Biochemical changes throughout early- and middle-stage of embryogenesis in lobsters (*Homarus americanus*) under varying thermal regimes

Jason S Goldstein $^{\text{Corresp., 1, 2}}$, Winsor H Watson 2

 1 Maine Coastal Ecology Center, Wells National Estuarine Research Reserve, Wells, ME, USA

² Department of Biological Sciences and, University of New Hampshire School of Marine Sciences and Ocean Engineering, Durham, NH, USA

Corresponding Author: Jason S Goldstein Email address: jsgoldstein2@gmail.com

Most marine crustacean eggs contain a full complement of nutritional resources that fuel the growth and metabolic processes over the course of their development. In terms of biochemical constituents, lipids and proteins play pivotal and central roles in these processes and, accordingly, have been studied extensively in crustaceans. Given the propensity of some ovigerous (egg-bearing) American lobsters (Homarus americanus) to undergo seasonal inshore-to-offshore migrations, thereby exposing their eggs to varying thermal regimes, this study's goal was to assess egg guality over their course of development by documenting changes in total lipids, proteins, and egg size (volume) in lobsters subjected to one of three simulated thermal regimes (inshore, offshore, constant (12°C), N = 5/trt, 15 total) in the laboratory and sampled at five discrete time intervals. Total egg lipids showed a marked decrease over time ($r_{adi}^2 = 0.85$, P < 0.0001), early in the fall (average = -26%) and late spring (-62%), compared with stark increases in proteins over the same period ($r_{adi}^2 = 0.63$, P < 0.0001, averages = 60%, 34%, fall and spring). Although there were no significant differences in total lipid or protein values (or egg sizes) between eggs exposed to inshore and offshore temperatures (P > 0.05), differences occurred in eggs exposed to a constant temperature, and they hatched almost three months sooner than inshore or offshore ones. Seasonal temperature fluctuations also appear to control the rates of biochemical processes in lobster eggs but may be confounded by other variables.

1 2 3 4	Biochemical changes throughout early- and middle-stages of embryogenesis in lobsters (<i>Homarus americanus</i>) under varying thermal regimes
5 6 7 8	Jason S. Goldstein ^{1,2*} and Winsor H. Watson III ²
9	¹ Wells National Estuarine Research Reserve, The Maine Coastal Ecology Center, 342 Laudholm
10 11	Farm Road, Wells, ME, 04090 USA. <jgoldstein@wellsnerr.org></jgoldstein@wellsnerr.org>
12	² Department of Biological Sciences and School of Marine Sciences and Ocean Engineering,
13	University of New Hampshire, 46 College Road, Durham, NH 03824 USA.
14	
15	
16	*corresponding author
17	
18	
19	
20	
 21 22 23 24 25 26 27 28 29 30 31 	
32 33	

34 ABSTRACT

35

36 Most marine crustacean eggs contain a full complement of nutritional resources that fuel the 37 growth and metabolic processes over the course of their development. In terms of biochemical constituents, lipids and proteins play pivotal and central roles in these processes and, 38 accordingly, have been studied extensively in crustaceans. Given the propensity of some 39 ovigerous (egg-bearing) American lobsters (Homarus americanus) to undergo seasonal inshore-40 41 to-offshore migrations, thereby exposing their eggs to varying thermal regimes, this study's goal was to assess egg quality over their course of development by documenting changes in total 42 43 lipids, proteins, and egg size (volume) in lobsters subjected to one of three simulated thermal 44 regimes (inshore, offshore, constant (12°C), N = 5/trt, 15 total) in the laboratory and sampled at five discrete time intervals. Total egg lipids showed a marked decrease over time ($r_{adj}^2 = 0.85$, P 45 < 0.0001), early in the fall (average = -26%) and late spring (-62%), compared with stark 46 increases in proteins over the same period ($r_{adi}^2 = 0.63$, P < 0.0001, averages = 60%, 34%, fall 47 and spring). Although there were no significant differences in total lipid or protein values (or egg 48 sizes) between eggs exposed to inshore and offshore temperatures (P > 0.05), differences 49 occurred in eggs exposed to a constant temperature, and they hatched almost three months 50 sooner than inshore or offshore ones. Seasonal temperature fluctuations also appear to control the 51 52 rates of biochemical processes in lobster eggs but may be confounded by other variables. 53

54

55

56 INTRODUCTION

57

58 Egg development for most marine crustaceans relies heavily on the production and sequestering 59 of nutrients required for the development and maintenance over the entire process of 60 embryogenesis. In terms of biochemical constituents, both lipids and proteins play pivotal and 61 central roles throughout development, and, as a result, have been studied extensively in both 62 crustaceans and fishes alike (Fraser, 1989; Jaeckle, 1995; Rosa et al., 2007). Lipids comprise the 63 64 structural integrity of most cells and are responsible for the overall metabolism of growing crustacean embryos. Remarkably, these constituents have been reported to account for upwards 65 of 60% of the total energy expenditure for growth (Holland, 1978; Amsler & George, 1984). By 66 67 contrast, the role of proteins as the basic building blocks of animal tissues are well known (Holland, 1978), and function as alternative energy sources under certain conditions (Schmidt-68 Nielsen, 1991; Heras, Gonzales-Baro & Pollero, 2000). 69

70

Egg development in crustaceans is especially linked to temperature such that incubation periods 71 can be extended (cold temps) or reduced (warm temps). Closely coupled metabolic rates increase 72 with temperature thereby modulating volk absorption, growth and ultimately, the survival of 73 eggs (Pandian, 1970; Schmidt-Nielsen, 1991). Development and metamorphosis of 74 75 planktotrophic larvae, including decapod crustaceans, depends to a great extent on nutrition (Racotta & Ibarra, 2003) from both exogenous (from feeding) and endogenous (volk reserves) 76 77 sources which are important metrics during early postembryonic development (Sasaki, 78 McDowell-Capuzzo & Biesiot, 1986; Clarke, Brown & Holmes, 1990). Together, the relationship between the primary biochemical components in crustacean eggs and their 79

80

associated variability are considered central to the early-life history patterns for these organisms
(*Vance, 1973; Jaeckle, 1995*).

