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Abstract

Geographic range is an important macroevolutionary parameter frequently considered in

paleontological studies as species’ distributions and range sizes getermined by a variety of biotic [Eliminado: are

and abiotic factors well known to affect the differential birth and death of species. Thus,
considering how distributions and range sizes fluctuate over time can provide important insight
into evolutionary dynamics. This study uses Geographic Information Systems (GIS) and analyses
of evolutionary rates to examine how in the Cephalopoda, an important pelagic clade, geographic
range size and rates of speciation and extinction changed throughout the Pennsylvanian and early
Permian in the North American Midcontinent Sea. This period is particularly interesting for
biogeographic and evolutionary studies because it is characterized by repetitive interglacial-
glacial cycles, a global transition from an icehouse to a greenhouse climate during the Late
Paleozoic Ice Age, and decelerated macroevolutionary dynamics, i.e. low speciation and
extinction rates.

The analyses presented herein indicate that cephalopod species diversity was not completely
static and actually fluctuated throughout the Pennsylvanian and early Permian, matching findings
from other studies. However, contrary to some other studies, the mean geographic ranges of
cephalopod species did not change significantly through time, despite numerous climate
oscillations; further, geographic range size did not correlate with rates of speciation and
extinction. These results suggest that pelagic organisms may have responded differently to late
Paleozoic climate changes than benthic organisms, although additional consideration of this issue

is needed. Finally, these results indicate that, at least in the case of cephalopods, macroevolution
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during the late Paleozoic was more dynamic than previously characterized, and patterns may

have varied across different clades during this interval.

Introduction

Much work has focused on the relationship between geographic range size and rates of
speciation and extinction (e.g., Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990;
Lieberman, 2000; Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005; Kiessling &
Aberhan, 2007; Liow, 2007; Payne & Finnegan, 2007; Abe & Lieberman, 2009; Stigall, 2010;
Myers & Saupe, 2013; Myers, MacKenzie, & Lieberman, 2013; Dunhill & Wills, 2015;
Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017;
Pie & Meyer, 2017; Simdes et al., 2016; Lam, Stigall, & Matzke, 2018; Schneider, 2018).
Furthermore, the use of Geographic Information Systems (GIS) has greatly facilitated
investigations into this macroevolutionary relationship (Stigall & Lieberman, 2006; Hendricks,
Lieberman, & Stigall, 2008; Dunhill, 2012; Myers, MacKenzie, & Lieberman, 2013; Dunhill &
Wills, 2015; Lieberman & Kimmig, 2018). Here, we focus on how geographic range size and
rates of speciation and extinction changed throughout the Pennsylvanian and early Permian in
the North American Midcontinent Sea in the Cephalopoda, an important clade of pelagic
invertebrates (Landman, Tanabe, & Davis, 1996; Monnet, De Baets, & C. Klug, 2011; Korn et
al., 2015), using GIS. This time interval is particularly interesting for biogeographic and
evolutionary analysis because it is characterized by repetitive glacial-interglacial cycles, a global
transition from an icehouse to greenhouse climate during the Late Paleozoic Ice Age (LPIA)
(Montafiez & Poulsen, 2013). Further, it is generally considered a time of sluggish

macroevolutionary dynamics, i.e. low speciation and extinction rates and low degrees of faunal
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turnover, that have been demonstrated in studies of other marine invertebrate taxa (Sepkoski,
1998; Stanley & Powell, 2003; Bonelli & Patzkowsky, 2011). However, Balseiro (2016) did
document the existence of some profound evolutionary turnover in bivalves and brachiopods
over the course of this interval in regions closer to the ice sheets, such as present-day western
Argentina. Furthermore, recently Segessenman & Kammer (2018) showed that advanced cladid
crinoids do display elevated rates of evolution and turnover during this time interval (although
three other subclasses of crinoids do show subdued evolutionary rates), and fusulinid
foraminifera also fit the pattern shown in the advanced cladids (Groves & Lee, 2008; Groves &

Yue, 2009; Segessenman & Kammer, 2018).

There have been a variety of hypotheses proposed for the postulated decelerated
macroevolutionary dynamics of the LPIA. Some studies contend that this pattern is a result of
environmental changes linked to glacial cycling while others point to tectonic activity (Stanley
and Powell, 2003; Powell, 2005; Fielding, Frank, & Isbell, 2008; DiMichele et al., 2009; Falcon-
Lang & DiMichele, 2010; Bonelli and Patzkowsky, 2011; Cecil, DiMichele, & Elrick, 2014;
Segessenman & Kammer, 2018). To date, many of the studies focusing on the
macroevolutionary dynamics of the LPIA have concentrated on benthic marine invertebrates
(e.g., Stanley & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011; Balseiro, 2016;
Segessenman & Kammer, 2018) as they are highly diverse and very abundant. However, it is
valuable to explicitly investigate evolutionary patterns in pelagic marine invertebrates as these
are also diverse and abundant organisms in late Paleozoic marine ecosystems (Landman, Tanabe,
& Davis,1996; Monnet, De Baets, & Klug, 2011; Korn et al., 2015). In particular, given the

