Using GIS to Examine Biogeographic and Macroevolutionary

patterns in Late Paleozoic Cephalopods from the North American

Midcontinent Sea

Kayla M. Kolis¹ and Bruce S. Lieberman^{1,2}

¹Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, U. S. A.

²Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, U. S. A.

Corresponding author:

Bruce S. Lieberman

E-mail address: blieber@ku.edu

Abstract

2

1

3 Geographic range is an important macroevolutionary parameter frequently considered in paleontological studies as species' distributions and range sizes determined by a variety of biotic 4 5 and abiotic factors well known to affect the differential birth and death of species. Thus, 6 considering how distributions and range sizes fluctuate over time can provide important insight 7 into evolutionary dynamics. This study uses Geographic Information Systems (GIS) and analyses 8 of evolutionary rates to examine how in the Cephalopoda, an important pelagic clade, geographic 9 range size and rates of speciation and extinction changed throughout the Pennsylvanian and early 10 Permian in the North American Midcontinent Sea. This period is particularly interesting for 11 biogeographic and evolutionary studies because it is characterized by repetitive interglacial-12 glacial cycles, a global transition from an icehouse to a greenhouse climate during the Late 13 Paleozoic Ice Age, and decelerated macroevolutionary dynamics, i.e. low speciation and 14 extinction rates. 15 The analyses presented herein indicate that cephalopod species diversity was not completely 16 static and actually fluctuated throughout the Pennsylvanian and early Permian, matching findings 17 from other studies. However, contrary to some other studies, the mean geographic ranges of 18 cephalopod species did not change significantly through time, despite numerous climate 19 oscillations; further, geographic range size did not correlate with rates of speciation and 20 extinction. These results suggest that pelagic organisms may have responded differently to late 21 Paleozoic climate changes than benthic organisms, although additional consideration of this issue 22 is needed. Finally, these results indicate that, at least in the case of cephalopods, macroevolution

Eliminado: are

- during the late Paleozoic was more dynamic than previously characterized, and patterns may
- 25 have varied across different clades during this interval.

Introduction

- 28 Much work has focused on the relationship between geographic range size and rates of
- 29 speciation and extinction (e.g., Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990;
- 30 Lieberman, 2000; Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005; Kiessling &
- 31 Aberhan, 2007; Liow, 2007; Payne & Finnegan, 2007; Abe & Lieberman, 2009; Stigall, 2010;
- 32 Myers & Saupe, 2013; Myers, MacKenzie, & Lieberman, 2013; Dunhill & Wills, 2015;
- Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017;
- 34 Pie & Meyer, 2017; Simões et al., 2016; Lam, Stigall, & Matzke, 2018; Schneider, 2018).
- 35 Furthermore, the use of Geographic Information Systems (GIS) has greatly facilitated
- 36 investigations into this macroevolutionary relationship (Stigall & Lieberman, 2006; Hendricks,
- 37 Lieberman, & Stigall, 2008; Dunhill, 2012; Myers, MacKenzie, & Lieberman, 2013; Dunhill &
- 38 Wills, 2015; Lieberman & Kimmig, 2018). Here, we focus on how geographic range size and
- 39 rates of speciation and extinction changed throughout the Pennsylvanian and early Permian in
- 40 the North American Midcontinent Sea in the Cephalopoda, an important clade of pelagic
- 41 invertebrates (Landman, Tanabe, & Davis, 1996; Monnet, De Baets, & C. Klug, 2011; Korn et
- 42 al., 2015), using GIS. This time interval is particularly interesting for biogeographic and
- 43 evolutionary analysis because it is characterized by repetitive glacial-interglacial cycles, a global
- 44 transition from an icehouse to greenhouse climate during the Late Paleozoic Ice Age (LPIA)
- 45 (Montañez & Poulsen, 2013). Further, it is generally considered a time of sluggish
- 46 macroevolutionary dynamics, i.e. low speciation and extinction rates and low degrees of faunal

47 turnover, that have been demonstrated in studies of other marine invertebrate taxa (Sepkoski, 1998; Stanley & Powell, 2003; Bonelli & Patzkowsky, 2011). However, Balseiro (2016) did 48 49 document the existence of some profound evolutionary turnover in bivalves and brachiopods 50 over the course of this interval in regions closer to the ice sheets, such as present-day western 51 Argentina. Furthermore, recently Segessenman & Kammer (2018) showed that advanced cladid 52 crinoids do display elevated rates of evolution and turnover during this time interval (although 53 three other subclasses of crinoids do show subdued evolutionary rates), and fusulinid 54 foraminifera also fit the pattern shown in the advanced cladids (Groves & Lee, 2008; Groves & 55 Yue, 2009; Segessenman & Kammer, 2018). 56 57 There have been a variety of hypotheses proposed for the postulated decelerated 58 macroevolutionary dynamics of the LPIA. Some studies contend that this pattern is a result of 59 environmental changes linked to glacial cycling while others point to tectonic activity (Stanley and Powell, 2003; Powell, 2005; Fielding, Frank, & Isbell, 2008; DiMichele et al., 2009; Falcon-60 61 Lang & DiMichele, 2010; Bonelli and Patzkowsky, 2011; Cecil, DiMichele, & Elrick, 2014; 62 Segessenman & Kammer, 2018). To date, many of the studies focusing on the 63 macroevolutionary dynamics of the LPIA have concentrated on benthic marine invertebrates (e.g., Stanley & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011; Balseiro, 2016; 64 65 Segessenman & Kammer, 2018) as they are highly diverse and very abundant. However, it is valuable to explicitly investigate evolutionary patterns in pelagic marine invertebrates as these 66 67 are also diverse and abundant organisms in late Paleozoic marine ecosystems (Landman, Tanabe, & Davis, 1996; Monnet, De Baets, & Klug, 2011; Korn et al., 2015). In particular, given the 68 significant role that geographic factors play in speciation (Mayr, 1942; Eldredge & Gould, 1972; 69

70 Jablonski, 1986; Brooks & McLennan, 1991; Wiley & Lieberman, 2011; Jablonski & Hunt, 71 2015; Pie & Meyer, 2017), we might expect that pelagic organisms, because of their innately 72 greater dispersal ability (at least as adults), might show different patterns relative to taxa that 73 were benthic (Rojas et al., 2017; Yacobucci, 2017). This greater dispersal ability might allow 74 pelagic organisms to more fully occupy potentially available habitats than benthic organisms, 75 which could lead to larger geographic ranges and also less change in geographic ranges through 76 time. It also could potentially influence patterns of speciation and extinction by dampening 77 opportunities for geographic isolation and creating larger effective population sizes. 78 79 This study focuses on cephalopods from the Pennsylvanian-early Permian (Morrowan, Atokan, 80 Desmoinesian, Missourian, Virgilian, and Wolfcampian) in the Midcontinent Sea of the United 81 States as knowledge of the systematic affinities, geographic distribution and overall diversity of 82 cephalopods during this interval is relatively well understood (Miller, Dunbar, & Condra,1933; 83 Newell, 1936; Plummer & Scott, 1937; Miller & Youngquist, 1949; Nassichuk, 1975; Landman, 84 Tanabe, & Davis, 1996; Kröger, 2005; Korn et al., 2015), the stratigraphy of the region is well 85 constrained (Heckel, 2008, 2013), and there are extensive exposures of fossiliferous units in the 86 region. Moreover, at this time the Midcontinent Sea was bordered by the Antler Orogeny to the 87 north, the Ancestral Rocky Mountain Orogeny to the west/northwest and the Ouachita Mountain 88 belt to the south/southeast (as well as various structural arches), such that it constituted a distinct 89 biogeographic region for marine invertebrates (Wells et al., 2007; Nelson & Lucas, 2011; 90 Joachimski & Lambert, 2015).

92	The Late Paleozoic Ice Age (LPIA) was the longest lived glacial period of the Phanerozoic and is
93	relatively well understood due to numerous stratigraphic, sedimentologic, paleontologic, and
94	isotopic studies (e.g., Mii, Grossman, & Yancey,1999; Isbell, 2003; Stanley & Powell, 2003;
95	Raymond & Metz, 2004; Montañez, 2007; Powell, 2007; Tabor & Poulsen, 2007; Fielding,
96	Frank, & Isbell, 2008; Heckel, 2008; DiMichele et al., 2009; Bonelli & Patzkowsky, 2011;
97	Montañez & Poulsen, 2013; Balseiro, 2016; Roark et al., 2017; Segessenman & Kammer, 2018).
98	Glacial cycling in the midcontinent region has received much study (e.g., Isbell, 2003; Heckel,
99	2008, 2013). Modern synthesis of the glacial history indicates that the Morrowan to early
100	Desmoinesian represented a localized glacial period, the late Desmoinesian to early Virgilian
101	represented a widespread interglacial period with minor glaciation, and the late Virgilian to early
102	Wolfcampian represented the apex of widespread glaciation (Montañez & Poulsen, 2013).
103	Modeling predicts that sea-level oscillations in the late Pennsylvanian were between 50-100
104	meters depending upon the number and volume of melting ice sheets, and that water
105	temperatures are estimated to have been between 4-7°C cooler during glacial maxima than inter-
106	glacial periods (Heckel, 1986; Isbell, 2003; Montañez, 2007; Tabor, 2007; Heckel, 2008; Cecil,
107	DiMichele, & Elrick, 2014). The sea-level and temperature changes were likely to have had an
108	important influence on species distribution and geographic range size during this time
109	(Waterhouse & Shi, 2010). Though perhaps pelagic taxa would be less influenced by glacial
110	sea-level cycles than benthic taxa, as these cycles are also known to cause variation in seafloor
111	ventilation, with concomitant dysoxia/anoxia that is more severe for benthic taxa (A. Dunhill,
112	pers. comm., 2018).

