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The Bacillus thuringiensis (Bt) toxin Cry1F has been used to develop insect-resistant

genetically engineered (IRGE) crops, but its potential risk to the non-target soil

invertebrates has not been evaluated well. Here, we conducted a laboratory-based multi-

generation risk assessment of Cry1F for collembolan Folsomia candida, an important

representative of soil arthropods, in terms of survival, reproduction, and differentially

expressed genes (DEGs) identified from whole transcriptome profiles. Our results

demonstrated that Cry1F was continuously ingested by collembolans over three

consecutive generations, but it did not affect the survival or reproduction of F. candida.

There were no significant differences in the global gene expression between F. candida fed

diets with and without Cry1F, and no consistent co-expressed DEGs over three

generations. In addition, Cry1F did not obviously alter the expression profiles of seven

sensitive biological markers. Our composite data indicate that Cry1F had no long-term

harmful effect on collembolan F. candida.
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15 ABSTRACT

16 The Bacillus thuringiensis (Bt) toxin Cry1F has been used to develop insect-resistant genetically 

17 engineered (IRGE) crops, but its potential risk to the non-target soil invertebrates has not been 

18 evaluated well. Here, we conducted a laboratory-based multi-generation risk assessment of 

19 Cry1F for collembolan Folsomia candida, an important representative of soil arthropods, in 

20 terms of survival, reproduction, and differentially expressed genes (DEGs) identified from whole 

21 transcriptome profiles. Our results demonstrated that Cry1F was continuously ingested by 

22 collembolans over three consecutive generations, but it did not affect the survival or reproduction 

23 of F. candida. There were no significant differences in the global gene expression between F. 

24 candida fed diets with and without Cry1F, and no consistent co-expressed DEGs over three 

25 generations. In addition, Cry1F did not obviously alter the expression profiles of seven sensitive 

26 biological markers. Our composite data indicate that Cry1F had no long-term harmful effect on 

27 collembolan F. candida.

28

29 Keywords: Environmental risk assessment, Cry1F, Collembolan, Consecutive generations, 

30 Transcriptome analysis.
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31 INTRODUCTION

32 Over the past 20 years, genetically engineered (GE) crops have been widely planted 

33 throughout the world. The most common of these are insect-resistant genetically engineered 

34 (IRGE) crops, mainly including IRGE cotton, maize, tobacco and others (ISAAA, 2016). All the 

35 current commercialized IRGE crops express cry or vip genes derived from the bacterium 

36 Bacillus thuringiensis (Bt), and these genes encode insecticidal proteins targeting lepidopteran or 

37 coleopteran insect pests (Liu et al., 2016). Although the planting of IRGE crops will greatly 

38 reduce the use of broad-spectrum insecticides, the potential risks of IRGE crops to the 

39 environment and human health must be assessed before they are commercialized. One of the 

40 environmental risks associated with the planting of IRGE crops is their potential negative effect 

41 on non-target organisms (NTOs) (Shelton, Zhao & Roush, 2002), which follows a tiered 

42 approach from laboratory to field (EFSA, 2010; Li et al., 2014; Romeis et al., 2008). To date, 

43 many laboratory and field tests have been conducted with many NTOs belonging to a range of 

44 functional groups, including herbivores, predators, parasitoids, and detritivores (Gao et al., 2018; 

45 Jia et al., 2016; Tian et al, 2014).

46 Because of their large numbers in soil (104-105 m-2) and substantial contribution to the 

47 decomposition of plant residues, detritivore’s collembolans are an important group of soil 

48 arthropods (Hopkin, 1997). Moreover, collembolans are quite sensitive to many soil pollutants, 

49 such as heavy metal ions, organic pollutants, and insecticides (Buch et al., 2016; Chen et al., 

50 2015; Zortéa et al., 2015). Collembolans are exposed to Bt toxins when IRGE crop residues 

51 decompose (Li et al., 2007; Valldor et al., 2015), and negative effects of Bt toxins on 
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52 collembolans would be detrimental to the entire agro-ecosystem. The parthenogenetic 

53 collembolan Folsomia candida is a standard test organism that is often used for toxicological, 

54 biosafety, and environmental assessment. Most previous risk assessments didn’t find any 

55 harmful effects of various Bt toxins on collembolans: Sims & Martin (1997) found CryIA(b), 

56 CryIA(c), CryIIA, and CryIIIA present in transgenic crop plants do not reduced survival or 

57 reproduction of collembolan F. candida and Xenylla grisea; Yang et al. (2015, 2018) reported 

58 that Cry1C and Cry2A toxins were not toxic to F. candida; and Zhang et al. (2017a) found that 

59 Cry1Ab/Cry2Aj-containing Bt maize pollen did not reduce F. candida fitness or induce any 

60 sublethal effects. However, these laboratory risk assessments only examined one generation of F. 

