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Abstract

Geographic range is an important macroevolutionary parameter frequently considered in
paleontological studies as species’ distributions and range sizes are determined by a variety of
biotic and abiotic factors well known to affect the differential birth and death of species. Thus,
considering how distributions and range sizes fluctuate over time can provide important insight
into evolutionary dynamics. This study uses Geographic Information Systems (GIS) and analyses
of evolutionary rates to examine how in some species within the Cephalopoda, an important
pelagic clade, geographic range size and rates of speciation and extinction changed throughout
the Pennsylvanian and early Permian in the North American Midcontinent Sea. This period is
particularly interesting for biogeographic and evolutionary studies because it is characterized by
repetitive interglacial-glacial cycles, a global transition from an icehouse to a greenhouse climate
during the Late Paleozoic Ice Age, and decelerated macroevolutionary dynamics, i.e. low
speciation and extinction rates.

The analyses presented herein indicate that cephalopod species diversity was not completely
static and actually fluctuated throughout the Pennsylvanian and early Permian, matching findings
from other studies. However, contrary to some other studies, the mean geographic ranges of
cephalopod species did not change significantly through time, despite numerous climate
oscillations; further, geographic range size did not correlate with rates of speciation and
extinction. These results suggest that pelagic organisms may have responded differently to late
Paleozoic climate changes than benthic organisms, although additional consideration of this issue

is needed. Finally, these results indicate that, at least in the case of cephalopods, macroevolution
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during the late Paleozoic was more dynamic than previously characterized, and patterns may

have varied across different clades during this interval.

Introduction

Much work has focused on the relationship between geographic range size and rates of
speciation and extinction (e.g., Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990;
Lieberman, 2000; Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005; Kiessling &
Aberhan, 2007; Liow, 2007; Payne & Finnegan, 2007; Abe & Lieberman, 2009; Stigall, 2010;
Myers & Saupe, 2013; Myers, MacKenzie, & Lieberman, 2013; Dunhill & Wills, 2015;
Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017;
Pie & Meyer, 2017; Simdes et al., 2016; Lam, Stigall, & Matzke, 2018; Schneider, 2018).
Furthermore, the use of Geographic Information Systems (GIS) has greatly facilitated
investigations into this macroevolutionary relationship (Stigall & Lieberman, 2006; Hendricks,
Lieberman, & Stigall, 2008; Dunhill, 2012; Myers, MacKenzie, & Lieberman, 2013; Dunhill &
Wills, 2015; Lieberman & Kimmig, 2018). Here, we focus on how geographic range size and
rates of speciation and extinction changed throughout the Pennsylvanian and early Permian in
the North American Midcontinent Sea in the Cephalopoda, an important clade of pelagic
invertebrates (Kullmann, 1983, 1985; House, 1985; Becker & Kullman, 1996; Landman, Tanabe,
& Davis, 1996; Wiedmann & Kullmann, 1996; Monnet, De Baets, & C. Klug, 2011; Korn &
Klug, 2012; Klug et al., 2015; Korn, Klug, & Walton, 2015), using GIS. This time interval is
particularly interesting for biogeographic and evolutionary analysis because it is characterized by
repetitive glacial-interglacial cycles, a global transition from an icehouse to greenhouse climate

during the Late Paleozoic Ice Age (LPIA) (Montafiez & Poulsen, 2013). Further, it is generally
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considered a time of sluggish macroevolutionary dynamics, i.e. low speciation and extinction
rates and low degrees of faunal turnover, that have been demonstrated in studies of other marine
invertebrate taxa (Sepkoski, 1998; Stanley & Powell, 2003; Bonelli & Patzkowsky, 2011).
However, Ramsbottom (1981), Kullmann (1985), Becker & Kullmann (1996), and Wiedmann &
Kullmann (1996) did cogently argue that this was not the case for cephalopods. More recently,
Balseiro (2016) did document the existence of some profound evolutionary turnover in bivalves
and brachiopods over the course of this interval in regions closer to the ice sheets, such as
present-day western Argentina. Furthermore, Segessenman & Kammer (2018) showed that
advanced cladid crinoids do display elevated rates of evolution and turnover during this time
interval (although three other subclasses of crinoids do show subdued evolutionary rates), and
fusulinid foraminifera also fit the pattern shown in the advanced cladids (Groves & Lee, 2008;

Groves & Yue, 2009; Segessenman & Kammer, 2018).

There have been a variety of hypotheses proposed for the postulated decelerated
macroevolutionary dynamics (albeit not necessarily in cephalopods) of the LPIA. Some studies
contend that this pattern is a result of environmental changes linked to glacial cycling while
others point to tectonic activity (Stanley & Powell, 2003; Powell, 2005; Fielding, Frank, &
Isbell, 2008; DiMichele et al., 2009; Falcon-Lang & DiMichele, 2010; Bonelli and Patzkowsky,
2011; Cecil, DiMichele, & Elrick, 2014; Segessenman & Kammer, 2018). To date, many of the
more recent studies focusing on the macroevolutionary dynamics of the LPIA have concentrated
on benthic marine invertebrates (e.g., Stanley & Powell, 2003; Powell, 2007; Bonelli &
Patzkowsky, 2011; Balseiro, 2016; Segessenman & Kammer, 2018) as they are highly diverse