Materials and methods

113114

115

Comentario [GP1]: Yes, maybe, dysoxia-anoxia can be verified in hypersaline stratified estuarine or delta conditions, where soft body organisms predominate but have a lower preservational potential. So, you must be specific here and leave clear that you are talking just for cephalopods, do you? If not, you may have a taphonomic bias affecting the real stability of the benthic communities that is not being taken into account.

116 Taxa considered, stratigraphic correlation, specimens examined, and georeferencing: 79 117 species belonging to 26 genera (13 nautiloids and 13 ammonoids) of cephalopods in the 118 Pennsylvanian-Permian North American Midcontinent Sea were considered (Table S1). These 119 represent the most abundant, well preserved, and taxonomically well understood species. Range 120 reconstructions relied on the occurrence records of specimens derived from a comprehensive 121 consideration of the entire taxonomic literature on the taxa studied. In particular, the following 122 publications were utilized: Cox (1857), Swallow (1858), McChesney (1860), Meek & Worthen 123 (1860, 1870), White & St. John (1867), White (1889), Hyatt (1891, 1893), Keyes (1894), Miller 124 (1892), Smith (1896, 1903), Girty (1911, 1915), Mather (1915) Böse (1919, 1920), Miller 125 (1930), Sayre (1930), Miller, Dunbar, & Condra (1933), Miller & Cline (1934), Miller & Owen 126 (1934, 1937, 1939), Foerste (1936), Miller & Thomas (1936), Newell (1936), Plummer & Scott 127 (1937), Elias (1938a, b), Miller & Moore (1938), Smith (1938), Miller & Furnish (1940a, b, 128 1957), Teichert (1940), Clifton (1942), Miller & Unklesbay (1942), Young (1942), Sturgeon 129 (1946), Miller, Lane, & Unklesbay (1947), Miller & Downs (1948, 1950), Miller & Youngquist 130 (1947, 1949), Miller, Youngquist, & Nielsen (1952), Kummel (1953, 1963), Ruzhentsev & 131 Shimanskiy (1954), Unklesbay (1954), Arkell et al. (1957), Unklesbay & Palmer (1958), Hoare 132 (1961), Furnish, Glenister, & Hansman (1962), McCaleb (1963), Gordon (1964), Miller & Breed 133 (1964), Teichert et al. (1964), Furnish & Glennister (1971), Ruzhentsev & Bogoslovskaya 134 (1971), Nassichuk (1975), Sturgeon et al. (1982), Hewitt et al. (1989), Boardman et al. (1994), 135 Kues (1995), White & Skorina (1999), Kröger & Mapes (2005), Furnish et al. (2009), and Niko 136 & Mapes (2009) as well as from examination of all specimens, including types, housed in: the 137 Division of Invertebrate Paleontology, Biodiversity Institute, University of Kansas (KUMIP); the 138 University of Iowa Paleontology Repository (UI); and the Yale University Peabody Museum of

Natural History (YPM). These institutions house the most complete repository of cephalopod diversity from this region and time as well as contain many of the type specimens of the species examined. Moreover, all specimens used in the analysis were personally examined and taxonomically-vetted via consideration of the literature, relevant type specimens, and other material, with species assignments and determinations made by the first author. Over 1,100 specimens were identified to species level in this study (Kolis, 2017). We chose to focus on the particular species considered, rather than downloading data from the Paleobiology Data Base (PBDB), as we wanted to be able to personally validate the taxonomic identity of specimens using collections data in conjunction with the literature in order to present more rigorously corroborated hypotheses about the geographic distributions of species. We consider this approach to be complementary to those approaches that utilize the PBDB in paleobiogeographic studies. On the one hand, our approach did limit the number of species we were able to consider. On the other hand, we believe it is quite important to evaluate hypotheses about systematic affinities of fossil specimens, the actual data of the fossil record themselves, in detail and thereby accurately define the taxonomic units considered. Given that species represent key macroevolutionary units in nature (Eldredge, 1989; Wiley & Lieberman, 2011; Hendricks et al., 2014), correctly characterizing them taxonomically, and thus validating the scope of their geographic distributions, is critical. Moreover, it has recently been shown by Marshall et al. (2018) that incorporating museum specimen data in the manner that our study has can greatly expand, enhance, and improve knowledge of geographic distributions of fossil species, relative to studies that only utilize data from the PBDB.

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

161 Specimens were assigned to the Virgilian, Missourian, Desmoinesian, Atokan, Morrowan, or 162 Wolfcampian stages using the USGS National Geologic Map Database (U.S. Geological Survey, 163 2017), Sawin et al. (2006, 2008, 2009), Zeller (1968), Pope (2012), and Heckel (2013). The 164 temporal boundaries of stages were derived from Davydov, Korn, & Schmitz (2012) (Table S2). 165 All specimen localities were georeferenced during the course of the study. GEOLocate (Rios and 166 Bart, 2018) and the MaNIS Georeferencing Calculator (Wieczorek, 2015) were used to obtain 167 coordinates and uncertainty radii. All points were calculated in decimal degrees within the 168 WGS84 model in the GEOLocate (Rios & Bart, 2018) world topo layer to ensure consistency 169 and accuracy in determinations. Most uncertainty radii were less than 10 kms. Any specimens 170 with questionable locality information were excluded from analyses, as were specimens with an 171 uncertainty radius larger than the county they were contained within. This left 950 specimens 172 (Table S1) to use in range reconstruction and statistical analysis of geographic range through 173 geologic time. All statistical analyses were performed using Minitab[®] Statistical Software 174 Minitab v. 17 (Minitab, 2016) and R-Studio Version 3.4.0 (2017). 175 176 Range reconstruction using GIS: Methods for range reconstruction follow Rode & Lieberman 177 (2004, 2005), Stigall & Lieberman (2006), Hendricks, Lieberman, & Stigall (2008), Myers & 178 Lieberman (2011), Myers, MacKenzie, and Lieberman (2013), and Dunhill & Wills (2015). In 179 particular, after specimen occurrence data were georeferenced and assigned to temporal bins, 180 Excel CSV files were compiled for the occurrence points for all specimens within species. CSV 181 files were imported into ArcGIS v. 10.3 (ESRI, 2014) and layers were created using geographic 182 coordinate system 'WGS 1984' and projected coordinate system 'WGS 1984 World Mercator' 183 (Fig. 1). These layers were input into PaleoWeb (The Rothwell Group LP, 2016) to rotate 184 coordinates into continental configuration and geographic position of the midcontinent region

during the Pennsylvanian-early Permian (Fig. 2). These paleo-coordinate layers were then reprojected into *ArcMap* (ESRI, 2014).

Geographic range values were calculated for each species (Table S3), using minimum bounding geometry. This method has been shown to provide the most accurate procedure for reconstructing changes in geographic range, especially for fossil taxa (Darroch & Saupe, 2018). Convex hulls or buffers were given to every specimen occurrence point in each species and these shapefiles were re-projected in 'South America-Albers Equal Area Conic'. This model was used to accommodate the rotation of species occurrence coordinates into the southern hemisphere during the Late Paleozoic. Species with three or more occurrence points were given a convex hull that spanned the entire area between occurrences. In this way, multiple occurrence points were combined to recreate the geographic range of a single species. Species with only one occurrence point were given a 10km^2 buffer; species with just two occurrence points were given a 10km^2 wide buffer which was used, in conjunction with their distance, to derive an area value (following Rode & Lieberman [2004, 2005], Hendricks, Lieberman, & Stigall [2008], Myers &

might be biases that could lead to inaccurate or artifactual findings. This concern can be manifold, but the two most pertinent issues here involve incomplete sampling and/or issues of stratigraphic bias. While it is important to be aware of the fact that the fossil record is incomplete, it is worth recognizing that there is a large body of research that demonstrates that many of the biogeographic patterns preserved in the fossil record, particularly in marine settings,

represent real biological phenomena, rather than taphonomic artifacts (Myers & Lieberman,

Assessing fossil record bias: A common concern when studying the fossil record is that there

Lieberman [2011], and Myers, MacKenzie, and Lieberman [2013]).

Eliminado: method

Comentario [GP2]: Why you use Late here and "late" in other parts of the text?

Con formato: Resaltar

209 2011; Rook, Heim, & Marcot, 2013; Dunhill & Wills, 2015). Further, it is also prudent to realize
210 that sampling bias is a common issue in studies of extant biodiversity and species distribution,
211 and much work needs to be done in this area to alleviate the biases of the extant biota
212 (Lieberman, 2002; Carrasco, 2003).
213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

The possibility that biases in the fossil record might lead to artifactual results was assessed in a few different ways. First, the relationship between outcrop availability and the geographic range of Pennsylvanian and Permian cephalopods was determined (see Myers & Lieberman, 2011). A percent coverage table of the range size of species overlaid against temporal outcrop availability was created using ArcGIS v. 10.3 (ESRI, 2014). A low percentage of overlap between range size and outcrop area would suggest species distributions are more likely to reflect 'real' biogeographic patterns while a high percentage of overlap would suggest the presence or absence of outcrops was significantly influencing results (Myers & Lieberman, 2011; Myers, MacKenzie, & Lieberman, 2013; however, see also Dunhill, 2012 for an alternative viewpoint). The second test used was an "n-1" jackknifing analysis. This procedure sub-sampled species range size within each temporal bin to test the resilience of data to outliers. Mean range size estimations were generated for each temporal bin; these were input into a one-way ANOVA to compare jackknife estimates with the initial geographic range size estimates (Myers & Lieberman, 2011; Myers, MacKenzie, & Lieberman, 2013). Finally, a Pearson rank correlation test was performed to test the association of occurrence points and geographic range size; a close correlation would indicate that reconstructed ranges were very much dependent on sampling and suggest that reconstructed biogeographic patterns might be an artifact of a biased fossil record (Myers, MacKenzie, & Lieberman, 2013).