83

This is especially true for American lobsters, *Homarus americanus* H. Milne-Edwards (1837) 84 characterized as large, highly mobile decapods whose habitats include coastal and continental 85 86 shelf waters, bays and estuaries from Labrador, Canada to Cape Hatteras, U.S. (Fogarty, 1995). Because the American lobster fishery garners such tremendous economic influence, fisheries 87 scientists and managers focus much of their attention on many aspects of stock assessment 88 including the fecundity, spawning stock biomass, and abundance of egg-bearing (ovigerous) 89 females that are historically protected from being landed (ASMFC, 2015). The life history of H. 90 *americanus* includes a complex suite of embryonic, pelagic (larval), and benthic (juvenile and 91 adult) developmental stages (see review in Lawton & Lavalli, 1995), most notably, their yolk-92 laden eggs that are extruded and carried for 9-11 months over the full course of their 93 94 development (Talbot & Helluy, 1995); temperature is a key factor that determines the length of time the eggs are carried (Templeman, 1940; Aiken & Waddy, 1980). Mature lobster oocytes are 95 large (1.4-1.6 mm diameter upon extrusion) and typically contain large amounts of high-density 96 97 lipoproteins (> 40%, lipovitellins) that are allocated as yolk material through a complex suite of primary and secondary vitellogenesis (Nelson, Hedgecock & Borgeson, 1988; Talbot & Helluy, 98 1995). 99

100

Besides the often protracted egg development in *H. americanus*, one of the most interesting
and sometimes dramatic features of some ovigerous lobsters is their propensity to migrate
seasonally over an array of habitat types (including thermal ones) and distances (typically, 5-

10 km, but sometimes much greater) throughout the development of their eggs (see reviews 104 by Cooper & Uzmann, 1980; Lawton & Lavalli, 1995). The implications of such movement 105 106 events in ovigerous lobsters has the potential to shape the developmental dynamics of the eggs they carry by subjecting them to differing thermal regimes whose rates of change can be 107 quite different (Campbell & Stasko, 1986; Cowan et al., 2006; Goldstein & Watson, 2015a). 108 109 For example, ovigerous lobsters subjected to inshore thermal regimes in the lab exhibited more rapid egg development and hatched sooner than their offshore counterparts (Goldstein 110 & Watson, 2015b). Therefore, the seasonal movements of ovigerous lobsters to thermally 111 disparate waters may be strategies to both enhance egg development and the survival of 112 \mathcal{O} larvae in the plankton. 113

114

Biochemical and energetics considerations in lobster eggs have been well studied and suggest the 115 following key patterns: 1) differing thermal regimes influence the utilization of energy reserves 116 117 in developing embryos and embryos raised at accelerated temperatures contain residual yolk reserves upon hatch (Sasaki, McDowell-Capuzzo & Biesiot, 1986); 2) the energy content of eggs 118 tend to increase with female size (Attard & Hudon, 1987); and 3) larval size at hatch is 119 120 independent of female size (*Ouellet & Plante, 2004*). Despite some contradictory evidence between some of these studies, it is evident that egg resources influence their growth and 121 122 development.

123

Although optimal temperatures for lobster egg growth are not fully known, naturally fluctuating
temperatures result in disparate growth patterns and subsequently, differing hatch times (*Sibert*, *Ouellet & Brethes, 2004; Goldstein & Watson 2015b*). In general, crustacean eggs subjected to

Manuscript to be reviewed

either prolonged warm or cold temperatures can have a deleterious effect on the use of their yolk
reserves (*Garcia-Guerrero, Racotta & Villareal, 2003*; *Manush et al., 2006*), and it has been
suggested that prolonged cold temperatures (< 4°C) negatively affect egg development in *H. americanus* (*Waddy & Aiken, 1995*). Therefore, one way of assessing the effects of temperature
on the overall development of lobster eggs is through the proximate analysis of their biochemical
components, namely, lipids and proteins.

133

The goal of this study was to further elucidate the effects of lobster movements over varying thermal regimes (inshore and offshore) during the course of egg development, complementing existing work on egg development and hatch under differing thermal regimes in the laboratory, by quantifying two key biochemical descriptors (lipids and proteins) of egg resource utilization as well as changes in egg size. A constant, slightly elevated temperature was also used to compare egg development under non-fluctuating thermal conditions.

140

141 METHODS

142

143 Lobster source and egg assessment

Egg-bearing (ovigerous) lobsters re legally collected (New Hampshire Fish & Game permit,
RSA 214:29) in late August and early September (2006) along the New Hampshire (NH)
seacoast near Rye, NH and Gunboat Shoals (43°.0274 N; 70°.6938 W) by permitted commercial
lobstermen using standard baited traps. Lobsters were transported to the University of New
Hampshire (UNH) Coastal Marine Laboratory in Newcastle, NH and initially held in a large
1,200 L fiberglass tanks with shelters. Tanks were exposed to ambient light and sand-filtered

seawater (average temp =15.3 \pm 0.5°C), and lobsters were fed a combination of fresh squid and crabs (*Cancer spp.*), twice weekly.

152

A subset of the eggs in each clutch were viewed under a dissecting scope and staged according to 153 the methods outlined by Helluy & Beltz (1991). These samples also served as covariates for all 154 subsequent statistical analyses. Only lobsters whose eye index was less than 18% were used for 155 this study (*Perkins*, 1972; Goldstein & Watson 2015b) in order to encompass as much of the 156 early development process as possible. Lobster carapace lengths (CL) were measured to the 157 nearest 1 mm using digital calipers (Mitutoyo IP 65, Mitutoyo Corp., Japan). A single, circular, 158 laminated disc tag (diameter = 2.0 cm, Floy Tag Inc., Seattle, WA) was fastened to the claw 159 **knuckle** of each animal for individual identification throughout the duration of the study. 160