61 candida, i.e., they did not evaluate the potential risk to collembolan progeny. 

62 The possibility that Bt plants might have long-term effects on the soil biota remains a major 

63 concern (Icoz & Stotzky, 2008), but such “chronic toxicity” has rarely been studied (Clark, 

64 Phillips & Coats, 2005). In multi-generation laboratory tests, Bakonyi et al. (2011) and Szabó, 

65 Seres & Bakonyi (2017) found that F. candida that were fed Bt maize leaves had some 

66 alterations in life-history traits and reproduction. To our knowledge, these are the only studies 

67 that evaluated the long-term potential risk of Bt toxins to collembolans. Additional studies are 

68 needed.

69 In assessing the effects of Bt toxins on collembolans, most previous studies have used 

70 physiological indices (survival rates, reproductive rates, developmental duration, etc.) or 

71 biological markers (enzyme activity, midgut bacterial diversity, etc.). These traditional methods 

72 of risk assessment may not detect slight changes at the molecular level. RNA sequencing (RNA-
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73 Seq), which is useful for detecting genes that are differentially expressed in response to 

74 environmental stresses, can provide a whole transcriptome profile of NTOs to check stress-

75 responsive changes in gene expression and to evaluate the potential risk of IRGE crops. By 

76 comparative transcriptome analysis, Xu et al. (2017) found that the expression of > 2,000 genes 

77 of larvae of the fish Coryphaena hippurus was significantly altered after exposure to Deepwater 

78 Horizon oil. Based on RNA-Seq data, Zhang et al. (2017b) annotated 32,268 unigenes of the 

79 Chinese green mussel (Perna viridis) and identified 9,048 differentially expressed genes (DEGs) 

80 between exposed and non-exposed groups to cadmium, suggesting a sensitive response of the 

81 mussel transcriptome to cadmium.

82 The cry1F has been transformed to maize, cotton, and tobacco, and previous studies have 

83 found no harmful effects of Cry1F on some tested non-target organisms (Kim et al., 2012; Tian 

84 et al., 2014). However, its risk to collembolans has not been well evaluated except for several 

85 field tests on the collembolan community (Higgins et al., 2009; Marques et al., 2018). In this 

86 study, we performed a dietary exposure experiment (DEE) with F. candida that was fed an 

87 artificial diet containing or not containing purified Cry1F protein for three consecutive 

88 generations. We compared the effects of these two diets on the survival, reproduction, and 

89 transcriptome changes of F. candida for each generation. To our knowledge, this is the first 

90 multi-generation risk assessment of Cry1F on F. candida, and also the first attempt to use RNA-

91 Seq to evaluate the impact of a Bt toxin on the gene expression of F. candida. 

92

93 MATERIALS AND METHODS
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94 Test organism.

95 The Danish strain of the parthenogenetic Folsomia candida Willem, 1902, was originally 

96 obtained from Aarhus University, Denmark, and has been cultured in our laboratory for over 10 

97 years. F. candida is usually fed granulated dried baker’s yeast (Hebei Mauri Foods Co., Ltd., 

98 Zhangjiakou, China) and was reared in the Petri dishes (90 mm x 18 mm) containing a 5-7 mm 

99 layer of a solidified mixture of plaster of Paris and activated charcoal (9:1 wt/wt, dissolved in 

100 distilled water, with about 270 ml of water/500 g of mixed powder) (Fig. 1A-C). The baker’s 

101 yeast was placed on the surface of the plaster and was renewed weekly to reduce the growth of 

102 other fungi. Distilled water was added to the base as needed such that free water was present in 

103 the plaster pores but did not form a film on the plaster surface. These dishes with F. candida 

104 were kept in an artificial climate chamber in total darkness (20 ± 1°C, 80% relative humidity).

