Supplemental Table S3:

Geographic range values through time in km² by stage (youngest to oldest from left to right) for the species considered in the analysis.

Genus	species	Wolfcampian	Virgilian	Missourian	Desmoinesian	Atokan	Morrowan
Brachycycloce ras	bransoni	0	78.539816	78.539816	0.250798	0	0
Brachycycloce ras	crebrincinctum	0	0.523798	78.539816	1176.718476	0	0
Brachycycloce ras	curtum	0	377.412261	78.539816	78.539816	0	0
Brachycycloce ras	longulum	0	1065.654683	78.539816	0.833697	0	0
Brachcyclocer as	normale	0	0.494043	78.539816	8757.000000	78.539816	0
Domatoceras	bradyi	0	78.539816	78.539816	0	0	0
Domatoceras	kleihegei	0	0	0.220338	78.539816	0	0
Domatoceras	moorei	0	0	117036.00 0000	78.539816	0	0
Domatoceras	sculptile	0	78.539816	78.539816	78.539816	0	0
Domatoceras	umbilicatum	78.539816	12010.000000	3440.0000 00	12489.577104	0	0
Domatoceras	williamsi	78.539816	78.539816	0.729789	3762.000000	0	0
Ephippiocer as	ferratum	0	2810.000000	127692.00 0000	3269.000000	0	0
Euloxoceras	greenei	0	7594.000000	3827.0000 00	78.539816	0	0
Gonioloboce	<u>bridgeportensis</u>	0	0	78.539816	0	0	0
<mark>ras</mark> Mescalites	discoidalis	78.539816	0	0	0	0	0
<mark>Gonioloboceratoi</mark> des	<u>elaisi</u>	0	0	0	0.466069	0	0
<mark>Gonioloboce</mark> ras	goniolobum	0	15174.000000	78.539816	78.539816	0	0
Gonioloboce ras	gracellenae	0	78.539816	0	0	0	0
Gonioloboce	welleri	0	115412.000000	78.539816	78.539816	0	0
ras Hebetorthoce ras	unicamera	0	0	0	0.312085	0	0
Knightoceras	abundum	0	0	0.149475	0	0	0
Knightoceras	missouriense	0	0	0	78.539816	0	0
Liroceras	liratum	0	0	119598.00 0000	78.539816	78.539816	6791.691877
Liroceras	milleri	0	0	4731.0000 00	78.539816	78.539816	0
Megapronori	<u>baconi</u>	0	0	0	0	78.539816	78.539816
tes Metacoceras	angulatum	78.539816	13702.448632	9458.4907	0.130773	0	0
Metacoceras	bituberculatum	0	0	0	78.539816	0	0
Metacoceras	bowmani	0	0	9231.4759	0	0	0
Metacoceras	cheneyi	0	78.539816	93 0.639810	78.539816	0	0
	cornutum	0	85771.000000	0.793486	670.592743	0	0
Metacoceras							

Kommentiert [Office1]: Miss, Virg

Kommentiert [Office2]: Miss, Virg

Metacoceras	inconspicuim	0	0	78.539816	0	0	0
Metacoceras	jacksonense	0	78.539816	2214.0000 00	0	0	0
Metacoceras	knighti	0	0	0.497333	0	0	0
Metacoceras	mutabile	0	0	4982.0000 00	0.175450	0	0
Metacoceras	nodosum	78.539816	78.539816	4673.0000 00	78.539816	0	0
Metacoceras	perelegans	0	0	0.793486	0	0	0
Metacoceras	sulciferum	0	78.539816	78.539816	0	0	0
Metacoceras	sublaeve	78.539816	0	0	0	0	0
Millkoninckioce ras	elaisi	0	0	1022.8154 93	0	0	0
Millkoninckioce ras	jewetti	0	0	78.539816	0	0	0
Millkoninckioce ras	wyandottense	0	0	78.539816	0	0	0
Mooreoceras	bakeri	0	4981.349200	4915.0000 00	0	0	0
Mooreoceras	condrai	0	78.539816	3676.0000 00	78.539816	78.539816	0
Mooreoceras	conicum	0	0	4467.0000 00	78.539816	0	0
Mooreoceras	giganteum	0	78.539816	0	0	0	0
Mooreoceras	normale	0	0	4979.0000 00	8202.000000	78.539816	78.539816
Mooreoceras	ovale	0	78.539816	2339.0000 00	0	0	0
Mooreoceras	tuba	0	0	78.539816	0	0	0
Mooreoceras	wedingtonianu m	0	0	3758.1137 39	0	0	0
Orthoceras	dunbari	0	0	78.539816	78.539816	0	0
Orthoceras	kansasense	0	17195728778.0 00000	610.05091 4	78.539816	0	0
Orthoceras	longissimicame ratum	0	78.539816	78.539816	78.539816	0	0
Orthoceras	occidentale	0	78.539816	78.539816	78.539816	0	0
Parashumard ites	<u>senex</u>	0	78.539816	0	0	<mark>0</mark>	0
Phanerocera s	compressum	0	0	0	0	24924.000000	78.539816
Phanerocera s	kesslerense	0	0	0	0	0.368368	0
<mark>Pseudoparalegoc</mark> eras	<u>brazoense</u>	0	0	0	0.505825	0.001144	0
Pseudorthoce ras	knoxense	78.539816	71899.000000	7577.0000 00	64660.000000	30599.000000	0
<mark>Pseudopronori</mark> tes							
	arkansasensis	0	0	<u>0</u>	0	0	8916.063243
res <mark>Pseudopronori</mark> tes	arkansasensis kansasensis	0	0	0 78.539816	0	0	8916.063243 0
Pseudopronori	kansasensis pseudotimoren	_	_		_	_	
Pseudopronori tes	kansasensis	0	0	78.539816	0	0	0
Pseudopronori tes Pronorites	kansasensis pseudotimoren sis	0	0 78.539816	78.539816 78.539816	0 78.539816	0 78.539816	0 78.539816
Pseudopronori tes Pronorites Properrinites	kansasensis pseudotimoren sis boesei	0 0 0 0.559262	0 78.539816 0	78.539816 78.539816 0	0 78.539816 0	0 78.539816 0	0 78.539816
Pseudopronori tes Pronorites Properrinites Properrinites	kansasensis pseudotimoren sis boesei cumminsi	0 0 0.559262 78.539816	0 78.539816 0 -0	78.539816 78.539816 0	0 78.539816 0 .0	0 78.539816 0	0 78.539816 0 0
Pseudopronori tes Pronorites Properrinites Properrinites Properrinites	kansasensis pseudotimoren sis boesei cumminsi plummeri	0 0 0.559262 [78.539816] 78.539816	0 78.539816 0 .0	78.539816 78.539816 0 0 0 23915.000	78.539816 0 .0	78.539816 0 .0	0 78.539816 0 0