and very abundant. However, it is valuable to also investigate evolutionary patterns in pelagic
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marine invertebrates as these are also diverse and abundant organisms in late Paleozoic marine
ecosystems (Landman, Tanabe, & Davis, 1996; Monnet, De Baets, & Klug, 2011; Klug et al.,
2015; Korn, Klug, & Walton, 2015). In particular, given the significant role that geographic
factors play in speciation (Mayr, 1942; Eldredge & Gould, 1972; Jablonski, 1986; Brooks &
McLennan, 1991; Wiley & Lieberman, 2011; Jablonski & Hunt, 2015; Pie & Meyer, 2017), we
might expect that pelagic organisms, because of their innately greater dispersal ability (at least as
adults), might show different patterns relative to taxa that were benthic (Rojas et al., 2017,
Yacobucci, 2017). This greater dispersal ability might allow pelagic organisms to more fully
occupy potentially available habitats than benthic organisms, which could lead to larger
geographic ranges and also less change in geographic ranges through time. (In addition, there
are certain paleoecological constraints that reduce the dispersal potential of cephalopods, such as
minimum water depth required for vertical migration, Ward and Westermann, 1985; Ritterbush
etal., 2014; R. T. Becker, 2019, pers. comm.) It also could potentially influence patterns of
speciation and extinction by dampening opportunities for geographic isolation and creating
larger effective population sizes. Further, sea-level fall is known to cause regular and repeated
patterns of extinction in ammonoids (Kullmann, 1983, 1985; House, 1985; Hallam, 1987; Becker
& Kullmann, 1996; Wiedmann & Kullmann, 1996; Kaiser et al., 2011; Zhang et al., 2019; and R.

T. Becker, 2019, pers. comm.).

This study focuses on cephalopods from the Pennsylvanian-early Permian (Morrowan, Atokan,
Desmoinesian, Missourian, Virgilian, and Wolfcampian) in the Midcontinent Sea of the United
States as knowledge of the systematic affinities, geographic distribution and overall diversity of

these is relatively well understood (Miller, Dunbar, & Condra,1933; Newell, 1936; Plummer &
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Scott, 1937; Miller & Youngquist, 1949; Nassichuk, 1975; Boardman et al., 1994; Landman,
Tanabe, & Davis, 1996; Kroger, 2005; Klug et al., 2015; Korn, Klug, & Walton, 2015), the
stratigraphy of the region is well constrained (Heckel, 2008, 2013), and there are extensive
exposures of fossiliferous units in the region. Moreover, at this time the Midcontinent Sea was
bordered by the Antler Orogeny to the north, the Ancestral Rocky Mountain Orogeny to the
west/northwest and the Ouachita Mountain belt to the south/southeast (as well as various
structural arches), such that it constituted a distinct biogeographic region for marine invertebrates

(Wells et al., 2007; Nelson & Lucas, 2011; Joachimski & Lambert, 2015).

The Late Paleozoic Ice Age (LPIA) was the longest lived glacial period of the Phanerozoic and is
relatively well understood due to numerous stratigraphic, sedimentologic, paleontologic, and
isotopic studies (e.g., Mii, Grossman, & Yancey,1999; Isbell, 2003; Stanley & Powell, 2003;
Raymond & Metz, 2004; Montafiez, 2007; Powell, 2007; Tabor & Poulsen, 2007; Fielding,
Frank, & Isbell, 2008; Heckel, 2008; DiMichele et al., 2009; Bonelli & Patzkowsky, 2011;
Montafiez & Poulsen, 2013; Balseiro, 2016; Roark et al., 2017; Segessenman & Kammer, 2018).
Glacial cycling in the North American midcontinent region has received much study (e.g., Isbell,
2003; Heckel, 2008, 2013). Modern synthesis of the glacial history indicates that the Morrowan
to early Desmoinesian represented a localized glacial period, the late Desmoinesian to early
Virgilian represented a widespread interglacial period with minor glaciation, and the late
Virgilian to early Wolfcampian represented the apex of widespread glaciation (Montafiez &
Poulsen, 2013). Modeling predicts that sea-level oscillations in the late Pennsylvanian were
between 50-100 meters depending upon the number and volume of melting ice sheets, and that

water temperatures are estimated to have been between 4-7°C cooler during glacial maxima than
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inter-glacial periods (Heckel, 1986; Isbell, 2003; Montafiez, 2007; Tabor, 2007; Heckel, 2008;
Cecil, DiMichele, & Elrick, 2014). The sea-level and temperature changes were likely to have
had an important influence on species distribution and geographic range size during this time
(Waterhouse & Shi, 2010). Perhaps cephalopod taxa would be less influenced by glacial sea-
level cycles than benthic taxa, as these cycles are also known to cause variation in seafloor
ventilation, with concomitant dysoxia/anoxia that is more severe for benthic taxa (A. Dunhill,
pers. comm., 2018). By contrast, sea-level fall is known to have caused ammonoid extinctions
and Paleozoic cephalopods were sensitive to water temperature (R. T. Becker, pers. comm.,

2019).

Materials and methods

Taxa considered, stratigraphic correlation, specimens examined, and georeferencing: 79
species belonging to 26 genera (13 nautiloids and 13 ammonoids) of cephalopods in the
Pennsylvanian-Permian North American Midcontinent Sea were considered (Table S1). These
represent abundant, well preserved, and taxonomically well understood species for which we
were able to obtain type material and collections material of sufficient quality to enable
taxonomic assignments on a breadth of material. Other species from the mid-continent of North
America certainly exist and adding these to our analyses could change our results. However, at
this time it was not possible to consider these via obtaining type and other material for them and
pursuing the significant additional taxonomic work this would entail. Therefore, results are
based on consideration of what is essentially a random selection of some of the (albeit well
known) species in the region and this analysis is best viewed as an initial approach to considering