105

106 Dietary exposure experiment (DEE).

107 The artificial diet containing Cry1F (BT diet) was prepared as follows: 2 mg of purified Cry1F 

108 protein (Envirologix Inc., Portland, Maine, USA) and 4 g of baker’s yeast granules were 

109 dissolved in 10 ml of distilled water; the preparation was fully mixed and then transferred into a 

110 plastic container. The final concentration of Cry1F protein in the BT diet was 500 μg/g, much 

111 higher than EC50 values of Cry1F against lepidopteran pests Chilo suppressalis (6 μg/g) and 

112 larvae of Bombyx mori (136 ng/g) (Jiao et al., 2016). After 27 h of lyophilization, the BT diet 

113 was ground into powder and stored at -70°C. As the control, baker’s yeast granules without 

114 Cry1F (CT diet) were prepared in the same way.
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115 Based on the Organisation for Economic Cooperation and Development (OECD) test protocol 

116 (OECD, 2016), we designed a multi-generation DEE on F. candida (Fig. 1D). During the 

117 experiment, all F. candida were cultured in the same artificial climate chamber with the culture 

118 conditions mentioned above. They were synchronized to the same stage (newborn juveniles) at 

119 the start of each generation in the experiment. 

120 First, we transferred 80-100 randomly selected F. candida adults (about 4-6 weeks old) to a 

121 new Petri dish. After 72 h of oviposition, all adults were removed. The eggs began to hatch 10 

122 days later. After 24 h of hatching, we selected synchronized newborn juveniles. They were 

123 transferred to a new Petri dish and were fed with pure baker’s yeast for 10 days. Next, all 

124 juveniles were separated into two sets: the BT set were fed BT diet, and the CT set were fed CT 

125 diet. Each set was done with individually- and group- reared collembolans.

126 In the first-generation DEE, 60 juveniles were transferred to 60 small plastic Petri dishes (55 

127 mm x 14 mm, plaster height: 5 mm), respectively, as the individually-reared collembolans. 30 

128 ones were fed BT diet, and 30 ones were fed CT diet. The rest juveniles were evenly distributed 

129 into six plastic Petri dishes (85 mm x 16 mm, plaster height: 5 mm), with 60 to 80 collembolans 

130 per dish. Three of them were fed BT diet and the other three were fed CT diet. All diets were 

131 renewed every 2 days to avoid Cry1F protein degradation and the growth of other fungi.

132 The first generation was assessed after 25 days of DEE. For the individually-reared 

133 collembolans, the numbers of adults and juveniles in each treatment were counted to calculate 

134 the survival and reproduction rates. For the collembolans fed in groups, about 20 individuals per 

135 replicate were randomly collected for ELISA (enzyme-linked immunosorbent assay, see section 
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136 ELISA below), and 25-35 individuals per replicate were collected for RNA-Seq (see section RNA 

137 extraction, sequencing and unigene annotation below). 

138 The remaining collembolans fed in groups of CT and BT sets were used for synchronization of 

139 the second generation. To maintain the same experimental conditions, the CT and BT sets were 

140 synchronized independently, and their newborn juveniles were fed CT diet or BT diet directly 

141 after birth. After 10 days, the second-generation DEE started. It was done in the same manner as 

142 the first-generation DEE except that there were 40 replicates per set for individually-reared 

143 collembolans and two replicates per set for group-reared collembolans. After 25 days of DEE, 

144 survival and reproduction were evaluated using the individually-reared collembolans, and ELISA 

145 and RNA-Seq were performed suing the group-reared collembolans as described for the first 

146 generation. The remaining collembolans that were fed in groups in the second generation were 

147 used to start the third generation. The procedure for the third-generation DEE was identical to 

148 that for the second except that there were three rather than two replicates per set for the group-

149 reared collembolans.

150

151 Survival and reproduction.

152 The individually reared collembolans were used to evaluate survival and reproduction of F. 

153 candida at the end of each generation. Several replicates were excluded from analysis: 1) 

154 disappeared adult collembolans (5 in BT treatment and 5 in CT treatment over three 

155 generations), which are assumed to have escaped because no corpse left; 2) eggs didn’t hatch due 

156 to overgrown fungi (6 in BT treatment and 5 in CT treatment over three generations).
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157 With the aid of a stereoscopic microscope (Nikon, SMZ-10), the number of living adults was 

158 determined as a measure of survival, and the number of juveniles produced was determined as a 

159 measure of reproduction. Due to the wide variation in the reproduction data (7-41 juveniles per 

160 individually-reared collembolan), the data were log-transformed prior to the statistical analysis. 

