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Background: Lewis’s law and Aboav-Weaire’s law are two fundamental laws used to describe the
topology of two-dimensional (2D) structures; however, their theoretical bases remain unclear.

Methods: We used software R with package Conicfit to fit ellipses based on the geometric parameters of
polygonal cells of ten different kinds of natural and artificial 2D structures.

Results: Our results indicated that the cells could be classified as an ellipse’s inscribed polygon (EIP) and
that they tended to form the ellipse’s maximal inscribed polygon (EMIP). This phenomenon was named as
ellipse packing. On the basis of the number of cell edges, cell area, and semi-axes of fitted ellipses, we
derived and verified new relations of Lewis’s law and Aboav-Weaire’s law .

Conclusions: Ellipse packing is a short-range order that places restrictions on the cell topology and
growth pattern. Lewis’s law and Aboav-Weaire’s law mainly reflect the effect of deformation from circle
to ellipse on cell area and the edge number of neighboring cells, respectively. The results of this study
could be used to simulate the dynamics of cell topology during growth.
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8 Abstract

9 Background: Lewis’s law and Aboav-Weaire’s law are two fundamental laws used to describe the topology of two-

10 dimensional (2D) structures; however, their theoretical bases remain unclear.

11

12 Methods: We used software R with package Conicfit to fit ellipses based on the geometric parameters of polygonal 

13 cells of ten different kinds of natural and artificial 2D structures.

14

15 Results: Our results indicated that the cells could be classified as an ellipse’s inscribed polygon (EIP) and that they 

16 tended to form the ellipse’s maximal inscribed polygon (EMIP). This phenomenon was named as ellipse packing. 

17 On the basis of the number of cell edges, cell area, and semi-axes of fitted ellipses, we derived and verified new 

18 relations of Lewis’s law and Aboav-Weaire’s law.

19

20 Conclusions: Ellipse packing is a short-range order that places restrictions on the cell topology and growth pattern. 

21 Lewis’s law and Aboav-Weaire’s law mainly reflect the effect of deformation from circle to ellipse on cell area and 

22 the edge number of neighboring cells, respectively. The results of this study could be used to simulate the dynamics 

23 of cell topology during growth.

24
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25 Introduction

26 A two-dimensional (2D) plane can be tessellated by convex polygons. Scientists are interested in natural and 

27 artificial 2D structures that share the common feature that the coordination number of vertices (the number of edges 

28 meeting at a vertex) of polygonal cells always equals three. The cell topology of these 2D structures can be 

29 described according to three laws: Euler’s law, Lewis’s law, and Aboav-Weaire’s law (Weaire & Rivier 1984). The 

30 latter two laws were first observed empirically by Lewis and Aboav, with the original aims of understanding laws in 

31 biological and physical structures, respectively (Aboav 1970; Lewis 1926; Lewis 1928; Weaire 1974). Although 

32 Lewis’s law and Aboav-Weaire’s law are essential for understanding the formation mechanisms of 2D structures, 

33 their theoretical explanations are deficient (Mason et al. 2012; Weaire & Rivier 1984). The coordination number is a 

34 short-range order that mathematically determined that the average number of edges per cell is six (Graustein 1931).

35 When this study restricts attention to biological 2D structures, the word “cell” represents the top and bottom 

36 faces of a prismatic cell. The dynamics of cell topology during growth make biological 2D structures even more 

37 complicated than other types of 2D structures. For example, internal angles of Pyropia haitanensis cells have been 

38 concentrated in the range of 100140° by direction-specific division and direction turning of cell edges, which 

39 suggested that the cells tended to form regular polygons (Xu et al. 2017). These observations hinted at the possibility 

40 of undiscovered short-range orders in 2D structures. A recent study by Xu et al. (2018) found that the effective 

41 coverage area of ellipse-shaped exoskeletons of microalga Emiliania huxleyi cells tended to approach the maximal 

42 area of an ellipse’s inscribed polygon (EIP). This study identified a similar phenomenon: the polygonal cells of 

43 natural and artificial 2D structures were inclined to form the ellipse’s maximal inscribed polygon (EMIP). On the 

44 basis of this short-range order, the present study derived and verified new relations of Lewis’s law and Aboav-

45 Weaire’s law.

46

47 Materials and methods

48 We used Amscope Toupview 3.0 software to analyze the images of ten kinds of 2D structures. The images of P. 

49 haitanensis and two images of onion were taken by the author of this study, and the others were derived from the 

50 published papers. The nonliving biological 2D structures included the following: cross-sections of shells of Atrina 