paleobiogeographic dynamics in the region. Range reconstructions relied on the occurrence
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records of specimens derived from a comprehensive consideration of the entire taxonomic
literature on the taxa studied. In particular, the following publications were utilized: Cox (1857),
Swallow (1858), McChesney (1860), Meek & Worthen (1860, 1870), White & St. John (1867),
White (1889), Hyatt (1891, 1893), Keyes (1894), Miller (1892), Smith (1896, 1903), Girty
(1911, 1915), Mather (1915) Bose (1919, 1920), Miller (1930), Sayre (1930), Miller, Dunbar, &
Condra (1933), Miller & Cline (1934), Miller & Owen (1934, 1937, 1939), Foerste (1936),
Miller & Thomas (1936), Newell (1936), Plummer & Scott (1937), Elias (1938a, b), Miller &
Moore (1938), Smith (1938), Miller & Furnish (1940a, b, 1957), Teichert (1940), Clifton (1942),
Miller & Unklesbay (1942), Young (1942), Sturgeon (1946), Miller, Lane, & Unklesbay (1947),
Miller & Downs (1948, 1950), Miller & Youngquist (1947, 1949), Miller, Youngquist, &
Nielsen (1952), Kummel (1953, 1963), Ruzhentsev & Shimanskiy (1954), Unklesbay (1954),
Arkell et al. (1957), Unklesbay & Palmer (1958), Hoare (1961), Furnish, Glenister, & Hansman
(1962), McCaleb (1963), Gordon (1964), Miller & Breed (1964), Teichert et al. (1964), Furnish
& Glennister (1971), Ruzhentsev & Bogoslovskaya (1971), Nassichuk (1975), Sturgeon et al.
(1982), Hewitt et al. (1989), Boardman et al. (1994), Kues (1995), White & Skorina (1999),
Kroger & Mapes (2005), Furnish et al. (2009), and Niko & Mapes (2009) as well as from
examination of all specimens, including types, housed in: the Division of Invertebrate
Paleontology, Biodiversity Institute, University of Kansas (KUMIP); the University of lowa
Paleontology Repository (Ul); and the Yale University Peabody Museum of Natural History
(YPM). These institutions are among the most complete repositories of cephalopod diversity
from this region and time and contain many of the type specimens of the species examined.
Moreover, all specimens used in the analysis were personally examined and taxonomically-

vetted via consideration of the literature, relevant type specimens, and other material, with
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species assignments and determinations made by the first author. Over 1,100 specimens were
identified to species level in this study (Kolis, 2017). We chose to focus on the particular species
considered, rather than downloading data from the Paleobiology Data Base (PBDB), as we
wanted to be able to personally validate the taxonomic identity of specimens using collections
data in conjunction with the literature in order to present more rigorously corroborated
hypotheses about the geographic distributions of species. We consider this approach to be
complementary to those approaches that utilize the PBDB in paleobiogeographic studies. On the
one hand, our approach did limit the number of species we were able to consider. On the other
hand, we believe it is quite important to evaluate hypotheses about systematic affinities of fossil
specimens, the actual data of the fossil record themselves, in detail and thereby accurately define
the taxonomic units considered. Given that species represent key macroevolutionary units in
nature (Eldredge, 1989; Wiley & Lieberman, 2011; Hendricks et al., 2014), correctly
characterizing them taxonomically, and thus validating the scope of their geographic
distributions, is critical. Moreover, it has recently been shown by Marshall et al. (2018) that
incorporating museum specimen data in the manner that our study has can greatly expand,
enhance, and improve knowledge of geographic distributions of fossil species, relative to studies
that only utilize data from the PBDB. In the case of some species, ~ 30% of the total considered,
our analyses indicated moderate changes in stratigraphic range (addition of a stage, etc.) relative
to what is presented in the PBDB. This happened primarily because via this study we were able
to identify specimens to species that previously had been treated as indeterminate at the species

level, or we were able to determine that specimens had previously been mis-identified to species.
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Specimens were assigned to the Virgilian, Missourian, Desmoinesian, Atokan, Morrowan, or
Wolfcampian stages using the USGS National Geologic Map Database (U.S. Geological Survey,
2017), Sawin et al. (2006, 2008, 2009), Zeller (1968), Pope (2012), and Heckel (2013). The
temporal boundaries of stages were derived from Davydov, Korn, & Schmitz (2012) (Table S2).

‘ Jtis important to note that the boundaries of international stages are based on few
geochronological tie points and the correlation of the North American stage boundaries with

‘ these is arbitrary; also, some of the boundaries used are still being researched (R. T. Becker,
pers. comm., 2019.) In addition, while more resolved stratigraphic assignment to biostratigraphic
zone is possible for units in Europe (e.g., Davydov & Leven, 2003), the northern Appalachian
Basin of North America (e.g., Heckel et al., 2011), and parts of the North American
midcontinent (e.g., Boardman et al., 1994; Heckel et al., 2011), it is less tractable to associate the
boundaries of the biostratigraphic zones from the North American midcontinent with radiometric
dates for the stratigraphic units and regions considered herein. Furthermore, the museum
specimens considered herein lacked the information needed to make it possible to constrain them
to biostratigraphic zone, only stage. For this reason, it was unfortunately not possible to consider
changes in geographic range, nor rates of speciation and extinction, at a temporal scale more
resolved than stage. Although this is often the standard degree of temporal resolution used in a
variety of paleobiogeographic studies, it does entail that we were not able to discern events
transpiring more rapidly than the time scale of stage. This means that we will be missing
important patterns; although speciation and extinction does not appear to frequently be
transpiring within stage boundaries in this region, at least sometimes it is, and moreover

geographic range shifts by species were certainly happening within these boundaries.
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All specimen localities were georeferenced during the course of the study. GEOLocate (Rios &
Bart, 2018) and the MaNIS Georeferencing Calculator (Wieczorek, 2015) were used to obtain
coordinates and uncertainty radii. All points were calculated in decimal degrees within the
WGS84 model in the GEOLocate (Rios & Bart, 2018) world topo layer to ensure consistency
and accuracy in determinations. Most uncertainty radii were less than 10 kms. Any specimens
with questionable locality information were excluded from analyses, as were specimens with an
uncertainty radius larger than the county they were contained within. This left 950 specimens
(Table S1) to use in range reconstruction and statistical analysis of geographic range through
geologic time. All statistical analyses were performed using Minitab® Statistical Software

Minitab v. 17 (Minitab, 2016) and R-Studio Version 3.4.0 (2017).