161 Student’s t-test was used to analyze the differences between the two treatments in each 

162 generation. In addition, the data for reproduction of all BT and CT sets over three generations 

163 were subjected to a two-way ANOVA, followed by the LSD (least significant difference) test, 

164 with diet treatment, generation and their interaction as fixed factors. All of these statistical 

165 analyses were performed with IBM SPSS Statistics 24 (version R24.0.0.0). Differences were 

166 considered significant at p < 0.05.

167

168 ELISA.

169 The concentrations of Cry1F in the diets and in F. candida fed in groups were measured by 

170 ELISA for each replicate in each generation. The QuantiPlate Kit for Cry1F (Envirologix Inc., 

171 Portland, Maine, USA) was used to detected Cry1F in a 2- to 4-mg sample of the fresh diet in 

172 each replicate, in a 2- to 4-mg sample of the diet in each replicate after 2 days of feeding, and in 

173 20 individuals of F. candida (2-5 mg) per replicate. All samples were fully ground with an 

174 electric grinding rod and then extracted with PBST extraction buffer (phosphate-buffered saline 

175 with Tween-20, pH 7.4). ELISA was performed according to the manufacturer’s instructions. A 

176 two-way ANOVA was used to compare Cry1F concentrations of three BT sets over three 

177 generations by using the software IBM SPSS Statistics 24 (version R24.0.0.0). Differences were 
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178 considered significant at p < 0.05.

179

180 RNA extraction, sequencing and unigene annotation.

181 The miRNeasy® Mini Kit (Qiagen Biotech, Germany) was used to extract the total RNA from 

182 25-35 individuals per replicate of the collembolans that were fed in groups for each generation. 

183 RNA concentration and integrity were evaluated with Aglient 2100 Bioanalyzer (Agilent, USA).

184 cDNA library construction, Illumina sequencing, and de novo assembly of RNA samples were 

185 carried out by Hangzhou 1gene Technology Co., Ltd. All cDNA libraries were constructed using 

186 the NEBNext®Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA), following the protocol 

187 described by the manufacturer. The libraries were sequenced with 150-bp paired-end reads on an 

188 Illumina Hiseq 4000 platform (San Diego, CA, USA). After sequencing, the raw reads (about 6 

189 GB of data for each replicate) were filtered to remove adaptor sequences, duplication sequences, 

190 and low-quality sequences. The clean reads were de novo assembled into unigenes by using 

191 Trinity and SOAPdenovo-Trans. Six public databases were used to annotate unigenes with 

192 BLASTx or BLASTn (E-value < 10-5), including NCBI Nr and Nt databases 

193 (http://www.ncbi.nlm.nih.gov/), SwissProt (http://www.expasy.ch/sprot/), KEGG 

194 (http://www.genome.jp/kegg/), COG (http://www.ncbi.nlm.nih.gov/COG/), and GO 

195 (http://www.geneontology.org/).

196

197 Differential gene expression and biological marker expression.

198 The expression levels of all unigenes were calculated by using the FPKM (fragments per kb 
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199 per million fragments) method: FPKM = (106C)/(NL/103). The data of three or two replicates for 

200 each set in every generation were averaged, and whole transcriptome gene expression of all CT 

201 and BT sets were compared. DEGs were determined by the condition of FC (fold change, |log2 

202 ratio| of FPKM (BT vs. CT)) ≥ 1 and FDR (false discovery rate) ≤ 0.05.

203 We carefully checked the expression of seven biological markers whose changes in expression 

204 level are often used to indicate that the test organism is experiencing stress. These genes encode 

205 the following proteins: the antioxidant-related enzymes catalase (CAT) (Niu et al., 2017; Yousef, 

206 Abdelfattah & Augustyniak, 2017) and superoxide dismutase (SOD) (Yang et al., 2015; Yousef, 

207 Abdelfattah & Augustyniak, 2017); the detoxification-related enzymes glutathione S-transferase 

208 (GST) (Niu et al., 2017; Oliveira et al., 2015), carboxylesterase (CES) (Niu et al., 2017; Yang et 

209 al., 2015), and glutathione reductase (GR) (Yang et al., 2015); a metallothionein-like motif 

210 containing protein (MTC) (Nakamori & Kaneko, 2013), which is unique in F. candida and which 

211 is very sensitive to different heavy metal ions; and the heat shock protein 70 (HSP70) (Liu et al., 

212 2010), which is sensitive to insecticides, drought, and other environmental stresses. The 

213 expression profiles of unigenes annotated to these biological markers were examined, and their 

214 expression levels were compared among different samples.

