem repeats in sequences allowing indels to
arise. ISD are characterized by a deletion in one sequence, which when aligned with
similar sequences lacking the deletion, indicate direct dispersed repeats exactly flanking
the deletion (Graur, Sater & Cooper, 2016). Recombination events may leave little to no
sequence evidence, however they are a likely mechanism resulting in RGC given their size
and low occurrence (Graur, Sater & Cooper, 2016).

A binary matrix was then produced to indicate the ancestral state (0) and the derived
character state (1) for each RGC. The condition of the ancestral state was assumed to be that
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Table 3 Previously published plastomes.

Species GenBank
Accession

Reference

Agrostis gigantea MF460976 Saarela et al. (2018)
Agrostis stolonifera NC_008591 Saski et al. (2007)
Alopecurus arundinaceus NC_037163 Saarela et al. (2018)
Anthoxanthum odoratum NC_027467 Saarela et al. (2015)
Avena sativa NC_027468 Saarela et al. (2015)
Briza maxima KM974736 Saarela et al. (2015)
Calamagrostis breviligulata NC_027465 Saarela et al. (2015)
Catapodium rigidum NC_036711 Saarela et al. (2018)
Dactylis glomerata NC_027473 Saarela et al. (2015)
Deschampsia antarctica NC_023533 Lee et al. (2014)
Festuca altissima NC_019648 Hand et al. (2013)
Festuca arundinacea KM974751 Saarela et al. (2015)
Festuca ovina NC_019649 Hand et al. (2013)
Festuca pratensis NC_019650 Hand et al. (2013)
Gastridium ventricosum NC_036686 Saarela et al. (2018)
Helictochloa hookeri NC_027469 Saarela et al. (2015)
Hierochloe odorata KM974740 Saarela et al. (2015)
Holcus lanatus NC_036689 Saarela et al. (2018)
Lamarckia aurea NC_037168 Saarela et al. (2018)
Lolium multiflorum NC_019651 Hand et al. (2013)
Lolium perenne NC_009950 Diekmann et al. (2009)
Phalaris arundinacea NC_027481 Saarela et al. (2015)
Poa palustris NC_027484 Saarela et al. (2015)
Puccinellia nuttalliana NC_027485 Saarela et al. (2015)
Torreyochloa pallida NC_027486 Saarela et al. (2015)
Trisetum cernuum NC_027487 Saarela et al. (2015)

Notes.
T3. GenBank accession numbers and reference studies for previously published species included in this study.

of the outgroup. Binary matrices did not contain sufficient informative characters to act as
a stand-alone data set. However, these binary matrices were combined with the sequence
data sets for Group 1 only, Group 2 only, and the Group 1 and 2 analyses (combined data
sets).

In total, 12 data sets (6 maximum likelihood; 6 Bayesian inference) were constructed for
Group 1, Group 2, and Group 1 & 2, which included the stripped sequence only alignment,
and a combined data set of stripped sequence and binary data for maximum likelihood
and Bayesian inference analyses.

Phylogenomic analyses
A jModelTest v2.1.3 (Darriba et al., 2012) analysis was performed using the Group 1, Group
2, and Group 1 & 2 aligned and stripped sequence data sets to determine the appropriate
model under the Akaike Information Criterion (Akaike, 1974; Posada, 2008). The GTR + I
+ G model was within the 100% confidence interval and thus, was selected.
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A total of 12 analyses were performed using maximum likelihood (ML; six trees
produced), and Bayesian Inference (BI; six trees produced). There were two separate
matrices for Group 1, Group 2, and Group 1 & 2: (1) plastome nucleotide sequences
only, and (2) plastome sequences concatenated with the RGC data set. Trees were
visualized using the TreeGraph2 program (Stöver & Müller, 2010). With a maximum
of 38 binary characters, the RGC dataset was not analyzed separately as there were not
enough informative characters to produce resolved phylogenies.