significant role that geographic factors play in speciation (Mayr, 1942; Eldredge & Gould, 1972;
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Jablonski, 1986; Brooks & McLennan, 1991; Wiley & Lieberman, 2011; Jablonski & Hunt,
2015; Pie & Meyer, 2017), we might expect that pelagic organisms, because of their innately
greater dispersal ability (at least as adults), might show different patterns relative to taxa that
were benthic (Rojas et al., 2017; Yacobucci, 2017). This greater dispersal ability might allow
pelagic organisms to more fully occupy potentially available habitats than benthic organisms,
which could lead to larger geographic ranges and also less change in geographic ranges through
time. It also could potentially influence patterns of speciation and extinction by dampening

opportunities for geographic isolation and creating larger effective population sizes.

This study focuses on cephalopods from the Pennsylvanian-early Permian (Morrowan, Atokan,
Desmoinesian, Missourian, Virgilian, and Wolfcampian) in the Midcontinent Sea of the United
States as knowledge of the systematic affinities, geographic distribution and overall diversity of
cephalopods during this interval is relatively well understood (Miller, Dunbar, & Condra,1933;
Newell, 1936; Plummer & Scott, 1937; Miller & Youngquist, 1949; Nassichuk, 1975; Landman,
Tanabe, & Davis, 1996; Kroger, 2005; Korn et al., 2015), the stratigraphy of the region is well
constrained (Heckel, 2008, 2013), and there are extensive exposures of fossiliferous units in the
region. Moreover, at this time the Midcontinent Sea was bordered by the Antler Orogeny to the
north, the Ancestral Rocky Mountain Orogeny to the west/northwest and the Ouachita Mountain
belt to the south/southeast (as well as various structural arches), such that it constituted a distinct
biogeographic region for marine invertebrates (Wells et al., 2007; Nelson & Lucas, 2011;

Joachimski & Lambert, 2015).
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The Late Paleozoic Ice Age (LPIA) was the longest lived glacial period of the Phanerozoic and is
relatively well understood due to numerous stratigraphic, sedimentologic, paleontologic, and
isotopic studies (e.g., Mii, Grossman, & Yancey,1999; Isbell, 2003; Stanley & Powell, 2003;
Raymond & Metz, 2004; Montafiez, 2007; Powell, 2007; Tabor & Poulsen, 2007; Fielding,
Frank, & Isbell, 2008; Heckel, 2008; DiMichele et al., 2009; Bonelli & Patzkowsky, 2011;
Montafiez & Poulsen, 2013; Balseiro, 2016; Roark et al., 2017; Segessenman & Kammer, 2018).
Glacial cycling in the midcontinent region has received much study (e.g., Isbell, 2003; Heckel,
2008, 2013). Modern synthesis of the glacial history indicates that the Morrowan to early
Desmoinesian represented a localized glacial period, the late Desmoinesian to early Virgilian
represented a widespread interglacial period with minor glaciation, and the late Virgilian to early
Wolfcampian represented the apex of widespread glaciation (Montafiez & Poulsen, 2013).
Modeling predicts that sea-level oscillations in the late Pennsylvanian were between 50-100
meters depending upon the number and volume of melting ice sheets, and that water
temperatures are estimated to have been between 4-7°C cooler during glacial maxima than inter-
glacial periods (Heckel, 1986; Isbell, 2003; Montafiez, 2007; Tabor, 2007; Heckel, 2008; Cecil,
DiMichele, & Elrick, 2014). The sea-level and temperature changes were likely to have had an
important influence on species distribution and geographic range size during this time
(Waterhouse & Shi, 2010). Though perhaps pelagic taxa would be less influenced by glacial
sea-level cycles than benthic taxa, as these cycles are also known to cause variation in seafloor
ventilation, with concomitant dysoxia/anoxia that is more severe for benthic taxa|(A. Dunhill,

pers. comm., 2018).