Range reconstruction using GIS: Methods for range reconstruction follow Rode & Lieberman
(2004, 2005), Stigall & Lieberman (2006), Hendricks, Lieberman, & Stigall (2008), Myers &
Lieberman (2011), Myers, MacKenzie, and Lieberman (2013), and Dunhill & Wills (2015). In
particular, after specimen occurrence data were georeferenced and assigned to temporal bins,
Excel CSV files were compiled for the occurrence points for all specimens within species. CSV
files were imported into ArcGIS v. 10.3 (ESRI, 2014) and layers were created using geographic
coordinate system ‘“WGS 1984’ and projected coordinate system “WGS 1984 World Mercator’
(Fig. 1). These layers were input into PaleoWeb (The Rothwell Group LP, 2016) to rotate
coordinates into continental configuration and geographic position of the midcontinent region
during the Pennsylvanian-early Permian (Fig. 2). These paleo-coordinate layers were then re-

projected into ArcMap (ESRI, 2014).

Geographic range values were calculated for each species (Table S3) using minimum bounding

geometry. This method has been shown to provide the most accurate procedure for
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reconstructing changes in geographic range, especially for fossil taxa (Darroch & Saupe, 2018).
Convex hulls or buffers were given to every specimen occurrence point in each species and these
shapefiles were re-projected in ‘South America-Albers Equal Area Conic’. This model was used
to accommodate the rotation of species occurrence coordinates into the southern hemisphere
during the late Paleozoic. Species with three or more occurrence points were given a convex hull
that spanned the entire area between occurrences (see Rode & Lieberman, 2004; Hendricks,
Lieberman, & Stigall, 2008; Myers & Lieberman, 2011; and Darroch & Saupe, 2018). In this
way, multiple occurrence points were combined to recreate the geographic range of a single
species. Species with only one occurrence point were given a 10km? buffer; species with just two
occurrence points were given a 10km? wide buffer which was used, in conjunction with their
distance, to derive an area value (following Rode & Lieberman, 2004, 2005; Hendricks,
Lieberman, & Stigall, 2008; Myers & Lieberman, 2011; and Myers, MacKenzie, and Lieberman,
2013). Species geographic range size data were tested for normality within each temporal stage
using the Anderson-Darling normality test (this is a commonly used test to assess normality, see

Sokal & Rohlf, 1994).

Assessing fossil record bias: A common concern when studying the fossil record is that there
might be biases that could lead to inaccurate or artifactual findings. This concern can be
manifold, but the two most pertinent issues here involve incomplete sampling and/or issues of
stratigraphic bias. While it is important to be aware of the fact that the fossil record is
incomplete, it is worth recognizing that there is a large body of research that demonstrates that
many of the biogeographic patterns preserved in the fossil record, particularly in marine settings,

represent real biological phenomena, rather than taphonomic artifacts (Myers & Lieberman,
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2011; Rook, Heim, & Marcot, 2013; Dunhill & Wills, 2015), although that does not mean that
such artifacts played no role in this study. Further, it is also prudent to realize that sampling bias
is a common issue in studies of extant biodiversity and species distribution, and much work
needs to be done in this area to alleviate the biases of the extant biota (Lieberman, 2002;

Carrasco, 2013).

The possibility that biases in the fossil record might lead to artifactual results was assessed in a
few different ways. First, the relationship between outcrop availability and the geographic range
of Pennsylvanian and Permian cephalopods was determined (see Myers & Lieberman, 2011). A
percent coverage table of the range size of species overlaid against temporal outcrop availability
was created using ArcGIS v. 10.3 (ESRI, 2014). A low percentage of overlap between range size
and outcrop area would suggest species distributions are more likely to reflect ‘real’
biogeographic patterns while a high percentage of overlap would suggest the presence or absence
of outcrop was significantly influencing results (Myers & Lieberman, 2011; Myers, MacKenzie,
& Lieberman, 2013; however, see also Dunhill, 2012 for an alternative viewpoint). The second
test used was an “n-1” jackknifing analysis (see Myers & Lieberman, 2011; Myers, MacKenzie,
& Lieberman, 2013). This procedure sub-sampled species range size within each temporal bin to
test the resilience of data to outliers. Mean range size estimations were generated for each
temporal bin; these were input into a one-way ANOVA to compare jackknife estimates with the
initial geographic range size estimates (Myers & Lieberman, 2011; Myers, MacKenzie, &
Lieberman, 2013). Finally, a Pearson rank correlation test was performed to test the association
of occurrence points and geographic range size; a close correlation would indicate that
reconstructed ranges were very much dependent on sampling and suggest that reconstructed

biogeographic patterns might be an artifact of a biased fossil record (Myers, MacKenzie, &

12
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Lieberman, 2013).

Speciation and extinction rate calculations: Speciation and extinction rates were calculated in
order to consider macroevolutionary dynamics in cephalopods from the Late Paleozoic
Midcontinent Sea. Macroevolutionary rates were calculated using the following equation,

presented in Foote (2000) and Rode & Lieberman (2005):

Ne=Nge™

where Ny is the species richness at the beginning of a temporal bin, N¢ is the species richness at
the end of a temporal bin, t is the duration of a temporal bin, and r is the total rate of diversity
change. The temporal bins used were North American stages (Table S2). Species richness values
(Ny) were determined for each temporal bin and were parsed into ‘carry-over’ (Ng) and ‘new’
species richness values to ensure the accuracy of speciation and extinction rate calculation. In
this way, it was possible to calculate the rate of diversity change between bins. For example, r
atokan= (IN No-pesmoinesian — IN No-atokan)/ t Atokan.  SPeciation rate within each temporal bin was
calculated using the equation S atokan= (IN Nt-atokan — IN No-atokan)/ tatokan, @nd extinction rate within
each temporal bin was calculated using the equation E atokan= S Atokan — I' Atokan fOr €ach temporal

stage (Foote, 2000; Rode & Lieberman, 2005).