ML analyses were performed with the RAxML-HPC2 v8.1.11 program on XSEDE
(Stamatakis, 2014) through the CIPRES science gateway (Miller, Pfeiffer & Schwartz,
2010). A ML tree was produced for each matrix and a consensus bootstrap tree was
constructed from 1,000 replicates using the Consense tool from the Phylip v3.66 software
suite (Felsenstein, 2005) available on the CIPRES science gateway. The combined sequence
and binary analyses were partitioned into the sequence and binarymatrices, and amultistate
CAT model was selected for both nucleotide (GTR) and binary (BIN) data to maintain a
fixed number of substitution rate categories.

BI analyses with two independent chains were performed for each data partition on
XSEDE via the CIPRES science gateway using the MrBayes v3.2.6 program (Ronquist et al.,
2012). The MCMC analyses were run at 10 million generations with each chain sampled
after 1000 generations. The data type was set to ‘‘restriction’’ for the binary partition
of the data when it was included with sequence data (Ronquist & Huelsenbeck, 2003).
The R-package ‘‘RWTY’’ v.1.0.2 (Warren, Geneva & Lanfear, 2017) was used to assess
convergence.

RESULTS
For this study, 2,167,574 bases were newly sequenced in 16 Poeae plastomes, spanning
11 subtribes, with lengths ranging from 133,569 to 139,946 bp (Tables 1 and 2). All
plastomes were deposited in the NCBI GenBank database (accession numbers MH569074–
MH569089). One plastome (Arrhenatherum elatius) contained two regions that could not
be assembled, which were estimated to be 10 and 36 bp by comparison with Avena sativa
(KM974733) as reference, falling in the intergenic regions on either side of ndhF. Both gaps
occurred in regions with greater than 73% AT richness. Illumina library preparation kits
and/or sequencing have been found to have a bias against AT rich regions (Burke et al.,
2016a; Burke et al., 2016b).

Overall, 156 RGC events were determined to meet our criteria to be classified as RGC.
After assessing homology, 38 RGC were determined to be alignable across all taxa and were
subsequently analyzed. Two RGC were flanked by dispersed repeats in reference sequences
suggesting ISD. The remaining RGC were likely derived through recombination events, as
there is no sequence evidence available to evaluate the mutation mechanism that resulted
in the event (Graur, Sater & Cooper, 2016). Non-ambiguous RGC ranged in length from
50 to 543 bp with an average length of 127 bp.
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Plastome phylogenomic analysis
In plastome phylogenomic analyses, BI topologies were congruent to ML topologies and
will not be considered separately; all reported support values are ML bootstrap (BS) values
(see (Figs. S1–S3; Table S1) for BI analyses and corresponding tree topologies).

Group 1 & 2
The combined alignment of species in Groups 1 and 2 was analyzed first to prevent bias
based on the predetermined memberships of Group 1 and 2 plastome species retrieved in
previously published research. The stripped alignment of 42 Poeae species was 97,820 bp
in length. The ML tree produced a topology congruent to those of previous studies, insofar
as comparisons were possible given somewhat different sampling. Presumed Group 1 taxa
were sister to those in Group 2. Amelichloa brachychaeta and Kengyilia melanthera were
outgroups for Group 1 and Group 2 (Fig. 1).

ML bootstrap consensus tree results had support values of 100% for all nodes, except:
(1) the (Holcus + Helictochloa) clade [86%], (2) the monophyly of Deschampsia plus
(Loliodinae + Scolochloa) [86%], (3) the monophyly of all included Group 1 taxa
except (Phalaris + Torreyochloa) [98%] and (4) the position of Avena sativa as sister
to Arrhenatherum elatius [96%] (Fig. 2). Novel Group 1 relationships from plastome
data are: Agrostis stolonifera is sister to (Agrostis gigantea + Polypogon fugax) so that
Agrostis is nonmonophyletic. The (Gastridium ventricosum + Triplachne nitens) clade is
maximally supported as sister to the Agrostis-Polypogon complex, which is in turn sister
to Calamagrostis breviligulata. Group 2 relationships of note are: Castellia tuberculosa
is embedded within the (Festuca + Lolium) clade. Ammochloa palaestina is sister to
Dactylidinae (Dactylis glomerata + Lamarckia aurea) (Fig. 2).

