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Abstract 1 

 2 

Geographic range is an important macroevolutionary parameter frequently considered in 3 

paleontological studies as species’ distributions and range sizes determined by a variety of biotic 4 

and abiotic factors well known to affect the differential birth and death of species. Thus, 5 

considering how distributions and range sizes fluctuate over time can provide important insight 6 

into evolutionary dynamics. This study uses Geographic Information Systems (GIS) and analyses 7 

of evolutionary rates to examine how in the Cephalopoda, an important pelagic clade, geographic 8 

range size and rates of speciation and extinction changed throughout the Pennsylvanian and early 9 

Permian in the North American Midcontinent Sea. This period is particularly interesting for 10 

biogeographic and evolutionary studies because it is characterized by repetitive interglacial-11 

glacial cycles, a global transition from an icehouse to a greenhouse climate during the Late 12 

Paleozoic Ice Age, and decelerated macroevolutionary dynamics, i.e. low speciation and 13 

extinction rates.  14 

The analyses presented herein indicate that cephalopod species diversity was not completely 15 

static and actually fluctuated throughout the Pennsylvanian and early Permian, matching findings 16 

from other studies. However, contrary to some other studies, the mean geographic ranges of 17 

cephalopod species did not change significantly through time, despite numerous climate 18 

oscillations; further, geographic range size did not correlate with rates of speciation and 19 

extinction. These results suggest that pelagic organisms may have responded differently to late 20 

Paleozoic climate changes than benthic organisms, although additional consideration of this issue 21 

is needed. Finally, these results indicate that, at least in the case of cephalopods, macroevolution 22 

Eliminado: are 23 
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during the late Paleozoic was more dynamic than previously characterized, and patterns may 24 

have varied across different clades during this interval. 25 

Introduction 26 

 27 

Much work has focused on the relationship between geographic range size and rates of 28 

speciation and extinction (e.g., Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990; 29 

Lieberman, 2000; Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005; Kiessling & 30 

Aberhan, 2007; Liow, 2007; Payne & Finnegan, 2007; Abe & Lieberman, 2009; Stigall, 2010; 31 

Myers & Saupe, 2013; Myers, MacKenzie, & Lieberman, 2013; Dunhill & Wills, 2015; 32 

Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017; 33 

Pie & Meyer, 2017; Simões et al., 2016; Lam, Stigall, & Matzke, 2018; Schneider, 2018).  34 

Furthermore, the use of Geographic Information Systems (GIS) has greatly facilitated 35 

investigations into this macroevolutionary relationship (Stigall & Lieberman, 2006; Hendricks, 36 

Lieberman, & Stigall, 2008; Dunhill, 2012; Myers, MacKenzie, & Lieberman, 2013; Dunhill & 37 

Wills, 2015; Lieberman & Kimmig, 2018). Here, we focus on how geographic range size and 38 

rates of speciation and extinction changed throughout the Pennsylvanian and early Permian in 39 

the North American Midcontinent Sea in the Cephalopoda, an important clade of pelagic 40 

invertebrates (Landman, Tanabe, & Davis, 1996; Monnet, De Baets, & C. Klug, 2011; Korn et 41 

al., 2015), using GIS.  This time interval is particularly interesting for biogeographic and 42 

evolutionary analysis because it is characterized by repetitive glacial-interglacial cycles, a global 43 

transition from an icehouse to greenhouse climate during the Late Paleozoic Ice Age (LPIA) 44 

(Montañez & Poulsen, 2013). Further, it is generally considered a time of sluggish 45 

macroevolutionary dynamics, i.e. low speciation and extinction rates and low degrees of faunal 46 
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turnover, that have been demonstrated in studies of other marine invertebrate taxa (Sepkoski, 47 

1998; Stanley & Powell, 2003; Bonelli & Patzkowsky, 2011). However, Balseiro (2016) did 48 

document the existence of some profound evolutionary turnover in bivalves and brachiopods 49 

over the course of this interval in regions closer to the ice sheets, such as present-day western 50 

Argentina. Furthermore, recently Segessenman & Kammer (2018) showed that advanced cladid 51 

crinoids do display elevated rates of evolution and turnover during this time interval (although 52 

three other subclasses of crinoids do show subdued evolutionary rates), and fusulinid 53 

foraminifera also fit the pattern shown in the advanced cladids (Groves & Lee, 2008; Groves & 54 

Yue, 2009; Segessenman & Kammer, 2018). 55 

 56 

There have been a variety of hypotheses proposed for the postulated decelerated 57 

macroevolutionary dynamics of the LPIA.  Some studies contend that this pattern is a result of 58 

environmental changes linked to glacial cycling while others point to tectonic activity (Stanley 59 

and Powell, 2003; Powell, 2005; Fielding, Frank, & Isbell, 2008; DiMichele et al., 2009; Falcon-60 

Lang & DiMichele, 2010; Bonelli and Patzkowsky, 2011; Cecil, DiMichele, & Elrick, 2014; 61 

Segessenman & Kammer, 2018).  To date, many of the studies focusing on the 62 

macroevolutionary dynamics of the LPIA have concentrated on benthic marine invertebrates 63 

(e.g., Stanley & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011; Balseiro, 2016; 64 