161

162 Thermal treatments and sampling

The experimental setup and thermal treatments followed a companion study that served to 163 concurrently quantify lobster egg development and hatch time in the same group of lobsters (see 164 Goldstein and Watson 2015b). Briefly, a series of four 0.91 m diameter (600 L) tanks (2 tanks/ 165 treatment) were used to simulate either inshore, offshore, or constant $(12 \pm 0.4^{\circ}C)$ temperature 166 regimes on a year-round basis (Fig. 1). For purposes of this study, inshore locations (shallow and 167 coastal) were considered the same areas where animals were collected (2-5 km from shore, 8-10 168 m depth), while offshore ones were designated as 12-20 km from shore (20-30 m depth) to 169 simulate those lobsters that might make seasonal, fall migrations offshore (see Goldstein & 170 Watson 2015a). Constant temperatures were chosen to simulate a favorable growth temperature 171 172 similar to eggs observed in *Mackenzie (1988)*. Temperatures in all tanks were logged

automatically every 30-minutes using HOBO pendant loggers (model UA-002-64, Onset 173 Computer, Bourne, MA) and later downloaded into Microsoft Excel using Hoboware software 174 (HOBOware Pro v. 3.0). Temperature profiles from the offshore tank treatment were adjusted 175 semi-regularly to simulate seasonal temperature changes in the field and monitored from 176 historical and real time data published on the Northeastern Regional Association of Coastal 177 178 Ocean Observing Systems (NERACOOS, http://neracoos.org). A subset of five ovigerous females were sampled at each temperature treatment for a total of 15 lobsters. All lobsters were 179 sampled for eggs at five discrete time periods: twice in the fall and spring (during periods of 180 rapid growth; Sibert, Ouellet & Brethes, 2004) and once in the winter. 181

182

Lobster eggs (~ 100 /sample) were removed from the center of each clutch with a pair of fine 183 forceps and placed in labeled plastic sample trays. All egg samples were rinsed and gently 184 agitated with a 0.5% sodium hypochlorite and distilled water solution for $\sim 1 \text{ min.}$, after which 185 186 they were rinsed with 100% distilled water and blotted dry to remove the cement matrix holding the eggs together (P. Talbot pers. comm.). Rather than mechanically separate eggs, this technique 187 was chosen for its efficacy. Preliminary studies that were conducted indicated that this chemical 188 189 separation technique was non-invasive and did not compromise the biochemical integrity of the egg due to their complex and thickened membranes (Johnson, Goldstein & Watson, 2011). 190

191

For biochemical analyses, egg samples (~ 30/sample) were frozen at -80°C prior to processing
and freeze-dried at -40°C for 24 hr (Labconco Freeze Dryer 5, Kansas City, MO). Dried egg
samples were then ground down into a fine power using an industrial-grade milling machine
(Wiley Mill #4, 40 µm mesh screen, Thomas Scientific, Swedesboro, NJ) and samples were

stored in labeled polyethelene scintillation storage vials for subsequent analyses (Fig. 2).

198 **Biochemical analyses**

Over each sampling interval, a total of three replicate egg samples/female were pooled for lipid 199 and protein values. Total protein levels were determined using a modified Lowry method (Lowry 200 201 et al., 1951) using a BioRad protein assay kit with Coomassie Brilliant Blue G-250 (reagent) and bovine serum albumin as a standard (Biorad Laboratories, Hercules, CA). Egg samples were 202 digested in 1N NaOH, filtered and read on a spectrophotometer (Beckman DU-250; $\lambda = 595$). 203 Total lipid was quantified gravimetrically using the general protocol detailed in *Bligh & Dyer* 204 (1959). The procedure was modified in a ratio of 1:2:2.5 chloroform-methanol-water extraction, 205 respectively. Samples were dried for 24 hr. at 37°C and stored in a glass dessicator, before being 206 weighed on an analytic balance (Fig. 2). Detailed protocols for both total lipids and proteins can 207 be found in Goldstein (2012). 208

209

210 Egg volumes

For calculating egg volumes, 10-15 eggs were removed at each of the aforementioned five time 211 212 periods and placed in plastic 2.0 mL storage tubes, preserved in a 4% formalin and sterile seawater solution and stored at 4°C. For each egg, a digital picture was taken under a dissecting 213 214 microsope (Nikon SMZ-2T, Nikon USA Inc., Melville, NY) using a scope-mounted Nikon 215 Coolpix 995 digital camera. All egg images were imported into an image processing software (Image J v.1.35, see http://rsb.info.nih.gov/ij/) and a digital measuring tool was used to make 216 217 calculations of each egg's longest length. All calculations were measured to the nearest 0.01 mm (then converted to μ m) and values for each sample were averaged (± se). Egg volumes were then 218

- calculated using the formula: $V = 4/3*(\pi r^3)$, where r is the radius for spheroid-shaped embryos (see *Garcia-Guerrero & Hendrickx*, 2004).
- 221

222 Data analysis

- 223 Analysis of variance (ANOVA) was used to investigate potential differences in egg protein and
- lipid content between the three thermal regimes (fixed factor 1) at each of the five sampling
- intervals (fixed factor 2). A 3x5 full factorial design was used and analyzed as a split-plot (SP)
- ANOVA (whole-plot = temperature, sub-plot = month, $df_{total} = 15$) using a PROC MIXED model
- in SAS v. 9.3 (SAS Institute Inc., Cary, NC). Differences between groups were compared using
- the PDIFF function in SAS. Regression analyses were carried out using JMP v. 9.3 (SAS
- Institute Inc., Cary, NC) statistical software. All means are expressed \pm se.
- 230
- 231 **RESULTS**
- 232

233 Water temperatures

- 234 Seawater temperatures over the course of this study (October-May) averaged 7.1 ± 0.24 °C (range
- = 2.1-11.2) for inshore laboratory simulations, compared with 6.0 ± 0.19 °C (range = 2.8-10.1)
- for the offshore thermal regime, and 12.2 ± 0.21 °C for the constant treatment tank. There was an
- 237 overall significant difference in water temperatures between the constant tank treatment and both
- inshore and offshore ones (ANOVA; $F_{2,7} = 10.32$, P < 0.0001) that has between inshore and
- 239 offshore.
- 240
- 241