An additional combined matrix including both sequence and RGC for Groups 1 and
2 resulted in a ML topology fully congruent with the sequence only data set. Bootstrap
support values were 100% for all nodes except the same four nodes just described above
with support values of 86%, 86%, 98%, and 95% respectively (Fig. 2).

Group 1 & 2 RGC events were analyzed to determine if any events were shared between
both groups, and it was determined that four events were not restricted to one group or
the other indicating homoplasy relative to these two groups (see Table S2- Taxonomic
Markers, for more information).

Group 1
Group 1 sequence only taxa set analyzed separately exhibited topological congruence to
that of previous studies (Soreng et al., 2015; Soreng et al., 2017; Saarela et al., 2015) (Fig. 3).
Bootstrap support values were 100% for all nodes with two exceptions. The node uniting
the Aveninae clade and the (Anthoxanthinae + Agrostidodinae) clade was supported
at 94%, and the node uniting Avena sativa and Arrhenatherum elatius as sister taxa was
supported at 93% (Fig. 3).

Group 1 combined data set included both sequence and RGC matrix for group 1
only. The ML tree resulted in a topology congruent with the sequence only data set and
with phylogenies of previous studies. Bootstrap support values were 100% with the two
exceptions noted above, and support was recorded at 95%, and 93%, respectively (Fig. 3).
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Figure 1 Phylogeny of Poeae group 1 and 2 species included in this study.ML cladogram showing rela-
tionships between both Group 1 and Group 2 taxa. Bracketed clades correspond to taxa sensu Soreng et al.
(2017). GenBank accession number indicates the previously published species of F. ovina. Supersubtribe
designations are shown in bolded text. Subtribe designations are shown in standard text.

Full-size DOI: 10.7717/peerj.6959/fig-1

Six synapomorphic characters were identified in the Group 1 dataset (Table S2-
Taxonomic Markers). As with the combined RGC dataset, the number of informative
characters was too few to provide useful stand-alone phylogenetic information, and thus a
separate analysis of RGC data alone was not conducted.
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Figure 2 ML sequence and RGC BS consensus for group 1 and 2 taxa.ML consensus cladogram of se-
quence and rare genomic change (RGC) data for Group 1 and Group 2 taxa with bootstrap support (BS)
values noted. Nodes without values are at maximum support. Support values within circles correspond to
sequence only analyses. Support values within squares correspond to sequence + RGC analyses. GenBank
accession number indicates the previously published species of F. ovina. A. brachychaeta and K. melanthera
serve as outgroup comparisons.

Full-size DOI: 10.7717/peerj.6959/fig-2
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Figure 3 ML BS consensus tree of Group 1 species.ML BS tree of Group 1 species inferred from aligned
sequences. The support values of two nodes, which are less than maximum, are indicated. Support val-
ues within circles correspond to sequence only analyses. Support values within squares correspond to
sequence + rare genomic change (RGC) analyses. A. brachychaeta serves as the outgroup comparison.
Supersubtribe designations are shown in bolded text. Subtribe designations are shown in standard text.
Bracketed clades correspond to taxa sensu Soreng et al. (2017).

Full-size DOI: 10.7717/peerj.6959/fig-3

Group 2
Group 2 sequence analyses also showed congruent topologies (Fig. 4) compared to the
combined Group 1 and 2 sequence only analysis performed first. Bootstrap support
values for Group 2 taxa were 100% with the following exceptions: (1) the node uniting
Deschampsiawith (Scolochloa + Loliodinae) was supported at 98%, (2) the node supporting
Holcus and Helictochloa as sister to Deschampsia + (Scolochloa + Loliodinae) at 82%, and
(3) the node supporting Holcus and Helictochloa at 84% (Fig. 4).