Segessenman & Kammer, 2018) as they are highly diverse and very abundant.  However, it is 65 

valuable to explicitly investigate evolutionary patterns in pelagic marine invertebrates as these 66 

are also diverse and abundant organisms in late Paleozoic marine ecosystems (Landman, Tanabe, 67 

& Davis,1996; Monnet, De Baets, & Klug, 2011; Korn et al., 2015).  In particular, given the 68 

significant role that geographic factors play in speciation (Mayr, 1942; Eldredge & Gould, 1972; 69 
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Jablonski, 1986; Brooks & McLennan, 1991; Wiley & Lieberman, 2011; Jablonski & Hunt, 70 

2015; Pie & Meyer, 2017), we might expect that pelagic organisms, because of their innately 71 

greater dispersal ability (at least as adults), might show different patterns relative to taxa that 72 

were benthic (Rojas et al., 2017; Yacobucci, 2017).  This greater dispersal ability might allow 73 

pelagic organisms to more fully occupy potentially available habitats than benthic organisms, 74 

which could lead to larger geographic ranges and also less change in geographic ranges through 75 

time.  It also could potentially influence patterns of speciation and extinction by dampening 76 

opportunities for geographic isolation and creating larger effective population sizes. 77 

 78 

This study focuses on cephalopods from the Pennsylvanian-early Permian (Morrowan, Atokan, 79 

Desmoinesian, Missourian, Virgilian, and Wolfcampian) in the Midcontinent Sea of the United 80 

States as knowledge of the systematic affinities, geographic distribution and overall diversity of 81 

cephalopods during this interval is relatively well understood (Miller, Dunbar, & Condra,1933; 82 

Newell, 1936; Plummer & Scott, 1937; Miller & Youngquist, 1949; Nassichuk, 1975; Landman, 83 

Tanabe, & Davis, 1996; Kröger, 2005; Korn et al., 2015), the stratigraphy of the region is well 84 

constrained (Heckel, 2008, 2013), and there are extensive exposures of fossiliferous units in the 85 

region.  Moreover, at this time the Midcontinent Sea was bordered by the Antler Orogeny to the 86 

north, the Ancestral Rocky Mountain Orogeny to the west/northwest and the Ouachita Mountain 87 

belt to the south/southeast (as well as various structural arches), such that it constituted a distinct 88 

biogeographic region for marine invertebrates (Wells et al., 2007; Nelson & Lucas, 2011; 89 

Joachimski & Lambert, 2015). 90 

 91 
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The Late Paleozoic Ice Age (LPIA) was the longest lived glacial period of the Phanerozoic and is 92 

relatively well understood due to numerous stratigraphic, sedimentologic, paleontologic, and 93 

isotopic studies (e.g., Mii, Grossman, & Yancey,1999; Isbell, 2003; Stanley & Powell, 2003; 94 

Raymond & Metz, 2004; Montañez, 2007; Powell, 2007; Tabor & Poulsen, 2007; Fielding, 95 

Frank, & Isbell, 2008; Heckel, 2008; DiMichele et al., 2009; Bonelli & Patzkowsky, 2011; 96 

Montañez & Poulsen, 2013; Balseiro, 2016; Roark et al., 2017; Segessenman & Kammer, 2018). 97 

Glacial cycling in the midcontinent region has received much study (e.g., Isbell, 2003; Heckel, 98 

2008, 2013).  Modern synthesis of the glacial history indicates that the Morrowan to early 99 

Desmoinesian represented a localized glacial period, the late Desmoinesian to early Virgilian 100 

represented a widespread interglacial period with minor glaciation, and the late Virgilian to early 101 

Wolfcampian represented the apex of widespread glaciation (Montañez & Poulsen, 2013).  102 

Modeling predicts that sea-level oscillations in the late Pennsylvanian were between 50-100 103 

meters depending upon the number and volume of melting ice sheets, and that water 104 

temperatures are estimated to have been between 4-7
◦
C cooler during glacial maxima than inter-105 

glacial periods (Heckel, 1986; Isbell, 2003; Montañez, 2007; Tabor, 2007; Heckel, 2008; Cecil, 106 

DiMichele, & Elrick, 2014).  The sea-level and temperature changes were likely to have had an 107 

important influence on species distribution and geographic range size during this time 108 

(Waterhouse & Shi, 2010).  Though perhaps pelagic taxa would be less influenced by glacial 109 

sea-level cycles than benthic taxa, as these cycles are also known to cause variation in seafloor 110 

ventilation, with concomitant dysoxia/anoxia that is more severe for benthic taxa (A. Dunhill, 111 

pers. comm., 2018). 112 

Materials and methods 113 

 114 

 115 
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Taxa considered, stratigraphic correlation, specimens examined, and georeferencing: 79 116 

species belonging to 26 genera (13 nautiloids and 13 ammonoids) of cephalopods in the 117 

Pennsylvanian-Permian North American Midcontinent Sea were considered (Table S1). These 118 

represent the most abundant, well preserved, and taxonomically well understood species. Range 119 

reconstructions relied on the occurrence records of specimens derived from a comprehensive 120 

consideration of the entire taxonomic literature on the taxa studied.  In particular, the following 121 

publications were utilized: Cox (1857), Swallow (1858), McChesney (1860), Meek & Worthen 122 