51 rigida, Atrina vexillum, and Pinna nobilis (Reich et al. 2018). The living biological 2D structures included the 

52 following: epidermal tissues of Agave attenuate, Allium cepa (onion), and Allium sativum (garlic) (Mombach et al. 
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53 1990); and P. haitanensis thalli. The physical 2D structures include amorphous silicon dioxide (SiO2) film (Büchner 

54 et al. 2016) and soap (Aboav 1980). The random-seeded Voronoi diagrams are artificial 2D structures that also have 

55 been used for analysis (Aboav 1985). For each polygonal cell, we measured the area ( ), coordinates of center (A𝐶 X𝑃𝐶
56 , ), and vertices ( , ). We used software R (version 3.5.1) with package Conicfit to fit an ellipse based on the Y𝑃𝐶 X𝑉 Y𝑉
57 coordinates of the vertices of each polygonal cell (Fig. 1A) (Chernov et al. 2014). For the SiO2 film, the vertices of 

58 polygonal cells were formed by the silicon (Si) atoms. Five geometric parameters could be used to describe the 

59 ellipse, which include the semi-major axis , semi-minor axis , coordinates of center ( , ), and angle of tilt of 𝑎 𝑏 X𝐸𝐶 Y𝐸𝐶
60 the major axis  (Fig. 1B). On 2D geometry, five points determine a conic, for example, the ellipse. For polygons 𝜃
61 with five or more edges, we set  and  as the initial values of the coordinates of the ellipse center to improve X𝑃𝐶 Y𝑃𝐶
62 fitting. As for cells with only four edges, we combined the coordinates of the four vertices and the four midpoints of 

63 the edges as a single data set to fit an ellipse in the same manner as the cells with five or more edges. Then, we set 

64 the geometric parameters of the fitted ellipse as the initial values to fit the second ellipse for the coordinates of the 

65 four vertices. We found the second ellipse to be the smallest one among all of the fitted ellipses, and which we used 

66 for analysis. We provide our reasons for finding the smallest circumscribed ellipses for four-edged polygonal cells in 

67 the next section.

68 We calculated the area of the ellipse ( ) as follows:A𝐸
69 A𝐸 =  π𝑎𝑏,                                                                                    (1)

70 The area of the maximal inscribed polygon of the ellipse ( ) isA𝑀𝐼𝑃
71 A𝑀𝐼𝑃 =  0.5𝑛𝑎𝑏𝑠𝑖𝑛(

2π𝑛 ),                                                                    (2)

72 where  is the number of edges of inscribed polygon (Su 1987). The form deviation of vertex (FD) is𝑛
73 𝐹𝐷 =

D𝑉𝐶 ‒ 𝑅𝑅 × 100%,                                                                     (3)

74 where  is the distance between a vertex and the center of the fitted ellipse (the length of line VC)D𝑉𝐶
75 D𝑉𝐶 =  (X𝑉 ‒ X𝐸𝐶)2

+ (Y𝑉 ‒ Y𝐸𝐶)2
,                                                  (4)

76  is the distance from the ellipse center to the cross point of the fitted ellipse and the line VC𝑅
77 𝑅 =

𝑎𝑏
(𝑎𝑠𝑖𝑛 (𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝑡𝑎𝑛 ) ‒ 𝛿))2

+ (𝑏𝑐𝑜𝑠 (𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝑡𝑎𝑛 ) ‒ 𝛿))2
,                    (5)

78 where  is the angle between line VC and X-axis, the ranges of  and  are [  and ( ), respectively 𝛿  𝛿 0, π) ‒ 0.5π, 0.5π
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79 (Fig. 1B). R code (Document S1) and three examples (Dataset S1) for these calculations are included in the 

80 supplementary files.

81

82 Results and discussion

83 Ellipse packing

84 Thallus of red alga P. haitanensis is a single-layered prismatic cell sheet that is a mathematical consequence of 2D 

85 expansion on a plane by cell proliferation (Xu et al. 2017). Thus, P. haitanensis thalli can be simplified as 2D 

86 structures. We found the average number of edges of P. haitanensis cells to be 6.00.9 (1375 cells in 13 thalli were 

87 examined; Table 1), which was consistent with previous studies on P. haitanensis as well as studies on many other 

88 organisms and physical structures (Gibson et al. 2006; Sánchez-Gutiérrez et al. 2016; Weaire & Rivier 1984; Xu et 

89 al. 2017). According to Euler’s 2D formula, this kind of phenomenon has been mathematically determined when the 

90 coordination number of each vertex equals three when different-size cells tessellate a 2D plane (Graustein 1931; 

91 Weaire & Rivier 1984). The size differences between cells indicated that these 2D structures display a long-range 

92 disorder, because the unit cell has neither periodicity nor translational symmetry. In addition, the average number of 

93 edges of P. haitanensis cells quickly approached six with an exponential increase in cell number resulting from an 

94 increase in body size (Xu et al. 2017). Thus, this phenomenon has been observed only when the 2D structures 

95 contain a large number of cells (Graustein 1931; Lewis 1926; Weaire & Rivier 1984).