Kommentiert [Office3]: Missourian

Kommentiert [Office4]: Metapronorites; Kasimovian

Kommentiert [Office5]: Sakmarian

Kommentiert [Office6]: Paraschistoceras; Miss, Virg

Kommentiert [Office7]: Miss, Virg

Kommentiert [Office8]: Eoschistoceras; Missourian

Shumardites	<u>cuyleri</u>	0	0.040084	0	0	0	0
Solenochiliu s	brammeri	0	0	25888.015 389	0	0	0
Solenochiliu s	kempae	0	0	3067.0000 00	0	0	0
Solenochiliu s	kerefordensis	0	2277.109781	78.539816	0	0	0
Solenochiliu s	missouriense	0	0	1321.3664 76	0	0	0
Solenochiliu s	newloni	0	78.539816	0	0	0	0
Solenochiliu s	peculiare	0	0	0	78.539816	0	0
<u>Shumarites</u>	<u>simondsi</u>	0	0.103678	0	0	0	0
Solenochiliu s	springeri	0	0	0	9839.217950	78.539816	78.539816
Solenochiliu s	syracusense	0	0	0	78.539816	0	0
Vidrioceras	<mark>uddeni</mark>	78.539816	0	0	0	0	<u>0</u>

Kommentiert [Office9]: Miss, Virg

Kommentiert [Office10]: Miss, Virg

Using GIS to examine biogeographic and macroevolutionary patterns in late Paleozoic cephalopods from the North American Midcontinent Sea (#31237)

First submission

Editor guidance

Please submit by **11 Oct 2018** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

7 Figure file(s) 11 Table file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to **Peerl standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see Peerl policy).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Using GIS to examine biogeographic and macroevolutionary patterns in late Paleozoic cephalopods from the North American Midcontinent Sea

Kayla M Kolis ¹, Bruce Lieberman ^{Corresp. 2}

Corresponding Author: Bruce Lieberman Email address: blieber@ku.edu

Geographic range is an important macroevolutionary parameter frequently considered in paleontological studies as species' distributions and range sizes are determined by a variety of biotic and abiotic factors well known to affect the differential birth and death of species. Thus, considering how distributions and range sizes fluctuate over time can provide important insight into evolutionary dynamics. This study uses Geographic Information Systems (GIS) and analyses of evolutionary rates to examine how in the Cephalopoda, an important pelagic clade, geographic range size and rates of speciation and extinction changed throughout the Pennsylvanian and Early Permian in the North American Midcontinent Sea. This period is particularly interesting for biogeographic and evolutionary studies because it is characterized by repetitive interglacial-glacial cycles, a global transition from an icehouse to a greenhouse climate during the Late Paleozoic Ice Age, and sluggish macroevolutionary dynamics, i.e. low speciation and extinction rates. The analyses presented herein indicate that cephalopod species diversity was not completely static and actually fluctuated throughout the Pennsylvanian and Early Permian, matching findings from other studies. However, contrary to some other studies, the mean geographic ranges of cephalopod species did not change significantly through time, despite numerous climate oscillations; further, geographic range size did not correlate with rates of speciation and extinction. These results suggest that pelagic organisms may have responded differently to Late Paleozoic climate changes than benthic organisms, although additional consideration of this issue is needed. Finally, these results indicate that, at least in the case of cephalopods, macroevolution during the Late Paleozoic was more dynamic than previously characterized, and patterns may have varied across different clades during this interval.

¹ Biodiversity Institute, University of Kansas, Lawrence, KS, United States

² Department of Ecology & Evolutionary Biology, University of Kansas

- 1 Using GIS to Examine Biogeographic and Macroevolutionary
- 2 patterns in Late Paleozoic Cephalopods from the North American
- 3 Midcontinent Sea

4	
5	Kayla M. Kolis ¹ and Bruce S. Lieberman ^{1,2}
6	¹ Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, U. S. A.
7	² Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas
8	66045, U. S. A.
9	
10	Corresponding author:
11	Bruce S. Lieberman
12	
13	E-mail address: blieber@ku.edu
14	
15	
16	
17	
18	
19	
20	
21	
22	

Abstract

Geographic range is an important macroevolutionary parameter frequently considered in
paleontological studies as species' distributions and range sizes are determined by a variety of
biotic and abiotic factors well known to affect the differential birth and death of species. Thus,
considering how distributions and range sizes fluctuate over time can provide important insight
into evolutionary dynamics. This study uses Geographic Information Systems (GIS) and analyses
of evolutionary rates to examine how in the Cephalopoda, an important pelagic clade, geographic
range size and rates of speciation and extinction changed throughout the Pennsylvanian and
Early Permian in the North American Midcontinent Sea. This period is particularly interesting
for biogeographic and evolutionary studies because it is characterized by repetitive interglacial-
glacial cycles, a global transition from an icehouse to a greenhouse climate during the Late
Paleozoic Ice Age, and sluggish macroevolutionary dynamics, i.e. low speciation and extinction
rates.
The analyses presented herein indicate that cephalopod species diversity was not completely
static and actually fluctuated throughout the Pennsylvanian and Early Permian, matching
findings from other studies. However, contrary to some other studies, the mean geographic
ranges of cephalopod species did not change significantly through time, despite numerous
climate oscillations; further, geographic range size did not correlate with rates of speciation and
extinction. These results suggest that pelagic organisms may have responded differently to Late
Paleozoic climate changes than benthic organisms, although additional consideration of this issue
is needed. Finally, these results indicate that, at least in the case of cephalopods, macroevolution

45 during the Late Paleozoic was more dynamic than previously characterized, and patterns may

Much work has focused on the relationship between geographic range size and rates of

46 have varied across different clades during this interval.