(1860, 1870), White & St. John (1867), White (1889), Hyatt (1891, 1893), Keyes (1894), Miller 123 

(1892), Smith (1896, 1903), Girty (1911, 1915), Mather (1915) Böse (1919, 1920), Miller 124 

(1930), Sayre (1930), Miller, Dunbar, & Condra (1933), Miller & Cline (1934), Miller & Owen 125 

(1934, 1937, 1939), Foerste (1936), Miller & Thomas (1936), Newell (1936), Plummer & Scott 126 

(1937), Elias (1938a, b), Miller & Moore (1938), Smith (1938), Miller & Furnish (1940a, b, 127 

1957), Teichert (1940), Clifton (1942), Miller & Unklesbay (1942), Young (1942), Sturgeon 128 

(1946), Miller, Lane, & Unklesbay (1947), Miller & Downs (1948, 1950), Miller & Youngquist 129 

(1947, 1949), Miller, Youngquist, & Nielsen (1952), Kummel (1953, 1963), Ruzhentsev & 130 

Shimanskiy (1954), Unklesbay (1954), Arkell et al. (1957), Unklesbay & Palmer (1958), Hoare 131 

(1961), Furnish, Glenister, & Hansman (1962), McCaleb (1963), Gordon (1964), Miller & Breed 132 

(1964), Teichert et al. (1964), Furnish & Glennister (1971), Ruzhentsev & Bogoslovskaya 133 

(1971), Nassichuk (1975), Sturgeon et al. (1982), Hewitt et al. (1989), Boardman et al. (1994), 134 

Kues (1995), White & Skorina (1999), Kröger & Mapes (2005), Furnish et al. (2009), and Niko 135 

& Mapes (2009) as well as from examination of all specimens, including types, housed in: the 136 

Division of Invertebrate Paleontology, Biodiversity Institute, University of Kansas (KUMIP); the 137 

University of Iowa Paleontology Repository (UI); and the Yale University Peabody Museum of 138 
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Natural History (YPM).  These institutions house the most complete repository of cephalopod 139 

diversity from this region and time as well as contain many of the type specimens of the species 140 

examined.  Moreover, all specimens used in the analysis were personally examined and 141 

taxonomically-vetted via consideration of the literature, relevant type specimens, and other 142 

material, with species assignments and determinations made by the first author. Over 1,100 143 

specimens were identified to species level in this study (Kolis, 2017).  We chose to focus on the 144 

particular species considered, rather than downloading data from the Paleobiology Data Base 145 

(PBDB), as we wanted to be able to personally validate the taxonomic identity of specimens 146 

using collections data in conjunction with the literature in order to present more rigorously 147 

corroborated hypotheses about the geographic distributions of species.  We consider this 148 

approach to be complementary to those approaches that utilize the PBDB in paleobiogeographic 149 

studies.  On the one hand, our approach did limit the number of species we were able to consider.  150 

On the other hand, we believe it is quite important to evaluate hypotheses about systematic 151 

affinities of fossil specimens, the actual data of the fossil record themselves, in detail and thereby 152 

accurately define the taxonomic units considered.  Given that species represent key 153 

macroevolutionary units in nature (Eldredge, 1989; Wiley & Lieberman, 2011; Hendricks et al., 154 

2014), correctly characterizing them taxonomically, and thus validating the scope of their 155 

geographic distributions, is critical.  Moreover, it has recently been shown by Marshall et al. 156 

(2018) that incorporating museum specimen data in the manner that our study has can greatly 157 

expand, enhance, and improve knowledge of geographic distributions of fossil species, relative 158 

to studies that only utilize data from the PBDB.  159 

 160 
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Specimens were assigned to the Virgilian, Missourian, Desmoinesian, Atokan, Morrowan, or 161 

Wolfcampian stages using the USGS National Geologic Map Database (U.S. Geological Survey, 162 

2017), Sawin et al. (2006, 2008, 2009), Zeller (1968), Pope (2012), and Heckel (2013). The 163 

temporal boundaries of stages were derived from Davydov, Korn, & Schmitz (2012) (Table S2).  164 

All specimen localities were georeferenced during the course of the study. GEOLocate (Rios and 165 

Bart, 2018) and the MaNIS Georeferencing Calculator (Wieczorek, 2015) were used to obtain 166 

coordinates and uncertainty radii.  All points were calculated in decimal degrees within the 167 

WGS84 model in the GEOLocate (Rios & Bart, 2018) world topo layer to ensure consistency 168 

and accuracy in determinations.  Most uncertainty radii were less than 10 kms. Any specimens 169 

with questionable locality information were excluded from analyses, as were specimens with an 170 

uncertainty radius larger than the county they were contained within. This left 950 specimens 171 

(Table S1) to use in range reconstruction and statistical analysis of geographic range through 172 

geologic time. All statistical analyses were performed using Minitab
®
 Statistical Software 173 

Minitab v. 17 (Minitab, 2016) and R-Studio Version 3.4.0 (2017).   174 

 175 

Range reconstruction using GIS: Methods for range reconstruction follow Rode & Lieberman 176 