96 This study found that the vertices of cells of P. haitanensis could be used to fit ellipses with an average form 

97 deviation of 0.003.14% (8,291 vertices in 1375 cells were examined; Table 1; Dataset S2). We found similar 

98 results in the other 2D structures (Table 2; Dataset S3). Thus, the polygonal cells of 2D structures could be 

99 considered to be EIPs, which ensured that all of the cells were convex polygons. The ratios of the area of the cell 

100 and fitted EMIP ( ) of P. haitanensis ranged from 0.48 to 1.00 with an average value of 0.900.07 (Table 1), A𝐶/A𝑀𝐼𝑃
101 and 90% of the values were concentrated in a range from 0.78 to 0.97 (Dataset S2). The random-seeded Voronoi 

102 diagrams and three kinds of epidermal tissues showed a similar average ratio of . The  of amorphous A𝐶/A𝑀𝐼𝑃 A𝐶
103 SiO2, cross-sections of mollusk shells, and soap, however, were very close to  (Table 2; Dataset S3). Thus, we A𝑀𝐼𝑃
104 divided the 2D structures into three categories based on : Type I, monohedral tiling using six-edged EMIPs A𝐶/A𝑀𝐼𝑃
105 (e.g., tile by regular hexagons); Type II, tiling using different-size and different-edged EMIPs (e.g., 2D amorphous 
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106 SiO2); and Type III, tiling using different-sized and different-edged EIPs. For amorphous SiO2, the bond length 

107 should be different to obey the ellipse packing. For the Types I and II 2D structures,  equals .A𝐶 A𝑀𝐼𝑃
108 These results suggested that the fitted ellipse should be the smallest circumscribed ellipse of the polygonal 

109 cell, which was the reason we sought to find the smallest ellipse for four-edged cells in this study. A recent study 

110 reported similar phenomenon on single-celled microalga E. huxleyi (Xu et al. 2018). E. huxleyi cells were fully 

111 covered by interlocking calcite exoskeletons, and the specific geometry of exoskeletons resulted in the effective 

112 coverage area of exoskeletons tending to reach the maximal area of an inscribed polygon of ellipse-shaped 

113 exoskeletons.

114 Obviously, the effects of growth on cell topology for these three types of 2D structures were quite different. For 

115 2D structures made of EMIPs, if the variations in topology were achieved by reconstruction or by transition to other 

116 types, the topological variations of all of the cells had to be finished synchronously to obey ellipse packing. 

117 Otherwise, we observed a cell area less than . For example, the areas of polygonal cells were always equal to A𝑀𝐼𝑃
118  during the evolvement of soap (Table 2) (Aboav 1980). As for 2D structures made of different-sized and A𝑀𝐼𝑃
119 different-edged EIPs, most of the cells were smaller than their corresponding EMIPs. For biological 2D structures, 

120 complicated life activities strongly altered the cell size and topology (e.g., accumulation of organic components, 

121 respiration, cell division and fusion, water metabolism, and exposure of stressful conditions). Moreover, different 

122 metabolism rates between cells and the asynchronous cell cycle would make the dynamic behaviors of cell topology 

123 even more complicated. Based on geometric limits, Xu et al. (2018) proposed that the regular dodecahedron-shaped 

124 cells of coccolithophore Braarudosphaera spp. should be the resting or cyst stage of the life cycle. Similarly, the 

125 cells of living biological 2D structures should be EIPs rather than EMIPs, which suggested that living biological 2D 

126 structures belonged to Type III (Tables 1–2) and that specific cases may have manifested such that the complicated 

127 life activities would not influence the cell topology like the regular polyhedral cells of Braarudosphaera spp. The 

128 variations in the cell topology of Type III 2D structures had to be achieved by fine-tuning. In the following sections, 

129 we detail the effects of growth on cell topology for all three types of 2D structures.