Materials and methods

Comentario [GP1]: Yes, maybe,
dysoxia-anoxia can be verified in
hypersaline stratified estuarine or delta
conditions, where soft body organisms
predominate but have a lower
preservational potential. So, you must
be specific here and leave clear that
you are talking just for cephalopods,
do you? If not, you may have a
taphonomic bias affecting the real
stability of the benthic communities
that is not being taken into account.
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Taxa considered, stratigraphic correlation, specimens examined, and georeferencing: 79
species belonging to 26 genera (13 nautiloids and 13 ammonoids) of cephalopods in the
Pennsylvanian-Permian North American Midcontinent Sea were considered (Table S1). These
represent the most abundant, well preserved, and taxonomically well understood species. Range
reconstructions relied on the occurrence records of specimens derived from a comprehensive
consideration of the entire taxonomic literature on the taxa studied. In particular, the following
publications were utilized: Cox (1857), Swallow (1858), McChesney (1860), Meek & Worthen
(1860, 1870), White & St. John (1867), White (1889), Hyatt (1891, 1893), Keyes (1894), Miller
(1892), Smith (1896, 1903), Girty (1911, 1915), Mather (1915) Bése (1919, 1920), Miller
(1930), Sayre (1930), Miller, Dunbar, & Condra (1933), Miller & Cline (1934), Miller & Owen
(1934, 1937, 1939), Foerste (1936), Miller & Thomas (1936), Newell (1936), Plummer & Scott
(1937), Elias (19384, b), Miller & Moore (1938), Smith (1938), Miller & Furnish (1940a, b,
1957), Teichert (1940), Clifton (1942), Miller & Unklesbay (1942), Young (1942), Sturgeon
(1946), Miller, Lane, & Unklesbay (1947), Miller & Downs (1948, 1950), Miller & Youngquist
(1947, 1949), Miller, Youngquist, & Nielsen (1952), Kummel (1953, 1963), Ruzhentsev &
Shimanskiy (1954), Unklesbay (1954), Arkell et al. (1957), Unklesbay & Palmer (1958), Hoare
(1961), Furnish, Glenister, & Hansman (1962), McCaleb (1963), Gordon (1964), Miller & Breed
(1964), Teichert et al. (1964), Furnish & Glennister (1971), Ruzhentsev & Bogoslovskaya
(1971), Nassichuk (1975), Sturgeon et al. (1982), Hewitt et al. (1989), Boardman et al. (1994),
Kues (1995), White & Skorina (1999), Kroger & Mapes (2005), Furnish et al. (2009), and Niko
& Mapes (2009) as well as from examination of all specimens, including types, housed in: the
Division of Invertebrate Paleontology, Biodiversity Institute, University of Kansas (KUMIP); the

University of lowa Paleontology Repository (Ul); and the Yale University Peabody Museum of
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Natural History (YPM). These institutions house the most complete repository of cephalopod
diversity from this region and time as well as contain many of the type specimens of the species
examined. Moreover, all specimens used in the analysis were personally examined and
taxonomically-vetted via consideration of the literature, relevant type specimens, and other
material, with species assignments and determinations made by the first author. Over 1,100
specimens were identified to species level in this study (Kolis, 2017). We chose to focus on the
particular species considered, rather than downloading data from the Paleobiology Data Base
(PBDB), as we wanted to be able to personally validate the taxonomic identity of specimens
using collections data in conjunction with the literature in order to present more rigorously
corroborated hypotheses about the geographic distributions of species. We consider this
approach to be complementary to those approaches that utilize the PBDB in paleobiogeographic
studies. On the one hand, our approach did limit the number of species we were able to consider.
On the other hand, we believe it is quite important to evaluate hypotheses about systematic
affinities of fossil specimens, the actual data of the fossil record themselves, in detail and thereby
accurately define the taxonomic units considered. Given that species represent key
macroevolutionary units in nature (Eldredge, 1989; Wiley & Lieberman, 2011; Hendricks et al.,
2014), correctly characterizing them taxonomically, and thus validating the scope of their
geographic distributions, is critical. Moreover, it has recently been shown by Marshall et al.
(2018) that incorporating museum specimen data in the manner that our study has can greatly
expand, enhance, and improve knowledge of geographic distributions of fossil species, relative

to studies that only utilize data from the PBDB.
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Specimens were assigned to the Virgilian, Missourian, Desmoinesian, Atokan, Morrowan, or
Wolfcampian stages using the USGS National Geologic Map Database (U.S. Geological Survey,
2017), Sawin et al. (2006, 2008, 2009), Zeller (1968), Pope (2012), and Heckel (2013). The
temporal boundaries of stages were derived from Davydov, Korn, & Schmitz (2012) (Table S2).
All specimen localities were georeferenced during the course of the study. GEOLocate (Rios and
Bart, 2018) and the MaNIS Georeferencing Calculator (Wieczorek, 2015) were used to obtain
coordinates and uncertainty radii. All points were calculated in decimal degrees within the
WGS84 model in the GEOLocate (Rios & Bart, 2018) world topo layer to ensure consistency
and accuracy in determinations. Most uncertainty radii were less than 10 kms. Any specimens
with questionable locality information were excluded from analyses, as were specimens with an
uncertainty radius larger than the county they were contained within. This left 950 specimens
(Table S1) to use in range reconstruction and statistical analysis of geographic range through
geologic time. All statistical analyses were performed using Minitab® Statistical Software

Minitab v. 17 (Minitab, 2016) and R-Studio Version 3.4.0 (2017).