(2004, 2005), Stigall & Lieberman (2006), Hendricks, Lieberman, & Stigall (2008), Myers & 177 

Lieberman (2011), Myers, MacKenzie, and Lieberman (2013), and Dunhill & Wills (2015).  In 178 

particular, after specimen occurrence data were georeferenced and assigned to temporal bins, 179 

Excel CSV files were compiled for the occurrence points for all specimens within species.  CSV 180 

files were imported into ArcGIS v. 10.3 (ESRI, 2014) and layers were created using geographic 181 

coordinate system ‘WGS 1984’ and projected coordinate system ‘WGS 1984 World Mercator’ 182 

(Fig. 1).  These layers were input into PaleoWeb (The Rothwell Group LP, 2016) to rotate 183 

coordinates into continental configuration and geographic position of the midcontinent region 184 
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during the Pennsylvanian-early Permian (Fig. 2).  These paleo-coordinate layers were then re-185 

projected into ArcMap (ESRI, 2014).   186 

Geographic range values were calculated for each species (Table S3), using minimum bounding 187 

geometry.  This method has been shown to provide the most accurate procedure for 188 

reconstructing changes in geographic range, especially for fossil taxa (Darroch & Saupe, 2018). 189 

Convex hulls or buffers were given to every specimen occurrence point in each species and these 190 

shapefiles were re-projected in ‘South America-Albers Equal Area Conic’. This model was used 191 

to accommodate the rotation of species occurrence coordinates into the southern hemisphere 192 

during the Late Paleozoic. Species with three or more occurrence points were given a convex 193 

hull that spanned the entire area between occurrences. In this way, multiple occurrence points 194 

were combined to recreate the geographic range of a single species. Species with only one 195 

occurrence point were given a 10km
2
 buffer; species with just two occurrence points were given 196 

a 10km
2
 wide buffer which was used, in conjunction with their distance, to derive an area value 197 

(following Rode & Lieberman [2004, 2005], Hendricks, Lieberman, & Stigall [2008], Myers & 198 

Lieberman [2011], and Myers, MacKenzie, and Lieberman [2013]).  199 

 200 

Assessing fossil record bias: A common concern when studying the fossil record is that there 201 

might be biases that could lead to inaccurate or artifactual findings.  This concern can be 202 

manifold, but the two most pertinent issues here involve incomplete sampling and/or issues of 203 

stratigraphic bias.  While it is important to be aware of the fact that the fossil record is 204 

incomplete, it is worth recognizing that there is a large body of research that demonstrates that 205 

many of the biogeographic patterns preserved in the fossil record, particularly in marine settings, 206 

represent real biological phenomena, rather than taphonomic artifacts (Myers & Lieberman, 207 

Eliminado: method208 
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2011; Rook, Heim, & Marcot, 2013; Dunhill & Wills, 2015).  Further, it is also prudent to realize 209 

that sampling bias is a common issue in studies of extant biodiversity and species distribution, 210 

and much work needs to be done in this area to alleviate the biases of the extant biota 211 

(Lieberman, 2002; Carrasco, 2003).  212 

 213 

The possibility that biases in the fossil record might lead to artifactual results was assessed in a 214 

few different ways.  First, the relationship between outcrop availability and the geographic range 215 

of Pennsylvanian and Permian cephalopods was determined (see Myers & Lieberman, 2011).  A 216 

percent coverage table of the range size of species overlaid against temporal outcrop availability 217 

was created using ArcGIS v. 10.3 (ESRI, 2014).  A low percentage of overlap between range size 218 

and outcrop area would suggest species distributions are more likely to reflect ‘real’ 219 

biogeographic patterns while a high percentage of overlap would suggest the presence or absence 220 

of outcrops was significantly influencing results (Myers & Lieberman, 2011; Myers, MacKenzie, 221 

& Lieberman, 2013; however, see also Dunhill, 2012 for an alternative viewpoint).  The second 222 

test used was an “n-1” jackknifing analysis.  This procedure sub-sampled species range size 223 

within each temporal bin to test the resilience of data to outliers.  Mean range size estimations 224 

were generated for each temporal bin; these were input into a one-way ANOVA to compare 225 

jackknife estimates with the initial geographic range size estimates (Myers & Lieberman, 2011; 226 

Myers, MacKenzie, & Lieberman, 2013).  Finally, a Pearson rank correlation test was performed 227 

to test the association of occurrence points and geographic range size; a close correlation would 228 

indicate that reconstructed ranges were very much dependent on sampling and suggest that 229 

reconstructed biogeographic patterns might be an artifact of a biased fossil record (Myers, 230 

MacKenzie, & Lieberman, 2013).  231 

  232 
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Speciation and extinction rate calculations: Speciation and extinction rates were calculated in 233 

order to consider macroevolutionary dynamics in cephalopods from the Late Paleozoic 234 

Midcontinent Sea.  Macroevolutionary rates were calculated using the following equation, 235 

presented in Foote (2000) and Rode & Lieberman (2005): 236 

 237 

Nf=N0e
rt 

238 

 239 

where N0 is the species richness at the beginning of a temporal bin, Nf is the species richness at 240 

the end of a temporal bin, t is the duration of a temporal bin, and r is the total rate of diversity 241 

change. The temporal bins used were North American stages (Table S2).  Species richness values 242 