215 The software R (version 3.4.0) was used for the heatmaps (R package ‘pheatmap’ 

216 (https://cran.r-project.org/web/packages/pheatmap/index.html)) and the hierarchical clustering 

217 (‘dist’ and ‘hclust’ orders, distance method as ‘euclidean’ and cluster method as ‘complete’) of 

218 all DEGs and biological markers over three generations (expression data of DEGs were 

219 transformed by using the common logarithm of the counts plus 1).
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220

221 RESULTS

222 Cry1F concentrations in the diet and F. candida.

223 ELISA measures showed that no Cry1F toxin was detected in the pure yeast diet or in the F. 

224 candida that were fed the CT diet. The average concentration (mean ± SE) of Cry1F was 415 ± 

225 15 μg/g in the fresh BT diet and 358 ± 57 μg/g in the BT diet after 2 days of feeding, indicating 

226 that Cry1F was continually present in the experiment. The average concentrations of Cry1F in 

227 collembolans that were fed the BT diet were 3.5 ± 1.3, 2.7 ± 1.4, and 5.2 ± 1.0 μg/g at the end of 

228 the first, second, and third generation, respectively; these concentrations were not significantly 

229 different based on a two-way ANOVA (p = 0.429), and suggest that the Cry1F was continuously 

230 ingested by collembolans.

231

232 Survival and reproduction of F. candida.

233 All collembolans in both CT and BT sets survived and reached the adult stage for all three 

234 generation, which suggests Cry1F has no any negative effect on collembolan survival. Over the 

235 three generations, the mean (± SE) number of juveniles produced per individually fed 

236 collembolan was 22.57 ± 0.635 in the CT set and 20.70 ± 0.590 in the BT set. According to 

237 Student’s t-test for each generation, the number of juveniles produced per collembolan did not 

238 significantly differ between CT and BT sets for any of the three generations (p = 0.912, 0.114, 

239 0.071 for generations 1, 2 and 3, respectively) (Fig. 2). Two-way ANOVA (with diet treatment, 
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240 generation, and their interaction as fixed factors, Table 1) showed that the mean number of 

241 juveniles produced per collembolan was significantly affected by generation (p = 0.001) but not 

242 by diet treatment (p = 0.068) or the interaction between diet treatment and generation (p = 

243 0.410).

244

245 Transcriptome sequencing and annotation.

246 A total of 316,693,647 raw reads for 16 samples were generated, and deposited in the NCBI 

247 Sequence Read Archive (SRP132745). After data filtering and de novo assembly, 284,174,422 

248 clean reads were assembled into 93,976 unigenes. The total length of these unigenes was 

249 155,829,628 bp. The mean length of the unigenes was 1,658 bp, and N50 length was 3,292 bp. 

250 The sequence data of each type of sample were unbiased, and enough reads were obtained to 

251 perform gene expression analyses. The quantity and quality of the RNA sequencing data are 

252 shown in Table 2.

253 Of the total number of unigenes, 55,390 (58.94%), 17,230 (18.33%), 47,734 (50.79%), 43,284 

254 (46.06%), 31,016 (33.00%), and 18,603 (19.80%) were annotated in NCBI Nr, NCBI Nt, 

255 SwissProt, KEGG, COG, and GO databases, respectively. Overall, 57,758 (61.46%) unigenes 

256 were annotated to known protein/nucleotide sequences.

257

258 Differentially expressed genes (DEGs) over three generations.

259 463 DEGs (0.49% of all unigenes) between CT and BT sets were identified for all three 

260 generations (Fig. 3A-C), including 211, 19, and 244 DEGs for the first, second, and third 
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261 generation, respectively (Fig. 3D). There was no consistent tendency of either up-regulation or 

262 down-regulation of DEGs, and there was no consistent co-expression of DEGs over the three 

263 generations (Fig. 3E), and only 6 DEGs (5 up-regulated and 1 down-regulated) were identified in 

264 both the first and third generations. 5 contra-regulated DEGs were detected in the second and 

265 third generations. The functions of these 11 DEGs are unknown.

266 The heatmap analysis of DEGs over three generations showed similar expression patterns of 

267 the CT and BT sets in each generation (Fig. 4A), and the hierarchical clustering of all samples 

268 demonstrated CT and BT samples of the same generation were always clustered together, instead 

269 of the CT nor the BT sets of different generations (Fig. 4B).