130 The eccentric angle of neighboring vertices of a -edged EMIP is equal to  (Su 1987). Therefore, the 𝑛 2π/𝑛
131 eccentric angles of a six-edged EMIP equal to 60° and the average internal angle is 120°. On the basis of 

132 observations of direction-specific divisions (which resulted in equal-sized divisions) and division-associated 
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133 direction changes of the cell edges (concentrated internal angles ranging from 100° to 140°), Xu et al. (2017) found 

134 that P. haitanensis cells tended to form regular polygons. The closer the polygonal cell was to a regular polygon, the 

135 closer the cell was to a spherical shape, which could help maintain force balance (Chen 2008; Ingber et al. 2014). 

136 Unbalanced forces could result in unequal-sized cell division (Kiyomitsu 2015). Equal-sized daughter cells, 

137 however, were always found in the cell proliferation of P. haitanensis thalli (Xu et al. 2017).

138

139 Lewis’s law

140 Lewis’s law is an empirical law that suggests that  of an -edged cell is related linearly to  (Chiu 1995; Lewis A𝐶 𝑛 𝑛
141 1926; Lewis 1928; Weaire & Rivier 1984). According to Eq. (2), the cell area of Type II 2D structures increased 

142 with edge number. To investigate the relationship between the number of edges and the cell area of Type III 2D 

143 structures, we used P. haitanensis thalli as the research material. The average values of , , and  increased A𝐸 A𝑀𝐼𝑃 A𝐶
144 with , whereas the difference between the average values of  and  decreased (Fig. 2A). Except for , the 𝑛 A𝐸 A𝐶 𝑛 > 8

145 average ratios of a/b were stable regardless of the values of  (Fig. 2B). Because  is  times  (Su 𝑛 A𝑀𝐼𝑃 𝑛
2πsin (

2π𝑛 ) A𝐸
146 1987), the ratio of  approaches one with an increase of  (Fig. 2C). We found positive linear relationships A𝑀𝐼𝑃/A𝐸 𝑛
147 between  and  (R2 = 0.73, P < 0.0001; Fig. 2D) and between  and  (R2 = 0.85, P < 0.0001, Fig. 2E). A𝐶 A𝐸 A𝐶 A𝑀𝐼𝑃
148 Thus,  can be calculated by the following empirical equation:A𝐶
149 A𝐶 = 0.80A𝑀𝐼𝑃 + 78.79 =  0.40𝑛𝑎𝑏𝑠𝑖𝑛(

2π𝑛 ) + 78.79,                                  (6)

150 where the maximal value of  is𝑛𝑠𝑖𝑛(
2π𝑛 )

151  lim𝑛→∞ 𝑛𝑠𝑖𝑛(
2π𝑛 ) = 2π.                                                                 (7)

152 Because both  and  increase with  (Figs. 2A, 2B),  also increased with , which was consistent with 𝑛𝑠𝑖𝑛(
2π𝑛 ) A𝐸 𝑛 A𝐶 𝑛

153 Lewis’s law. Overall, the present study suggested that the relationship between  and  is more complex than A𝐶 𝑛
154 previous believed.

155 The cell proliferation of biological 2D structures can be used as a window to observe the dynamic behavior of 

156 cell topology during growth. By equal-sized division, mitosis shall strongly disturb cell topology. Obviously, 

157 division should separate a cell along the direction of the minor-axis of the fitted ellipse, making daughter cells 

158 closer to EMIPs (Fig. 3A). Nearly 150 years ago, Hofmeister proposed a similar idea called long-axis division 
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159 (Hofmeister 1863). More complicated, however, Xu et al. (2017) found that divisions preferred to transect mother 

160 cells at midpoints of unconnected paired edges. Afterward, the direction of the cell edges were changed to 

161 concentrate the internal angles ranging from 100° to 140°. Thus, the smallest number of edges per cell was four, 

162 and two equal-sized daughter cells were produced.

163 The ellipse packing is exactly a short-range order, which could influence both local and global cell topology. 

164 We used the average axes of the fitted ellipses and average number of edges to calculate the average variation on 

165 the internal angles (Table 1, Fig. 3A). Assuming an EMIP with six edges was divided along the minor axis of the 

166 ellipse, then ellipse packing should turn all three polygonal cells around the new vertex into EMIPs (Fig. 3B). 

167 Thus, two daughter cells would be turned into two five-edged EMIPs with equal sizes, and the neighboring cell of 

168 the daughters would be turned into a seven-edged EMIP. The sum of the three angles around a vertex is 360°. 