(Nf) were determined for each temporal bin and were parsed into ‘carry-over’ (N0) and ‘new’ 243 

species richness values to ensure the accuracy of speciation and extinction rate calculation.  In 244 

this way, it was possible to calculate the rate of diversity change between bins.  For example, r 245 

Atokan= (ln N0-Desmoinesian – ln N0-Atokan)/ t Atokan.  Speciation rate within each temporal bin was 246 

calculated using the equation S Atokan= (ln Nf-Atokan – ln N0-Atokan)/ tAtokan, and extinction rate within 247 

each temporal bin was calculated using the equation E Atokan= S Atokan – r Atokan for each temporal 248 

stage (Foote, 2000; Rode & Lieberman, 2005).   249 

 250 

Results 251 

 252 

Paleobiogeographic patterns: Geographic range data were analyzed separately across all 253 

cephalopods and individually for both nautiloids and ammonoids.  Species geographic range size 254 

data were tested for normality within each temporal stage using the Anderson-Darling normality 255 

test. Range size data within each temporal stage were not normally distributed for any data 256 
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combination (P < 0.005). Instead, distributions were left skewed across all temporal stages for 257 

every data grouping. Data were subsequently log-transformed to normalize data, and statistical 258 

analyses were performed on both original and transformed data.   259 

 260 

In general, geographic range size (either mean of transformed data or median of original) of 261 

ammonoids and nautiloids increases during the Missourian and Virgilian stages (Fig. 3), which 262 

was a time of sea-level rise due to warming during an interglacial (Isbell, 2003; Montañez & 263 

Poulsen, 2013), such that there may be an association between the sea-level rise and the increase 264 

in geographic range.  Another possibility is that there was some change in taphonomic conditions 265 

that occurred during the Virgilian that made it easier to discern the actual biogeographic 266 

distributions of species at this time, relative to other time intervals (G. Piñeiro, pers. comm., 267 

2018).  However, none of the changes in geographic range were statistically significant, so it is 268 

not possible to infer strong correlation between the sea-level rise, or possible taphonomic factors, 269 

and the range expansion.  For instance, Mann-Whitney U tests found no statistically significant 270 

changes (at P ≤ 0.05) in median geographic range size for any temporal stages separately across 271 

all cephalopods, as well as individually for nautiloids and ammonoids, even prior to correction 272 

for multiple comparisons. This is because with the Mann-Whitney U test median range values 273 

are considered, and for all cephalopods the median range values are constant through time 274 

(79km
2
).   275 

 276 

The same was true for two-sample t-tests performed on log-transformed data which again found 277 

no statistically significant changes (at P ≤ 0.05) in mean geographic range size though time, even 278 

prior to correction for multiple comparisons.  Again, recall that mean range size data are shown 279 
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in Figure 3, and the differences among log-transformed data through time are far less substantial 280 

(and ultimately not significant).  Furthermore, a one-way ANOVA, either with or without the 281 

assumption of equal variance, failed to find any significant differences (at P ≤ 0.05) between 282 

stages for log-transformed mean geographic range size across all cephalopods as well as 283 

individually for nautiloids and ammonoids.  284 

 285 

Analysis of macroevolutionary rates: Speciation rate (S) and extinction rate (E) were 286 

calculated for the Atokan, Desmoinesian, Missourian, and Virgilian stages across all 287 

cephalopods and within nautiloids and ammonoids, respectively. The S and E presented across 288 

all cephalopods are comprised of two calculations; one calculation included taxa that only 289 

occurred in a single temporal stage (Table 1; Fig. 4), while the other calculation excluded taxa 290 

that occurred in a single temporal stage (Table S4). S and E was also calculated for ammonoids 291 

and for nautiloids including (Tables S5, S6) and excluding taxa that occurred in a single stage 292 

(Tables S7, S8).  Note, due to the dependence of calculations on diversity metrics from both 293 

adjacent stages, it is not possible to accurately calculate the rate of biodiversity change (R), or S 294 

and E for the first stage considered, the Morrowan, nor R or E for the last stage considered, the 295 

Wolfcampian (these are thus left blank in Table 1 and Tables S4-S8). While it might have been 296 

possible to infer S and E using other methods, to do so would exaggerate the significance of edge 297 

effects and thus be problematic (Foote, 2000). 298 

 299 

Across all cephalopods, S was high in the Atokan and Desmoinesian, fell in the Missourian, and 300 

reached very low levels in the Virgilian and Wolfcampian (Fig. 4).  By contrast, E was low in the 301 

Atokan and Desmoinesian, began to rise in the Missourian, and reached even higher levels in the 302 
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Virgilian (Fig. 4).  Essentially, across all cephalopods examined, when S is high, E is low, and 303 

when S is low, E is high.  This is potentially contrary to the pattern expected with an ecological 304 

opportunity model of speciation (Simões et al., 2016), although the specific processes driving the 305 

diversification could not be determined at this time.  However, it is possible that when S was 306 

high there may have been many short-lived species that could not be sampled that were actually 307 

going extinct, and this phenomenon would artificially depress E.   308 

 309 

As expected, S and E are lower when singletons are excluded (see Tables 1, S4). (See 310 