242 Lipid and protein content

Total egg lipid levels from inshore and offshore thermal regimes were very different from their 243 constant temperature counterpart (SPANOVA; $F_{2.44} = 10.3$, P = 0.0002) and also differed by 244 month ($F_{4,44}$ = 302.9, P < 0.0001; Fig. 3). Likewise, total protein levels in lobster eggs between 245 inshore and offshore thermal regimes also differed from eggs exposed to constant temperatures 246 (SPANOVA; $F_{2,44} = 67.17$, P = 0.0002) as well as by month ($F_{4,44} = 350.3$, P < 0.0001, Fig. 3). 247 The interactive effect of temperature and month was significant for both lipid ($F_{7,44} = 2.27, P$ 248 <0.045) and protein levels ($F_{7,44} = 46.5$, P < 0.0001) and are summarized in Tables 1 & 2. 249 Overall egg lipid values showed a marked decrease over time (equation: lipids = 381.76 -250 55.00*month, $r_{adj}^2 = 0.85$, P < 0.0001; Fig. 4), falling most dramatically early in the fall (-16.8%) 251 inshore, -21.4% offshore, -24.8% constant) and late spring (-63.7% inshore, -59.0% offshore). 252 By contrast, total lobster egg protein values increased over the same time frame (equation: 253 proteins = -35.53 + 69.11*month, $r_{adi}^2 = 0.63$, P < 0.0001; Fig. 4), but exhibited large increases 254 in the fall (60.4% inshore, 57.7% offshore, 66.5% constant) and spring (30.1% inshore, 37.1% 255 offshore) and much more modest ones in the winter, typically 10-15%. 256

257

258

259 Egg volumes

Overall, there was a significant increase in egg volume over time for all eggs over all treatments $(r_{adj}^2 = 0.413, P < 0.001)$. Although there were no significant changes with respect to egg volume by treatment (F = 0.73, df = 2, P = 0.513) (overall means: inshore = $3226 \pm 163 \mu m^3$, offshore = $3254 \pm 167 \mu m^3$, constant = $3476 \pm 152 \mu m^3$) differences from month-to-month did exist (F = 2.25, df = 3, P < 0.001; Fig. 5). Gains in egg volume (for all treatments) accounted for ~ 52% between September and February, although there was a slight decrease (-13.5%) in egg volume for the constant treatment between November and January.

267 DISCUSSION

268

269 The main goal of this study was to document the changes in lipids and proteins in lobster eggs over three disparate thermal regimes and the effect that temperature has on these important 270 biochemical processes. In general, the trends during embryogenesis in *H. americanus* were 271 272 typical of other decapods: lipid reserves were catabolized while proteins were utilized to make tissues (Holland, 1978; Sasaki, McDowell Capuzzo & Biesiot, 1986; Jacobs et al., 2003; Brillon, 273 Lambert & Dodson, 2005). In tandem with these patterns, eggs were also shown to absorb water 274 during development with a resultant increase in egg diameter. Not surprisingly, lobster eggs 275 exposed to an elevated, constant temperature elicited dramatic changes compared with inshore 276 and offshore ones and, as a result, hatched sooner. Furthermore, the methods that were employed 277 in this study were able to replicate those of other studies that tracked similar metrics in lobster 278 eggs over time (Pandian, 1970; Sasaki, McDowell Capuzzo & Biesiot, 1986; Sibert, Ouellet & 279 280 Brethes, 2004).

281

This study did not obtain data for biochemical changes that occurred in eggs that were 282 283 approaching hatch (~ 30 days prior) or the effects of such changes on larval survivorship or condition. As a result, there were no apparent biochemical differences in lobster eggs between 284 285 inshore and offshore temperature treatments. Despite this, it has been shown that large changes 286 in egg yolk lipids and protein levels occur within the last few weeks of development (Sibert, *Ouellet & Brethes, 2004*), suggesting a large influence in the rate of temperature change between 287 288 inshore and offshore locations. Concurrent with this are the associated (but different) rates of 289 temperature increase that occur between inshore and offshore waters especially in the late spring

and early summer that impact when lobsters hatch (*Goldstein & Watson, 2015a,b*). As a result,
this could change how energetic reserves are allocated near the end of development more
intensively, compared to the beginning.

293

294 Other studies have shown the influence of such thermal exposures on larval condition (Sasaki, 295 McDowell Capuzzo & Biesiot, 1986; Ouellet & Plante, 2004), and it was very clear that significant changes to lobster egg biochemistry are apparent in the first couple months of 296 development (this study) as well as leading up to the month before hatching (Sasaki, McDowell 297 Capuzzo & Biesiot, 1986). The effect of temperature on metabolic and developmental rates is 298 expressed through changes in the consumption rates of metabolic reserves that are affected by 299 changing temperatures (Sasaki, McDowell Capuzzo & Biesiot, 1986). Thus, the seasonal aspects 300 of fluctuating temperature have a 'real' impact on the rates and course of development in lobster 301 eggs. It is suggested that fluctuating seasonal temperatures help to accelerate egg development 302 303 during some time frames while depressing it at others, providing temporal windows where hatching generally takes place (Helluy & Beltz, 1991; Waddy & Aiken 1995; Goldstein & 304 Watson, 2015b). 305

306

Seasonal movements by ovigerous lobsters provide one potential strategy for exposing their eggs
to variable seawater temperatures and locations where the timing of hatch could be favorable
These movements influence overall egg incubation time and may affect how internal egg
resources are utilized (*Sasaki, McDowell-Capuzzo & Biesiot, 1986; Goldstein & Watson, 2015a*).
This was seen most clearly in eggs that were exposed to constant, elevated temperatures. In this
case, egg lipid and protein levels changed dramatically and eggs hatched almost three months

Manuscript to be reviewed

prior to inshore and offshore egg treatments (Fig. 3). It is presumed that egg hatching in March 313 or April would be detrimental to survival in the plankton due to suboptimal levels in temperature 314 and food across most areas (e.g., match-mismatch hypothesi Oseasonally changing 315 temperatures, including a refractory period of cold seawater temperatures (< 5°C), are important 316 to conserving egg resources for more rapid increases in temperature (> 10° C) that typically occur 317 318 later on (Waddy & Aiken, 1995). These thermal conditions were simulated in both inshore and offshore treatments and resulted in egg development that extended well into the spring and early 319 summer (offshore). Although eggs exposed to a constant temperature, hatched much sooner, they 320 also contained residual yolk reserves upon hatch; this was also documented by Sasaki, 321