Introduction

4	х
т	U

49

63

64

47

- 50 speciation and extinction (e.g., Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990; 51 Lieberman, 2000; Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005; Kiessling & 52 Aberhan, 2007; Liow, 2007; Payne & Finnegan, 2007; Abe & Lieberman, 2009; Stigall, 2010; 53 Myers & Saupe, 2013; Myers, MacKenzie, & Lieberman, 2013; Dunhill & Wills, 2015; 54 Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017; 55 Pie & Meyer, 2017; Simoes et al., 2016; Lam, Stigall, & Matzke, 2018; Schneider, 2018). 56 Furthermore, the use of Geographic Information Systems (GIS) has greatly facilitated 57 investigations into this macroevolutionary relationship (Stigall & Lieberman, 2006; Hendricks, 58 Lieberman, & Stigall, 2008; Dunhill, 2012; Myers, MacKenzie, & Lieberman, 2013; Dunhill & 59 Wills, 2015; Lieberman & Kimmig, 2018). Here, we focus on how geographic range size and 60 rates of speciation and extinction changed throughout the Pennsylvanian and Early Permian in the North American Midcontinent Sea in the Cephalopoda, an important clade of pel 61 62 invertebrates (Landman, Tanal Davis, 1996; Monnet, De Baets, & C. Klug, 2011; Körn et
- from an icehouse to greenhouse climate during the Late Paleozoic Ice Age (LPIA) (Montañez &

al., 2015), using GIS. This period is particularly interesting for biogeographic and evolutionary

analysis because it is characterized by repetitive glacial-interglacial cycles, a glob ansition

- 66 Poulsen, 2013). Further, it is generally considered a time of sluggish macroevolutionary
- dynamics, i.e. low speciation and extinction rates and low degrees of faunal turnover, that have

68 been demonstrated in studies of other marine invertebrate taxa (Sepkoski, 1998; Stanley & Powell, 2003; Bonelli & Patzkowsky, 2011). Hower, Balseiro (2016) did document the 69 70 existence of some profound evolutionary turnover over the course of this interval in regions 71 closer to the ice sheets, such as present day western Argentina. Furthermore, recently 72 Segessenman & Kammer (2018) showed that advanced cladid crinoids do display elevated rates 73 of evolution and turnover during this time interval, although three other subclasses of crinoids do 74 show subdued evolutionary rates. It is worth noting that fusulinid foraminifera also fit the pattern shown in the advanced cladids (Groves & Lee, 2008; Groves & Yue, 2009; Segessenman & 75 76 Kammer, 2018). 77 There have been a variety of hypotheses proposed for the postulated sluggish macroevolutionary 78 79 dynamics of the LPIA. Some studies contend that this pattern is a result of environmental 80 changes linked to glacial cycling while others point to tectonic activity (Stanley and Powell, 81 2003; Powell, 2005; Fielding, Frank, & Isbell, 2008; DiMichele et al., 2009; Falcon-Lang & 82 DiMichele, 2010; Bonelli and Patzkowsky, 2011; Cecil, DiMichele, & Elrick, 2014; 83 Segessenman & Kammer, 2018). To date, many of the studies focusing on the 84 macroevolutionary dynamics of the LPIA have concentrated on benthic marine invertebrates 85 (e.g., Stanley & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011; Balseiro, 2016; 86 Segessenman & Kammer, 2018) as they are highly diverse and very abundant. However, it is valuable to explicitly investigate evolutionary patterns in pelagic marine invertebrates as these 87 are also diverse and abundant organisms in Late Paleozoic marine ecosystems (Landman, 88 89 Tanabe, & Davis, 1996; Monnet, De Baets, & Klug, 2011; Körn et al., 2015). In particular, given 90 the significant role that geographic factors play in speciation (Mayr, 1942; Eldredge & Gould,

91	1972; Jablonski, 1986; Brooks & McLennan, 1991; Wiley & Lieberman, 2011; Jablonski &
92	Hunt, 2015; Pie & Meyer, 2017), we might expect that pelagic organisms, because of their
93	innately greater dispersal ability (at least as adults), might show different patterns relative to taxa
94	that were benthic (Rojas et al., 2017; Yacobucci, 2017).
95	
96	This study focuses on cephalopods from the Pennsylvanian-Early Permian (Morrowan, Atokan,
97	Desmoinesian, Missourian, Virgilian, and Wolfcampian) in the Midcontinent Sea of the United
98	States as knowledge of the systematic affinities, geographic distribution and overall diversity of
99	cephalonods during this interval is relatively well understood (Miller, Dunbar, & Condra,1933;
100	Newell, 1936; Plummer & Scott, 1937; Miller & Youngquist, 1949; Landman, Tanabe, & Davis,
101	1996; Kröger, 2005; Körn et al., 2015), the stratigraphy of the region is well constrained (Heckel,
102	2008, 2013), and there are extensive exposures of fossiliferous units in the region. Moreover, at
103	this time the Midcontinent Sea was bordered by the Antler Orogeny to the north, the Ancestral
104	Rocky Mountain Orogeny to the west/northwest and the Ouachita Mountain belt to the
105	south/southeast (as well as various structural arches), such that it constituted a distinct
106	biogeographic region for marine invertebrates (Wells et al., 2007; Nelson & Lucas, 2011;
107	Joachimski & Lambert, 2015).
108	
109	The Late Paleozoic Ice Age (LPIA) was the longest lived glacial period of the Phanerozoic and is
110	relatively well understood due to numerous stratigraphic, sedimentologic, paleontologic, and
111	isotopic studies (e.g., Mii, Grossman, & Yancey, 1999; Isbell, 2003; Stanley & Powell, 2003;
112	Raymond & Metz, 2004; Montañez, 2007; Powell, 2007; Tabor & Poulsen, 2007; Fielding,
113	Frank, & Isbell, 2008; Heckel, 2008; DiMichele et al., 2009; Bonelli & Patzkowsky, 2011;

114 Montañez & Poulsen, 2013; Balseiro, 2016; Roark et al., 2017; Segessenman & Kammer, 2018). 115 Glacial cycling in the midcontinent region has received much study (e.g., Isbell, 2003; Heckel, 2008, 2013). Modern synthesis of the glacial history indicates that the Morrowan to Early 116 Desmoinesian represented a localized glacial period, the Late Desmoinesian to Early Virgilian 117 118 represented a widespread interglacial period with minor glaciation, and the Late Virgilian to 119 Early Wolfcampian represented the apex of widespread glaciation (Montañez & Poulsen, 2013). 120 Modeling predicts that sea-level oscillations in the Late Pennsylvanian were between 50-100 121 meters depending upon the number and volume of melting ice sheets, and that water 122 temperatures are estimated to have been between 4-7°C cooler during glacial maxima than inter-123 glacial periods (Heckel, 1986; Isbell, 2003; Montañez, 2007; Tabor, 2007; Heckel, 2008; Cecil, 124 DiMichele, & Elrick, 2014). The sea-level and temperature changes were likely to have had an 125 important influence on species distribution and geographic range size during this time 126 (Waterhouse & Shi, 2010).