Segesseman & Kammer [2018] for a recent discussion of how singletons can affect manifest 311 

patterns in these types of studies.) Notably though, S and E patterns diverge somewhat between 312 

ammonoids and nautiloids when considered individually.  For instance, in nautiloids S is high in 313 

the Atokan and Desmoinesian, then declines to moderate in the Missourian, and is at its lowest in 314 

the Missourian and Wolfcampian (Table S6), whereas in ammonoids S is only high in the 315 

Atokan, declines to moderate in the Desmoinesian, declines somewhat more in the Missourian 316 

and then remains essentially constant through the Wolfcampian (Table S5). In addition, E is low 317 

in ammonoids during the Desmoinesian and Missourian but high in the Atokan and 318 

Wolfcampian (Table S5), whereas in nautiloids there are no observed extinctions during the 319 

Atokan; values remain quite low for nautiloids in the Desmoinesian, rise somewhat in the 320 

Missourian, and then rise again in the Virgilian (Table S6).   321 

 322 

An important caveat regarding the calculation of S is that many of the species analyzed belong to 323 

genera that were widely distributed beyond the Midcontinent Sea during the Late Paleozoic.  324 

Thus, although none of the species considered in these analyses occurred outside of the 325 
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Midcontinent Sea, their close relatives did.  It is conceivable that while speciation events and 326 

rates by necessity are herein treated as occurring in situ, this might not always have been the 327 

case. Instead, some speciation events could have occurred outside of the Midcontinent Sea with 328 

subsequent invasion events into that region.  These invasions would appear as in situ speciation 329 

events in this analysis, although they actually were not.  In the absence of phylogenetic 330 

hypotheses for the genera considered it is not currently possible to consider how much of the 331 

pattern pertaining to speciation rate shown in Fig. 4 is due to invasion instead of speciation.  332 

Further, a related phenomenon could affect the calculation of E: at times what were treated as 333 

extinction events might have simply been local extinctions in the Midcontinent Sea which could 334 

have included emigration to other regions.  As mentioned previously, it does not appear that any 335 

of the species considered occur outside of the Midcontinent Sea, but a phylogenetic hypothesis 336 

for these groups would be valuable for considering this issue in greater detail.  337 

 338 

Relationship between biogeography and macroevolutionary rates: Mean geographic range 339 

size increased during the Missourian and Virgilian and declined in the Wolfcampian (Fig. 3); 340 

speciation rates were high in the Atokan and Desmoinesian and fell in the Virgilian (Fig. 4); 341 

extinction rates were low in the Atokan and Desmoinesian and rose in the Virgilian (Fig. 4).  The 342 

Pearson correlation test in Minitab 17 (Minitab, 2016) was used to examine the association 343 

between geographic range and either speciation rate extinction rate in greater detail. No 344 

significant (at P ≤ 0.05) correlation between speciation or extinction rate and range size was 345 

found across all cephalopods or within ammonoids or nautiloids individually (Table 2). 346 

However, in cases the values approach P = 0.05 for instance, the association between 347 
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decreasing geographic range size and increasing extinction for all cephalopods and for 351 

ammonoids alone. Notably, an association between decreasing geographic range size and 352 

increasing extinction has been documented by numerous studies (e.g. Vrba, 1980; Jablonski, 353 

1986; Eldredge, 1989; Stanley, 1990; Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005; 354 

Kiessling & Aberhan, 2007; Payne & Finnegan, 2007; Stigall, 2010; Dunhill & Wills, 2015; 355 

Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017; 356 

Pie & Meyer, 2017; Lam, Stigall, & Matzke, 2018; Schneider, 2018) and thus is a very robust 357 

phenomenon in general and likely to be operating to some extent herein. However, over this time 358 

interval and for this particular group of species the association is not statistically significant 359 

(Table 2), probably because sample sizes are not large, and further this is likely because many 360 

taxa were culled by the late Mississippian extinction (M. Powell, pers. comm., 2018). 361 

 362 

Analysis of fossil record bias: The low percentage of overlap between cephalopod species 363 

geographic ranges and available outcrops, less than 1% in 29 out of 30 species (Table S9; the one 364 

species with a larger percentage value, Orthoceras kansasense, occurs throughout the 365 

Midcontinent Sea), suggests the results are not simply an artifact of an incomplete fossil record, 366 

at least pertaining to outcrop availability.  The “n-1” jackknifing analysis also supports the 367 

robustness of the reconstructed ranges, as no statistically significant differences were found 368 

between the mean of the reconstructed and subsampled range values for any time interval (all P-369 

values > 0.9), suggesting that one or a few occurrence records are not having a major influence 370 

on biogeographic patterns.  Similar results were found in other taxa and time periods by Hunt, 371 

Roy, & Jablonski (2005), Myers & Lieberman (2011), and Myers, MacKenzie, & Lieberman 372 

(2013), although Dunhill, Hannisdal, & Be dysoxia/anoxia is more severe for benthic taxa 373 
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nton (2014) did find some association between outcrop area and diversity in the case of the 374 

marine fossil record of Great Britain. Finally, the Pearson correlation test shows no correlation (-375 