Comentario [GP3]: Yes, it is possible, but see my previous comment for this particular study.

Comentario [GP4]: Sampling bias is a problem when part of the original community was not preserved, but you are right that the problem exists even in studies of recent biotas.

Con formato: Resaltar

Comentario [GP5]: It is as 2013 in the references list. Please check

Speciation and extinction rate calculations: Speciation and extinction rates were calculated in
 order to consider macroevolutionary dynamics in cephalopods from the Late Paleozoic
 Midcontinent Sea. Macroevolutionary rates were calculated using the following equation,
 presented in Foote (2000) and Rode & Lieberman (2005):

 $N_f = N_0 e^{rt}$

where N_0 is the species richness at the beginning of a temporal bin, N_f is the species richness at the end of a temporal bin, t is the duration of a temporal bin, and r is the total rate of diversity change. The temporal bins used were North American stages (Table S2). Species richness values (N_f) were determined for each temporal bin and were parsed into 'carry-over' (N_0) and 'new' species richness values to ensure the accuracy of speciation and extinction rate calculation. In this way, it was possible to calculate the rate of diversity change between bins. For example, $r_{Atokan} = (\ln N_{0-Desmoinesian} - \ln N_{0-Atokan})/t_{Atokan}$. Speciation rate within each temporal bin was calculated using the equation $S_{Atokan} = (\ln N_{f-Atokan} - \ln N_{0-Atokan})/t_{Atokan}$, and extinction rate within each temporal bin was calculated using the equation $E_{Atokan} = S_{Atokan} - r_{Atokan}$ for each temporal stage (Foote, 2000; Rode & Lieberman, 2005).

Results

Paleobiogeographic patterns: Geographic range data were analyzed separately across all cephalopods and individually for both nautiloids and ammonoids. Species geographic range size data were tested for normality within each temporal stage using the Anderson-Darling normality test. Range size data within each temporal stage were not normally distributed for any data

combination (P < 0.005). Instead, distributions were left skewed across all temporal stages for every data grouping. Data were subsequently log-transformed to normalize data, and statistical analyses were performed on both original and transformed data.

In general, geographic range size (either mean of transformed data or median of original) of ammonoids and nautiloids increases during the Missourian and Virgilian stages (Fig. 3), which was a time of sea-level rise due to warming during an interglacial (Isbell, 2003; Montañez & Poulsen, 2013), such that there may be an association between the sea-level rise and the increase in geographic range. Another possibility is that there was some change in taphonomic conditions that occurred during the Virgilian that made it easier to discern the actual biogeographic distributions of species at this time, relative to other time intervals (G. Pineiro, pers. comm., 2018). However, none of the changes in geographic range were statistically significant, so it is not possible to infer strong correlation between the sea-level rise, or possible taphonomic factors, and the range expansion. For instance, Mann-Whitney U tests found no statistically significant changes (at $P \le 0.05$) in median geographic range size for any temporal stages separately across all cephalopods, as well as individually for nautiloids and ammonoids, even prior to correction for multiple comparisons. This is because with the Mann-Whitney U test median range values are considered, and for all cephalopods the median range values are constant through time

 (79km^2) .

The same was true for two-sample t-tests performed on log-transformed data which again found no statistically significant changes (at $P \le 0.05$) in mean geographic range size though time, even prior to correction for multiple comparisons. Again, recall that *mean* range size data are shown

Con formato: Resaltar

Comentario [GP6]: This is confusing to me, sorry. You applied the Mann-Whitney U test in your cephalopod sample to test the median range value, right? On the other hand you calculated the median of range size for all cephalopods and according to your figure 3 it is not constant through time. Please, explain a little better the results shown in figure 3.

Con formato: Resaltar

Comentario [GP7]: Do you have any figure to refer here?

Con formato: Fuente: Cursiva

in Figure 3, and the differences among log-transformed data through time are far less substantial (and ultimately not significant). Furthermore, a one-way ANOVA, either with or without the assumption of equal variance, failed to find any significant differences (at $P \le 0.05$) between stages for log-transformed mean geographic range size across all cephalopods as well as individually for nautiloids and ammonoids.

Comentario [GP8]: But the peak shown in figure 3 corresponding to the Virgilian period should mean something!

Analysis of macroevolutionary rates: Speciation rate (S) and extinction rate (E) were calculated for the Atokan, Desmoinesian, Missourian, and Virgilian stages across all cephalopods and within nautiloids and ammonoids, respectively. The S and E presented across all cephalopods are comprised of two calculations; one calculation included taxa that only occurred in a single temporal stage (Table 1; Fig. 4), while the other calculation excluded taxa that occurred in a single temporal stage (Table S4). S and E was also calculated for ammonoids and for nautiloids including (Tables S5, S6) and excluding taxa that occurred in a single stage (Tables S7, S8). Note, due to the dependence of calculations on diversity metrics from both adjacent stages, it is not possible to accurately calculate the rate of biodiversity change (R), or S and E for the first stage considered, the Morrowan, nor R or E for the last stage considered, the Wolfcampian (these are thus left blank in Table 1 and Tables S4-S8). While it might have been possible to infer S and E using other methods, to do so would exaggerate the significance of edge effects and thus be problematic (Foote, 2000).

Comentario [GP9]: Ok again, but the peak shown in figure 3 corresponding to the Virgilian period should mean something! Maybe it would be good to say that even though the lack of any significant differences suggested by the tests used, there is a peak in the Virgilian that could suggest that a change existed but it is not as relevant as to be detected statistically. Because the peak exists and casually you have the highest extinction rate also in the Virgilian and continued so in the Wolfcampian (your figure 4)!

Across all cephalopods, S was high in the Atokan and Desmoinesian, fell in the Missourian, and reached very low levels in the Virgilian and Wolfcampian (Fig. 4). By contrast, E was low in the Atokan and Desmoinesian, began to rise in the Missourian, and reached even higher levels in the

Virgilian (Fig. 4). Essentially, across all cephalopods examined, when S is high, E is low, and when S is low, E is high. This is potentially contrary to the pattern expected with an ecological opportunity model of speciation (Simões et al., 2016), although the specific processes driving the diversification could not be determined at this time. However, it is possible that when S was high there may have been many short-lived species that could not be sampled that were actually going extinct, and this phenomenon would artificially depress E.

As expected, S and E are lower when singletons are excluded (see Tables 1, S4). (See Segesseman & Kammer [2018] for a recent discussion of how singletons can affect manifest patterns in these types of studies.) Notably though, S and E patterns diverge somewhat between ammonoids and nautiloids when considered individually. For instance, in nautiloids S is high in the Atokan and Desmoinesian, then declines to moderate in the Missourian, and is at its lowest in the Missourian and Wolfcampian (Table S6), whereas in ammonoids S is only high in the Atokan, declines to moderate in the Desmoinesian, declines somewhat more in the Missourian and then remains essentially constant through the Wolfcampian (Table S5). In addition, E is low in ammonoids during the Desmoinesian and Missourian but high in the Atokan and Wolfcampian (Table S5), whereas in nautiloids there are no observed extinctions during the Atokan; values remain quite low for nautiloids in the Desmoinesian, rise somewhat in the

in ammonoids S and E are high in the Atokan, a pattern that is not seen in the study for all cephalopods. It seems that the pattern for nautiloids is prevalent.

Comentario [GP10]: Interesting that

An important caveat regarding the calculation of \boldsymbol{S} is that many of the species analyzed belong to

genera that were widely distributed beyond the Midcontinent Sea during the Late Paleozoic.

Thus, although none of the species considered in these analyses occurred outside of the

Missourian, and then rise again in the Virgilian (Table S6).

326 Midcontinent Sea, their close relatives did. It is conceivable that while speciation events and 327 rates by necessity are herein treated as occurring in situ, this might not always have been the Eliminado: herein 328 case. Instead, some speciation events could have occurred outside of the Midcontinent Sea with 329 subsequent invasion events into that region. These invasions would appear as in situ speciation 330 events in this analysis, although they actually were not. In the absence of phylogenetic 331 hypotheses for the genera considered it is not currently possible to consider how much of the 332 pattern pertaining to speciation rate shown in Fig. 4 is due to invasion instead of speciation. Comentario [GP11]: Perhaps it is what the individual patterns are suggesting? 333 Further, a related phenomenon could affect the calculation of E: at times what were treated as 334 extinction events might have simply been local extinctions in the Midcontinent Sea which could 335 have included emigration to other regions. As mentioned previously, it does not appear that any 336 of the species considered occur outside of the Midcontinent Sea, but a phylogenetic hypothesis 337 for these groups would be valuable for considering this issue in greater detail. 338 Eliminado: 339 Relationship between biogeography and macroevolutionary rates: Mean geographic range 340 size increased during the Missourian and Virgilian and declined in the Wolfcampian (Fig. 3); 341 speciation rates were high in the Atokan and Desmoinesian and fell in the Virgilian (Fig. 4); 342 extinction rates were low in the Atokan and Desmoinesian and rose in the Virgilian (Fig. 4). The Comentario [GP12]: Except for 343 Pearson correlation test in Minitab 17 (Minitab, 2016) was used to examine the association 344 between geographic range and either speciation rate extinction rate in greater detail. No 345 significant (at $P \le 0.05$) correlation between speciation or extinction rate and range size was 346 found across all cephalopods or within ammonoids or nautiloids individually (Table 2). However, in cases the values approach P = 0.05 for instance, the association between 347 Eliminado:

ammonoids alone. Notably, an association between decreasing geographic range size and increasing extinction has been documented by numerous studies (e.g. Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990; Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005; Kiessling & Aberhan, 2007; Payne & Finnegan, 2007; Stigall, 2010; Dunhill & Wills, 2015; Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017; Pie & Meyer, 2017; Lam, Stigall, & Matzke, 2018; Schneider, 2018) and thus is a very robust phenomenon in general and likely to be operating to some extent herein. However, over this time interval and for this particular group of species the association is not statistically significant (Table 2), probably because sample sizes are not large, and further this is likely because many taxa were culled by the late Mississippian extinction (M. Powell, pers. comm., 2018).