Results

Paleobiogeographic patterns: Geographic range data were analyzed separately across all

cephalopods and individually for both nautiloids and ammonoids. As mentioned above, species
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geographic range size data were tested for normality within each temporal stage using the
Anderson-Darling normality test (see Sokal & Rohlf, 1994). Range size data within each
temporal stage were not normally distributed for any data combination (P < 0.005). Instead,
distributions were left skewed across all temporal stages for every data grouping. Data were
subsequently log-transformed to normalize data, and statistical analyses were performed on both

original and transformed data.

In general, geographic range size (either mean of transformed data or median of original) of
ammonoids and nautiloids increases during the Missourian and Virgilian stages (Fig. 3), which
was a time of sea-level rise due to warming during an interglacial (Isbell, 2003; Montafiez &
Poulsen, 2013), such that there may be an association between the sea-level rise and the increase
in geographic range. Another possibility is that there was some change in taphonomic or
collecting conditions that occurred during the Virgilian that made it easier to discern the actual
biogeographic distributions of species at this time, relative to other time intervals (G. Pifieiro,
pers. comm., 2018). However, none of the changes in geographic range were statistically
significant, so it is not possible to infer strong correlation between the sea-level rise, or possible
taphonomic factors, and the range expansion. For instance, Mann-Whitney U tests, a non-
parametric test used to compare two sample medians (see Sokal & Rohlf, 1994), found no
statistically significant changes (at P < 0.05) in median geographic range size for any temporal
stages separately across all the studied cephalopods, as well as individually for nautiloids and
ammonoids, even prior to correction for multiple comparisons. This is because with the Mann-
Whitney U test median range values are considered, and for all cephalopods the median range

values are constant through time ([79kmzb. Mean values do show more change through time in
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our data than the corresponding median values, as might be expected, and median values are

better to focus on for statistical purposes when the data are not normally distributed.

The same was true for two-sample t-tests (see Sokal & Rohlf, 1994) performed on log-
transformed data which again found no statistically significant changes (at P < 0.05) in mean
geographic range size though time, even prior to employing a statistical correction needed in the
case when there are multiple comparisons. Again, recall that mean range size data are shown in
Figure 3, and the differences among log-transformed data through time are far less substantial
(and ultimately not significant). Furthermore, a one-way ANOVA, either with or without the
assumption of equal variance, failed to find any significant differences (at P < 0.05) between
stages for log-transformed mean geographic range size across all cephalopods as well as
individually for nautiloids and ammonoids. Still, it is worth noting that changes in range size are
occurring through time, most notably in the Virgilian, and these could be related to climatic
changes that occurred then, and also changes in the paleogeography of the region, although in the
absence of statistical evidence we could not convincingly document such a link in the present
study. However, it is important to note that previous studies (e.g., Ramsbottom, 1981) have

documented such a link.

Analysis of macroevolutionary rates: Speciation rate (S) and extinction rate (E) were
calculated for the Atokan, Desmoinesian, Missourian, and Virgilian stages across all selected
cephalopods and within selected nautiloids and ammonoids, respectively. The S and E presented
across all selected cephalopods are comprised of two calculations; one calculation included taxa

that only occurred in a single temporal stage_(singletons) (Table 1; Fig. 4), while the other
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calculation excluded taxa that occurred in a single temporal stage (Table S4), S and E was also

calculated for ammonoids and for nautiloids including (Tables S5, S6) and excluding taxa that
occurred in a single stage (Tables S7, S8). Note, due to the dependence of calculations on
diversity metrics from both adjacent stages, it is not possible to accurately calculate the rate of
biodiversity change (R), or S and E for the first stage considered, the Morrowan, nor R or E for
the last stage considered, the Wolfcampian (these are thus left blank in Table 1 and Tables S4-
S8). While it might have been possible to infer S and E using other methods, to do so would
exaggerate the significance of edge effects and thus be problematic (Foote, 2000). A problem

with including singleton taxa, which occur in just a single stratigraphic stage, and why it is

sometimes recommended that these be excluded, is that perforce for these there will be a direct

correlation between S and E (Foote, 2000); however, when singletons are not included, a higher

proportion of ammonoids cannot be considered, as many of these have short biostratigraphic

ranges (R. T. Becker, pers. commy, 2019).

Across all cephalopods studied, S was high in the Atokan and Desmoinesian, fell in the
Missourian, and reached very low levels in the Virgilian and Wolfcampian (Fig. 4). By contrast,
E was low in the Atokan and Desmoinesian, began to rise in the Missourian, and reached even
higher levels in the Virgilian (Fig. 4). Essentially, across all cephalopods examined, when S is
high, E is low, and when S is low, E is high. This is potentially contrary to the pattern expected
with an ecological opportunity model of speciation (Simdes et al., 2016), although the specific
processes driving the diversification could not be determined at this time. However, it is
possible that when S was high there may have been many short-lived species that could not be

sampled that were actually going extinct, and this phenomenon would artificially depress E. To
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consider this in more detail, what is truly needed is a zone by zone analysis of all cephalopod

species known from the North American midcontinent (R. T. Becker, 2019, pers. comm.).