0.055, P-Value = 0.789) between the number of occurrence points and geographic range size; 376 

this provides further evidence that the biogeographic signatures of Late Paleozoic cephalopods 377 

are unlikely to be simply an artifact of the fossil record.  378 

 379 

Diversity patterns: Across all cephalopods, species richness increased from the Morrowan to 380 

the Atokan, peaked in the Desmoinesian, and decreased through the Wolfcampian (Fig. S1).  A 381 

similar pattern is seen in the nautiloids (Fig. S2). However, the ammonoids (Fig. S3) demonstrate 382 

an earlier peak in the Atokan, followed by a Desmoinesian to Virgilian plateau, with a decrease 383 

in the Wolfcampian.  Notably, previous studies of Late Paleozoic brachiopod communities in 384 

Bolivia showed a consistent trend between diversity and glacial cycling with increased diversity 385 

during glacial periods and decreased diversity during inter-glacial periods (Badyrka, Clapham, & 386 

Lopez, 2013).  However, there seems to be less consistency between species richness trends and 387 

glacial cycling in the Midcontinent Sea. For instance, there is an increase in cephalopod species 388 

richness throughout the Morrowan to Desmoinesian associated with localized glaciation, and an 389 

interglacial period with generally minor glaciation is associated with a decrease in cephalopod 390 

species richness from the Desmoinesian to Virgilian, yet by contrast widespread glaciation is 391 

associated with a decrease in species richness from the Virgilian to the Wolfcampian.  An 392 

important point, however, is that these are just raw diversity patterns and sample standardized 393 

diversity patterns show a different result (M. Powell, pers. comm., 2018).   394 

Discussion 395 

 396 

 397 
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     Geographic range shifts through time are one of the pervasive phenomena in the history of 398 

life; these are manifest both within species and higher-level clades, occur at a number of 399 

different time scales, and are frequently linked to climatic change (Wiley & Lieberman, 2011).  400 

Specific examples do come from the Late Paleozoic, a time of extensive climate change 401 

including profound glaciation along with numerous glacial and interglacial cycles (Montañez and 402 

Poulsen, 2013).  Those changes impacted patterns of geographic range in both terrestrial plant 403 

(e.g., DiMichele et al., 2009; Falcon-Lang & DiMichele, 2010) and marine invertebrate 404 

ecosystems (e.g., Leighton, 2005; Powell, 2007; Waterhouse & Shi, 2010). When it comes to 405 

marine invertebrates from this time interval, most of the focus has been on the highly diverse 406 

benthic faunas (e.g., Stanely & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011; 407 

Balseiro, 2016; Segessenman & Kammer, 2018); however, taxa that have a pelagic life style (as 408 

adults) are also worth examining.  Herein, 79 pelagic species of cephalopods were examined for 409 

patterns of range size change using GIS and although in general these species exhibit some 410 

evidence for changes in geographic range size (Fig. 3), those changes were not statistically 411 

significant nor can they be directly tied to climate change.  In a similar vein, many 412 

paleontological studies have demonstrated that species with larger geographic ranges tend to 413 

have lower extinction rates than species with narrower geographic range sizes (e.g., Vrba, 1980; 414 

Jablonski, 1986; Eldredge, 1989; Stanley, 1990; Rode & Lieberman, 2004; Stigall & Lieberman, 415 

2006; Payne & Finnegan, 2007; Stigall, 2010; Hopkins, 2011; Dunhill & Wills, 2015). Again, 416 

this phenomenon was not found to be statistically significant in the case of the Late Paleozoic 417 

cephalopod species considered herein (Table 2).  418 

 419 
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There may be a few different explanations for these findings.  First, it may be that cephalopod 420 

species were not significantly affected by the glacial-interglacial climatic cycles transpiring 421 

within the Late Paleozoic Midcontinent Sea. A second possible explanation, perhaps coupled to 422 

the first, is that since cephalopods are highly mobile relative to benthic marine invertebrates such 423 

as gastropods, bivalves, brachiopods, etc., they can more easily occupy a greater portion of their 424 

potential range (at least as adults).  Further, perhaps the available potential range of cephalopod 425 

species does not change much in glacial relative to interglacial regimes.  This may seem unlikely 426 

given the vast fluctuations in sea level occurring at the time, but pelagic marine organisms, 427 

because of their ease of dispersal, may more easily maintain consistent geographic ranges 428 

relative to benthic counterparts. Another possible explanation for the pattern retrieved is that, 429 

given the limits of stratigraphic correlation, sample size, and the completeness of the fossil 430 

record, it was necessary for the analyses of species distribution conducted herein to focus on the 431 

time scale of geological stages, whereas in actuality there were climatic changes occurring within 432 

stages (Heckel, 2008, 2013); these probably did cause fluctuations in species’ geographic ranges 433 

within stages, but simply could not be observed in the present study. A final set of explanations 434 

are related to the issue of sampling.  For instance, it was more difficult for the analyses presented 435 

herein to detect a relationship between geographic range size and macroevolutionary rate 436 

because speciation and extinction rates could only be calculated for four stages.  Further, a 437 

common concern when studying the fossil record is that there might be biases that can lead to 438 

inaccurate findings.  This concern can be manifold, and although it is not entirely obviated by the 439 

results presented regarding the apparent quality of the fossil record suggested by the various tests 440 

presented, it does become harder to invoke as a specific, primary reason for results retrieved.     441 
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Another finding perhaps contrary to what might typically be expected for the Late Paleozoic is 446 

that there was at least some evolutionary diversification and turnover within cephalopods, such 447 

that species diversity did fluctuate throughout the Pennsylvanian and early Permian.  448 