Analysis of fossil record bias: The low percentage of overlap between cephalopod species geographic ranges and available outcrops, less than 1% in 29 out of 30 species (Table S9; the one species with a larger percentage value, *Orthoceras kansasense*, occurs throughout the Midcontinent Sea), suggests the results are not simply an artifact of an incomplete fossil record, at least pertaining to outcrop availability. The "n-1" jackknifing analysis also supports the robustness of the reconstructed ranges, as no statistically significant differences were found between the mean of the reconstructed and subsampled range values for any time interval (all P-values > 0.9), suggesting that one or a few occurrence records are not having a major influence on biogeographic patterns. Similar results were found in other taxa and time periods by Hunt,

Roy, & Jablonski (2005), Myers & Lieberman (2011), and Myers, MacKenzie, & Lieberman

(2013), although Dunhill, Hannisdal, & Be dysoxia/anoxia is more severe for benthic taxa

Comentario [GP13]: Sentence needs revision. It seems something is missing or maybe it is wrong formulated or it is closely related to the following sentence?

Con formato: Resaltar

Comentario [GP14]: Thus, this same problem can be affecting the results that suggest a constant geographic range size for cephalopods through time

Con formato: Interlineado: Doble

nton (2014) did find some association between outcrop area and diversity in the case of the marine fossil record of Great Britain. Finally, the Pearson correlation test shows no correlation (-0.055, P-Value = 0.789) between the number of occurrence points and geographic range size; this provides further evidence that the biogeographic signatures of Late Paleozoic cephalopods are unlikely to be simply an artifact of the fossil record.

Diversity patterns: Across all cephalopods, species richness increased from the Morrowan to the Atokan, peaked in the Desmoinesian, and decreased through the Wolfcampian (Fig. S1). A similar pattern is seen in the nautiloids (Fig. S2). However, the ammonoids (Fig. S3) demonstrate an earlier peak in the Atokan, followed by a Desmoinesian to Virgilian plateau, with a decrease in the Wolfcampian. Notably, previous studies of Late Paleozoic brachiopod communities in Bolivia showed a consistent trend between diversity and glacial cycling with increased diversity during glacial periods and decreased diversity during inter-glacial periods (Badyrka, Clapham, & Lopez, 2013). However, there seems to be less consistency between species richness trends and glacial cycling in the Midcontinent Sea. For instance, there is an increase in cephalopod species richness throughout the Morrowan to Desmoinesian associated with localized glaciation, and an interglacial period with generally minor glaciation is associated with a decrease in cephalopod species richness from the Desmoinesian to Virgilian, yet by contrast widespread glaciation is associated with a decrease in species richness from the Virgilian to the Wolfcampian. An important point, however, is that these are just raw diversity patterns and sample standardized diversity patterns show a different result (M. Powell, pers. comm., 2018).

Comentario [GP15]: Yes, it is clear that the pattern for all cephalopods is influenced by nautiloids.

Comentario [GP16]: You have not selected lower case for this? Why?

Con formato: Resaltar

Comentario [GP17]: Also, it should be taken into account that brachiopods and cephalopods can show different behavior in response to climatic changes and the conditions associated to them.

Discussion

398 Geographic range shifts through time are one of the pervasive phenomena in the history of 399 life; these are manifest both within species and higher-level clades, occur at a number of 400 different time scales, and are frequently linked to climatic change (Wiley & Lieberman, 2011). Specific examples do come from the Late Paleozoic, a time of extensive climate change 401 402 including profound glaciation along with numerous glacial and interglacial cycles (Montañez and 403 Poulsen, 2013). Those changes impacted patterns of geographic range in both terrestrial plant 404 (e.g., DiMichele et al., 2009; Falcon-Lang & DiMichele, 2010) and marine invertebrate 405 ecosystems (e.g., Leighton, 2005; Powell, 2007; Waterhouse & Shi, 2010). When it comes to 406 marine invertebrates from this time interval, most of the focus has been on the highly diverse 407 benthic faunas (e.g., Stanely & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011; 408 Balseiro, 2016; Segessenman & Kammer, 2018); however, taxa that have a pelagic life style (as 409 adults) are also worth examining. Herein, 79 pelagic species of cephalopods were examined for 410 patterns of range size change using GIS and although in general these species exhibit some 411 evidence for changes in geographic range size (Fig. 3), those changes were not statistically 412 significant nor can they be directly tied to climate change. In a similar vein, many 413 paleontological studies have demonstrated that species with larger geographic ranges tend to 414 have lower extinction rates than species with narrower geographic range sizes (e.g., Vrba, 1980; 415 Jablonski, 1986; Eldredge, 1989; Stanley, 1990; Rode & Lieberman, 2004; Stigall & Lieberman, 416 2006; Payne & Finnegan, 2007; Stigall, 2010; Hopkins, 2011; Dunhill & Wills, 2015). Again, 417 this phenomenon was not found to be statistically significant in the case of the Late Paleozoic 418 cephalopod species considered herein (Table 2).

419

Con formato: Resaltar

Comentario [GP18]: However, the peak in figure 3 for an increased geographic range is associated to a widespread glaciation.

Con formato: Resaltar

Comentario [GP19]: To be consistent with all the results you got, I would say that the same phenomenon can be detected in the Late Paleozoic cephalopod species considered herein, but it resulted statistically not significant, probably because the small samples size.

There may be a few different explanations for these findings. First, it may be that cephalopod species were not significantly affected by the glacial-interglacial climatic cycles transpiring within the Late Paleozoic Midcontinent Sea. A second possible explanation, perhaps coupled to the first, is that since cephalopods are highly mobile relative to benthic marine invertebrates such as gastropods, bivalves, brachiopods, etc., they can more easily occupy a greater portion of their potential range (at least as adults). Further, perhaps the available potential range of cephalopod species does not change much in glacial relative to interglacial regimes. This may seem unlikely given the vast fluctuations in sea level occurring at the time, but pelagic marine organisms, because of their ease of dispersal, may more easily maintain consistent geographic ranges relative to benthic counterparts. Another possible explanation for the pattern retrieved is that, given the limits of stratigraphic correlation, sample size, and the completeness of the fossil record, it was necessary for the analyses of species distribution conducted herein to focus on the time scale of geological stages, whereas in actuality there were climatic changes occurring within stages (Heckel, 2008, 2013); these probably did cause fluctuations in species' geographic ranges within stages, but simply could not be observed in the present study. A final set of explanations are related to the issue of sampling. For instance, it was more difficult for the analyses presented herein to detect a relationship between geographic range size and macroevolutionary rate because speciation and extinction rates could only be calculated for four stages. Further, a common concern when studying the fossil record is that there might be biases that can lead to inaccurate findings. This concern can be manifold, and although it is not entirely obviated by the results presented regarding the apparent quality of the fossil record suggested by the various tests presented, it does become harder to invoke as a specific, primary reason for results retrieved.

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

Comentario [GP20]: Removed redundant text

Eliminado: relative to taxa that are

Eliminado:), such as brachiopods

446 Another finding perhaps contrary to what might typically be expected for the Late Paleozoic is 447 that there was at least some evolutionary diversification and turnover within cephalopods, such 448 that species diversity did fluctuate throughout the Pennsylvanian and early Permian. 449 Pennsylvanian rates of macrevolution are typically classified as 'sluggish' or 'stolid' across all 450 marine animals, and Sepkoski (1998) formalized the notion that there was a marked decline in 451 evolutionary rates of Carboniferous and Permian marine faunas. Stanley & Powell (2003) 452 reiterated this result and identified low mean macroevolutionary rates for marine invertebrate 453 taxa. Bonelli & Patzkowsky (2011) also documented a pattern of low turnover in the face of 454 major episodes of sea-level rise and fall due to climatic change. The results from the analyses 455 presented herein could indicate that macroevolutionary rate, at least in the case of Late Paleozoic 456 cephalopods, was more dynamic than often thought. One possible reason for this result is that 457 cephalopods are a fairly evolutionarily volatile group (Lieberman & Melott, 2013) relative to many other marine invertebrate groups and have relatively high rates of diversification (Stanley, 458 459 1979; Jacobs et al., 1994; Landman, Tanabe, & Davis, 1996; Monnet, De Baets, & Klug, 2011; 460 Korn, Klug, & Walton, 2015; Korn et al., 2015); thus, they would generally be expected to have 461 higher rates of speciation and extinction than typical. However, this may not be the entire 462 explanation, as other groups also seem to show elevated rates of speciation and extinction during this time interval. For instance, Balseiro (2016) did document evolutionary turnover at high 463 464 latitudes, and elevated evolutionary rates have also been found in fusulinid foraminifera (Groves & Lee, 2008; Groves & Yue, 2009) and advanced cladid crinoids (Segessenman & Kammer, 465 466 2018). Ultimately, we support the contention raised by Segessenman & Kammer (2018) that 467 patterns from a few individual groups do not refute the general pattern of sluggish macroevolution postulated for this time period in the history of life. The results may lend 468

Comentario [GP21]: I do not understand. If you use "late" instead "Late" you should be consistent.