As with Group 1 combined data, Group 2 taxa analyzed with combined sequence and
RGC data resulted in a topology congruent with the Group 2 sequence only analysis (Fig. 4).
Bootstrap support values for Group 2 combined data were supported at 100% with three
exceptions. The node uniting Deschampsia with (Scolochloa + Loliodinae) resulted in 98%
support, the node defining (Holcus + Helcitochloa) as sister to Deschampsia + (Scolochloa
+ Loliodinae) was supported at 83%, while the node supporting Holcus and Helictochloa
was 84% (Fig. 4).

Group 2 contained 27 synapomorphic RGC events (Table S2-Taxonomic Markers)
for species represented in the Loliodinae, Ventenatinae, Alopecurinae, and Poinae (sensu
Soreng et al., 2017).

Analyses conducted for this study produced near identical support for taxa relationships
across ML and BI methods. Additional statistics (-log likelihood, standard deviation
of bootstrap (ML), standard deviation of split frequencies (BI)) and mean bootstrap
(ML)/posterior probability (BI) values for plastome phylogenomic trees based on analyses
(ML, BI) and dataset partitions (sequence, and combined sequence + binary data) are
listed in Table S1.
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Figure 4 ML BS tree of Group 2 species inferred from aligned sequences. The support values of three
nodes, which are less than maximum, are indicated. Support values within circles correspond to sequence
only analyses. Support values within squares correspond to sequence+ rare genomic change (RGC) anal-
yses. GenBank accession number indicates the previously published species of F. ovina. K. melanthera
serves as the outgroup comparison. Supersubtribe designations are shown in bolded text. Subtribe desig-
nations are shown in standard text. Bracketed clades correspond to taxa sensu Soreng et al. (2017).

Full-size DOI: 10.7717/peerj.6959/fig-4

Identification of RGC or unique genome features
RGC in the combinedGroup 1&2 data sets were not always identical to those in the separate
alignments of Group 1 and Group 2 (Table S2). This was due to the divergence between
Group 1 and Group 2 taxa altering the sequence alignment and masking some individual
RGC events. In characterizing the RGC data from the combined matrix, there were four
RGCs identified as homoplasious between Groups 1 and 2, after ambiguous RGC were
discarded. There were six RGC in the alignment of Group 1 found to be synapomorphic
for Group 1 clades, and 27 RGC found to be synapomorphic for clades in Group 2.

The RGC data were also examined to determine whether mutations were the result of
ISD or SSM. It was determined that two of the events originated in sequence through ISD,
but no event was the result of SSM. Both Polypogon fugax and Briza maxima exhibited
unique ISD events. The ISD event occurring in P. fugax was between CDS psbE and petL
and is 63 bp in length (Table 4).

In identifying unique genome features, this study utilizes data from 40 Poeae taxa in 34
genera including one instance of two accessions of the same species, Festuca ovina, which
can be compared. The previously published F. ovina contains a 78 base deletion, located in
the IGS between psaJ and rpl 33 CDS, which is not seen in the F. ovina sequenced for this
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Table 4 Sequence evidence for Intrastrand Deletion event in Group 1 taxa (in sequence alignment, bases: 69,883–69,962).

Amelichloa brachychaeta TAATCCAAAATAGAAATAAC---CTTTTTTTTTCTAATTCAATT----CTTTATTTATCTCTTATTCC-----AAAATTC

Triplachne nitens TAATCCAAAATTCAATTGTTTA-TTTTTTTTTGCAAATTCAATTGTTTTGTTTATTTATCTCTTATTCC----AAAATTC

Gastridium ventricosum TAATCCAAAATTCAATTGTTTA-TTTTTTTTTGCAAATTCAATTGTTTTGTTTATTTATCTCTTATTCC----AAAATTC