Materials and methods

128129130

131

132

133

134

135

136

137

127

Taxa considered, stratigraphic correlation, specing examined, and georeferencing: 79 species belonging to 26 genera (13 nautiloids and 13 ammonoids) of cephalopods in the Pennsylvanian-Permian North American Midcontinent Sea were considered (Table S1). These represent the most abundant, well preserved, and taxonomically well understood species. Range reconstructions relied on the occurrence records of specimens from: the Division of Invertebrate Paleontology, Biodiversity Institute, University of Kansas (KUMIP); the University of Iowa Paleontology Repository (UI); and the Yale University Peabody Museum of Natural History (YPM). These institutions house the most complete repository of cephalopod diversity from this

138	region and time as well as contain many of the species examined.
139	Moreover, all specimens used in the analysis were personally examined and taxonomically-
140	vetted, with species assignments and determinations made by the first author. Over 1,100
141	specimens were identified to species level in this study (Kolis, 2017).
142	
143	Specimens were assigned to the Virgilian, Missourian, Desmoinesian, Atokan, Morrowan, or
144	Wolfcampian Stages using the USGS National Geologic Map Database (U.S. Geological Survey
145	2017), Sawin et al. (2006, 2008, 2009), Zeller (1968), Pope (2012), and Heckel (2013). The
146	temporal boundaries of stages were derived from Davydov, Korn, and Schmitz (2012) (Table
147	S2).
148	All specimen localities were georeferenced during the course of the study. <i>GEOLocate</i> (Rios and
149	Bart, 2018) and the MaNIS Georeferencing Calculator (Wieczorek, 2015) were used to obtain
150	coordinates and uncertainty radii. All points were calculated in decimal degrees within the
151	WGS84 model in the GEOLocate (Rios & Bart, 2018) world topo layer to ensure consistency
152	and accuracy in determinations. Most uncertainty radii were less than 10 kms. Any specimens
153	with questionable locality information were excluded from analyses, as were specimens with an
154	uncertainty radius larger than the county they were contained within. This left 950 specimens
155	(Table S1) to use in range reconstruction and statistical analysis of geographic range through
156	geologic time. All statistical analyses were performed using Minitab® Statistical Software
157	Minitab v. 17 (Minitab, 2016) and R-Studio Version 3.4.0.
158 159	Range reconstruction using GIS: Methods for range reconstruction follow Rode & Lieberman
160	(2004, 2005), Stigall & Lieberman (2006), Hendricks, Lieberman, & Stigall (2008), Myers &

Lieberman (2011), Myers, MacKenzie, and Lieberman (2013), and Dunhill & Wills (2015). In particular, after specimen occurrence data were georeferenced and assigned to temporal bins, *Excel* CSV files were compiled for the occurrence points for all specimens within species. CSV files were imported into *ArcGIS v. 10.3* (ESRI, 2014) and layers were created using geographic coordinate system 'WGS 1984' and projected coordinate system 'WGS 1984 World Mercator' (Fig. 1). These layers were input into *PaleoWeb* (The Rothwell Group LP, 2016) to rotate coordinates into continental configuration and geographic position of the midcontinent region during the Pennsylvanian-Early Permian (Fig. 2). These paleo-coordinate layers were then reprojected into *ArcMap* (ESRI, 2014).

Geographic range values were calculated for each species (Table S3) using minimum bounding geometry. This method has been shown to provide the most accurate method for reconstructing changes in geographic range, especially for fossil taxa (Darroch & Saupe, 2018). Convex hulls or buffers were given to every specimen occurrence point in each species and these shapefiles were re-projected in 'South America-Albers Equal Area Conic'. This model was used to accommodate the rotation of species occurrence coordinates into the southern hemisphere during the Late Paleozoic. Species with three or more occurrence points were given a convex hull that spanned the entire area between occurrences. In this way, multiple occurrence points were combined to recreate the geographic range of a single species. Species with only one occurrence point were given a 10km² buffer; species with just two occurrence points were given a 10km² wide buffer which was used, in conjunction with their distance, to derive an area value (following Rode & Lieberman [2004, 2005], Hendricks, Lieberman, & Stigall [2008], Myers & Lieberman [2011], and Myers, MacKenzie, and Lieberman [2013]).

184	
107	

186

187

188

189

190

191

192

193

194

195

196 197

198

199

200

201

202

203

204

205

206

207

Assessing fossil record bias: A common concern when studying the fossil record is that there might be biases that could lead to inaccurate or artifactual findings. This concern can be manifold, but the two most pertinent issues here involve incomplete sampling and/or issues of stratigraphic bias. While it is important to be cognizant of the fact that the fossil record is incomplete, it is worth recognizing that there is a large body of research that demonstrates many of the biogeographic patterns preserved in the fossil record, particularly in marine settings, represent real biological phenomena, rather than taphonomic artifacts (Myers & Lieberman, 2011; Rook, Heim, & Marcot, 2013; Dunhill & Wills, 2015). Further, it is also prudent to realize that sampling bias is a common issue in studies of extant biodiversity and species distribution, and much work needs to be done in this area to alleviate the biases of the extant biota (Lieberman, 2002; Carrasco, 2003). The possibility that biases in the fossil record might lead to artifactual results was assessed in a few different ways. First, the relationship between outcrop availability and the geographic range of Pennsylvanian and Permian cephalopods was determined (see Myers & Lieberman, 2011). A percent coverage table of the range size of species overlaid against temporal outcrop availability was created using ArcGIS v. 10.3 (ESRI, 2014). A low percentage of overlap between range size and outcrop area would suggest species distributions are more likely to reflect 'real' biogeographic patterns while a high percentage of overlap would suggest the presence or absence of outcrop was significantly influencing results (Myers & Lieberman, 2011; Myers, MacKenzie, & Lieberman, 2013; however, see also Dunhill, 2012 for an alternative viewpoint). The second test used was an "n-1" jackknifing analysis. This procedure sub-sampled species range size within each temporal bin to test the resilience of data to outliers. Mean range size estimations

were generated for each temporal bin; these were input into a one-way ANOVA to compare jackknife estimates with the initial geographic range size estimates (Myers & Lieberman, 2011; Myers, MacKenzie, & Lieberman, 2013). Finally, a Pearson rank correlation test was performed to test the association of occurrence points and geographic range size; a close correlation would indicate that reconstructed ranges were very much dependent on sampling and suggest that reconstructed biogeographic patterns might be an artifact of a biased fossil record (Myers, MacKenzie, & Lieberman, 2013).