Con formato: Resaltar

Con formato: Resaltar

Eliminado: Körn

Eliminado: Körn

Comentario [GP22]: Both are benthic taxa

credence to the notion that macroevolutionary patterns across all marine animals are rarely unitary for any one time period in the history of life, and instead often tend to be variegated. **Conclusions** Patterns of range size change in late Paleozoic cephalopods from the North American Con formato: Resaltar Midcontinent Sea were investigated using GIS. These species do exhibit some evidence for changes in geographic range size through time, but the changes were not statistically significant nor could they be directly tied to climate change. Further, in contradistinction to what is usually found in the fossil record, cephalopod species with larger geographic ranges were not found to have lower extinction rates than species with narrower geographic ranges. These distinctive patterns may perhaps be related to the fact that cephalopods are pelagic and highly mobile, at least relative to many benthic marine invertebrates. Finally, the group shows more evolutionary diversification and turnover during the Pennsylvanian and early Permian than is typical of other Con formato: Resaltar Eliminado: E marine invertebrate groups and this could be related to the fact that cephalopods are an evolutionarily volatile group. Acknowledgements Thanks to Chris Beard, Kirsten Jensen, Julien Kimmig, and Luke Strotz for very helpful discussions on this work and thanks to them and Matthew Powell, Alexander Dunhill, Dieter Korn, Graciela Piñeiro, Thomas Algeo, and Wolfgang Kiessling for comments on previous

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489 490

491

492

versions of the manuscript. Thanks to Julien Kimmig for assistance with collections related	
matters and for providing access to specimens in the KUMIP; thanks to Tiffany Adrain for	
assistance with collections related matters and for providing access to specimens in the UI; and	
thanks to Susan Butts for assistance with collections related matters and for providing access to	
specimens in the YPM. Thanks to Michelle Casey and Erin Saupe for assistance with	
stratigraphic correlations and use of GIS.	
References	
Abe FR, Lieberman BS. 2009. The nature of evolutionary radiations: a case study involving	
Devonian trilobites. Evolutionary Biology 36 :225-234.	
Arkell WJ, Furnish WM, Kummel B, Miller AK, Moore RC, Schindewolf OH, Sylvester-Brady	
PC, Wright CW. 1957. Part L. Mollusca Cephalopoda Ammonoidea. Treatise on	
Invertebrate Palaeontology. Lawrence, Kansas: Geological Society of America.	
Badyrka K, Clapham ME, Lopez S. 2013. Paleoecology of brachiopod communities during the	
late Paleozoic ice age in Bolivia (Copacabana Formation, Pennsylvanian-Early Permian).	
Palaeogeography, Palaeoclimatology, Palaeoecology 387:56-65.	
Balseiro D. 2016. Compositional turnover and ecological changes related to the waxing and	
waning of glaciers during the Late Paleozoic ice age in ice-proximal regions	
(Pennsylvanian, western Argentina). Paleobiology 42:335-357.	
Boardman DR II, Work DM, Mapes RH, Barrick JE. 1994. Biostratigraphy of middle and late	

Pennsylvanian (Desmoinesian-Virgilian) ammonoids. Kansas Geological Survey Bulletin

518	232 :1-121.
519	Bonelli JR, Patzkowsky ME. 2011. Taxonomic and ecologic persistence across the onset of the
520	Late Paleozoic Ice Age: evidence from the upper Mississippian (Chesterian series),
521	Illinois basin, United States. <i>Palaios</i> 26 :5-17.
522	Böse E. 1919. The Permo-Carbonioferous ammonoids of the Glass Mountains, West Texas, and their
523	stratigraphical significance. University of Texas Bulletin 1762:1-241.
524	Böse E. 1920. On ammonoids from the Abo Sandstone of New Mexico and the age of the beds
525	which contain them. American Journal of Science 49:51-60.
526	Brooks DR, McLennan DA. 1991. Phylogeny, Ecology, and Behavior: a Research Program in
527	Comparative Biology. Chicago: University of Chicago Press.
528	Carrasco MA. 2013. The impact of taxonomic bias when comparing past and present species
529	diversity. Palaeogeography, Palaeoclimatology, Palaeoecology 372:130–137.
530	Castiglione S, Mondanaro A, Melchionna M, Serio C, Di Febbraro M, Carotenuto F, Raia
531	P. 2017. Diversification rates and the evolution of species range size frequency
532	distribution. Frontiers in Ecology and Evolution 5:147, 1-10.
533	Cecil CB, DiMichele WA, Elrick SD. 2014. Middle and Late Pennsylvanian cyclothems,
534	American Midcontinent: Ice-Age environmental changes and terrestrial biotic dynamics.
535	Comptes Rendus Geoscience 346:159-168.
536	Clifton RL. 1942. Invertebrate faunas from the Blaine and the Dog Creek formations of the Permian
537	Leonard Series. Journal of Paleontology 16:685-699.
538	Cox DD. 1857. First report of a geological reconnoissance of the northern countries of Arkansas,
539	made during the years 1857 and 1858. Arkansas Geological Survey.

540	Darroch SAF, Saupe EE. 2018. Reconstructing geographic range-size dynamics from fossil
541	data. Paleobiology 44:25-39.
542	Davydov VI, Körn D, Schmitz MD. 2012. Chapter 23 - The Carboniferous Period. In:
543	Gradstein FM, Ogg JG, Schmitz MD, Ogg GM, eds. The Geologic Time Scale.
544	Amsterdam: Elsevier, 603 - 651.
545	DiMichele WA, Montañez IP, Poulsen CJ, Tabor NJ. 2009. Climate and vegetational regime
546	shifts in the late Paleozoic ice age earth. Geobiology 7:200-226.
547	Dunhill AM. 2012. Problems with using rock outcrop area as a paleontological sampling proxy:
548	rock outcrop and exposure area compared with coastal proximity, topography, land use,
549	and lithology. <i>Paleobiology</i> 38 :126-143.
550	Dunhill AM, Wills MA. 2015. Geographic range did not confer resilience to extinction in
551	terrestrial vertebrates at the end-Triassic crisis. <i>Nature Communications</i> 6 :7980.
552	Dunhill AM, Hannisdal B, Benton MJ. 2014. Disentangling rock record bias and common-
553	cause from redundancy in the British fossil record. <i>Nature Communications</i> 5 :4818.
554	Eldredge N. 1989. Macroevolutionary Dynamics: Species, Niches, and Adaptive Peaks. New
555	York: McGraw-Hill.
556 557	Eldredge N, Gould SJ. 1972. Punctuated equilibria: an alternative to phyletic gradualism. In:
558	Schopf TJM, ed. <i>Models in Paleobiology</i> . San Francisco: Freeman, Cooper, 82-115.
559	Elias MK. 1938a. Properrinites plummeri Elias, n. gen and sp., from late Paleozoic rocks of Kansas
560	Journal of Paleontology 12:101-105.

561	Elias MK. 1938b. Revision of Gonioloboceras from late Paleozoic rocks of the midcontinent region.
562	Journal of Paleontology 12:91100.
563	ESRI. 2014. ArcGIS Desktop: Release 10.3. Redlands, CA: Environmental Systems Research
564	Institute.
565	Falcon-Lang HJ, DiMichele WA. 2010. What happened to the coal forests during
566	Pennsylvanian glacial phases? <i>Palaios</i> 25 :611-617.
567	Fielding CR, Frank TD, Isbell JL. 2008. The Late Paleozoic Ice Age: a review of current
568	understanding and synthesis of global climate patterns. Geological Society of America
569	Special Paper 441 :343-354.
570	Foerste AF. 1936. Silurian cephalopods of the Port Daniel area on Gaspé Peninsula, in eastern
571	Canada. Bulletin of Denison University, Journal of the Scientific Laboratories 31:21-92.
572	Foote M. 2000. Origination and extinction components of taxonomic diversity: general
573	problems. <i>Paleobiology</i> 26 :74-102.
574	Furnish WM, Glenister BF. 1971. Permian Gonioloboceratidae (Ammonoidea). Smithsonian
575	Contributions to Paleobiology 3:301-312.
576	Furnish WM, Glenister BF, Hansman RH. 1962. Brachycycloceratidae, novum, deciduous
577	Pennsylvanian nautiloids. Journal of Paleontology 36:1341-1356.
578	Furnish WM, Glenister BF, Kullmann J, Zhou Z. 2009. Part L. Mollusca 4, Revised, Vol. 2:
579	Carboniferous and Permian Ammonoidea (Goniatitida and Prolecanitida), pg. 136-144.
580	Treatise on Invertebrate Palaeontology. Lawrence: The University of Kansas Paleontological
581	Institute.

582	Girty GH. 1911. On some new genera and species of Pennsylvanian fossils from the Wewoka
583	Formation of Oklahoma. Annals of the New York Academy of Sciences 21:119-156.
584	Girty GH. 1915. Fauna of the Wewoka Formation of Oklahoma. United States Geological Survey
585	Bulletin 544 :1-353.
586	Gordon M. 1964. Carboniferous cephalopods of Arkansas. United States Geological Survey
587	Professional Paper 460:1-322.
588	Groves JR, Lee A. 2008. Accelerated rates of foraminiferal origination and extinction during the
589	late Paleozoic ice age. Journal of Foraminiferal Research 38:74-84.
590	Groves JR, Yue W. 2009. Foraminiferal diversification during the late Paleozoic ice age.
591	Paleobiology 35 :367-392.
592	Heckel PH. 1986. Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive
593	depositional cycles along midcontinent outcrop belt, North America. Geology 14:330-
594	334.
595	Heckel PH. 2008. Pennsylvanian cyclothems in midcontinent North America as far-field effects
596	of waxing and waning of Gondwana ice sheets. Geological Society of America Special
597	Paper 441 :275-289.
598	Heckel PH. 2013. Pennsylvanian cyclothems of northern midcontinent shelf and biostratigraphic
599	correlation of cyclothems. <i>Stratigraphy</i> 10 :3-40.
500	Hendricks JR, Lieberman BS, Stigall AL. 2008. Using GIS to study palaeobiogeographic and
501	macroevolutionary patterns in soft-bodied Cambrian arthropods. Palaeogeography,
502	Palaeoclimatology, Palaeoecology 264 :163-175.