As expected, S and E are lower when singletons are excluded (see Tables 1, S4). Segesseman &

Kammer (2018) found in their macroevolutionary study on crinoids during this interval that

including or excluding singletons substantially influenced their results, but in our study including
or excluding these did not produce such a substantial change in results, Notably, S and E patterns
diverge somewhat between ammonoids and nautiloids when considered individually (and the
patterns in nautiloids better match the overall patterns across all_the studied cephalopods). For
instance, in nautiloids S is high in the Atokan and Desmoinesian, then declines to moderate in
the Missourian, and is at its lowest in the Missourian and Wolfcampian (Table S6), whereas in
ammonoids S is only high in the Atokan, declines to moderate in the Desmoinesian, declines
somewhat more in the Missourian and then remains essentially constant through the
Wolfcampian (Table S5). In addition, E is low in ammonoids during the Desmoinesian and
Missourian but high in the Atokan and Wolfcampian (Table S5), whereas in nautiloids there are
no observed extinctions during the Atokan; values remain quite low for nautiloids in the

Desmoinesian, rise somewhat in the Missourian, and then rise again in the Virgilian (Table S6).

An important caveat regarding the calculation of S is that many of the species analyzed belong to
genera that were widely distributed beyond the Midcontinent Sea during the Late Paleozoic.
Thus, although none of the species considered in these analyses occurred outside of the
Midcontinent Sea, their close relatives did. It is conceivable that while speciation events and

rates by necessity are herein treated as occurring in situ, this might not always have been the
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case. Instead, some speciation events could have occurred outside of the Midcontinent Sea with

subsequent invasion events into that region. These invasions would appear as in situ speciation

events in this analysis, although they actually were not. In the absence of phylogenetic

hypotheses for the genera considered it is not currently possible to consider how much of the

pattern pertaining to speciation rate shown in Fig. 4 is due to invasion instead of speciation such

that both might be playing a role, (Metacoceras is one example where the genus occurs well

outside of the North American mid-continent, it is known to occur in beds ~ 100kms southeast

of

Moscow, Russia, such that some of the cladogenetic events involving this genus might comprise

instances of invasion)._Further, a related phenomenon could affect the calculation of E: at times

what were treated as extinction events might have simply been local extinctions in the
Midcontinent Sea which could have included emigration to other regions. As mentioned
previously, it does not appear that any of the species considered occur outside of the
Midcontinent Sea, but a phylogenetic hypothesis for these groups would be valuable for

considering this issue in greater detail.

Relationship between biogeography and macroevolutionary rates: Across all the studied

cephalopods, mean geographic range size increased during the Virgilian (and in ammonoids first

in the Missourian but then more prominently in the Virgilian) and declined in the Wolfcampian

(Fig. 3); speciation rates were generally high in the Atokan and Desmoinesian and fell in the

Virgilian (Fig. 4); extinction rates were generally low in the Atokan and Desmoinesian and rose

in the Virgilian (Fig. 4). The Pearson correlation test in Minitab 17 (Minitab, 2016) was used to

examine the association between geographic range and either speciation rate extinction rate in

greater detail. No significant (at P < 0.05) correlation between speciation or extinction rate and
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range size was found across all cephalopods or within ammonoids or nautiloids individually
(Table 2). However, in cases the values approach P = 0.05. For instance, the association between
decreasing geographic range size and increasing extinction for all cephalopods and for
ammonoids alone, so it is clear that generally there is some association between the two, but
unfortunately significant support at the .05 level is lacking. We note that numerous previous
studies have documented an association between decreasing geographic range size and
increasing extinction rate (e.g. Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990;
Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005; Kiessling & Aberhan, 2007; Payne &
Finnegan, 2007; Stigall, 2010; Dunhill & Wills, 2015; Jablonski & Hunt, 2015; Orzechowski et
al., 2015; Saupe et al., 2015; Castiglione et al., 2017; Pie & Meyer, 2017; Lam, Stigall, &
Matzke, 2018; Schneider, 2018) and thus this a very robust phenomenon in general and likely to
be operating to some extent herein. However, over this time interval and for this particular group
of species the association is not statistically significant (Table 2), probably because sample sizes
are not large, and further this is likely because many taxa were culled by the late Mississippian
extinction (M. Powell, pers. comm., 2018). Further, sample size could also be influencing the
results pertaining to changes in geographic range size through time (G. Pifieiro, pers. comm.,

2019).

Analysis of fossil record bias: The low percentage of overlap between cephalopod species
geographic ranges and the availability of outcrop, less than 1% in 29 out of 30 species (Table S9;
the one species with a larger percentage value, “Orthoceras” kansasense, occurs throughout the
Midcontinent Sea), suggests the results are not simply an artifact of an incomplete fossil record,

at least pertaining to outcrop availability or changes in the paleogeography of the region. The
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“n-1” jackknifing analysis also supports the robustness of the reconstructed ranges, as no
statistically significant differences were found between the mean of the reconstructed and
subsampled range values for any time interval (all P-values > 0.9), suggesting that one or a few
occurrence records are not having a major influence on biogeographic patterns. Similar results
were found in other taxa and time periods by Hunt, Roy, & Jablonski (2005), Myers &
Lieberman (2011), and Myers, MacKenzie, & Lieberman (2013), although Dunhill, Hannisdal,
& Benton (2014) did find some association between outcrop area and diversity in the case of the
marine fossil record of Great Britain. Finally, the Pearson correlation test shows no correlation (-
0.055, P-Value = 0.789) between the number of occurrence points and geographic range size;
this provides further evidence that the biogeographic signatures of Late Paleozoic cephalopods

are unlikely to be simply an artifact of the fossil record.