Speciation and extinction rate calculations: Speciation and extinction rates were calculated in order to consider macroevolutionary dynamics in cephalopods from the Late Paleozoic Midcontinent Sea. Macroevolutionary rates were calculated using the following equation, presented in Foote (2000) and Rode & Lieberman (2005):

N_I=N₀e^{rt}

where N_0 is the species richness at the beginning of a temporal bin, N_f is the species richness at the end of a temporal bin, t is the duration of a temporal bin, and r is the total rate of diversity change. The temporal bins used were North American stages. Species richness values (N_f) were determined for each temporal bin and were parsed into 'carry-over' (N_0) and 'new' species richness values to ensure the accuracy of speciation and extinction rate calculation. In this way, it was possible to calculate the rate of diversity change between bins. For example, r_{Atokan} (ln $N_{0-Desmoinesian} - \ln N_{0-Atokan}$)/ t_{Atokan} . Speciation rate within each temporal bin was calculated using the equation S_{Atokan} (ln $N_{f-Atokan} - \ln N_{0-Atokan}$)/ t_{Atokan} , and extinction rate within each

231	temporal bin was calculated using the equation E $_{Atokan}$ = S $_{Atokan}$ - r $_{Atokan}$ for each temporal stage
232	(Foote, 2000; Rode & Lieberman, 2005).
233	
234	Results
235	
36	Paleobiogeographic patterns: Geographic range data were analyzed separately across all
237	cephalopods and individually for both nautiloids and ammonoids. Species geographic range size
38	data were tested for normality within each temporal stage using the Anderson-Darling normality
39	test. Range size data within each temporal stage were not normally distributed for any data
40	combination (P \leq 0.005). Instead, distributions were left skewed across all temporal stages for
241	every data grouping. Data were subsequently log-transformed to normalize data, and statistical
242	analyses were performed on both original and transformed data.
243	
244	In general, geographic range size (either mean of transformed data or median of original) of
45	ammonoids and nautiloids increases during the Missourian and Virgilian stages (Fig. 3), which
46	loosely correlates with a time of sea-level rise due to warming during an interglacial (Isbell,
47	2003; Montañez & Poulsen, 2013). However, none of the changes were statistically significant.
48	For instance, Mann-Whitney U Tests found no statistically significant changes (at $P \leq 0.05$) in
49	median geographic range size for any temporal stages separately across all cephalopods, as well
250	as individually for nautiloids and ammonoids, even prior to correction for multiple comparisons.
251	
252	The same was true for two-sample t-tests performed on log-transformed data which again found
253	no statistically significant changes (at $P \le 0.05$) in mean geographic range size though time, even

prior to correction for multiple comparisons. Furthermore, a one-way ANOVA, either with or without the assumption of equal variance, failed to find any significant differences (at $P \le 0.05$) between stages for log-transformed mean geographic range size across all cephalopods as well as individually for nautiloids and ammonoids.

Analysis of macroevolutionary rates: Speciation rate (S) and extinction rate (E) were calculated for the Atokan, Desmoinesian, Missourian, and Virgilian stages across all cephalopods and within nautiloids and ammonoids, respectively. The S and E presented across all cephalopods are comprised of two calculations; one calculation included taxa that only occurred in a single temporal stage (Table 1; Fig. 4), while the other calculation excluded taxa that occurred in a single temporal stage (Table S4). S and E was also calculated for ammonoids and for nautiloids including (Tables S5, S6) and excluding taxa that occurred in a single stage (Tables S7, S8). Note, due to the dependence of calculations on diversity metrics from both adjacent stages, it is not possible to accurately calculate the rate of biodiversity change (R), or S and E for the first stage considered, the Morrowan, nor R or E for the last stage considered, the Wolfcampian (these are thus left blank in Table 1 and Tables S4-S8). While it might have been possible to infer S and E using other methods, to do so would exaggerate the significance of edge effects and thus be problematic (Foote, 2000).

Across all cephalopods, S was high in the Atokan and Desmoinesian, fell in the Missourian, and reached very low levels in the Virgilian and Wolfcampian (Fig. 4). By contrast, E was low in the Atokan and Desmoinesian, began to rise in the Missourian, and reached even higher levels in the Virgilian (Fig. 4). Essentially, across all cephalopods examined, when S is high, E is low, and

277	when S is low, E is high. This is potentially contrary to the pattern expected with an ecological
278	opportunity model of speciation (Simões et al., 2016), although the specific processes driving the
279	diversification could not be determined at this time. However, it is possible that when S was
280	high there may have been many short-lived species that could not be sampled that were actually
281	going extinct, and this phenomenon would artificially depress E.
282	
283	As expected, S and E are lower when singletons are excluded (see Tables 1, S4). (See
284	Segesseman & Kammer [2018] for a recent discussion of how singletons can affect manifest
285	patterns in these types of studies.) Notably though, S and E patterns diverge somewhat between
286	ammonoids and nautiloids when considered individually. For instance, in nautiloids S is high in
287	the Atokan and Desmoinesian, then declines to moderate in the Missourian, and is at its lowest in
288	the Missourian and Wolfcampian (Table S6), whereas in ammonoids S is only high in the
289	Atokan, declines to moderate in the Desmoinesian, declines somewhat more in the Missourian
290	and then remains essentially constant through the Wolfcampian (Table S5). In addition, E is low
291	in ammonoids during the Desmoinesian and Missourian but high in the Atokan and
292	Wolfcampian (Table S5), whereas in nautiloids there are no observed extinctions during the
293	Atokan; values remain quite low in the Desmoinesian, rise somewhat in the Missourian, and then
294	rise again in the Virgilian (Table S6).
295	
296	An important caveat regarding the calculation of S is that many of the species analyzed belong to
297	genera that were widely distributed beyond the Midcontinent Sea during the Late Paleozoic.
298	Thus, although none of the species considered in these analyses occurred outside of the
299	Midcontinent Sea, their close relatives did. It is conceivable that while speciation events and