322 McDowell- Capuzzo & Biesiot (1986).

323

324 Lipids and proteins

325 Most studies conducted on crustacean eggs show that lipids are the major energy reserve 326 (Holland, 1978; Fraser, 1989; Clarke, Brown & Holmes, 1990; Heras, Gonzales-Baro & Pollero, 2000). Egg yolk lipids were rapidly consumed in all thermal treatments and throughout 327 all months, although much more modestly in winter (Fig. 3; Table 1). This pattern is seen 328 329 consistently in other crustaceans at similar rates. For example, the egg lipid content of fiddler crab (Uca rapax) decreases significantly (78.4%) through embryogenesis, confirming that lipids 330 331 constitute an important energy source for embryonic development. In addition, lipids are also used as structural components of cell membranes that are being formed as they grow (Rosa & 332 *Nunes*, 2003). Thus, the catabolism of lipids is a classic feature of crustacean eggs and many 333 other crustaceans produce eggs with large lipid reserves that are used throughout embryogenesis 334 335 (Rosa et al., 2007). Lipid depletion rates are directly related to incubation temperature, and it has

Manuscript to be reviewed

been observed in other crustaceans that the energy consumption per day, mostly provided by 336 lipids, slightly intensified 3 or 4 days before hatching (esp. with higher temps), could be related 337 to a higher energy production need at this time (Heras, Gonzales-Baro & Pollero, 2000). Yolk 338 lipids tend to become catabolized first followed by yolk proteins. These ratios change and can be 339 used to estimate the cost of egg development at differing temperatures (Sasaki, McDowell-340 341 *Capuzzo & Biesiot*, 1986). In the field, lipid profiles (e.g., fatty acids) have been used to identify offshore from inshore lobster eggs (Castell et al., 1995); therefore, it is possible that these 342 constituents are utilized differently across different geographic regions that correspond to 343 disparate thermal regimes. 344

345

For proteins, the consumption rate during embryogenesis may increase as temperature rises
(*Conceicao et al., 1998*). Proteins not only function as building blocks for tissue and organs but
more so, may act as intermediates in carbohydrate and lipid metabolism (*Schmidt-Nielsen 1991*).
Thus, trying to quantify protein levels may be masked by their intricate link to other biochemical
components. Over prolonged, cold temperatures or those conditions in which temperatures are
too high for even short periods of time, some crustacean embryos may instead utilize proteins as
an energy source if lipids are low due to thermally-induced demands (*Conceicao et al., 1998*).

At elevated temperatures (constant), increases in protein levels were clearly detected. At suboptimal temperatures tissue synthesis tends to be inefficient and more protein might be used as energy instead (*Garcia-Guerrero, Racotta & Villareal, 2003*). Therefore, the duration and rates of differing thermal profiles would most certainly affect these biochemical changes and allocations of resource components over time. How this translates to larval survivorship remains

poorly understood. However, *Sasaki, McDowell Capuzzo & Biesiot (1986)* showed that up until
Stage IV (post-larval), lobsters depended upon stored capacities of lipids and that these residual
lipids maybe favorable to settlement processes.

362

363 Egg volume

364 The increase of water in the eggs (egg volume) as seen in this study and others is directly related to water uptake during new cell formation in the embryo and has been noted to increase by more 365 than 50% over the course of development (Pandian, 1970). Increases in egg volume are 366 primarily due to water uptake by the embryo as well as from the retention of metabolic water 367 resulting from respiration (Pandian, 1970; Petersen & Anger, 1997). The associated osmotic 368 changes that ensue during egg development can be an important component to hatching and have 369 also been implicated in mechanically aiding the breakage of the chorion near the time of hatch 370 (Pandian, 1970). Slight changes in lobster egg volume have been previously explained as a 371 function of a plastic response to variations in salinity (Charmantier & Aiken, 1987), and for later 372 eggs, a consequence of physiological factors during development (Pinheiro & Hattori, 2003). In 373 these instances, the movements or residency of lobsters in certain locations where seawater 374 375 salinities can vary dramatically during certain times of the year (e.g., estuaries; *Watson, Vetrovs* & Howell, 1999) may have an impact on aspects of development or hatch, especially near the 376 377 latter part of egg development (Charmantier & Aiken, 1987).

378

379 Female size and condition

In this study we did not specifically address the influence of maternal size or nutritional
condition on egg quality in *H. americanus*. However, other related studies have showed that

caloric energy content per egg increases with female size (Attard & Hudon, 1987). Sibert, 382 Ouellet & Brethes (2004) described this relationship by creating a growth index model for egg 383 development and found that bigger eggs used volk lipids more efficiently and sustained faster 384 embryonic growth compared with smaller eggs. In addition, Ouellet & Plante (2004) reported 385 that first-time (primiparous) spawners produced compromised larvae compared to larger, 386 387 multiple ones (although larval size was independent of female size). Results from these key studies point out the need to more clearly investigate these factors in more depth. Since female 388 size and reproductive history may play a role in the allocation of metabolic egg reserves. 389 390

Large invertebrate eggs often have greater organic content than small eggs (Clarke, Brown & 391 Holmes, 1990; Clarke, 1992) but egg size is not always an accurate predictor of organic content 392 in decapods. Jacobs et al. (2003) for example, found that the larger size of blue crab (Callinectes 393 sapidus) embryos in the spring is due, for the most part, to increased water uptake and the 394 395 concomitant increase in inorganic salts (ash) commonly seen in crustacean embryos (Pandian 1970). An effect of female size on egg reserve allocation has been reported in other decapods 396 including snow crab (Chionoecetes opilio), giant crab (Pseudocarcius gigas) and lobster 397 398 (Homarus americanus) (Attard & Hudon, 1987; Sainte-Marie, 1993; Gardner, 2001). In lobsters it has been speculated that the effect of female size may mean that larger females make a greater 399 400 contribution towards egg reserves (Attard & Hudon, 1987); however, the added effect of 401 temperature on egg 'quality' may, in some cases override this effect and more work is needed to address this. 402