Diversity patterns: Across all cephalopods, species richness increased from the Morrowan to
the Atokan, peaked in the Desmoinesian, and decreased through the Wolfcampian (Fig. S1). A
similar pattern is seen in the nautiloids (Fig. S2). However, the ammonoids (Fig. S3) demonstrate
an earlier peak in the Atokan, followed by a Desmoinesian to Virgilian plateau, with a decrease
in the Wolfcampian. This indicates that the data from nautiloids are most influencing the
recovered patterns (G. Pifieiro, pers. comm., 2019). Notably, previous studies of late Paleozoic
brachiopod communities in Bolivia showed a consistent trend between diversity and glacial
cycling with increased diversity during glacial periods and decreased diversity during inter-
glacial periods (Badyrka, Clapham, & Lopez, 2013). However, there seems to be less
consistency between species richness trends and glacial cycling in the Midcontinent Sea. For

instance, there is an increase in cephalopod species richness throughout the Morrowan to
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Desmoinesian associated with localized glaciation, and an interglacial period with generally
minor glaciation is associated with a decrease in cephalopod species richness from the
Desmoinesian to Virgilian, yet by contrast widespread glaciation is associated with a decrease in
species richness from the Virgilian to the Wolfcampian. Important points, however, are that these
are raw diversity patterns, and sample standardized diversity patterns show a different result (M.
Powell, pers. comm., 2018), and further that brachiopods and cephalopods can show different

behaviors in response to climatic changes (G. Pifieiro, pers. comm., 2019).

Discussion

Geographic range shifts through time are one of the pervasive phenomena in the history of
life; these are manifest both within species and higher-level clades, occur at a number of
different time scales, and are frequently linked to climatic change (Wiley & Lieberman, 2011).
Specific examples do come from the late Paleozoic, a time of extensive climate change including
profound glaciation along with numerous glacial and interglacial cycles and associated cycles of
sea-level rise and fall (Montafiez and Poulsen, 2013). (Previous studies of ammonoids have
shown that these changes in sea-level may have caused more significant changes in
biogeographic ranges of taxa than temperature changes during this time period, and other time
periods as well [Hallam, 1987; Hartenfels & Becker, 2016; Zhang et al., 2019]). Those changes
impacted patterns of geographic range in both terrestrial plant (e.g., DiMichele et al., 2009;
Falcon-Lang & DiMichele, 2010) and marine invertebrate ecosystems (e.g., Ramsbottom, 1981;
Leighton, 2005; Powell, 2007; Waterhouse & Shi, 2010; Balseiro & Halpern, 2019). When it
comes to marine invertebrates from this time interval, most of the focus has been on the highly

diverse benthic faunas (e.g., Stanely & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky,
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2011; Balseiro, 2016; Segessenman & Kammer, 2018; Balseiro & Halpern, 2019); however, taxa
that have a pelagic life style are also worth examining. Herein, 79 pelagic species of
cephalopods were examined for patterns of range size change using GIS and although in general
these species exhibit some evidence for changes in geographic range size (Fig. 3) especially in
the Virgilian, and to a lesser extent in the Missourian, those changes were not statistically
significant, making it hard to directly tie them to climate changes. However, there is strong
evidence that climate change played a prominent role in influencing geographic range of
cephalopods from other regions during this time period (e.g., Ramsbottom, 1981) and indeed in
cephalopods from other time periods (e.g., Hallam, 1987; Jacobs et al., 1994; Kaiser et al., 2011,
Hartenfels & Becker, 2016; Zhang et al., 2019). In a similar vein, many paleontological studies
have demonstrated that species with larger geographic ranges tend to have lower extinction rates
than species with narrower geographic range sizes (e.g., Vrba, 1980; Jablonski, 1986; Eldredge,
1989; Stanley, 1990; Rode & Lieberman, 2004; Stigall & Lieberman, 2006; Payne & Finnegan,
2007; Stigall, 2010; Hopkins, 2011; Dunhill & Wills, 2015). Again, this phenomenon is not
found to be statistically significant in the case of the late Paleozoic cephalopod species

considered herein (Table 2), but there is some general quantitative evidence for the phenomenon.

There may be a few different explanations for these findings. First, it may be that some
cephalopod species were not significantly affected by the glacial-interglacial climatic cycles
transpiring within the Late Paleozoic Midcontinent Sea. A second possible explanation, perhaps
coupled to the first, is that since cephalopods are highly mobile relative to benthic marine
invertebrates such as gastropods, bivalves, brachiopods, etc., they can more easily occupy a

greater portion of their potential range. Further, perhaps the available potential range of
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cephalopod species does not change much in glacial relative to interglacial regimes. This may
seem unlikely given the vast fluctuations in sea level occurring at the time, but pelagic marine
organisms, because of their ease of dispersal, may more easily maintain consistent geographic
ranges relative to benthic counterparts. Another possible explanation for the pattern retrieved is
that, given the limits of stratigraphic correlation, sample size, and the completeness of the fossil
record, it was necessary for the analyses of species distribution conducted herein to focus on the
time scale of geological stages, whereas in actuality there were climatic changes occurring within
stages (Heckel, 2008, 2013); these certainly did cause fluctuations in species’ geographic ranges
within stages, but simply could not be observed in the present study. The inability to observe
changes in geographic range size of species at a scale more resolved than stage, in particular,
likely played an important limiting role in the conclusions that could be derived. For instance,
other studies such as Ramshottom (1981) have looked at European taxa from the same time
period, but focused at the level of zones, and did find a strong association between climate, sea-
level, and geographic distribution. A final set of explanations are related to the issue of sampling.
For instance, it was more difficult for the analyses presented herein to detect a relationship
between geographic range size and macroevolutionary rate because speciation and extinction
rates could only be calculated for four stages. Although we did not observe a substantial amount
of speciation and extinction occurring within stage boundaries, certainly being able to consider
more stages would have enhanced our ability to retrieve patterns. We suspect that another
important explanation for our results is the relatively limited number of species that could be
considered herein. An expansion in the number of taxa considered could absolutely change our
results in various ways, including via increasing statistical power. Thus, what is presented herein