Dichelachne crinita TAATCCAAAATAGAA---AGCATTTTTTTTTTTCAAATTCAATT-----GTTTATTTATCTCTTATTCC----AAAATTC

Calamagrostis breviligulata TAATCCAAAATTCAATTGTTTATTTTTTTTTTTCAAATTCAATT-----GTTTATTTATCTCTTATTCC----AAAATTC

Polypogon fugax (ISD) TAA---------------------------------------------------------------TCC----AAAATTC

Agrostis gigantea TAATCCAAAATTCAATT--------------------------------GTTTAGTTATCTCTTATTCC----AAAATTC

Agrostis stolonifera TAATCCAAAATTCAATT--------------------------------GTTTATTTATCTCTTATTCC----AAAATTC

Hierochloe odorata TAATCCAAAATAGAAAGCATT--TTTTTTTTTTCAAATTCAATT-----GTTTATTTATTTCTTATTCC----AAAATTC

Torreyochloa pallida -------------------------------------------------GTTTATTTATCTCTTATTCC----AAAATTC

Phalaris arundinacea TAATCCAAAATAGAAAGCA----TTTTTTTTTTCAAATGCAATT-----GTTTATTTATCTCTTATTCCAAAAAAAATTC

Koeleria nitidula TAATCCAAAATAGAAAACA-T--TTTTTTTTTTCAAATTCAATT-----GTTTACTTATCTCTTATTCC----AAAATTC

Trisetum cernuum TAATCCAAAATAGAAAACA-T--TTTTTTTTTTCAAATTCAATT-----GTTTATTTATCTCTTATTCC----AAAATTC

Avena sativa TAATCCAAAATACAAAACATT--TTTTTTTTTTCAAATTCAATT-----GTTTATTTATCTCTTATTCC----AAAATTC

Arrhenatherum elatius GAATCCAAAATAGAAAACA-------TTTTTTTTTAATTCAATT-----GTTTATTTATCTCTTATTCC----AAAATTC

Anthoxanthum odoratum ----------------------------TTTTTCAAATTCAATT-----GTTTATTTATCTCTTATTCC----AAAATTC

Briza maxima -------------------------------------------------GTTTATTTATTTATTATTCC----AAAATTC

Notes.
T4. Alignment evidence showing the ISD event in Polypogon fugax. Nucleotides of importance are bolded or underlined.

Table 5 Sequence evidence of 78 bp ISD in Festuca ovina versus previously published Festuca ovina (NC_019649).

Festuca ovina (NC_019649) AGG------------------------------------------------------------------------------AAAAAGAAATTC

Festuca ovina AGGAAAAAGAAAGAA-----AAGATGGATTGGGTTGAACCTCAGAGTCATTAAAAATAGGGTA----AATTCTATTTTGGAAAAAAGAAATTC

Festuca altissima AGGAAAAAGAAAGAA-----AAGATGGATTGGGTTGAACCTCAGAGTCATGAAAAATTTGGTA----AATTCTATTTTGGAAAAAAGAAATTC

Festuca arundinacea AGGAAAAAGAAATAA-----AAGATGGATTGGGTTGAACCTCAGAGTCATGAAAAATTTGGTA----AATTATATTTTGGAAAAAAGAAATTC

Festuca pratensis AGGAAAAAGAAATAA-----AAGATGGATTGGGTTGAACCTCAGAGTCATGAAAAATTTGGTA----AATTATATTTTGGAAAAAAGAAATTC

Notes.
T5. Alignment evidence of the 78 bp ISD event in Festuca ovina (NC_019649) not seen in F. ovina sequenced for this study, indicating a potential for these events to occur inde-
pendently within a species.

study (Table 5). This deletion also shows the characteristic dispersed repeats associated
with ISD events. The two F. ovina species have 99.3% sequence identity (132,816 identical
sites of 133,709 total sites) indicating these are conspecific. Furthermore, the 78 base
indel shows an average read depth of 32.1 in the F. ovina species assembled for this study,
providing strong support for inserted sequence in this region not seen in the previously
published specimen. The presence of this ISD event in the previously published F. ovina
(NC_019649) and its absence in a newly published individual of the same taxon indicates
a potential for these events to occur independently within a species, as evidenced by our
two F. ovina representatives.