Range reconstruction using GIS: Methods for range reconstruction follow Rode & Lieberman
(2004, 2005), Stigall & Lieberman (2006), Hendricks, Lieberman, & Stigall (2008), Myers &
Lieberman (2011), Myers, MacKenzie, and Lieberman (2013), and Dunhill & Wills (2015). In
particular, after specimen occurrence data were georeferenced and assigned to temporal bins,
Excel CSV files were compiled for the occurrence points for all specimens within species. CSV
files were imported into ArcGIS v. 10.3 (ESRI, 2014) and layers were created using geographic
coordinate system ‘“WGS 1984’ and projected coordinate system ‘WGS 1984 World Mercator’
(Fig. 1). These layers were input into PaleoWeb (The Rothwell Group LP, 2016) to rotate

coordinates into continental configuration and geographic position of the midcontinent region
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during the Pennsylvanian-early Permian (Fig. 2). These paleo-coordinate layers were then re-

projected into ArcMap (ESRI, 2014).

Geographic range values were calculated for each species (Table S3), using minimum bounding
geometry. This method has been shown to provide the most accurate procedure for
reconstructing changes in geographic range, especially for fossil taxa (Darroch & Saupe, 2018).
Convex hulls or buffers were given to every specimen occurrence point in each species and these
shapefiles were re-projected in ‘South America-Albers Equal Area Conic’. This model was used
to accommodate the rotation of species occurrence coordinates into the southern hemisphere

during the L ate Paleozoic. Species with three or more occurrence points were given a convex

hull that spanned the entire area between occurrences. In this way, multiple occurrence points
were combined to recreate the geographic range of a single species. Species with only one
occurrence point were given a 10km? buffer; species with just two occurrence points were given
a 10km? wide buffer which was used, in conjunction with their distance, to derive an area value
(following Rode & Lieberman [2004, 2005], Hendricks, Lieberman, & Stigall [2008], Myers &

Lieberman [2011], and Myers, MacKenzie, and Lieberman [2013]).

Assessing fossil record bias: A common concern when studying the fossil record is that there
might be biases that could lead to inaccurate or artifactual findings. This concern can be
manifold, but the two most pertinent issues here involve incomplete sampling and/or issues of
stratigraphic bias. While it is important to be aware of the fact that the fossil record is
incomplete, it is worth recognizing that there is a large body of research that demonstrates that
many of the biogeographic patterns preserved in the fossil record, particularly in marine settings,

represent real biological phenomena, rather than taphonomic artifacts (Myers & Lieberman,

[ Eliminado: method

Comentario [GP2]: Why you use
Late here and “late” in other parts of
the text?
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2011; Rook, Heim, & Marcot, 2013; Dunhill & Wills, QOlS{). Further, it is also prudent to realize

that sampling bias is a common issue in studies of extant biodiversity and species distribution,

and much work needs to be done in this area to alleviate the biases of the extant biota

(Lieberman, 2002; Carrasco, 2003).

The possibility that biases in the fossil record might lead to artifactual results was assessed in a
few different ways. First, the relationship between outcrop availability and the geographic range
of Pennsylvanian and Permian cephalopods was determined (see Myers & Lieberman, 2011). A
percent coverage table of the range size of species overlaid against temporal outcrop availability
was created using ArcGIS v. 10.3 (ESRI, 2014). A low percentage of overlap between range size
and outcrop area would suggest species distributions are more likely to reflect ‘real’
biogeographic patterns while a high percentage of overlap would suggest the presence or absence
of outcrops was significantly influencing results (Myers & Lieberman, 2011; Myers, MacKenzie,
& Lieberman, 2013; however, see also Dunhill, 2012 for an alternative viewpoint). The second
test used was an “n-1” jackknifing analysis. This procedure sub-sampled species range size
within each temporal bin to test the resilience of data to outliers. Mean range size estimations
were generated for each temporal bin; these were input into a one-way ANOVA to compare
jackknife estimates with the initial geographic range size estimates (Myers & Lieberman, 2011;
Myers, MacKenzie, & Lieberman, 2013). Finally, a Pearson rank correlation test was performed
to test the association of occurrence points and geographic range size; a close correlation would
indicate that reconstructed ranges were very much dependent on sampling and suggest that
reconstructed biogeographic patterns might be an artifact of a biased fossil record (Myers,

MacKenzie, & Lieberman, 2013).

10

possible, but see my previous

Comentario [GP3]: Yes, it is
comment for this particular study.