should only be treated as preliminary results that require further data and additional testing. We
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would note, though, that detailed taxonomic vetting of specimens, including through comparison
of type material, especially involving taxonomic studies conducted in some cases more than 70
years ago, requires a significant amount of time investment. Thus, dramatic expansions to this
dataset would require concomitant investments of time. However, other datasets such as
AMMON and the PBDB could be used if one did not feel it was necessary to spend time vetting
taxonomic assignments. Although we posit that it is important to vet taxonomic assignments that
may be outdated, we would assert that our approach should be viewed as complementary to
approaches that rely on mining currently existing paleontologically oriented databases, and that
both types of approaches have value. As a final possible explanation for our results, we further
note that a common concern when studying the fossil record is the potential role biases can play.
This concern can be manifold. It is somewhat obviated by the results presented herein regarding
the apparent quality of the fossil record, but that does not mean that there are no inherent
problems with the cephalopod record that are at present difficult to ascertain; these could be

influencing the results retrieved in some at present unspecified way.

There is, however, another finding contrary to what might typically be expected for the late
Paleozoic that is worth mentioning. That is the fact that there seems to have been at least some
moderate degree of evolutionary diversification and turnover within cephalopods, such that
species diversity did fluctuate throughout the Pennsylvanian and early Permian. Pennsylvanian
rates of macrovolution are typically classified as ‘sluggish’ or ‘stolid” across all marine animals,
and Sepkoski (1998) formalized the notion that there was a marked decline in evolutionary rates
of Carboniferous and Permian marine faunas. Stanley & Powell (2003) reiterated this result and

identified low mean macroevolutionary rates for marine invertebrate taxa. Bonelli &
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Patzkowsky (2011) also documented a pattern of low turnover in the face of major episodes of
sea-level rise and fall due to climatic change. The results from the analyses presented herein
could indicate that macroevolutionary rate in the case of late Paleozoic cephalopods was more
dynamic than often thought, supporting the conclusions of a variety of other important studies
considering late Paleozoic ammonoid diversity including Kullmann (1983, 1985), House (1985),
Becker & Kullman (1996), Wiedmann & Kullmann (1996), and Kullmann, Wagner, & Winkler
Prins (2007). One possible reason why cephalopods may show a higher rate of diversification
than other groups is that they were a fairly evolutionarily volatile group (Lieberman & Melott,
2013); thus, relative to many other marine invertebrate groups, they had relatively high rates of
speciation and extinction (Stanley, 1979; Jacobs et al., 1994; Landman, Tanabe, & Davis,1996;
Monnet, De Baets, & Klug, 2011; Klug et al., 2015; Korn, Klug, & Walton, 2015). However, this
may not be the entire explanation, as some other groups also show elevated rates of speciation
and extinction during this time interval. For instance, Balseiro (2016) and Balseiro and Halpern
(2019) did document evolutionary turnover at high latitudes, and elevated evolutionary rates
have also been found in fusulinid foraminifera (Groves & Lee, 2008; Groves & Yue, 2009) and
advanced cladid crinoids (Segessenman & Kammer, 2018). Ultimately, we support the
contention raised by Segessenman & Kammer (2018) that patterns from a few individual groups
do not refute the general pattern of sluggish macroevolution postulated for this time period in the
history of life. The results may lend credence to the notion that macroevolutionary patterns
across all marine animals are rarely unitary for any one time period in the history of life, and

instead often tend to be variegated.

Conclusions
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Patterns of range size change in late Paleozoic cephalopods from the North American
Midcontinent Sea were investigated using GIS. These species do exhibit some evidence for
changes in geographic range size through time, but the changes were not statistically significant
nor could they be directly tied to climate change. Further, in contradistinction to what is usually
found in the fossil record, cephalopod species with larger geographic ranges were not found to
have lower extinction rates than species with narrower geographic ranges. These distinctive
patterns may perhaps be related to the fact that cephalopods are pelagic and highly mobile, at
least relative to many benthic marine invertebrates, but it may also be due to the fact that only 79
species could be considered in our study, or to the fact that we were constrained to analyze
patterns at the temporal level of stage. Finally, the group shows more evolutionary
diversification and turnover during the Pennsylvanian and early Permian than is typical of other
marine invertebrate groups and this could be related to the fact that cephalopods are an

evolutionarily volatile group.
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Figure Captions Eliminado:

Figure 1: Distribution of Pennsylvanian and early Permian cephalopods.

B )

A) Distribution of Pennsylvanian nautiloid and ammonoid data points (red) and B) early Permian
nautiloid and ammonoid data points (blue) across the midcontinent region of North America.

Plotted using ArcGIS v. 10.3 (ESRI, 2014) software at 1: 20,000,000.

Figure 2: Occurrence points of Metacoceras sp. and Mooreoceras sp.
For the Virgilian, shown on possible paleogeography of that stage, at 1:1,000,000,000 scale;

plotted using PaleoWeb (The Rothwell Group LP, 2016).

Figure 3: Mean geographic range size in km? of cephalopods through time.

Nautiloid species (A) and ammonoid species (B) range changes occur but are not statistically
significant when analyzed using non-parametric tests (note, median range size data not graphed
but for all cephalopods they are 79km? for all time intervals, for ammonoids they are 78.5km? for
the Desmoinesian and Wolfcampian and 79km? for all other time intervals, and for nautiloids
they are 79km? for all time intervals) or when log transformed data are analyzed using
parametric tests (note log transformed data not graphed but mean transformed values for all
cephalopods are 5.51 [standard error 0.75] for the Morrowan, 4.05 [standard error 1.02] for the
Atokan, 4.36 [standard error 0.49] for the Desmoinesian, 5.65 [standard error 0.49] for the

Missourian, 5.96 [standard error 0.79] for the Virgilian, and 4.31 [standard error 0.52] for the
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Figure 4: Speciation and extinction rates through time.

Values given in per Myr and derived from Table 1.
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