DISCUSSION
During the course of this study, it was determined that RGC are potentially useful as
taxonomic markers to identify clades. The relationships of Group 1 and Group 2 species, as
described in previous research (Saarela et al., 2015; Soreng et al., 2015; Soreng et al., 2017)
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with fewer species and/or fewer loci, have been confirmed, but with robust support and
updates due to the increase in sampled taxa in this study (e.g., Castellia and Ammochloa)
as compared to previous studies, as well as deep sampling of the plastome. In utilizing
the complete plastome data, more genetic information is available and provides a more
accurate picture of phylogenomic relationships within Poeae. Support values for sequence
only data, and sequence data combined with binary RGC data provide robust support for
relationships of Group 1 and Group 2 taxa, and resolution of previously unsupported or
unresolved relationships within groups.

Phylogenomic analyses
The phylogenomic analyses conducted in this study, provided insight into the relationships
in Pooideae. While our analysis is consistent with the circumscription of Agrostidinae
sensu Soreng et al. (2017), Calamagrostis, Briza, and Dichelachne are united with this clade
with maximum support, despite the absence of plastome data from the Calothecinae
subtribe. This is an increase compared to moderate support for the same clade in Saarela et
al. (2017). Our results are also consistent with the broader circumscription of the subtribe
by Kellogg (2015). Within the subtribe the Gastridium + Triplachne clade is maximally
supported as sister to the Agrostis-Polypogon complex, which is in turn sister to a species of
Calamagrostis. Additional sampling of complete plastomes among the remaining genera of
Agrostidinae will further inform the efforts to classify this group.

Of particular note, Agrostis is nonmonophyletic in our plastome trees. This study
resolved the Group 1 taxon Polypogon fugax as sister to Agrostis gigantea, with Agrostis
stolonifera sister to those in turn, all with maximum support. To verify the identity of our
unvouchered seed source of Polypogon, we compared our plastome sequence to GenBank
submissions of 13 plastid barcode markers (accession numbers: EU639581, HQ599932,
KF796891, KF797152, KF797264, KF797017, KP135424, KP135426, KX372479,MF064763,
MF065677, MF073532 and MF785855) sequenced from other tissue sources of P. fugax
using BLASTn. In nine cases, nucleotide identity was 100% between our plastome and the
barcodes of P. fugax and in the remainder it was 99%. In all cases, comparisons of our
sequence with the Agrostis plastid sequences available through NCBI (Altschul et al., 1990)
were <100% (mean identities for both Agrostis species: 97%) confirming the identifications
of Polypogon and Agrostis in this study. This confidently inferred relationship based on new
plastome data should be explored further and possibly used as the basis for reclassification.

Suspected hybridizations in the Lolium-Festuca complex in Group 2 make the
discernment of exact relationships difficult. Here, Festuca species do not form a
monophyletic group, which is fully consistent with the circumscription of taxa in Soreng
et al. (2017). Instead, two accessions of Festuca ovina are sister to each other and are
united with Castellia tuberculosa in a separate clade from the remaining Festuca + Lolium
species. Note that in a three-locus plastid study, Bouchenak-Khelladi et al. (2009) strongly
supportedC. tuberculosa as sister to their (Vulpia+ Festuca) clade. However, the earlier ITS,
trn L-F study conducted by Catalán et al. (2004) found conflicting positions among the
ITS and trn L-F analyses, in which the plastid loci mirrored the position of C. tuberculosa
returned in our study in relation to Festuca (Fig. 1). Festuca pratensis (Lolium pratense
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sensu Saarela et al., 2018) is sister to the Lolium clade, while Festuca arundinacea (Lolium
arundinaceum sensu Saarela et al., 2018) is sister to the latter clade, and finally, Festuca
altissima (Drymochloa sylvatica sensu Saarela et al., 2018) is situated on a long branch and
sister to the aforementioned groupings in the Loliinae.