270

271 Biological marker expression profile.

272 A total of 855 unigenes for the seven biomarkers (CAT, GST, SOD, GR, CES, MTC, and 

273 HSP70) were annotated, but only five unigenes were differentially expressed between CT and 

274 BT sets, i.e., were up- or down-regulated by more than 2-fold in the BT set (Table 3): one 

275 unigene of CAT (CL2174.Contig5_All) was up-regulated in the third generation; three unigenes 

276 of CES (Unigene7933_All, CL5034.Contig2_All, and CL6365.Contig1_All) encoding 

277 carboxylesterase type B were up- or down-regulated in the first or the third generations; one 

278 unigene of HSP70 (Unigene15285_All) was greatly down-regulated, i.e., there was a 5-fold 

279 decrease in expression, in the first generation. However, the expression of the five DEGs was 

280 significantly different in BT vs. CT sets in only a specific generation, and none of those changes 

281 are consistent in all three generations (Table 3). Furthermore, the gene expression hierarchical 
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282 clustering of the seven markers (Fig. 5) clearly showed that the CT and BT sets from the same 

283 generation always clustered together, which confirms that Cry1F treatment did not affect the 

284 functions related to the seven biological markers.

285

286 DISCUSSION

287 Multi-generation laboratory tests are useful for detecting the chronic toxicity of pollutants on 

288 collembolans (Campiche et al., 2007; van Gestel et al., 2017). Most previous assessments of Bt 

289 toxins or crops on collembolans involved the assessment of short-term exposure (one generation) 

290 rather than chronic toxicity (Yang et al., 2015, 2018; Zhang et al., 2017a). With the long-term 

291 cultivation of Bt crops, however, toxicity may be undetectable in the first generation of 

292 collembolans but may increase in subsequent generations because of continuous exposure to Bt 

293 toxins. Therefore, it is necessary to test the effects of Bt toxins on non-target organisms with 

294 multi-generation toxicological assessments. Two previous laboratory-based multi-generation risk 

295 assessments of Bt toxins on collembolans (Bakonyi et al., 2011; Szabó, Seres & Bakonyi, 2017) 

296 found that feeding on leaves of Bt maize (MON 810) affected egg production, growth rate, and 

297 food preference in F. candida. In addition, Yuan et al. (2011) found that feeding on Bt rice 

298 decrease collembolan catalase activity. However, these results are difficult to explain (except to 

299 note that Bt and non-Bt plant tissues may differ in properties other than the presence or absence 

300 of Bt toxin). The current study used a diet that was identical except for the presence or absence 
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301 of Bt toxin. That F. candida is parthenogenetic facilitated the synchronization of generations and 

302 the multi-generation assessment.

303 In addition to compare F. candida survival and reproduction, the current study also considered 

304 the effects of Bt toxin on gene expression. Microarray-based detection methods have been widely 

305 used to evaluate the molecular effect of pollutants on test organisms (Baillon et al., 2016; 

306 Roelofs et al., 2009; Yuan et al., 2014). Compared with microarray, RNA-Seq is more 

307 comprehensive and is better able to detect potential risk, since it does not rely on a pre-designed 

308 complement sequence detection probe; it enables the identification of genetic variants; and it can 

309 quantify and profile overall gene expression, including rare and novel transcripts (Montgomery et 

310 al., 2010; Sultan et al., 2008; Wang, Gerstein & Snyder, 2009). If the pollutants are harmful to 

311 F. candida, they should create a constant stress and result in co-expression of DEGs at different 

312 exposure times (Qiao et al., 2015), but this was not the case in the current study. The expression 

313 pattern of DEGs was more similar between CT and BT sets in the same generation than between 

314 the same diet treatment of different generations (Fig. 4), suggesting that the detected DEGs may 

315 be random events perhaps caused by uncontrolled conditions in the experiment rather than by 

316 Cry1F. Moreover, the statistical analysis showed that F. candida reproduction significantly 

317 differed among generations but not between the diet treatments (Table 1), which further 

318 confirmed that Cry1F had no constant or cumulative effect on F. candida. Although we 

319 synchronized F. candida to stage before every generation and although we strictly controlled the 

320 culture conditions, there were probably some uncontrolled differences in season, diet quality, or 

321 other factors between generations.
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322 Because it is rapid, simple, and sensitive, the biological marker assay is commonly used for 

323 the monitoring of environmental contaminants. Yousef, Abdelfattah & Augustyniak (2017) found 

324 fertilizer industry pollutants greatly affected the activities of SOD and CAT in the grasshopper 

325 Aiolopus thalassinus. By assessing GST responses, Oliveira et al. (2015) assayed the risk of F. 

326 candida exposure to carbamazepine. Nakamori & Kaneko (2013) measured the effect of Cd 

327 exposure on F. candida by assessing the gene expression of MTC, which is a biomarker related 

328 to heavy metal detoxification. Most previous studies only determined the gene expression 

329 differences of one or several biomarkers by RT-qPCR. In our study, RNA-Seq provided a whole 

330 transcriptome profile, and we were therefore able to screen a large variety of important 

331 biomarker genes in F. candida, including some novel response genes. 