603	Hendricks JR, Saupe EE, Myers CE, Hermsen EJ, Allmon WD. 2014. The generification of
604	the fossil record. <i>Paleobiology</i> 40 :511-528.
605	Hewitt RA, Dokainish MA, El Aghoury M, Westermann GE. 1989. Bathymetric limits of a
606	Carboniferous orthoconic nautiloid deduced by finite element analysis. <i>Palaios</i> 4 :157-167.
607	Hoare RD. 1961. Desmoinesian Brachiopoda and Mollusca from southwest Missouri. Missouri
608	University Studies 36 :1-262.
609	Hopkins MJ. 2011. How species longevity, intraspecific morphological variation, and
610	geographic range size are related: a comparison using Late Cambrian trilobites.
611	Evolution 65 :3253-3273.
612	Hunt G, Roy K, Jablonski D. 2005. Species-level heritability reaffirmed: a comment on 'on the
613	heritability of geographic range sizes'. American Naturalist 166:129-135.
614	Hyatt A. 1891. Carboniferous cephalopods. Geological Survey of Texas Annual Report 2:329-356.
615	Hyatt A. 1893. Carboniferous cephalopods: Second paper. Geological Survey of Texas Annual
616	Report 4 :377-474.
617	Isbell JL. 2003. Timing of the late Paleozoic glaciation in Gondwana: was glaciation responsible
618	for the development of northern hemisphere cyclothems? Geological Society of America
619	Special Paper 370 :5-24.
620	Jablonski D. 1986. Larval ecology and macroevolution in marine invertebrates. Bulletin of
621	Marine Science 39 :565-587.
622	Jablonski D, Hunt G. 2015. Larval ecology, geographic range, and species survivorship in
623	Cretaceous mollusks: organismic versus species-level explanations. American Naturalist
624	168 :556-564.

525	Jablonski D, Roy K. 2003. Geographical range and speciation in fossil and living
526	molluscs. Proceedings of the Royal Society of London, Series B 270:401-406.
527	Joachimski MM, Lambert LL. 2015. Salinity contrast in the US Midcontinent Sea during
528	Pennsylvanian glacio-eustatic highstands: evidence from conodont apatite $\delta 18$ O.
529	Palaeogeography, Palaeoclimatology, Palaeoecology 433:71-80.
530	Keyes CR. 1894. Paleontology of Missouri. Missouri Geological Survey 4:1-226.
531	Kiessling W, Aberhan M. 2007. Geographical distribution and extinction risk: lessons from
532	Triassic-Jurassic marine benthic organisms. <i>Journal of Biogeography</i> 34 :1473-1489.
533	Klug C, Korn D, De Baets K, Kruta I, Mapes RH, eds. 2015. Ammonoid Paleobiology: from
534	Macroevolution to Paleogeography. Berlin: Springer.
535	Kolis K. 2017. The biogeography and macroevolutionary trends of late Paleozoic cephalopods in
536	the North American Midcontinent Sea: understanding the response of pelagic organisms
537	to changing climate during the Late Paleozoic Ice Age. Master's Thesis, Department of
538	Ecology & Evolutionary Biology, University of Kansas.
539	Korn D, Klug C, Walton SA. 2015. Taxonomic diversity and morphological disparity of
540	Paleozoic ammonoids. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH, eds.
541	Ammonoid Paleobiology: from Macroevolution to Paleogeography. Berlin: Springer,
542	231-264.
543	Kröger B. 2005. Adaptive evolution in Paleozoic coiled cephalopods. <i>Paleobiology</i> 31:253-268.
544	Kröger B, Mapes RH. 2005. Revision of some common Carboniferous genera of North American
545	orthocerid nautiloids. Journal of Paleontology 79:1002-1011.
546	Kues BS. 1995. Marine fauna of the Early Permian (Wolfcampian) Robledo Mountains Member,
547	Hueco Formation, southern Robledo Mountains, New Mexico. New Mexico Museum of

648	Natural History and Science Bulletin 6 :63-90.
649	Kummel B. 1953. American Triassic coiled nautiloids. U. S. Geological Survey Professional Paper
650	250 :1-149.
651	Kummel B. 1963. Miscellaneous nautilid type species of Alpheus Hyatt. Bulletin of the Museum of
652	Comparative Zoology 128:325-368.
653	Lam AR, Stigall AL, Matzke N. 2018. Dispersal in the Ordovician: speciation patterns and
654	paleobiogeographic analyses of brachiopods and trilobites. Palaeogeography,
655	Palaeoclimatology, Palaeoecology 489:147-165.
656	Landman N, Tanabe K, Davis RA, eds. 1996. Ammonoid Paleobiology. New York: Plenum.
657	Leighton LR. 2005. The latitudinal diversity gradient through deep time: testing the "Age of
658	Tropics" hypothesis using Carboniferous productidine brachiopods. <i>Evolutionary</i>
659	Ecology 19 :563-581.
660	Liow LH. 2007. Does versatility as measured by geographic range, bathymetric range and
661	morphological variability contribute to taxon longevity? Global Ecology and
662	Biogeography 16 :117-128.
663	Lieberman BS. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate
664	Tectonics, and Evolution. New York: Kluwer Academic/Plenum.
665	Lieberman BS. 2002. Biogeography with and without the fossil record. <i>Palaeogeography</i> ,
666	Palaeoclimatology, Palaeoecology 178:39-52.
667	Lieberman BS, Kimmig J. 2018. Museums, paleontology, and a biodiversity science based
668	approach. In: Rosenberg GD, Clary RM, eds. Museums at the Forefront of the History of
669	Geology: History Made, History in the Making. Geological Society of America Special

570	Paper 535. In press. https://doi.org/10.1130/2018.2535(22)
571	Lieberman BS, Melott AL. 2013. Declining volatility, a general property of disparate systems:
572	from fossils, to stocks, to the stars. <i>Palaeontology</i> 56 :1297-1304.
573	Marshall CR, Finnegan S, Clites EC, Holroyd PA, Bonuso N, Cortez C, Davis E, Dietl GP,
574	Druckenmiller PS, Eng RC, Garcia C, Estes-Smargiassi K, Hendy A, Hollis KA,
575	Little H, Nesbitt EA, Roopnarine P, Skibinski L, Vendetti J, White LD. 2018.
576	Quantifying the dark data in museum fossil collections as palaeontology undergoes a
577	second digital revolution. Biology Letters 14:20180431.
578	Mather KF. 1915. The fauna of the Morrow group of Arkansas and Oklahoma. Bulletin of Science
579	Laboratories of Denison University 18:59-284.
580	Mayr E. 1942. Systematics and the Origin of Species. Cambridge: Harvard University Press.
581	McCaleb JA. 1963. The goniatite fauna from the Pennsylvanian Winslow Formation of northwest
582	Arkansas. Journal of Paleontology 37:110-115.
583	McChesney AM. 1860. Descriptions of new species of fossils from the Paleozoic rocks of the
584	western states. Transactions of the Chicago Academy of Sciences 1:1-76.
585	Meek FB, Worthen AH. 1860. Descriptions of new Carboniferous fossils from Illinois and other
586	western states. Proceeding of the Academy of Natural Sciences of Philadelphia 4 :447–472.
587	Meek FB, Worthen AH. 1870. Descriptions of new species and genera of fossils from the
588	Palaeozoic rocks of the western states. Proceedings of the Academy of Natural Sciences of
589	Philadelphia 22 :22-56.
590	Mii HS, Grossman EL, Yancey TE. 1999. Carboniferous isotope stratigraphies of North