An additional point of interest in the results of this study is the unique placement
of the Group 2 taxon Scolochloa festucacea. Here, S. festucacea is embedded within the
Loliodinae, and sister to the Loliinae with maximum support (Figs. 2 and 4), contrary
to the circumscription of Soreng et al. (2017) which excludes Scolochloinae from the
Loliodinae. To confirm the identity of our vouchered specimen, we compared our plastome
sequence to four plastid barcode markers produced in different studies from other sources
of S. festucacea available through NCBI GenBank (AM234600, KJ913040, KM524033, and
KM524103). In all comparisons, nucleotide identity was 99.4% or greater, with amaximum
identity of 99.9% and 1124/1125 identical sites (KM524033; rpoB-trn C), thus confirming
the identity of S. festucacea in this study.

Ammochloa has not been previously included in plastome phylogenomic studies. Here
we find a strongly supported position for Ammochloa sister to Dactylidinae. This confirms
the weakly supported topology inferred for these same taxa in Quintanar, Castroviejo &
Catalán (2007), although in their study this clade is in an unresolved position whereas our
results place it sister to (Catapodium + Desmazeria). Results of Saarela et al. (2010) based
on ITS data, moderately supported the position of Ammochloa in a paraphyletic grade of
Airine and other Group 2 taxa. The inclusion of representatives of Ammochloa andCastellia
here, which have been little studied, indicate affinities in Loliodinae.

RGC data set
The RGC analysis identified 156 non-ambiguous individual events, of which 33 were
determined to be clade defining markers within Group 1 or Group 2 (Table S1 Taxonomic
Markers). We propose use of these RGC as taxonomic markers (Figs. 5A & 5B), because
they show little homoplasy. Two of the RGC, F1 and G2, show convergence/parallelism
on our trees (Figs. 5A & 5B). Of the total RGC, 87% were synapomorphic to subgroups
of either Group 1 or Group 2 in a combined alignment of all 42 plastomes. Only four
RGC were homoplasious characters identified across the Group 1 and Group 2 alignment.
Complete RGC sequences and letter-number codes for these events can be found in
(Table S2 Taxonomic Markers).

Analysis of RGC improves our understanding of molecular evolution in the plastome.
RGC were analyzed and characterized to determine if they had arisen through identifiable
mutation events such as ISD or SSM. Two RGC were interpreted to be the result of ISD
based on evidence seen in the aligned sequence. However, these occurrences of ISD are
relatively uncommon. Given the estimated divergence of Pooideae at 52 Mya (Burke et
al., 2016a; Burke et al., 2016b), this may have provided ample time to eliminate dispersed
repeats with subsequent mutations so that ISD events can no longer be distinguished from
nonreciprocal recombinations.

RGC events shared by closely related species or clades can be useful and inferential
for phylogenomic relationships. This is demonstrated in Figs. 5A & 5B, where RGC are
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Figure 5 Taxonomic markers identified for Group 1 & Group 2 taxa. (A) Taxonomic markers including
the unique intrastrand deletion (ISD) event in P. fugax and B. maxima, are superimposed onto a ML phy-
logram for Group 1. Scale bar length is 0.003. Letter-number codes correspond to ‘‘Taxonomic Markers’’
found in Table S2 for Group 1 taxa. Subtribes are designated by dashed-line or bracket and bolded text;
supersubtribes are designated by bold dashed-line/bracket and capitalized text. Bracketed clades corre-
spond to taxa sensu Soreng et al. (2017). One rare genomic change (RGC) (F1) appears as homoplasious in
both Phalaris arundinacea and Avena sativa. † Indicates a unique ISD event in the designated taxa. These
ISD events are synapomorphic. (B) Taxonomic markers including the ISD event in F. ovina, are superim-
posed onto a ML phylogram for Group 2. Scale bar length is 0.003. GenBank accession number indicates
the previously published species of F. ovina. Letter-number codes correspond to ‘‘Taxonomic Markers’’
found in Table S1 for Group 2 taxa. Subtribes are designated by dashed-line or bracket and bolded text;
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spond to taxa sensu Soreng et al. (2017). ‡ Indicates the unique ISD event seen in the previously published
F. ovina (NC_019649); see Table 5 for sequence evidence of this ISD event.
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indicated on the corresponding nodes of the tree. Group 1 (Fig. 5A) contained a total of six
clade defining RGC events and Group 2 (Fig. 5B) contained 27 clade defining RGC events;
these events variously support tribal, multi-tribal, and within-tribal relationships in Group
1: Aveninae, Agrostidinae, Anthoxanthinae, (Phalaridinae + Torreyochloinae); and Group
2: Loliinae, (Ammochloinae + Parapholiinae + Dactylidinae), Parapholiinae, Dactylidinae,
Poinae, and Coleanthinae.