403

In addition to female size are potential effects that maternal nutrition has on enhancing or 404 deterring egg quality (Goldstein, unpub. data). The lecithotrophic nature of lobster eggs is 405 determined largely through the sequestering of maternal nutrients throughout the processes of 406 primary and secondary vitellogenesis during oocyte formation, the latter of which is highly 407 dependent on the female's organic energy reserves (e.g., lipoprotein; Dehn, Aiken & Waddy, 408 409 1983). Therefore, the biochemical composition of eggs is directly related to the physiological and nutritional status of the female (Sasaki, McDowell Capuzzo & Biesiot, 1986; Racotta & 410 *Ibarra*, 2003), and has an influence on the success of embryonic and larval development 411 (Holland, 1978). 412

413

414 CONCLUSIONS415416

Although the changes in biochemical components (lipids and proteins) in developing lobster
eggs were not dramatically different from inshore and offshore thermal regimes, there is still the
potential for variations in the energetics of embryogenesis influenced by the seasonal movements
of some lobsters to and from these two disparate locations. Thus, as seasonal thermal cycles
fluctuate or potentially shift (i.e., climate change) the timing of egg hatch and associated egg
quality may modulate further biochemical changes to lobster eggs and have implications for
hatch and other early-life history dynamics.

424

425 ACKNOWLEDGEMENTS

426

427 A special thanks to Nancy Whitehouse of the UNH Dairy Nutritional Research Center whose

428 expertise and advice on biochemical analyses and statistics were very helpful to the completion

429	of this project in addition to the use and training of diagnostic lab equipment. Project interns,
430	Sarah Havener, May Grose and Michelle Provencier, were also very helpful with many aspects
431	of this study and their help is much appreciated. Nate Rennels and Noel Carlson of the UNH
432	Coastal Marine Lab for their help in maintaining lobsters and the seawater system. A special
433	appreciation to NH lobstermen Alan Vangile (F/V Special K) and Michael Pawluk (F/V
434	Gretchen D) for the boat hours to trap and collect egg-bearing lobsters for this study.
435	
436 437 438 439	REFERENCES
440 441 442	Aiken DE, Waddy SL. 1980. Reproductive Biology. In: Cobb JS, Phillips BF, eds. <i>The Biology</i> and Management of Lobsters. New York: Academic Press. 275–276.
443 444 445	Amsler MO, George RY. 1984. Seasonal variation in the biochemical composition of the embryos of <i>Callinectes sapidus</i> . Rathbun. <i>Journal of Crustacean Biology</i> 4 :546–553.
446 447 448	Atlantic States Marine Fisheries Commission (ASMFC). 2015. Stock Assessment Report NA10NMF4740016. 493p.
448 449 450 451 452	Attard J, Hudon C. 1987. Embryonic development and energetic investment in egg production in relation to size of female lobster (<i>Homarus americanus</i>). <i>Canadian Journal of</i> <i>Fisheries and Aquatic Sciences</i> 44:1157–1163.
453 454 455	Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. <i>Canadian Journal of Biochemistry and Physiology</i> 37:911–917.
456 457 458 459	Brillon S, Lambert Y, Dodson J. 2005. Egg survival, embryonic development, and larval characteristics of northern shrimp (<i>Pandalus borealis</i>) females subject to different temperature and feeding conditions. <i>Marine Biology</i> 147:895–911.
460 461 462	Campbell A, Stasko AB. 1986. Movements of lobsters (<i>Homarus americanus</i>) tagged in the Bay of Fundy, Canada. <i>Marine Biology</i> 92:393–404.
463 464 465	Castell JD, Boston LD, Miller RJ, Kenchington T. 1995. The potential identification of the geographic origin of lobster eggs from various wild stocks based on fatty acid composition. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> 52 :1135–1140.

466	Charmonting C. Allow DE 1097 Connetic generalities in late embrance and availance of the
467	Charmantier G, Aiken DE. 1987. Osmotic regulation in late embryos and prelarvae of the
468	American lobster <i>Homarus americanus</i> H. Milne-Edwards 1837 (Crustacea, Decapoda).
469	Journal of Experimental Marine Biology and Ecology 109:101–108.
470	
471	Clarke A. 1992. Egg size and egg composition in polar shrimps (Caridea: Decapoda). <i>Journal of</i>
4/2	Experimental Marine Biology and Ecology 16:188–203.
475 474	Clarke A Brown J Holmes L 1990 The biochemical composition of eggs from
475	Macrobrachium rosenbergii in relation to embryonic development. Comparative
476	Biochemistry and Physiology 96(B) :505–511.
477	
478	Conceicao L, Ozorio R, Suurd E, Verreth J. 1998. Amino acid profile and amino acid
479	utlilization in larval African catfish Clarias gariepinus, effects of ontogeny and
480	temperature. Fish Physiology and Biochemistry 19:43–57.
481	
482	Cooper R, Uzmann J. 1980. Ecology of Juvenile and Adult Homarus. In: Cobb JS, Phillips BF,
483	eds. The Biology and Management of Lobsters. New York: Academic Press, 97-142.
484	
485	Cowan DF, Watson WH III, Solow AR, Mountcastle AM. 2006. Thermal histories of
486	brooding lobsters, Homarus americanus, in the Gulf of Maine. Journal of Marine
487	<i>Biology</i> 179:70–78.
488	
489	Denn PF, Aiken DE, waddy SL. 1983. Aspects of vitellogenesis in the lobster <i>Homarus</i>
490	americanus. Canadian Technical Report of Fisheries and Aquatic Sciences 161 :1–28.
491	
492	Fogarty MJ. 1995. Populations, Fisheries, and Management. In: Factor JR, ed. <i>Biology of the</i>
493	lobster Homarus ame venus. San Diego: Academic Press, 111–137.
494	Everyon A 1090 Trigonal content of a condition index for figh histolyce and experience
495 496	Fraser A. 1989. That yighterior content as a condition index for fish, bivarye and crustatean
497	larvae. Cunadan sournal of Fisheries and Aqualle Science 40.1000 1072.
498	Garcia-Guerrero M. Racotta I. Villareal H. 2003. Effect of temperature on lipids proteins
499	and carbohydrates levels during development from egg extrusion to invenile stage of
500	Cherax auadricarinatus (Decanoda: Parastacidae). Comparative Riochemistry and
500	Physiology Part A 135:147-154
501	1 hystology 1 un A 133.147-134.
502	Carcia-Cuarrara M. Handricky MF. 2004 Embryalagy of decanad crustaceans I. Embryania
202	development of the manarove crobs <i>Conjunctice nullehra</i> and <i>Anatus</i> niconii (Decender)
504	Drochymra) Journal of Crustacoan Piclor: 24:666-672
505	Diachyula). Journal of Crusiacean Diology 24:000–072.
506	