Comentario [GP4]: Sampling bias is
a problem when part of the original
community was not preserved, but you
are right that the problem exists even
in studies of recent biotas.
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Speciation and extinction rate calculations: Speciation and extinction rates were calculated in
order to consider macroevolutionary dynamics in cephalopods from the Late Paleozoic
Midcontinent Sea. Macroevolutionary rates were calculated using the following equation,

presented in Foote (2000) and Rode & Lieberman (2005):

Ne=Nge™

where Ny is the species richness at the beginning of a temporal bin, N¢ is the species richness at
the end of a temporal bin, t is the duration of a temporal bin, and r is the total rate of diversity
change. The temporal bins used were North American stages (Table S2). Species richness values
(Nf) were determined for each temporal bin and were parsed into ‘carry-over’ (No) and ‘new’
species richness values to ensure the accuracy of speciation and extinction rate calculation. In
this way, it was possible to calculate the rate of diversity change between bins. For example, r
atokan= (IN No-pesmoinesian — IN No-atokan)/ t Atokan-  SPeciation rate within each temporal bin was
calculated using the equation S atokan= (IN Nt-atokan — IN No-atokan)/ tatokan, @nd extinction rate within
each temporal bin was calculated using the equation E atokan= S Atokan — I' Atokan fOr €ach temporal

stage (Foote, 2000; Rode & Lieberman, 2005).

Results

Paleobiogeographic patterns: Geographic range data were analyzed separately across all
cephalopods and individually for both nautiloids and ammonoids. Species geographic range size
data were tested for normality within each temporal stage using the Anderson-Darling normality

test. Range size data within each temporal stage were not normally distributed for any data

11
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combination (P < 0.005). Instead, distributions were left skewed across all temporal stages for
every data grouping. Data were subsequently log-transformed to normalize data, and statistical

analyses were performed on both original and transformed data.

In general, geographic range size (either mean of transformed data or median of original) of
ammonoids and nautiloids increases during the Missourian and Virgilian stages (Fig. 3), which
was a time of sea-level rise due to warming during an interglacial (Isbell, 2003; Montafiez &
Poulsen, 2013), such that there may be an association between the sea-level rise and the increase
in geographic range. Another possibility is that there was some change in taphonomic conditions
that occurred during the Virgilian that made it easier to discern the actual biogeographic
distributions of species at this time, relative to other time intervals (G. Pifieiro, pers. comm.,
2018). However, none of the changes in geographic range were statistically significant, so it is
not possible to infer strong correlation between the sea-level rise, or possible taphonomic factors,
and the range expansion. For instance, Mann-Whitney U tests found no statistically significant
changes (at P < 0.05) in median geographic range size for any temporal stages separately across
all cephalopods, as well as individually for nautiloids and ammonoids, even prior to correction

for multiple comparisons. This is because with the Mann-Whitney U test median range values

are considered, and for all cephalopods the median range values are constant through time

(ngmzb.

The same was true for two-sample t-tests performed on log-transformed data which again found
no statistically significant changes (at P < 0.05) in mean geographic range size though time, even

prior to correction for multiple comparisons. Again, recall that mean range size data are shown

12
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[Con formato: Resaltar

)

Comentario [GP7]: Do you have
any figure to refer here?

|

[Con formato: Fuente: Cursiva

J




280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

in Figure 3, and the differences among log-transformed data through time are far less substantial
(and ultimately not significant). Furthermore, a one-way ANOVA, either with or without the
assumption of equal variance, failed to find any significant differences (at P < 0.05) between
stages for log-transformed mean geographic range size across all cephalopods as well as

individually for nautiloids and ammonoids.

Analysis of macroevolutionary rates: Speciation rate (S) and extinction rate (E) were
calculated for the Atokan, Desmoinesian, Missourian, and Virgilian stages across all
cephalopods and within nautiloids and ammonoids, respectively. The S and E presented across
all cephalopods are comprised of two calculations; one calculation included taxa that only
occurred in a single temporal stage (Table 1; Fig. 4), while the other calculation excluded taxa
that occurred in a single temporal stage (Table S4). S and E was also calculated for ammonoids
and for nautiloids including (Tables S5, S6) and excluding taxa that occurred in a single stage
(Tables S7, S8). Note, due to the dependence of calculations on diversity metrics from both
adjacent stages, it is not possible to accurately calculate the rate of biodiversity change (R), or S
and E for the first stage considered, the Morrowan, nor R or E for the last stage considered, the
Wolfcampian (these are thus left blank in Table 1 and Tables S4-S8). While it might have been
possible to infer S and E using other methods, to do so would exaggerate the significance of edge

effects and thus be problematic (Foote, 2000).

Across all cephalopods, S was high in the Atokan and Desmoinesian, fell in the Missourian, and
reached very low levels in the Virgilian and Wolfcampian (Fig. 4). By contrast, E was low in the

Atokan and Desmoinesian, began to rise in the Missourian, and reached even higher levels in the

13
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Virgilian (Fig. 4). Essentially, across all cephalopods examined, when S is high, E is low, and
when S is low, E is high. This is potentially contrary to the pattern expected with an ecological
opportunity model of speciation (Simdes et al., 2016), although the specific processes driving the
diversification could not be determined at this time. However, it is possible that when S was
high there may have been many short-lived species that could not be sampled that were actually

going extinct, and this phenomenon would artificially depress E.