Group 2 taxa displayed a unique trend in the high occurrence of taxonomic markers
situated on long branches (Fig. 5B). This is particularly noticeable between Desmazeria
sicula and the Catapodium species, where there are eight RGC taxonomic markers.
Additionally, taxonomic markers: CC2, P2/W2, and T2 result in divided clades. The
taxonomic marker CC2 is synapomorphic for Group 2 subtribes Loliodinae + (Airinae,
Holcinae, and Aristaveninae) and excludes the (Poodinae + Coleanthinae). Loliinae is
separated from the remainder of Loliodinae subtribes by a pair of mutations: P2 and
W2; and the final T2 mutation is synapomorphic for (Ammochloinae + Dactylidinae +
Parapholiinae) and excludes the Loliinae.

In general, the inference of monophyletic Group 1 and Group 2 clades is not constrained
to a few specific regions of the plastome, as these RGC events are found distributed across
the plastome. With the deep sampling of the plastome conducted in this study, there is
not a specific attributable RGC or small set of these that are responsible for the reciprocal
monophyly of Group 1 and Group 2 indicating that perhaps the division between these
two plastid groups is an ancient event, long since masked by the subsequent molecular
evolution of the plastomes of these groups.

CONCLUSION
This study has exhaustively characterized complete plastomes and RGC in Poeae Groups
1 and 2, based on all available genetic information in the plastid chromosome. Most of the
previous studies examining the relationships between Group 1 and Group 2 Poeae species
utilized a few genes or loci, while this study has considered all available genetic information
of the plastome. Because of this deep sampling of the plastome, the results of this study
are strongly supported and infer some previously unidentified relationships, while also
confirming many of the previously determined relationships. RGC are an additional
and useful set of data to consider when examining relationships between taxa, especially
as taxon sampling increases. Additionally, RGC provide further utility as training data
for algorithms created to identify these mutations and mutational mechanisms. Overall,
through the use of complete plastomes, this study demonstrated robust support for the
relationships of Poeae Group 1 and 2, as well as explored the use of RGC as promising
broad scope, clade defining characteristics for taxa within the Poeae. Future directions
might include investigations of substitution rates in regions prone to RGC and a larger and
deeper sampling across the entire Pooideae to determine relationships across the group,
and also by including nuclear data analyzed with coalescent methods. In particular, the
unique placements of Scolochloa festucacea within the Loliodinae, and Polypogon fugax as
paraphyletic with Agrostis bears further examination. Note that while biparentally inherited
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nrDNA is a theoretically better source for inferring species phylogenies, in the case of the
highly reticulate Poeae the use of nuclear loci complicates phylogenetic reconstruction or
can cause inference of inaccurate species phylogenies due to incorrect interpretation of
recombination events or extensive polyploidizations (Álvarez & Wendel, 2003; Saarela et
al., 2017). However, genome-scale nuclear analyses are more likely to overwhelm errors of
interpretation with phylogenetic signal and lead to a better understanding of the complex
evolution in this highly reticulate group.
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