507 508 509 510	Gardner C. 2001. Composition of eggs in relation to embryonic development and female size in giant crabs (<i>Pseudocarcinus gigas</i> Lamarck). <i>Marine and Freshwater Research</i> 52 :333–338.
511 512 513 514	Goldstein JS. 2012. The impact of seasonal movements by ovigerous American lobsters (<i>Homarus americanus</i>) on egg development and larval release. Ph.D. dissertation, University of New Hampshire, Durham, NH.
515 516 517 518	Goldstein JS, Watson WH III. 2015a. Quantifying the influence of natural inshore and offshore thermal regimes on egg development in the North American lobster, <i>Homarus americanus</i> . <i>Biological Bulletin</i> 228 :1-12.
519 520 521 522	Goldstein JS, Watson WH III. 2015b. Seasonal movements of American lobsters in southern Gulf of Maine coastal waters: Patterns, environmental triggers, and implications for larval release. <i>Marine Ecology Progress Series</i> 524 :197-211.
523 524 525 526	Helluy S, Beltz BS. 1991. Embryonic development of the American lobster <i>Homarus americanus</i> : Quantitative staging and characterization of an embryonic molt cycle. <i>Biological Bulletin</i> 180:355–371.
527	Heras H. Gonzales-Baro M. Pollero R. 2000. Lipid and fatty acid composition and energy
528	portioning during the embryo development in the shrimp <i>Macrobrachium borellii Linids</i>
529	35 :645–651.
530	
531 532 533	Holland D. 1978. Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. In: D. C. Malins (Ed.). Biochemical and Biophysical Perspectives in Marine Biology. Academic Press, Seattle, Washington, 85–123.
534 535	Jaeckle WB 1995 Variation in the size energy content and biochemical composition of
536 537 538	invertebrate eggs: correlates to the mode of larval development. In: McEdward L, ed. <i>Ecology of Marine Invertebrate Larvae</i> . Boca Raton: CRC Press, 49–77.
539	Jacobs JR, Biesiot PM, Perry HM, Trigg C. 2003. Biochemical composition of embryonic
540	crabs Callinectes sapidus Rathbun 1896 (Crustacea: Decapoda) from the Gulf of Mexico.
541	Bulletin of Marine Science 72:311–324.
542	
543	Johnson KJ, Goldstein JS, Watson WH III. 2011. 1 Wo methods for determining the fertility
544 545	Crustacean Riology 31 :693–700
546	Crusiacean Biology 51 .095 700.
547	Lawton P. Lavalli KL. 1995. Postlarval, juvenile, adolescent, and adult ecology. In: Factor JR.
548	ed. Biology of the lobster Homarus americanus. San Diego: Academic Press, 47–81.
549	
550	Lowry OH, Rosebrough NJ, Lewis Farr A, Randall RJ. 1951. Protein measurement with the
551	Iolin phenol reagent. Journal of Biological Chemistry 193:265–2/4.

552	
553	MacKenzie BR. 1988. Assessment of temperature effect on interrelationships between stage
554	durations, mortality, and growth in laboratory-reared Homarus americanus Milne
555	Edwards larvae. Journal of Experimental Marine Biology and Ecology 116:87–98.
556	
557	Manush SM, Pal K, Das T, Mukherjee S. 2006. The influence of temperatures ranging from 25
558	to 36 C on developmental rates, morphogenesis and survival of freshwater prawn
559	(Macrobrachium rosenbergii) embryos. Aquaculture 256:529–536.
560	
561	Nelson K, Hedgecock D, Borgeson W. 1988. Factors influencing egg extrusion in the American
562	lobster (Homarus americanus). Canadian Journal of Fisheries and Aquatic Sciences
563	45:797-804.
564	
565	Ouellet P, Plante F. 2004. An investigation of the sources of variability in American lobster
566	(Homarus americanus) eggs and larvae: Female size and reproductive status, and
567	interannual and interpopulation comparisons. Journal of Crustacean Biology 24:481-495.
568	Pandian TJ. 1970. Yolk utilization and hatching in the Canadian lobster <i>Homarus americanus</i> .
569	Marine Biology 7:249–254.
570	
571	Perkins H. 1972. Developmental rates at various temperatures of embryos of the northern
572	lobster (Homarus americanus Milne Edwards). Fisheries Bulletin 70:95–99.
573	
574	Petersen S, Anger K. 1997. Chemical and physiological changes during the embryonic
575	development of the spider crab Hyas arenus (Decapoda: Majidae). Comparative
576	Biochemistry and Physiology 117B:299–306.
577	
578	Pinheiro M, Hattori G. 2003. Embryology of the mangrove crab Ucides cordatus (Brachyura:
579	Ocypodidae). Journal of Crustacean Biology 23:729–737.
580	
581	Racotta IS, Ibarra M. 2003. Shrimp larval quality in relation to broodstock condition.
582	Aquaculture 227.107–130.
203 E01	Dasa D. Nunas MI 2003 Tissue biochamical composition in relation to the convolucitive evaluation
504	of deep-see decapod Aristaus antanatus in the south Portugese coast Journal of the
586	Marine Riological Association of the United Kingdom 83.963–970
587	Marme Diological Association of the Ontica Kingdom 05.905 970.
588	Rosa R. Calado L. Narciso L. Nunes ML, 2007. Embryogenesis of decapod crustaceans with
589	different life history traits feeding ecologies and habitats: a fatty acid approach <i>Marine</i>
590	Biology 151:935–947
591	
592	Sainte-Marie B. 1993. Reproductive cycle and fecundity of primiparous and multiparous female
593	snow crab, <i>Chionoecetes opilio</i> , in the northwest Gulf of St. Lawrence. <i>Canadian Journal</i>
594	of Fisheries and Aquatic Sciences 50:2147–2156.
595	v 1
596	Sasaki GC, McDowell Capuzzo J, Biesiot P. 1986. Nutritional and bioenergetic considerations
597	in the development of the American lobster Homarus americanus. Canadian Journal of