As expected, S and E are lower when singletons are excluded (see Tables 1, S4). (See
Segesseman & Kammer [2018] for a recent discussion of how singletons can affect manifest
patterns in these types of studies.) Notably though, S and E patterns diverge somewhat between
ammonoids and nautiloids when considered individually. For instance, in nautiloids S is high in
the Atokan and Desmoinesian, then declines to moderate in the Missourian, and is at its lowest in
the Missourian and Wolfcampian (Table S6), whereas in ammonoids S is only high in the
Atokan, declines to moderate in the Desmoinesian, declines somewhat more in the Missourian
and then remains essentially constant through the Wolfcampian (Table S5). In addition, E is low

in ammonoids during the Desmoinesian and Missourian but high in the Atokan and

Wolfcampian (Table [S5), whereas in nautiloids there are no observed extinctions during the Comentario [GP10]: Interesting that
in ammonoids S and E are high in the
Atokan, a pattern that is not seen in the
study for all cephalopods. It seems that
the pattern for nautiloids is prevalent.

Atokan; values remain quite low for nautiloids in the Desmoinesian, rise somewhat in the

Missourian, and then rise again in the Virgilian (Table S6).

An important caveat regarding the calculation of S is that many of the species analyzed belong to
genera that were widely distributed beyond the Midcontinent Sea during the Late Paleozoic.

Thus, although none of the species considered in these analyses occurred outside of the
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Midcontinent Sea, their close relatives did. It is conceivable that while speciation events and

rates by necessity are herein treated as occurring in situ, this might not always have been the

case. Instead, some speciation events could have occurred outside of the Midcontinent Sea with

subsequent invasion events into that region. These invasions would appear as in situ speciation

events in this analysis, although they actually were not. In the absence of phylogenetic
hypotheses for the genera considered it is not currently possible to consider how much of the
pattern pertaining to speciation rate shown in Fig. 4 is due to invasion instead of speciation.

Further, a related phenomenon could affect the calculation of E: at times what were treated as

extinction events might have simply been local extinctions in the Midcontinent Sea which could

have included emigration to other regions. As mentioned previously, it does not appear that any

of the species considered occur outside of the Midcontinent Sea, but a phylogenetic hypothesis

for these groups would be valuable for considering this issue in greater detail.

v

Relationship between biogeography and macroevolutionary rates: Mean geographic range
size increased during the Missourian and Virgilian and declined in the Wolfcampian (Fig. 3);

speciation rates were high in the Atokan and Desmoinesian and fell in the Virgilian (Fig. 4);

extinction rates were low in the |/Atokan and Desmoinesian and rose in the Virgilian (Fig. 4). The

Pearson correlation test in Minitab 17 (Minitab, 2016) was used to examine the association
between geographic range and either speciation rate extinction rate in greater detail. No
significant (at P < 0.05) correlation between speciation or extinction rate and range size was
found across all cephalopods or within ammonoids or nautiloids individually (Table 2).

However, in cases the values approach P = 0.05_for instance, the association between
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decreasing geographic range size and increasing extinction for all cephalopods and for

ammonoids alone, Notably, an association between decreasing geographic range size and

increasing extinction has been documented by numerous studies (e.g. Vrba, 1980; Jablonski,
1986; Eldredge, 1989; Stanley, 1990; Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005;
Kiessling & Aberhan, 2007; Payne & Finnegan, 2007; Stigall, 2010; Dunhill & Wills, 2015;
Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017;
Pie & Meyer, 2017; Lam, Stigall, & Matzke, 2018; Schneider, 2018) and thus is a very robust
phenomenon in general and likely to be operating to some extent herein. However, over this time
interval and for this particular group of species the association is not statistically significant
(Table 2), probably because sample sizes are not large, and further this is likely because many

taxa were culled by the late Mississippian extinction (M. Powell, pers. comm., 2018).

Analysis of fossil record bias: The low percentage of overlap between cephalopod species <
geographic ranges and available outcrops, less than 1% in 29 out of 30 species (Table S9; the one
species with a larger percentage value, Orthoceras kansasense, occurs throughout the
Midcontinent Sea), suggests the results are not simply an artifact of an incomplete fossil record,
at least pertaining to outcrop availability. The “n-1" jackknifing analysis also supports the
robustness of the reconstructed ranges, as no statistically significant differences were found
between the mean of the reconstructed and subsampled range values for any time interval (all P-
values > 0.9), suggesting that one or a few occurrence records are not having a major influence

on biogeographic patterns. Similar results were found in other taxa and time periods by Hunt,
Roy, & Jablonski (2005), Myers & Lieberman (2011), and Myers, MacKenzie, & Lieberman

(2013), although Dunhill, Hannisdal, & Be dysoxia/anoxia is more severe for benthic taxa
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nton (2014) did find some association between outcrop area and diversity in the case of the
marine fossil record of Great Britain. Finally, the Pearson correlation test shows no correlation (-
0.055, P-Value = 0.789) between the number of occurrence points and geographic range size;
this provides further evidence that the biogeographic signatures of Late Paleozoic cephalopods

are unlikely to be simply an artifact of the fossil record.