Pennsylvanian rates of macrevolution are typically classified as ‘sluggish’ or ‘stolid’ across all 449 

marine animals, and Sepkoski (1998) formalized the notion that there was a marked decline in 450 

evolutionary rates of Carboniferous and Permian marine faunas.  Stanley & Powell (2003) 451 

reiterated this result and identified low mean macroevolutionary rates for marine invertebrate 452 

taxa.  Bonelli & Patzkowsky (2011) also documented a pattern of low turnover in the face of 453 

major episodes of sea-level rise and fall due to climatic change.  The results from the analyses 454 

presented herein could indicate that macroevolutionary rate, at least in the case of Late Paleozoic 455 

cephalopods, was more dynamic than often thought.  One possible reason for this result is that 456 

cephalopods are a fairly evolutionarily volatile group (Lieberman & Melott, 2013) relative to 457 

many other marine invertebrate groups and have relatively high rates of diversification (Stanley, 458 

1979; Jacobs et al., 1994; Landman, Tanabe, & Davis,1996; Monnet, De Baets, & Klug, 2011; 459 

Korn, Klug, & Walton, 2015; Korn et al., 2015); thus, they would generally be expected to have 460 

higher rates of speciation and extinction than typical. However, this may not be the entire 461 

explanation, as other groups also seem to show elevated rates of speciation and extinction during 462 

this time interval. For instance, Balseiro (2016) did document evolutionary turnover at high 463 

latitudes, and elevated evolutionary rates have also been found in fusulinid foraminifera (Groves 464 

& Lee, 2008; Groves & Yue, 2009) and advanced cladid crinoids (Segessenman & Kammer, 465 

2018). Ultimately, we support the contention raised by Segessenman & Kammer (2018) that 466 

patterns from a few individual groups do not refute the general pattern of sluggish 467 

macroevolution postulated for this time period in the history of life.  The results may lend 468 
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credence to the notion that macroevolutionary patterns across all marine animals are rarely 471 

unitary for any one time period in the history of life, and instead often tend to be variegated.   472 

 473 

Conclusions 474 

 475 

Patterns of range size change in late Paleozoic cephalopods from the North American 476 

Midcontinent Sea were investigated using GIS.  These species do exhibit some evidence for 477 

changes in geographic range size through time, but the changes were not statistically significant 478 

nor could they be directly tied to climate change.  Further, in contradistinction to what is usually 479 

found in the fossil record, cephalopod species with larger geographic ranges were not found to 480 

have lower extinction rates than species with narrower geographic ranges.  These distinctive 481 

patterns may perhaps be related to the fact that cephalopods are pelagic and highly mobile, at 482 

least relative to many benthic marine invertebrates.  Finally, the group shows more evolutionary 483 

diversification and turnover during the Pennsylvanian and early Permian than is typical of other 484 

marine invertebrate groups and this could be related to the fact that cephalopods are an 485 

evolutionarily volatile group.  486 
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Figure Captions 910 

 911 

Figure 1: Distribution of Pennsylvanian and early Permian cephalopods. 912 

A) Distribution of Pennsylvanian nautiloid and ammonoid data points (red) and B) early Permian 913 

nautiloid and ammonoid data points (blue) across the midcontinent region of North America.  914 

Plotted using ArcGIS v. 10.3 (ESRI, 2014) software at 1: 20,000,000.   915 

 916 

Figure 2: Occurrence points of Metacoceras sp. and Mooreoceras sp.  917 

For the Virgilian, shown on possible paleogeography of that stage, at 1:1,000,000,000 scale; 918 

plotted using PaleoWeb (The Rothwell Group LP, 2016). 919 

 920 
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Figure 3: Mean geographic range size in km
2
 of cephalopods through time. 924 

Nautiloid species (A) and ammonoid species (B) range changes occur but are not statistically 925 

significant when analyzed using non-parametric tests (note, median range size data not graphed 926 

but for all cephalopods they are 79km
2
 for all time intervals, for ammonoids they are 78.5km

2
 for 927 

the Desmoinesian and Wolfcampian and 79km
2
 for all other time intervals, and for nautiloids 928 

they are 79km
2
 for all time intervals) or when log transformed data are analyzed using 929 

parametric tests (note log transformed data not graphed but mean transformed values for all 930 

cephalopods are 5.51 [standard error 0.75] for the Morrowan, 4.05 [standard error 1.02] for the 931 

Atokan, 4.36 [standard error 0.49] for the Desmoinesian, 5.65 [standard error 0.49] for the 932 

Missourian, 5.96 [standard error 0.79] for the Virgilian, and 4.31 [standard error 0.52] for the 933 

Wolfcampian). 934 

 935 

Figure 4: Speciation and extinction rates through time. 936 

Values given in per Myr and derived from Table 1.   937 
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