332 In summary, we established a laboratory-based multi-generation risk assessment of Cry1F for 

333 F. candida, and found Cry1F did not affect the survival or reproduction of F. candida over three 

334 consecutive generations, and did not alter their global gene expression levels or the expression 

335 profiles of seven sensitive biological markers. 
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479 Figure 1: Culture of Folsomia candida and the flow chart of the experiment. (A) F. candida 

480 reared in a Petri dish with baker’s yeast as food. (B) A living individual of F. candida. (C) A 

481 cluster of F. candida eggs. (D) The flow chart of the dietary exposure experiment over three 

482 consecutive generations. The CT set of collembolans was fed yeast powder without Cry1F, and 

483 the BT set was fed yeast powder with Cry1F. In each generation, both CT and BT sets were fed 

484 and evaluated individually (with 30 or 40 replicates) or in groups of 60 to 80 individuals (with 

485 two or three replicates).

486

487 Figure 2: The reproduction (number of juveniles produced per individually fed collembolan) of 

488 three generations of F. candida as affected by addition of Cry1F to an artificial diet. The 

489 collembolans were individually fed pure yeast powder (CT set) or yeast powder + Cry1F protein 

490 (BT set). Values are means ± SE (n = 24-38). Across all generations, independent Student’s t-test 

491 between CT and BT sets for each generation indicate no significant difference, with p = 0.912, 

492 0.114, 0.071 for the 1st, 2nd and 3rd generations, respectively (significant difference p < 0.05).

493

494 Figure 3: DEGs in F. candida fed diets with and without Cry1F over three generations. (A-C) 

495 Volcano plots of DEGs for the three generations. DEGs: FC (|log2 ratio| of FPKM (BT vs. CT)) 

496 ≥ 1, FDR ≤ 0.05. (D) Numbers of up-regulated and down-regulated DEGs. (E) Venn diagrams of 

497 DEGs in three generations. DEGs = differentially expressed genes; FC = fold change; FPKM = 

498 fragments per kb per million fragments; FDR = false discovery rate.

499
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500 Figure 4: Heatmap and hierarchical clustering dendrogram of DEGs. (A) Heatmap of DEGs. 

501 Gene clusters were subjected to Gene Ontology analysis. Columns represent samples. The scale 

502 bar indicates log-transformed (common logarithm of the counts plus 1) gene expression values, 

503 with high expression depicted in red and low expression in green. (B) Hierarchical clustering 

504 dendrogram of six samples over three generation. Log-transformed data of DEGs were used for 

505 analysis. The distance method was set as ‘euclidean’ and the cluster method was set as 

506 ‘complete’.

507

508 Figure 5: Heatmap of seven biomarkers. Gene clusters from hierarchical classification were 

509 subjected to Gene Ontology analysis. Columns represent samples. The scale bar indicates log-

510 transformed gene expression values, with high expression depicted in red and low expression in 

511 green.
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Table 1(on next page)

A two-way ANOVA of reproductiona with diet treatment, generation, and their interaction

as fixed factors, followed by LSD test.
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1 Table 1. A two-way ANOVA of reproductiona with diet treatment, generation, and their 

2 interaction as fixed factors, followed by LSD test. 

source SS df MS F p-value

diet treatment 0.052 1 0.052 3.363 0.068

generation 0.227 2 0.114 7.414 0.001*

diet treatment
×

generation
0.027 2 0.014 0.896 0.410

error 2.956 193 0.015

total 348.507 199

3 a The number of juveniles produced per collembolan in the individual feeding test was calculated 

4 as reproduction value.

5 * p < 0.05.

6
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Table 2(on next page)

Summary of F. candida transcriptome sequencing and assembly for CT and BT sets over

three generations.
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1 Table 2. Summary of F. candida transcriptome sequencing and assembly for CT and BT sets 

2 over three generations.