169 Assuming the total disruptions on the three angles is kept to a minimum, on the basis of the least square method, 

170 the newly formed internal angle in the neighboring cell would be decreased from 180° to 145.9°. This would 

171 explain the observation that the turning angle was 406° (138 angles were examined) in the previous study by Xu 

172 et al. (2017). Meanwhile, those angles inherited from the mother cells also had to be adjusted to obey ellipse 

173 packing. Obviously, all of these changes on angles must be achieved by allometric growth of the cell edges. The 

174 long-axis division could help the cells retain their shapes closest to EMIPs. Finally, from a global perspective, the 

175 combined effect of ellipse packing and other short-range order (vertex coordination number is equal to three) 

176 turned all three angles around each vertex to 120° (Fig. 3C). Overall, for biological 2D structures, ellipse packing 

177 placed restrictions on the direction of cell division and the turning angles of the cell edges.

178

179 Aboav-Weaire's law

180 If  represents the average number of edges of cells surrounding an -edged cell, then the relation between  and 𝑚 𝑛 𝑚
181  of Type I 2D structures is . As for Type II and III 2D structures, we used Aboav-Weaire's law to 𝑛 𝑚 = n = 6

182 describe the relation between  and :𝑚 𝑛
183 𝑚 = (6 ‒ β) +

6β + μ2𝑛 ,                                                                (8)

184 where six is the average number of cell edges of 2D structures,  is a constant, and  is related to the second β μ2

185 moment of the edges of the -edged cell (Weaire & Rivier 1984). The present study and a previous study by Xu et 𝑛
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186 al. (2017) showed that all cells tended to form regular polygons, which indicated that the internal angles of a cell 

187 tended to be close to each other. According to Lewis’s law, the cell area of Type II and III 2D structures increase 

188 with . The average internal angle of an -edged cell is , which also increases with . The sum of three 𝑛 𝑛 π ‒ 2π𝑛 𝑛
189 angles around each vertex is , which suggests that the average neighboring angle of the -edged cell is 2π 𝑛
190 decreasing with an increase of . Consequently, the , the average area, and the average internal angle of 𝑛 𝑚
191 neighboring cells tend to decrease with an increase of . Thus, Aboav-Weaire's law describes the representative 𝑛
192 level of a data set with  neighboring angles in the total data set with  internal angles of the neighboring cells. 2𝑛 𝑚𝑛
193 In addition, the mean value of  should also be equal to six.𝑚
194 On the basis of experimental studies,  was found to be conserved for several natural physical and β ≈ 1.2

195 biological structures(Aboav 1983; Aboav 1980; Mombach et al. 1990; Mombach et al. 1993). This number was 

196 very close to the average ratio of  of cells of several kinds of 2D structures (Tables 1–2, Fig. 2B) and of the 𝑎/𝑏
197 oval-shaped exoskeletons (faces) of E. huxleyi cells (Xu et al. 2018). In previous studies,  has been assumed to μ2

198 be small (Edwards & Pithia 1994; Lambert & Weaire 1981). Regular hexagons could monohedrally tessellate a 

199 plane (Grünbaum & Shephard 1987). This kind of tessellation also featured with ellipse packing and every vertex 

200 had a coordination number equal to three. This indicated that when , , where  is the average 𝑛 = 〈𝑛〉 = 6 μ2 = 0 〈𝑛〉
201 number of cell edges. This study assumed

202 μ2 =
6 ‒ 𝑛

12
.                                                                               (9)

203 Thus, using Eq. (8), we have

204  𝑚 = (6 ‒ 𝑎𝑏) +

6𝑎𝑏 +
6 ‒ 𝑛

12𝑛 ,                                                                (10)

205 where  and  are the semi-major axis and semi-minor axis of fitted ellipse of a -edged cell, respectively. Then, 𝑎 𝑏 𝑛
206 Eq. (10) can be rewritten as follows:

207 𝑚 = 6 +
6 ‒ 𝑛𝑛 × (𝑎𝑏 +

1

12).                                                          (11)

208 This equation could explain the relation between  and  of all three types of 2D structures. The calculated  of 𝑚 𝑛 𝑚
209 cells of Types II and III 2D structures were very close to the real values by enumeration (Fig. 4A). The average 

210 difference between calculated  and real  was −0.130.31 (371 cells were examined). Because  is very small, 𝑚 𝑚 μ2

211 Aboav-Weaire's law could be approximately expressed as follows:
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212 𝑚 ≈ 6 +
6 ‒ 𝑛𝑛 ×

𝑎𝑏.                                                                   (12)

213 The calculated  using Eq. (11) and Eq. (12) showed only minor differences (Fig. 4A, supplementary raw data). In 𝑚
214 addition, this study found an empirical relation for Type III 2D structures

215
1

12
= 1 ‒ A𝐶

A𝑀𝐼𝑃,                                                                      (13)