598 599	Fisheries and Aquatic Sciences 43 :2311–2319.
600 601	Schmidt-Nielsen K. 1991. Animal Physiology: Adaptation and Environment, 4 th Ed. Cambridge University Press. Cambridge, UK.
602 603 604 605	Sibert V, Ouellet P, Brethes J-C. 2004. Changes in yolk total proteins and lipid components and embryonic growth rates during lobster (<i>Homarus americanus</i>) egg development under a simulated temperature cycle. <i>Marine Biology</i> 144:1075–1086.
606 607	Talbot P, Helluy S. 1995. Reproduction and Embryonic Development. In: Factor JR, ed.
608 609	<i>Biology of the lobster</i> Homarus americanus. San Diego: Academic Press, 177–216.
610 611 612 613	 Templeman W. 1940. Embryonic development rates and egg laying of Canadian lobsters. Journal of the Fisheries Research Board of Canada 5:71–83. Vance R. 1973. Reproductive strategies in marine benthic invertebrates. American Naturalist 107:339–352.
614 615 616 617	Waddy SL, Aiken DE. 1995. Temperature regulation of reproduction in female American lobsters (<i>Homarus americanus</i>). <i>ICES Marine Science Symposia</i> 199:54–60.
618 619 620 621	Watson WH III, Vetrovs A, Howell WH. 1999. Lobster movements in an estuary. <i>Journal of Marine Biology</i> 134:65–75.

Experimental design of lab-based tank system.

Inshore tanks received ambient seawater while offshore and constant tank treatments were manipulated using a series of heaters and chiller units (see *Goldstein & Watson 2015b*, for details). All tanks were maintained on a seasonal photoperiod using programmable timers. Tanks were partitioned to hold individual lobsters (N = 5/tank).

An overview of methods used for some lobster egg analyses.

a.) an image of lobster egg depicting the eyespot and yolk mass b.) freeze-drying egg samples in preparation for biochemical analysis c.) grinding and milling egg samples after freeze-drying and d.) lipid extraction of egg samples using a shaker tray and water bath.

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.

Change in lipids (top) and protein (bottom) levels through the course of seven months of egg development for all lobsters sampled (N = 5/trt).

Lobsters subjected to inshore and offshore thermal treatments did not hatch their eggs until after May, unlike eggs from the constant treatment, where eggs hatched (H) in April. Points for each treatment represent the means for each treatment group, standard errors are shown in Table 2.

PeerJ

Relationship between lipids (left) and protein (right) over the course of seven months of egg development for all lobsters sampled (N = 5/trt).

Total lobster egg lipid values showed a marked decrease over time (equation: lipids = 381.76 - 55.00*month, r_{adj}^2 = 0.85, *P* < 0.0001). By contrast, total lobster egg protein values increased over the same time-frame (equation: proteins = -35.53 + 69.11*month, r_{adj}^2 = 0.63, P < 0.0001).

PeerJ

A summary of means (± se) for changes in lobster egg volumes (given in μ m³) over a six-month period.

There were no significant differences in egg volume by treatment (Tukey's HSD; q = 2.40, P > 0.05), but differences did exist from month-to-month (F = 2.25, df = 3, P < 0.001).

Table 1(on next page)

A summary of means (\pm se) for lobster egg total lipids and total proteins over five months.

Post-hoc differences (from SAS) for both variables are given below; groups with different superscripts denote treatment differences (P < 0.001).

1

2

3

5							
				Lipids			
		October	November	January	March	May	
	Inshore	322.2 ± 7.5	268.2 ± 9.6	262.6 ± 12.2	186.4 ± 7.3	67.6 ± 3.6	
	Offshore	324.6 ± 7.4	255.2 ± 11.7	247.0 ± 12.5	200.8 ± 3.8	$8 82.4 \pm 7.3$	
	Constant	315.7 ± 8.7	237.3 ± 4.8	224.0 ± 7.2	146.4 ± 12		
			Pro	oteins			
		October	November	January	March	May May	
	Inshore	322.2 ± 7.5	268.2 ± 9.6	262.6 ± 12.2	186.4 ± 7.3	67.6 ± 3.6	
	Offshore	324.6 ± 7.4	255.2 ± 11.7	247.0 ± 12.5	200.8 ± 3.8	82.4 ± 7.3	
	Constant	315.7 ± 8.7	237.3 ± 4.8	224.0 ± 7.2	146.4 ± 12		
4							
5			Post-hoc PDIFF Results ($\alpha = 0.05$)				
6	Treatment group:		Constant ^a	nstant ^a Inshore ^b Offshore ^b			
7							
8						\square	
9	Table 1 A s	summary of mea	ans (± se) for lob	ster egg total lip	oids and total p	rotems over five	
		5		00 1	1		
10	months. Pos	t-hoc difference	es (from SAS) fo	r both variables	are given belo	w: groups with	
						, <u>8</u>	
11	different sur	erscripts denote	e treatment diffe	rences $(P < 0.0)$	(1)		
11	unificient sup	erseripts denot	e treatment anne		<i>(</i> 1). <u> </u>		
12							
1 2							

13

Table 2(on next page)

Pairwise comparisons between temperature treatment and month for both lipids and protein values.

Shaded *P*-values (< 0.05) denote significant differences between temperatures for a specific month.

Manuscript to be reviewed

PeerJ

1 2

	Treatment	October	November	January	March	May	
	inshore * offshore	0.85	0.30	0.21	0.25	0.24	
	inshore * constant	0.89	0.03	0.002	0.002	-	
3	constant * offshore	0.72	0.22	0.04	< 0.0001	-	
4 5 6 โ	Table 2 Pairwise comparisons between temperature treatment and month for both lipids and						
7 p	protein values. Shaded	P-values (<	0.05) denote	significant	differences l	between temp	eratures

8 a specific month.

9

10