3

CT BT
statistic

1st 2nd 3rd 1st 2nd 3rd

raw reads 55,491,201 52,314,588 51,127,722 55,080,974 49,522,385 53,156,777

clean reads 51,147,377 43,971,149 47,089,957 50,778,618 42,728,374 48,458,947

Q20 (%) 98.21 98.46 99.00 98.33 98.36 98.80

GC content (%) 40.63 42.93 42.96 41.97 43.63 43.84

4

5
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Table 3(on next page)

Summary of annotated unigenes and DEGsa of seven biomarkers of F. candida over

three generations.
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1 Table 3. Summary of annotated unigenes and DEGsa of seven biomarkers of F. candida over 

2 three generations. 

3

1st 2nd 3rd
biomarker

number of 

unigenes
name of unigene

FCb FDR FC FDR FC FDR

CAT 52 CL2174.Contig5_All 0.443 1.000 1.859 1.000 2.857 0.042*

GST 191 - - - - - - -

SOD 42 - - - - - - -

GR 6 - - - - - - -

Unigene7933_All 1.664 0.042* -2.469 1.000 0.225 1.000

CL5034.Contig2_All -1.968 0.023* 0.366 1.000 -0.410 1.000CES 408

CL6365.Contig1_All 0.794 1.000 -0.104 1.000 2.054 0.000*

MTC 38 - - - - - - -

HSP70 118 Unigene15285_All -5.226 0.043* -2.191 1.000 -2.341 1.000

SUM 855

4 a DEGs: |FC| ≥ 1, FDR ≤ 0.05. 

5 b FC: log2 ratio of FPKM (BT vs. CT).

6 * FDR ≤ 0.05.

7 DEGs = differentially expressed genes; FC = fold change; FDR = false discovery rate; FPKM = 

8 fragments per kb per million fragments; CAT = catalase; GST = glutathione S-transferase; SOD = 

9 superoxide dismutase; GR = glutathione reductase; CES = carboxylesterase; MTC = 

10 metallothionein-like motif containing protein; HSP70 = heat shock protein 70.
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Figure 1

Culture of Folsomia candida and the flow chart of the experiment.

(A) F. candida reared in a Petri dish with baker’s yeast as food. (B) A living individual of F.

candida. (C) A cluster of F. candida eggs. (D) The flow chart of the dietary exposure

experiment over three consecutive generations. The CT set of collembolans was fed yeast

powder without Cry1F, and the BT set was fed yeast powder with Cry1F. In each generation,

both CT and BT sets were fed and evaluated individually (with 30 or 40 replicates) or in

groups of 60 to 80 individuals (with two or three replicates).
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Figure 2

The reproduction (number of juveniles produced per individually fed collembolan ) of

three generations of F. candida as affected by addition of Cry1F to an artificial diet.

The collembolans were individually fed pure yeast powder (CT set) or yeast powder + Cry1F

protein (BT set). Values are means ± SE (n = 24-38). Across all generations, independent

Student’s t-test between CT and BT sets for each generation indicate no significant

difference, with p = 0.912, 0.114, 0.071 for the 1st, 2nd and 3rd generations, respectively

(significant difference p < 0.05).
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Figure 3

DEGs in F. candida fed diets with and without Cry1F over three generations.

(A-C) Volcano plots of DEGs for the three generations. DEGs: FC (|log2 ratio| of FPKM (BT vs.

CT)) ≥ 1, FDR ≤ 0.05. (D) Numbers of up-regulated and down-regulated DEGs. (E) Venn

diagrams of DEGs in three generations. DEGs = differentially expressed genes; FC = fold

change; FPKM = fragments per kb per million fragments; FDR = false discovery rate.
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Figure 4

Heatmap and hierarchical clustering dendrogram of DEGs.

(A) Heatmap of DEGs. Gene clusters were subjected to Gene Ontology analysis. Columns

represent samples. The scale bar indicates log-transformed ( common logarithm of the

counts plus 1 ) gene expression values, with high expression depicted in red and low

expression in green. (B) Hierarchical clustering d endrogram of six samples over three

generation. Log-transformed data of DEGs were used for analysis. The distance method was

set as ‘euclidean’ and the cluster method was set as ‘complete’.
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Figure 5

Heatmap of seven biomarkers.

Gene clusters from hierarchical classification were subjected to Gene Ontology analysis.

Columns represent samples. The scale bar indicates log-transformed gene expression values,

with high expression depicted in red and low expression in green.
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