216 which can be expressed as follows

217 A𝐶 = A𝑀𝐼𝑃(1 ‒ 1

12) = 0.5𝑛𝑎𝑏𝑠𝑖𝑛(
2π𝑛 )(1 ‒ 1

12).                                  (14)

218 The slope of the relationship between calculated  and measured  of cells of Types III 2D structures was very A𝐶 A𝐶
219 close to one (R2 = 0.98, P < 0.0001, Fig. 4B). The  describes the deformation degree from circle to ellipse. 𝑎/𝑏
220 Similarly, the present study proposed that, for Type III 2D structures, the number  describes the deformation 1/12

221 degree from EMIP to EIP. Meanwhile, for Type III 2D structures, the Eq. (12) can be rewritten as follows:

222 𝑚 = 6 +
6 ‒ 𝑛𝑛 × (𝑎𝑏 + 1 ‒ A𝐶

A𝑀𝐼𝑃).                                                 (15)

223

224 Variations of 2D topology

225 We discussed the variations of cell topology of biological 2D structures in the previous sections. The random-

226 seeded Voronoi diagrams are also Type III 2D structures, which were used to simulate the static structure of 

227 biological materials (Honda 1983; Sánchez-Gutiérrez et al. 2016). This study found that the ellipse packing creates 

228 a strong restriction on cellular geometry (e.g., the edge length and internal angle), which indicates that ellipse 

229 packing could be used to predict the effects of cell proliferation on cellular geometry. Thus, the combination of 

230 ellipse packing and Voronoi diagram may be applied to simulate the topological dynamic behaviors during the 

231 growth of biological 2D structures. 

232 Although the average number of cell edges was always six, the distributions of the edge numbers showed 

233 big differences between the 2D materials and varied during growth (Aboav 1980; Aboav 1985; Büchner et al. 

234 2016; Reich et al. 2018; Xu et al. 2017). Moreover, we know little about the relationships between the range of 

235 edge numbers and other topological parameters. In this study, we used the interval length ( ) to describe the L

236 differences between the maximal and minimum edge numbers. Then, Type I 2D structures had the smallest  of 0. L
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237 During the evolvement of soap,  increased from 3 to 11 (Aboav 1980). Similar phenomena also have been L

238 reported in physical 2D materials. For example, the point defects in hexagonal networks, one kind of local 

239 variations of topology, manifested with an increase of  from 0 to 2 (Büchner & Heyde 2017).L

240 To avoid confusion caused by the effects of observation scales, we discuss only the topological variations of a 2D 

241 physical material with constant mass, and these variations would not influence the connection pattern between 

242 atoms. Under the restrictions of ellipse packing and coordination number, the average number of cell edges was 

243 always six and the number of cells remained constant. We proposed five basic topological variations (Table 3):

244 V1. Reconstruction, which will not change the global topological parameters of the 2D structure but will 

245 create a new 2D structure with completely changed local topology. From a global scale, the area of the 2D structure 

246 will not be changed—for example, the destruction and rebuilding of graphene used the same number of carbon 

247 atoms.

248 V2. Scaling, which will not influence the type, , , and , but the area of the 2D structure and individual L 𝑛 𝑚
249 cells will be changed. The uniform scaling of ellipses has to be achieved by a uniform change in the edge lengths to 

250 maintain constant  and .𝑎𝑏 𝑎/𝑏
251 V3. L-Variation of Type II, which was featured with a varied  of the Type II 2D structure and will not L

252 influence only the area of the 2D structure. Because we considered the Type I 2D structure to be a specific case of 

253 Type II with L equal to 0, the transition between Type I and Type II 2D structures actually belonged to L-

254 Variation. For 2D amorphous SiO2 film, the numbers of cell edges ranged from four to nine (Büchner & Heyde 

255 2017; Büchner et al. 2016), which indicated three intermediate states ( ) occurred during the L = 4, 3, and 2

256 transition between crystalline (Type I) and amorphous (Type II) SiO2 film.

257 V4. Transition between Type II and Type III, which will change the area of 2D structure and individual 

258 cells. According to the new equation of Lewis’s law in this study, the area of 2D structure should change by  1/12

259 times, as should the volume if the height of 2D layers remained constant.

260 V5. Transition between Type I and Type III, which will change all parameters. The area of 2D structure 

261 changed by  times.1/12

262 Given the variations related to Types I and II 2D structures, the topological variations of all involved cells 

263 need to be synchronously finished to obey ellipse packing. The V2, V4, and V5 could influence the area of 2D 
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264 materials, which may be the most noticeable characteristic of these topological variations. The combination of 

265 these five basic topological variations would make it more difficult to understand the overall topological behavior, 

266 and the complexity of structure (e.g., heterogeneous materials, dimensionality of material) added further 

267 difficulties. For example, in the Voronoi diagrams with spiral lattice, the cells were arranged in a pattern of 

268 Fibonacci numbers (Rivier et al. 1984; Rivier et al. 2016). More work is needed to deeply understand the ellipse 

269 packing and its effects on global and local topology of 2D structures.