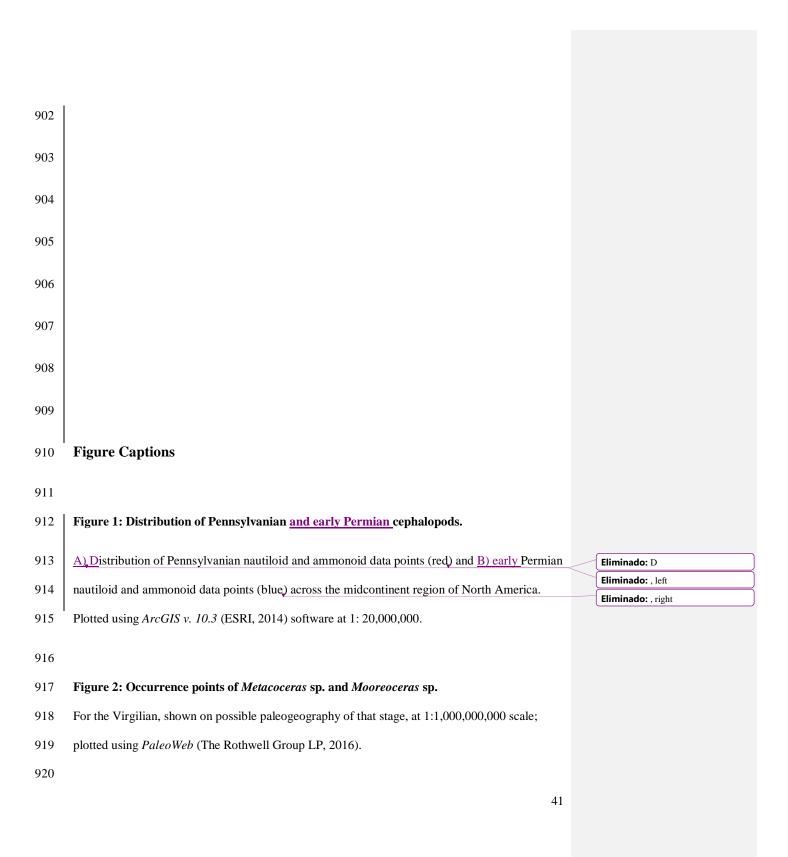
691	America: implications for Carbonifeous paleoceanography and Mississippian glaciation.
692	Geological Socity of America Bulletin 111:960-973.
693	Miller AK. 1930. A new ammonoid fauna of Late Paleozoic age from western Texas. Journal of
694	Paleontology 4:383-412.
695	Miller AK, Cline LM. 1934. The cephalopod fauna of the Pennsylvanian Nellie Bly Formation of
696	Oklahoma. Journal of Paleontology 8:171-185.
697	Miller AK, Downs R. 1948. A cephalopod fauna from the type section of the Pennsylvanian
698	"Winslow Formation" of Arkansas. Journal of Paleontology 22:672-680.
699	Miller AK, Downs RH. 1950. Ammonoids of the Pennsylvanian Finis Shale of Texas. Journal of
700	Paleontology 24:185-218.
701	Miller AK, Furnish WM. 1940a. Permian Ammonoids of the Guadalupe Mountain region and
702	adjacent areas. Geological Society of America, Special Papers 26:1-238.
703	Miller AK, Furnish WM. 1940b. Studies of Carboniferous Ammonoids, Parts 5-7. Journal of
704	Paleontology 14 :521-543.
705	Miller AK, Furnish WM. 1957. Introduction to Ammonoidea. Pp. L1-L6 in W. J. Arkell et al., Part
706	L Mollusca 4 Cephalopoda Ammonoidea. Treatise on Invertebrate Paleontology. Lawrence,
707	Kansas: Geological Society of America.
708	Miller AK, Moore A, 1938. Cephalopods from the Carboniferous Morrow group of northern
709	Arkansas and Oklahoma. Journal of Paleontology 22:341-354.
710	Miller AK, Owen JB. 1937. A new Pennsylvanian cephalopod fauna from Oklahoma. Journal of
711	Paleontology 11:403-422.

/12	Miller AK, Owen JB. 1939. An ammonoid fauna from the lower Pennsylvanian Cherokee
713	Formation of Missouri. Journal of Paleontology 13:141-162.
714	Miller AK, Thomas HD. 1936. The Casper Formation (Pennsylvanian) of Wyoming and its
715	cephalopod fauna. Journal of Paleontology 10:715-738.
716	Miller AK, Unklesbay AG. 1942. Permian nautiloids from western United States. Journal of
717	Paleontology 16:719-738.
718	Miller AK, Youngquist W. 1947. Lower Permian Cephalopods from the Texas Colorado River
719	Valley. The University of Kansas Paleontological Contributions 2:1-15.
720	Miller AK, Youngquist WL. 1949. American Permian nautiloids. Geological Society of
721	America Memoir 41 :1-217.
722	Miller AK, Dunbar CO, Condra GE. 1933. The nautiloid cephalopods of the Pennsylvanian
723	System in the Mid-continent region. Nebraska Geological Survey Bulletin 9:1-240.
724	Miller AK, Lane JH, Unklesbay AG. 1947. A nautiloid cephalopod fauna from the Pennsylvanian
725	Winterset Limestone of Jackson Country, Missouri. University of Kansas Paleontological
726	Contributions 2:1-11.
727	Miller AK, Youngquist W, Nielsen ML. 1952. Mississippian cephalopods from western Utah.
728	Journal of Paleontology 26 :148-161.
729	Miller HW, Breed WJ. 1964. Metacoceras bowmani, a new species of nautiloid from the Toroweap
730	Formation (Permian) of Arizona. Journal of Paleontology 38:877-880.
731	Miller SA. 1892. Palaeontology. Geological Survey of Indiana Annual Report Advance Sheets 18.
732	Minitab 17 Statistical Software. 2016. State College, PA: Minitab, Inc.

733	Monnet C, De Baets K, Klug C. 2011. Parallel evolution controlled by adaptation and		
734	covariation in ammonoid cephalopods. BMC Evolutionary Biology 11:115, 1-21.		
735	Montañez IP. 2007. CO ₂ -forced climate and vegetational instability during Late Paleozoic		
736	deglaciation. Science 315:87-91.		
737	Montañez IP, Poulsen CJ. 2013. The late Paleozoic Ice Age: an evolving paradigm. Annual		
738	Review of Earth Planet Science 41:629-656.		
739	Myers CE, Lieberman BS. 2011. Sharks that pass in the night: using Geographical Information		
740	Systems to investigate competition in the Cretaceous Interior Seaway. Proceedings of the		
741	Royal Society of London, Series B 278:681-689.		
742	Myers CE, Saupe EE. 2013. A macroevolutionary expansion of the modern synthesis and the		
743	importance of extrinsic abiotic factors. <i>Palaeontology</i> 56 :1179-1198.		
744	Myers CE, MacKenzie RA, Lieberman BS. 2013. Greenhouse biogeography: the relationship		
745	of geographic range to invasion and extinction in the Western Interior Seaway.		
746	Paleobiology 39:135-148.		
747	Nassichuk WW. 1975. Carboniferous ammonoids and stratigraphy in the Canadian Arctic		
748	archipelago. Geological Survey of Canada Bulletin 237:1-240.		
749	Nelson WJ, Lucas SG. 2011. Carboniferous geologic history of the Rocky Mountain region.		
750	New Mexico Museum of Natural History and Science Bulletin 53:115-142.		
751	Newell ND. 1936. Some mid-Pennsylvanian invertebrates from Kansas and Oklahoma: III.		
752	Cephalopoda. Journal of Paleontology 10:481-489.		

753	Niko S, Mapes RH. 2009. Redescription and new information on the Carboniferous cephalopod			
754	Brachycycloceras normale Miller, Dunbar and Condra, 1933. Paleontological Research			
755	13 :337-343.			
756	Orzechowski EA, Lockwood R, Byrnes JEK, Anderson SC, Finnegan S, Finkel ZV, Harni			
757	PG, Lindberg DR, Liow LH, Lotze HK, McClain CR, McGuire JL, O'Dea A,			
758	Pandolfi JM, Simpson C, Tittensor D. 2015. Marine extinction risk shaped by			
759	trait-environment interactions over 500 million years. Global Change Biology 21:3595-			
760	3607.			
761	Payne JL, Finnegan S. 2007. The effect of geographic range on extinction risk during			
762	background and mass extinction. Proceedings of the National Academy of Sciences, USA			
763	104 :10506-10511.			
764	Pie MR, Meyer ALS. 2017. The evolution of range sizes in mammals and squamates:			
765	heritability and differential evolutionary rates for low- and high-latitude limits.			
766	Evolutionary Biology 44:347-355.			
767	Plummer FB, Scott G. 1937. Upper Paleozoic ammonites of Texas: the geology of Texas.			
768	University of Texas Bulletin 3701, vol 3, part 1:1-516.			
769	Pope JP. 2012. Description of Pennsylvanian units, revision of stratigraphic nomenclature and			
770	reclassification of the Morrowan, Atokan, Desmoinesian, Missourian, and Virgilian			
771	stages in Iowa. Iowa Department of Natural Resources Special Report Series 5:1-140.			
772	Powell MG. 2005. Climatic basis for sluggish macroevolution during the late Paleozoic ice age.			
773	Geology 33 :381-384.			
774	Powell MG. 2007. Latitudinal diversity gradients for brachiopod genera during late Paleozoic			

775	time: links between climate, biogeography and evolutionary rates. Global Ecology and			
776	Biogeography 16:519-528.			
777	R version 3.4.0. 2017. You Stupid Darkness. Vienna, Austria: R foundation for statistical			
778	computing.			
779	Raymond A, Metz C. 2004. Ice and its consequences: glaciation in the Late Ordovician, Late			
780	Devonian, Pennsylvanian-Permian and Cenozoic compared. Journal of Geology 112:655			
781	670.			
782	Rios NE, Bart HL Jr. 2018. GEOlocate: a platform for georeferencing natural history			
783	collections data. https://www.geo-locate.org .			
784	Roark A, Flake R, Grossman EL, Olszewski T, Lebold J, Thomas D, Marcantonio F, Miller			
785	B, Raymond A, Yancey T. 2017. Brachiopod geochemical records from across the			
786	Carboniferous seas of North America: evidence for salinity gradients, stratification, and			
787	circulation patterns. Palaeogeography, Palaeoclimatology Palaeoecology 485:136-153.			
788	Rode AL, Lieberman BS. 2004. Using GIS to unlock the interactions between biogeography,			
789	environment, and evolution in Middle and Late Devonian brachiopods and bivalves.			
790	Palaeogeography, Palaeoclimatology, Palaeoecology 211:345-359.			
791	Rode AL, Lieberman BS. 2005. Intergrating evolution and biogeography: a case study			
792	involving Devonian crustaceans. Journal of Paleontology 79:267-276.			
793	Rojas A, Patarroyo P, Mao L, Bengtson P, Kowalewski M. 2017. Global biogeography of			
794	Albian ammonoids: a network-based approach. Geology 45:659-662.			
795	Rook DL, Heim NA, Marcot J. 2013. Contrasting patterns and connections of rock and biotic			