301

302

303

304

305

306

307

308

309

310

311

312

313

rates by necessity are treated as occurring in situ herein, this might not always have been the case. Instead, some speciation events could have occurred outside of the Midcontinent Sea with subsequent invasion events into that region. These invasions would appear as *in situ* speciation events in this analysis, although they actually were not. In the absence of phylogenetic hypotheses for the genera considered it is not currently possible to consider how much of the pattern pertaining to speciation rate shown in Fig. 4 is due to invasion instead of speciation. Further, a related phenomenon could affect the calculation of E: at times what were treated as extinction events might have simply been local extinctions in the Midcontinent Sea which could have included emigration to other regions. As mentioned previously, it does not appear that any of the species considered occur outside of the Midcontinent Sea, but a phylogenetic hypothesis for these groups would be valuable for considering this issue in greater detail. Relationship between biogeography and macroevolutionary rates: Mean geographic range size increased during the Missourian and Virgilian and declined in the Wolfcampian (Fig. 3); speciation rates were high in the Atokan and Desmoinesian and fell in the Virgilian (Fig. 4); extinction rates were low in the Atokan and Desmoinesian and rose in the Virgilian (Fig. 4). The

314 315 316 Pearson correlation test in *Minitab* 17 (Minitab, 2016) was used to examine the association 317 between geographic range and either speciation rate extinction rate in greater detail. No 318 significant (at $P \le 0.05$) correlation between speciation or extinction rate and range size was 319 found across all cephalopods or within ammonoids or nautiloids individually (Table 2). 320 However, in cases the values approach P = 0.05: for instance, the association between 321 geographic range size and extinction for all cephalopods and for ammonoids alone. Notably, an 322 association between geographic range size and extinction has been documented by numerous

323	studies (e.g. Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990; Jablonski & Roy,
324	2003; Rode & Lieberman, 2004, 2005; Kiessling & Aberhan, 2007; Payne & Finnegan, 2007;
325	Stigall, 2010; Dunhill & Wills, 2015; Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe
326	et al., 2015; Castiglione et al., 2017; Pie & Meyer, 2017; Lam, Stigall, & Matzke, 2018;
327	Schneider, 2018) and thus is a very robust phenomenon in general and likely to be operating to
328	some extent herein. However, over this time interval and for this particular group of species the
329	association is not statistically significant (Table 2).
330	
331	Analysis of fossil record bias: The low percentage of overlap between cephalopod species
332	geographic ranges and available outcrop, less than 1% in 29 out of 30 species (Table S9; the one
333	species with a larger percentage value, Orthoceras kansasense, occurs throughout the
334	Midcontinent Sea), suggests the results are not simply an artifact of an incomplete fossil record,
335	at least pertaining to outcrop availability. The "n-1" jackknifing analysis also supports the
336	robustness of the reconstructed ranges, as no statistically significant differences were found
337	between the mean of the reconstructed and subsampled range values for any time interval (all P-
338	values > 0.9), suggesting that one or a few occurrence records are not having a major influence
339	on biogeographic patterns. Similar results were found in other taxa and time periods by Hunt,
340	Roy, & Jablonski (2005), Myers & Lieberman (2011), and Myers, MacKenzie, & Lieberman
341	(2013). Finally, the Pearson correlation test shows no correlation (-0.055, P-Value = 0.789)
342	between the number of occurrence points and geographic range size; this provides further
343	evidence that the biogeographic signatures of Late Paleozoic cephalopods are unlikely to be
344	simply an artifact of the fossil record.
345	

Diversity patterns: Across all cephalopods, species richness increased from the Morrowan to the Atokan, peaked in the Desmoinesian, and decreased through the Wolfcampian (Fig. S1). A similar pattern is seen in the nautiloids (Fig. S2). However, the ammonoids (Fig. S3) demonstrate an earlier peak in the Atokan, followed by a Desmoinesian to Virgilian plateau, with a decrease in the Wolfcampian. Notably, previous studies of Late Paleozoic brachiopod communities in Bolivia showed a consistent trend between diversity and glacial cycling with increased diversity during glacial periods and decreased diversity during inter-glacial periods (Badyrka, Clapham, & Lopez, 2013). However, there seems to be less consistency between species richness trends and glacial cycling in the Midcontinent Sea. For instance, there is an increase in cephalopod species richness throughout the Morrowan to Desmoinesian associated with localized glaciation, and an interglacial period with generally minor glaciation is associated with a decrease in cephalopod species richness from the Desmoinesian to Virgilian, yet by contrast widespread glaciation is associated with a decrease in species richness from the Virgilian to the Wolfcampian.

Discussion

Geographic range shifts through time are one of the pervasive phenomena in the history of life; these are manifest both within species and higher-level clades, occur at a number of different time scales, and are frequently linked to climatic change (Wiley & Lieberman, 2011). Specific examples do come from the Late Paleozoic, a time of extensive climate change including profound glaciation along with numerous glacial and interglacial cycles (Montañez and Poulsen, 2013). Those changes impacted patterns of geographic range in both terrestrial plant (e.g., DiMichele et al., 2009; Falcon-Lang & DiMichele, 2010) and marine invertebrate ecosystems (e.g., Leighton, 2005; Powell, 2007; Waterhouse & Shi, 2010). When it comes to

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

marine invertebrates from this time interval, most of the focus has been on the highly diverse benthic faunas (e.g., Stanely & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011; Balseiro, 2016; Segessenman & Kammer, 2018); however, taxa that have a pelagic life style (as adults) are also worth examining. Herein, 79 pelagic species of cephalopods were examined for patterns of range size change using GIS and although in general these species exhibit some evidence for changes in geographic range size (Fig. 3), those changes were not statistically significant nor can they be directly tied to climate change. In a similar vein, many paleontological studies have demonstrated that species with larger geographic ranges tend to have lower extinction rates than species with narrower geographic range sizes (e.g., Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990; Rode & Lieberman, 2004; Stigall & Lieberman, 2006; Payne & Finnegan, 2007; Stigall, 2010; Hopkins, 2011; Dunhill & Wills, 2015). Again, this phenomenon was not found to be statistically significant in the case of the Late Paleozoic cephalopod species considered herein (Table 2). There may be a few different explanations for these findings. First, it may be that cephalopod species were not significantly affected by the glacial-interglacial climatic cycles transpiring within the Late Paleozoic Midcontinent Sea. A second possible explanation, perhaps coupled to the first, is that since cephalopods are highly mobile, they can more easily occupy a greater portion of their potential range relative to taxa that are benthic (at least as adults), such as brachiopods. Further, perhaps the available potential range of cephalopod species does not change much in glacial relative to interglacial regimes. This may seem unlikely given the vast fluctuations in sea level occurring at the time, but pelagic marine organisms, because of their ease of dispersal, may more easily maintain consistent geographic ranges relative to benthic