270

271 3D structures

272 We considered every prismatic cell of the biological 2D structures to be a convex polyhedron with an average face 

273 number of eight. On the basis of a model study on 3D Voronoi froth with random seeds, if the coordination number 

274 of multi-polyhedral-celled 3D structures is four, then the average face number is  (Meijering (
48

35)π2
+ 2 ( ≈ 15.54)

275 1953; Weaire & Rivier 1984). This number was very close to the average face number of 15.4 in the polyhedral 

276 cells of single-celled microalga E. huxleyi with a vertex coordination number of three (Xu et al. 2018). The 

277 difference in the average face number indicated that these 3D structures could not simplified as 2D structures. A 

278 convex polyhedral cell is a sealed 3D structure that has a positive curvature at every vertex and obeys Euler’s law. 

279 Euler’s law, however, does not set any restriction on six-edged faces (Grünbaum & Motzkin 1963; Xu et al. 2018). 

280 This suggests that a given 3D structure does not necessarily need to be a sealed structure even it obeys Euler’s law. 

281 The closure of polyhedra could be considered to be a basic level of uniform distribution of curvature. The face 

282 topology of polyhedra could be analyzed using software CaGe (Brinkmann et al. 2010).

283 Polygons with more than six edges induce locally negative curvature, and those with less than six edges induce 

284 positive curvature (Cortijo & Vozmediano 2007). Thus, the polyhedral cells of E. huxleyi contained four-gons, 

285 five-gons, and six-gons, which helped maintain full coverage on the spherical surface (Xu et al. 2018). As for 2D 

286 tessellation using different-sized cells, the average edge number of six determined that the top and bottom faces of 

287 P. haitanensis cells contained four to ten edges (Table 1). Because of geometric limits, Lewis’s law and Aboav-

288 Weaire’s law remained valid for the face topology of cells of E. huxleyi (Xu et al. 2018). For living biological 3D 

289 structures, as with the living biological 2D structures, growth influenced the topology of the polyhedral cells. Thus, 

290 on the basis of this study and the previous study by Xu et al. (2018), we suggested that the faces of the polyhedral 
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291 cells would be EIPs rather than EMIPs to allow the cell topology to accommodate complicated life activities, 

292 which indicated that Lewis’s law for Type III 2D structures (Eq. (15)) also may be applied to living biological 3D 

293 structures. Aboav-Weaire’s law may be generalized to 3D structures with consideration for the distribution of 

294 curvature at vertices.

295

296 Conclusion

297 This study found that polygonal cells of natural and artificial 2D structures were inclined to form EMIPs. This 

298 phenomenon was named ellipse packing, which could be applied in simulations of the dynamics of cell topology 

299 during growth. We derived improved relations of Lewis’s law and Aboav-Weaire’s law and verified these findings 

300 using the semi-axes of fitted ellipses, cell area, and the number of cell edges. The present study suggested that 

301 Lewis’s law and Aboav-Weaire’s law are nonlinear relations, which mainly describe the effect of circle deformation 

302 on cell area and the edge number of neighboring cells. Ellipse packing determines the cell topology of 2D structures 

303 and growth patterns.
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Figure 1
Geometry of polygonal cell and fitted ellipse.

(A) Coordinates of the vertices of a polygonal cell and fitted ellipse. We plotted the ellipse
using software R plus package Conics (Chernov et al. 2014). (B) A diagram shows semi-
major-axis (a), semi-minor-axis (b), angle (δ) between line VC and X-axis, angle (θ) of tilt of
the major, distance (D VC ) between the center of the ellipse and vertex of polygonal cell ,

distance ( R ) from the center of the ellipse to the cross point of line VC and fitted ellipse .
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Figure 2
Relationships between n, A C , A MIP ,and A E of P. haitanensis cells.

(A) Relationships between the number of cell edges n, area of cell AC, area of the maximal

inscribed polygon AMIP, and area of fitted ellipse AE. Big symbols represent the average values

of AC, AMIP, and AE, whereas small symbols represent the raw data (1375 cells were analyzed).

(B) Relationship between n and ratio of a/b. (C) Relationship between n and ratio of AMIP/AE.

(D) Relationship between AC and AMIP (1375 cells were analyzed). (E) Relationship between AC

and AE (1375 cells were analyzed).
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Figure 3
Cell division obeys ellipse packing.