Diversity patterns: Across all cephalopods, species richness increased from the Morrowan to
the Atokan, peaked in the Desmoinesian, and decreased through the Wolfcampian (Fig. S1). A
similar pattern is seen in the nautiloids (Fig. [S2). However, the ammonoids (Fig. S3) demonstrate
an earlier peak in the Atokan, followed by a Desmoinesian to Virgilian plateau, with a decrease

in the Wolfcampian. Notably, previous studies of |Late Paleozoic brachiopod communities in

Bolivia showed a consistent trend between diversity and glacial cycling with increased diversity
during glacial periods and decreased diversity during inter-glacial periods (Badyrka, Clapham, &
Lopez, 2013). However, there seems to be less consistency between species richness trends and
glacial cycling in the Midcontinent Sea. For instance, there is an increase in cephalopod species
richness throughout the Morrowan to Desmoinesian associated with localized glaciation, and an
interglacial period with generally minor glaciation is associated with a decrease in cephalopod
species richness from the Desmoinesian to Virgilian, yet by contrast widespread glaciation is
associated with a decrease in species richness from the Virgilian to the Wolfcampian, An

important point, however, is that these are just raw diversity patterns and sample standardized

diversity patterns show a different result (M. Powell, pers. comm., 2018).

Discussion
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Geographic range shifts through time are one of the pervasive phenomena in the history of
life; these are manifest both within species and higher-level clades, occur at a number of

different time scales, and are frequently linked to climatic change (Wiley & Lieberman, 2011).

Specific examples do come from the Late Paleozoic, a time of extensive climate change [c°n formato: Resaltar

including profound glaciation along with numerous glacial and interglacial cycles (Montafiez and
Poulsen, 2013). Those changes impacted patterns of geographic range in both terrestrial plant
(e.g., DiMichele et al., 2009; Falcon-Lang & DiMichele, 2010) and marine invertebrate
ecosystems (e.g., Leighton, 2005; Powell, 2007; Waterhouse & Shi, 2010). When it comes to
marine invertebrates from this time interval, most of the focus has been on the highly diverse
benthic faunas (e.g., Stanely & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011;
Balseiro, 2016; Segessenman & Kammer, 2018); however, taxa that have a pelagic life style (as
adults) are also worth examining. Herein, 79 pelagic species of cephalopods were examined for
patterns of range size change using GIS and although in general these species exhibit some

evidence for changes in geographic range size (Fig. 3), those changes were not statistically

significant nor can they be directly tied to climate [change]. In a similar vein, many Comentario [GP18]: However, the
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paleontological studies have demonstrated that species with larger geographic ranges tend to e o e

have lower extinction rates than species with narrower geographic range sizes (e.g., Vrba, 1980;
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2006; Payne & Finnegan, 2007; Stigall, 2010; Hopkins, 2011; Dunhill & Wills, 2015). Again,

this phenomenon was not found to be statistically significant in the case of the Late Paleozoic [c°n formato: Resaltar
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There may be a few different explanations for these findings. First, it may be that cephalopod
species were not significantly affected by the glacial-interglacial climatic cycles transpiring
within the Late Paleozoic Midcontinent Sea. A second possible explanation, perhaps coupled to

the first, is that since cephalopods are highly mobile relative to benthic marine invertebrates such

as gastropods, bivalves, brachiopods, etc., they can more easily occupy a greater portion of their

potential range, (at least as adults), Further, perhaps the available potential range of cephalopod

species does not change much in glacial relative to interglacial regimes. This may seem unlikely
given the vast fluctuations in sea level occurring at the time, but pelagic marine organisms,
because of their ease of dispersal, may more easily maintain consistent geographic ranges
relative to benthic counterparts. Another possible explanation for the pattern retrieved is that,
given the limits of stratigraphic correlation, sample size, and the completeness of the fossil
record, it was necessary for the analyses of species distribution conducted herein to focus on the
time scale of geological stages, whereas in actuality there were climatic changes occurring within
stages (Heckel, 2008, 2013); these probably did cause fluctuations in species’ geographic ranges
within stages, but simply could not be observed in the present study. A final set of explanations
are related to the issue of sampling. For instance, it was more difficult for the analyses presented
herein to detect a relationship between geographic range size and macroevolutionary rate
because speciation and extinction rates could only be calculated for four stages. Further, a
common concern when studying the fossil record is that there might be biases that can lead to
inaccurate findings. This concern can be manifold, and although it is not entirely obviated by the
results presented regarding the apparent quality of the fossil record suggested by the various tests

presented, it does become harder to invoke as a specific, primary reason for results retrieved.
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‘ Another finding perhaps contrary to what might typically be expected for the |Late Paleozoic is
that there was at least some evolutionary diversification and turnover within cephalopods, such