counterparts. Another possible explanation for the pattern retrieved is that, given the limits of stratigraphic correlation, sample size, and the completeness of the fossil record, it was necessary for the analyses of species distribution conducted herein to focus on the time scale of geological stages, whereas in actuality there were climatic changes occurring within stages (Heckel, 2008, 2013); these probably did cause fluctuations in species' geographic ranges within stages, but simply could not be observed in the present study. A final set of explanations are related to the issue of sampling. For instance, it was more difficult for the analyses presented herein to detect a relationship between geographic range size and macroevolutionary rate because speciation and extinction rates could only be calculated for four stages. Further, a common concern when studying the fossil record is that there might be biases that can lead to inaccurate findings. This concern can be manifold, and although it is not entirely obviated by the results presented regarding the apparent quality of the fossil record suggested by the various tests presented, it does become harder to invoke as a specific, primary reason for results retrieved.

Another finding perhaps contrary to what might typically be expected for the Late Paleozoic is that there was at least some evolutionary diversification and turnover within cephalopods, such that species diversity did fluctuate throughout the Pennsylvanian and Early Permian. Pennsylvanian rates of macrevolution are typically classified as 'sluggish' or 'stolid' across all marine animals, and Sepkoski (1998) formalized the notion that there was a marked decline in evolutionary rates of Carboniferous and Permian marine faunas. Stanley & Powell (2003) reiterated this result and identified low mean macroevolutionary rates for marine invertebrate taxa. Bonelli & Patzkowsky (2011) also documented a pattern of low turnover in the face of major episodes of sea-level rise and fall due to climatic change. The results from the analyses

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

presented herein could indicate that macroevolutionary rate, at least in the case of Late Paleozoic cephalopods, was more dynamic than often thought. One possible reason for this result is that cephalopods are a fairly evolutionarily volatile group (Lieberman & Melott, 2013) relative to many other marine invertebrate groups and have relatively high rates of diversification (Stanley, 1979; Jacobs et al., 1994; Landman, Tanabe, & Davis, 1996; Monnet, De Baets, & Klug, 2011; Körn, Klug, & Walton, 2015; Körn et al., 2015); thus, they would generally be expected to have higher rates of speciation and extinction than typical. However, this may not be the entire explanation, as other groups also seem to show elevated rates of speciation and extinction during this time interval. For instance, Balseiro (2016) did document evolutionary turnover at high latitudes, and elevated evolutionary rates have also been found in fusulinid foraminifera (Groves & Lee, 2008; Groves & Yue, 2009) and advanced cladid crinoids (Segessenman & Kammer, 2018). Ultimately, we support the contention raised by Segessenman & Kammer (2018) that patterns from a few individual groups do not refute the general pattern of sluggish macroevolution postulated for this time period in the history of life. The results may lend credence to the notion that macroevolutionary patterns across all marine animals are rarely unitary for any one time period in the history of life, and instead often tend to be variegated.

432

433

Conclusions

434

435

436

437

438

Patterns of range size change in late Paleozoic cephalopods from the North American Midcontinent Sea were investigated using GIS. These species do exhibit some evidence for changes in geographic range size through time, but the changes were not statistically significant nor could they be directly tied to climate change. Further, in contradistinction to what is usually

439	found in the fossil record, cephalopod species with larger geographic ranges were not found to
440	have lower extinction rates than species with narrower geographic ranges. These distinctive
441	patterns may perhaps be related to the fact that cephalopods are pelagic and highly mobile.
442	Finally, the group shows more evolutionary diversification and turnover during the
443	Pennsylvanian and Early Permian than is typical of other marine invertebrate groups and this
444	could be related to the fact that cephalopods are an evolutionarily volatile group.
445	
446	Acknowledgements
447 448	
449	Thanks to Chris Beard, Kirsten Jensen, Julien Kimmig, and Luke Strotz for very helpful
450	discussions on this work and thanks to them and Thomas Algeo and Wolfgang Kiessling for
451	comments on previous versions of the manuscript. Thanks to Julien Kimmig for assistance with
452	collections related matters and for providing access to specimens in the KUMIP; thanks to
453	Tiffany Adrain for assistance with collections related matters and for providing access to
454	specimens in the UI; and thanks to Susan Butts for assistance with collections related matters and
455	for providing access to specimens in the YPM. Thanks to Michelle Casey and Erin Saupe for

References

assistance with stratigraphic correlations and use of GIS.

461	Abe FR, Lieberman BS. 2009. The nature of evolutionary radiations: a case study involving
462	Devonian trilobites. Evolutionary Biology 36:225-234.
463	Badyrka K, Clapham ME, Lopez S. 2013. Paleoecology of brachiopod communities during the
464	late Paleozoic ice age in Bolivia (Copacabana Formation, Pennsylvanian-Early Permian).
465	Palaeogeography, Palaeoclimatology, Palaeoecology 387:56-65.
466	Balseiro D. 2016. Compositional turnover and ecological changes related to the waxing and
467	waning of glaciers during the Late Paleozoic ice age in ice-proximal regions
468	(Pennsylvanian, western Argentina). Paleobiology 42:335-357.
469	Bonelli JR, Patzkowsky ME. 2011. Taxonomic and ecologic persistence across the onset of the
470	Late Paleozoic Ice Age: evidence from the upper Mississippian (Chesterian series),
471	Illinois basin, Univted States. Palaios 26:5-17.
472	Brooks DR, McLennan DA. 1991. Phylogeny, Ecology, and Behavior: a Research Program in
473	Comparative Biology. Chicago: University of Chicago Press.
474	Carrasco MA. 2013. The impact of taxonomic bias when comparing past and present species
475	diversity. Palaeogeography, Palaeoclimatology, Palaeoecology 372:130–137.
476	Castiglione S, Mondanaro A, Melchionna M, Serio C, Di Febbraro M, Carotenuto F, Raia
477	P. 2017. Diversification rates and the evolution of species range size frequency
478	distribution. Frontiers in Ecology and Evolution 5:147, 1-10.
479	Cecil CB, DiMichele WA, Elrick SD. 2014. Middle and Late Pennsylvanian cyclothems,
480	American Midcontinent: Ice-Age environmental changes and terrestrial biotic dynamics.
481	Comptes Rendus Geoscience 346 :159-168.
482	Darroch SAF, Saupe EE. 2018. Reconstructing geographic range-size dynamics from fossil