(A) Red dashed lines represent that division of the maximally inscribed six-gon divided the
cell along the minor axis of the ellipse and produced two equal-size daughters. Blue dashed
line shows that an edge was separated by a new vertex, which produced three new angles
(bottom). (B) Ellipse packing turned the two daughters into maximally inscribed five-gons
(top left) by allometric growth of cell edges, whereas the neighboring seven-gon also turned
into an EMIP (top right). To minimize the total disruption on the three angles, the turning
angle in the neighboring cell should be 34.1° (bottom). (C) The three angles around each
vertex tended to be 120°. The ratios of a/b of all of the ellipses were set to an average value
of 1.3 (Table 1).
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Figure 4
Examinations of the relations of Lewis’s law and Aboav-Weaire’s law.

(A) Relationship between the real m (mR) and the calculated m (mC) of an n-edged cell (371

cells were examined). We used Eqs. (11) and (12) to calculate m. (B) Relationship between
real and calculated area (AC) of an n-edged polygonal cell of all Type III 2D structures (1475

cells were examined). We used Eq. (14) to calculate AC. The units of the cell area of P.

haitanensis (1375 cells, Table 1) and the other Type III 2D structures (100 cells, Table 2)

were μm2 and pixel2, respectively.
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Table 1(on next page)

Parameters of polygonal cells of P. haitanensis and fitted ellipses.
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1

2

Parameters MeanSD Range

Sample 

number

Average number of cell edges 6.030.88 4–10 1375

Form deviation (FD, %) 0.003.14 −13.94–20.56 8291

Fitted semi-major-axis (a, μm) 19.862.76 13.91–37.22 1375

Fitted semi-minor-axis (b, μm) 15.341.72 9.29–21.76 1375

a/b 1.310.21 1.01–2.71 1375

Area of fitted ellipse (AE, μm2) 961.80195.25 506.16–2016.86 1375

Area of the maximal inscribed polygon 

of fitted ellipse (AMIP, μm2)
788.19172.00 343.24–1667.93 1375

Area of cell (AC, μm2) 705.98148.98 303.94–1512.63 1375

AC/AMIP 0.900.07 0.48–1.00 1375
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Table 2(on next page)

Parameters of polygonal cells of 2D structures.

Parameters a/b, A C /A MIP , and FD represent the ratio of fitted semi-major-axis/semi-minor-

axis, ratio of cell area/EMIP, and form deviation, respectively. Except for the last 2D
structure, we derived the images of the others from published papers: amorphous SiO 2

(Büchner et al. 2016), cross-sections of mollusk shells (Reich et al. 2018), soap (Aboav 1980),
Voronoi diagrams (Aboav 1985), epidermal tissues of Agave attenuate , Allium cepa (onion),
and Allium sativum (garlic) (Mombach et al. 1990) . Sample numbers are shown in
parentheses.

PeerJ reviewing PDF | (2019:01:34391:1:2:NEW 29 Mar 2019)

Manuscript to be reviewed



1

2

2D structures a/b AC/AMIP FD (%)

Amorphous SiO2 1.200.12 (10) 0.990.01 (10) 0.003.73 (62)

Cross-sections of mollusk shells 1.140.07 (30) 0.970.02 (30) 0.000.89 (170)Type II

Soap 1.110.05 (20) 0.980.01 (20) 0.001.14 (118)

Voronoi diagrams 1.430.25 (50) 0.870.09 (50) 0.012.48 (286)

Allium sativum (garlic) 3.240.78 (10) 0.950.03 (10) 0.012.46 (56)

Allium cepa (onion) 3.431.03 (10) 0.920.03 (10) 0.034.58 (57)

Agave attenuat 1.130.06 (10) 0.980.01 (10) 0.001.14 (60)

Type III

Allium cepa (onion) 1.940.38 (20) 0.950.04 (20) 0.001.84 (113)
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Table 3(on next page)

Fivekinds of basic topology variations of 2D physical structures with constant mass.

V1: Reconstruction; V2: Scaling; V3: L-Variation; V4: Transition between Type II and Type III ;
V5: Transition between Type I and Type III . Symbol ´ represents the parameter will not be
changed, and Ö represents the parameter will be changed.
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1

2

Parameters V1 V2 V3 V4 V5

Type of 2D structure    or   

Area of 2D structure     
Global

Interval length of range of edge 

number (L)
    

Number of cell edges (n)     

Area of cell (AC)     

ab     

a/b   or    

Local

Average number of edges of 

neighboring cells (m)
    
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