‘ that species diversity did fluctuate throughout the Pennsylvanian and garly Permian.
Pennsylvanian rates of macrevolution are typically classified as ‘sluggish’ or ‘stolid” across all
marine animals, and Sepkoski (1998) formalized the notion that there was a marked decline in
evolutionary rates of Carboniferous and Permian marine faunas. Stanley & Powell (2003)
reiterated this result and identified low mean macroevolutionary rates for marine invertebrate
taxa. Bonelli & Patzkowsky (2011) also documented a pattern of low turnover in the face of
major episodes of sea-level rise and fall due to climatic change. The results from the analyses
presented herein could indicate that macroevolutionary rate, at least in the case of Late Paleozoic
cephalopods, was more dynamic than often thought. One possible reason for this result is that
cephalopods are a fairly evolutionarily volatile group (Lieberman & Melott, 2013) relative to
many other marine invertebrate groups and have relatively high rates of diversification (Stanley,
1979; Jacobs et al., 1994; Landman, Tanabe, & Davis,1996; Monnet, De Baets, & Klug, 2011;

Korn, Klug, & Walton, 2015; Korn et al., 2015); thus, they would generally be expected to have

higher rates of speciation and extinction than typical. However, this may not be the entire
explanation, as other groups also seem to show elevated rates of speciation and extinction during
this time interval. For instance, Balseiro (2016) did document evolutionary turnover at high
latitudes, and elevated evolutionary rates have also been found in fusulinid foraminifera (Groves
& Lee, 2008; Groves & Yue, 2009) and advanced cladid crinoids (Segessenman & Kammer,
2018). Ultimately, we support the contention raised by Segessenman & Kammer (2018) that
patterns from a few individual groups do not refute the general pattern of sluggish

macroevolution postulated for this time period in the history of life. The results may lend
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credence to the notion that macroevolutionary patterns across all marine animals are rarely

unitary for any one time period in the history of life, and instead often tend to be variegated.

Conclusions

Patterns of range size change in Jate Paleozoic cephalopods from the North American
Midcontinent Sea were investigated using GIS. These species do exhibit some evidence for
changes in geographic range size through time, but the changes were not statistically significant
nor could they be directly tied to climate change. Further, in contradistinction to what is usually
found in the fossil record, cephalopod species with larger geographic ranges were not found to
have lower extinction rates than species with narrower geographic ranges. These distinctive
patterns may perhaps be related to the fact that cephalopods are pelagic and highly mobile, at

least relative to many benthic marine invertebrates. Finally, the group shows more evolutionary

diversification and turnover during the Pennsylvanian and garly Permian than is typical of other

marine invertebrate groups and this could be related to the fact that cephalopods are an

evolutionarily volatile group.
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Figure Captions

Figure 1: Distribution of Pennsylvanian and early Permian cephalopods.

A), Distribution of Pennsylvanian nautiloid and ammonoid data points (red) and B) early Permian

nautiloid and ammonoid data points (blue) across the midcontinent region of North America.

Plotted using ArcGIS v. 10.3 (ESRI, 2014) software at 1: 20,000,000.

Figure 2: Occurrence points of Metacoceras sp. and Mooreoceras sp.
For the Virgilian, shown on possible paleogeography of that stage, at 1:1,000,000,000 scale;

plotted using PaleoWeb (The Rothwell Group LP, 2016).
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Figure 3: Mean geographic range size in km? of cephalopods through time.

Nautiloid species (A) and ammonoid species (B) range changes occur but are not statistically

significant when analyzed using non-parametric tests (note, median range size data not graphed

but for all cephalopods they are 79km? for all time intervals, for ammonoids they are 78.5km? for

the Desmoinesian and Wolfcampian and 79km? for all other time intervals, and for nautiloids

they are 79km? for all time intervals) or when log transformed data are analyzed using

parametric tests (note log transformed data not graphed but mean transformed values for all

cephalopods are 5.51 [standard error 0.75] for the Morrowan, 4.05 [standard error 1.02] for the

Atokan, 4.36 [standard error 0.49] for the Desmoinesian, 5.65 [standard error 0.49] for the

Missourian, 5.96 [standard error 0.79] for the Virgilian, and 4.31 [standard error 0.52] for the

Wolfcampian).

Figure 4: Speciation and extinction rates through time.

Values given in per Myr and derived from Table 1.
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