796	diversity in the marine and non-marine fossil records of North America.	
797	Palaeogeography, Palaeoclimatology, Palaeoecology 372:123-129.	
798	Rothwell Group LP. 2016. PaleoWeb: Free Plate Tectonics Software. Lakewood, CO.	
799	Ruzhentsev VE, Bogoslovskaya MF. 1971. Namurskiy etap v evolyutsii ammonoidey.	
800	Rannenamyurskie ammonoidei. Akademiya Nauk SSSR, Trudy Paleontologicheskogo	
801	Instituta 133 :1-382.	
802	Ruzhentsev VE, Shimanskiy VN. 1954. Nizhnepermskie svernutye i sognutye Nautiloidei	
803	yuzhnogo Urala. Akademiya Nauk SSSR, Trudy Paleontologicheskogo Instituta 50:1-150.	
804	Saupe EE, Qiao H, Hendricks JR, Portell RW, Hunter SJ, Soberón J, Lieberman BS. 2015.	
805	Niche breadth and geographic range size as determinants of species survival on	
806	geological time scales. Global Ecology and Biogeography 24:1159-1169.	
807	Sawin RS, West RR, Franseen EK, Watney WL, McCauley JR. 2006. Carboniferous-	
808	Permian boundary in Kansas, midcontinent, USA: current research in earth sciences.	
809	Kansas Geological Survey, Bulletin 252, Part 2:1-13.	
810	Sawin RS, Franseen EK, West RR, Ludvigson GA, Watney WL. 2008. Clarification and	
811	changes in Permian stratigraphic nomenclature in Kansas: current research in earth	
312	sciences. Kansas Geological Survey, Bulletin 254, Part 2:1-4.	
313	Sawin RS, Franseen EK, Watney WL, West RR, Ludvigson GA. 2009. New stratigraphic	
814	rank for the Carboniferous, Mississippian, and Pennsylvanian in Kansas: current research	
815	in earth sciences. Kansas Geological Survey, Bulletin 256, Part 1:1-4.	
816	Sayre AN. 1930. The fauna of the Drum Limestone of Kansas and western Missouri. University of	
317	Kansas Science Bulletin 19:1-203	

818	Schneider CL. 2018. Marine refugia past, present, and future: lessons from ancient geologic			
819	crises for modern marine ecosystem conservation. In: Tyler CL, Schneider CL, eds			
820	Marine Conservation Paleobiology. Berlin: Springer, 163-208.			
821	Segessenman DC, Kammer TW. 2018. Testing evolutionary rates during the late Paleozoic ice			
822	age using the crinoid fossil record. <i>Lethaia</i> 51 :330-343.			
823	Sepkoski JJ Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the			
824	Royal Society of London 353:315-326.			
825	Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC, Heins L, Herzog K, Lieberman			
826	BS. 2016. The evolving theory of evolutionary radiations. Trends in Ecology and			
827	Evolution (TREE) 31:27-34.			
828	Smith HJ. 1938. The Cephalopod Fauna of the Buckhorn Asphalt. Chicago: University of Chicago			
829	Libraries.			
830	Smith JP. 1896. Marine fossils from the Coal Measures of Arkansas. Proceedings of the American			
831	Philosophical Society 35 :213-285.			
832	Smith JP. 1903. The Carboniferous Ammonoids of America. Monographs of the United States			
833	Geological Survey 52 :1-211.			
834	Stanley SM. 1979. Macroevolution. San Francisco: W. H. Freeman.			
835	Stanley SM. 1990. The general correlation between rate of speciation and rate of extinction:			
836	fortuitous causal linkages. In: Ross RM, Allmon WD, eds. Causes of Evolution: a			
837	Paleontological Perspective. Chicago: University of Chicago Press, 103-127.			
838	Stanley SM. Powell MG. 2003. Depressed rates of origination and extinction during the late			

339	Paleozoic ice age: a new state for the global marine ecosystem. Geology 31:877-880.				
340	Stigall AL. 2010. Using GIS to assess the biogeographic impact of species invasions on native				
341	brachiopods during the Richmondian Invasion in the type-Cincinnatian (Late Ordovician,				
342	Cincinnati region). Palaeontologia Electronica 13(1), 5A:1-19.				
343	Stigall AL, Lieberman BS. 2006. Quantatative palaeobiogeography: GIS, phylogenetic				
344	biogeographical analysis and conservation insights. Journal of Biogeography 33:2051-				
345	2060.				
346	Sturgeon MT. 1946. Allegheny fossil invertebrates from eastern Ohio-Nautiloidea. <i>Journal of</i>				
347	Paleontology 20:8-37.				
348	Sturgeon MT, Windle DL, Mapes RH, Hoare RD. 1982. New and revised taxa of Pennsylvanian				
349	cephalopods in Ohio and West Virginia. Journal of Paleontology 56:1453-1479.				
350	Swallow GC. 1858. Rocks of Kansas with descriptions of new Permian fossils. Transactions of the				
851	Academy of Sciences St. Louis 1:1-27.				
352	Tabor NJ. 2007. Permo-Pennsylvanian palaeotemperatures from Fe-Oxide and phyllosilicate				
353	δO18 values. Earth and Planetary Science Letters 253:159-171.				
354	Tabor NJ, Poulsen CJ. 2007. Paleoclimate across the late Pennsylvanian-early Permian tropical				
355	paleolatitudes: a review of climate indicators, their distribution, and relation to				
356	palaeophysiographic climate factors. Palaeogeography, Palaeoclimatology,				
357	Palaeoecology 268 :293-310.				
358	Teichert C. 1940. Contributions to nautiloid nomenclature. <i>Journal of Paleontology</i> 14:590-597.				
359	Teichert C, Kummel B, Sweet WC, Stenzel HB, Furnish WM, Glenister BF, Erben HK, Moore				

860	RC, Zeller D. 1964. Part K Mollusca 3 Cephalopoda—General Features, Endoceratoidea—			
861	$Actino cerato idea-Nautilo idea-Bactrito idea.\ Treatise\ on\ Invertebrate\ Pale onto logy.$			
862	Lawrence, Kansas: The Geological Society of America.			
863	Unklesbay AG. 1954. Distribution of American Pennsylvanian cephalopods. <i>Journal of</i>			
864	Paleontology 28:84-95.			
865	Unklesbay AG, Palmer EJ. 1958. Cephalopods from the Burgner Formation in Missouri. Journal of			
866	Paleontology 32 :1071-1076.			
867	US Geological Survey. 2017. U.S. Geologic Names Lexicon ("Geolex"). Retrieved from the			
868	National Geologic Map Database: https://ngmdb.usgs.gov/Geolex/search .			
869	Vrba ES. 1980. Evolution, species, and fossils: how does life evolve? South African Journal of			
870	Science 76 :61-84.			
871	Waterhouse JB, Shi GR. 2010. Late Palaeozoic global changes affecting high-latitude			
872	environments and biotas: an introduction. Palaeogeography, Palaeoclimatology,			
873	Palaeoecology 298 :1-16.			
874	Wells MR, Allison PA, Piggott MD, Gorman GJ, Hampson GJ, Pain CC, Fang F. 2007.			
875	Numerical modeling of tides in the late Pennsylvanian Midcontinent Seaway of North			
876	America with implications for hydrography and sedimentation. Journal of Sedimentary			
877	Research 77:843-865.			
878	White CA. 1889. On the Permian formation of Texas. <i>The American Naturalist</i> 23:109-128.			
879	White CA, St. John OH. 1867. Descriptions of new Subcarboniferous and Coal Measure fossils			
880	collected upon the Geological Survey of Iowa; together with a notice of new generic			

881	characters observed in two species of brachiopods. Transactions of the Chicago Academy of			
882	Sciences 1:115-127.			
883	White RD, Skorina LK. 1999. A type catalog of fossil invertebrates (Mollusca: Actinoceratoiclea,			
884	Bactritoidea, Endoceratoidea, and Nautiloidea) in the Yale Peabody Museum. Postilla 219:1-			
885	39.			
886	Wieczorek C, Wieczorek J. 2015. Georeferencing calculator (version 20160920). Museum of			
887	Vertebrate Zoology, University of California, Berkeley. http://manisnet.org/gci2.html .			
888	Wiley EO, Lieberman BS. 2011. Phylogenetics, 2 nd edition. New York: J. Wiley & Sons.			
889	Yacobucci MM. 2017. Marine life in a greenhouse world: cephalopod biodiversity and			
890	biogeography during the early Late Cretaceous. <i>Paleobiology</i> 43 :587-619.			
891	Young JA. 1942. Pennsylvanian Scaphopoda and Cephalopoda from New Mexico. Journal of			
892	Paleontology 16 :120-125.			
893	Zeller DE, ed. 1968. The stratigraphic succession in Kansas. Kansas Geological Survey, Bulletin			
894	189 :1-81.			
895				
896				
897				
000				
898				
899				
900				
- 00				
901				
	40			

924	Figure 3: Mean geographic range size in km ² of cephalopods through time.		
925	Nautiloid species (A) and ammonoid species (B) range changes occur but are not statistically	<	Eliminado: left
926	significant when analyzed using non-parametric tests (note, median range size data not graphed		Eliminado: right
927	but for all cephalopods they are 79km ² for all time intervals, for ammonoids they are 78.5km ² for		
928	the Desmoinesian and Wolfcampian and 79km ² for all other time intervals, and for nautiloids		
929	they are 79km ² for all time intervals) or when log transformed data are analyzed using		Con formato: Superíndice
930	parametric tests (note log transformed data not graphed but mean transformed values for all		
931	cephalopods are 5.51 [standard error 0.75] for the Morrowan, 4.05 [standard error 1.02] for the		
932	Atokan, 4.36 [standard error 0.49] for the Desmoinesian, 5.65 [standard error 0.49] for the		
933	Missourian, 5.96 [standard error 0.79] for the Virgilian, and 4.31 [standard error 0.52] for the		
934	Wolfcampian).		
935			

Figure 4: Speciation and extinction rates through time.

Values given in per Myr and derived from Table 1.

936