483	data. Paleobiology 44:25-39.
484	Davydov VI, Körn D, Schmitz MD. 2012. Chapter 23 - The Carboniferous Period. In:
485	Gradstein FM, Ogg JG, Schmitz MD, Ogg GM, eds. The Geologic Time Scale.
486	Amsterdam: Elsevier, 603 - 651.
487	DiMichele WA, Montañez IP, Poulsen CJ, Tabor NJ. 2009. Climate and vegetational regime
488	shifts in the late Paleozoic ice age earth. Geobiology 7:200-226.
489	Dunhill AM. 2012. Problems with using rock outcrop area as a paleontological sampling proxy
490	rock outcrop and exposure area compared with coastal proximity, topography, land use,
491	and lithology. <i>Paleobiology</i> 38 :126-143.
492	Dunhill AM, Wills MA. 2015. Geographic range did not confer resilience to extinction in
493	terrestrial vertebrates at the end-Triassic crisis. <i>Nature Communications</i> 6 :1-8.
494	Eldredge N. 1989. Macroevolutionary Dynamics: Species, Niches, and Adaptive Peaks. New
495	York: McGraw-Hill.
496 497	Eldredge N, Gould SJ. 1972. Punctuated equilibria: an alternative to phyletic gradualism. In:
498	Schopf TJM, ed. <i>Models in Paleobiology</i> . San Francisco: Freeman, Cooper, 82-115.
499	ESRI. 2014. ArcGIS Desktop: Release 10.3. Redlands, CA: Environmental Systems Research
500	Institute.
501	Falcon-Lang HJ, DiMichele WA. 2010. What happened to the coal forests during
502	Pennsylvanian glacial phases? <i>Palaios</i> 25 :611-617.
503	Fielding CR, Frank TD, Isbell JL. 2008. The Late Paleozoic Ice Age: a review of current

504	understanding and synthesis of global climate patterns. Geological Society of America
505	Special Paper 441 :343-354.
506	Foote M. 2000. Origination and extinction components of taxonomic diversity: general
507	problems. <i>Paleobiology</i> 26 :74-102.
508	Groves JR, Lee A. 2008. Accelerated rates of foraminiferal origination and extinction during the
509	late Paleozoic ice age. Journal of Foraminiferal Research 38:74-84.
510	Groves JR, Yue W. 2009. Foraminiferal diversification during the late Paleozoic ice age.
511	Paleobiology 35 :367-392.
512	Heckel PH. 1986. Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive
513	depositional cycles along midcontinent outcrop belt, North America. Geology 14:330-
514	334.
515	Heckel PH. 2008. Pennsylvanian cyclothems in midcontinent North America as far-field effects
516	of waxing and waning of Gondwana ice sheets. Geological Society of America Special
517	Paper 441 :275-289.
518	Heckel PH. 2013. Pennsylvanian cyclothems of northern midcontinent shelf and biostratigraphic
519	correlation of cyclothems. Stratigraphy 10:3-40.
520	Hendricks JR, Lieberman BS, Stigall AL. 2008. Using GIS to study palaeobiogeographic and
521	macroevolutionary patterns in soft-bodied Cambrian arthropods. Palaeogeography,
522	Palaeoclimatology, Palaeoecology 264 :163-175.
523	Hopkins MJ. 2011. How species longevity, intraspecific morphological variation, and
524	geographic range size are related: a comparison using Late Cambrian trilobites.

525	Evolution 65 :3253-3273.
526	Hunt G, Roy K, Jablonski D. 2005. Species-level heritability reaffirmed: a comment on 'on the
527	heritability of geographic range sizes'. American Naturalist 166:129-135.
528	Isbell JL. 2003. Timing of the late Paleozoic glaciation in Gondwana: was glaciation responsible
529	for the development of northern hemisphere cyclothems? Geological Society of America
530	Special Paper 370:5-24.
531	Jablonski D. 1986. Larval ecology and macroevolution in marine invertebrates. Bulletin of
532	<i>Marine Science</i> 39 :565-587.
533	Jablonski D, Hunt G. 2015. Larval ecology, geographic range, and species survivorship in
534	Cretaceous mollusks: organismic versus species-level explanations. American Naturalist
535	168 :556-564.
536	Jablonski D, Roy K. 2003. Geographical range and speciation in fossil and living
537	molluscs. Proceedings of the Royal Society of London, Series B 270:401-406.
538	Joachimski MM, Lambert LL. 2015. Salinity contrast in the US Midcontinent Sea during
539	Pennsylvanian glacio-eustatic highstands: evidence from conodont apatite $\delta 18$ O.
540	Palaeogeography, Palaeoclimatology, Palaeoecology 433:71-80.
541	Kiessling W, Aberhan M. 2007. Geographical distribution and extinction risk: lessons from
542	Triassic-Jurassic marine benthic organisms. <i>Journal of Biogeography</i> 34 :1473-1489.
543	Kolis K. 2017. The biogeography and macroevolutionary trends of late Paleozoic cephalopods in
544	the North American Midcontinent Sea: understanding the response of pelagic organisms
545	to changing climate during the Late Paleozoic Ice Age. Master's Thesis, Department of
546	Ecology & Evolutionary Biology, University of Kansas.

547	Körn D, Klug C, Walton SA. 2015. Taxonomic diversity and morphological disparity of
548	Paleozoic ammonoids. In: Klug C, Körn D, De Baets K, Kruta I, Mapes RH, eds.
549	Ammonoid Paleobiology: from Macroevolution to Paleogeography. Berlin: Springer,
550	231-264.
551	Klug C, Körn D, De Baets K, Kruta I, Mapes RH, eds. 2015. Ammonoid Paleobiology: from
552	Macroevolution to Paleogeography. Berlin: Springer
553	Kröger B. 2005. Adaptive evolution in Paleozoic coiled cephalopods. <i>Paleobiology</i> 31:253-268.
554	Lam AR, Stigall AL, Matzke N. 2018. Dispersal in the Ordovician: speciation patterns and
555	paleobiogeographic analyses of brachiopods and trilobites. Palaeogeography,
556	Palaeoclimatology, Palaeoecology 489:147-165.
557	Landman N, Tanabe K, Davis RA, eds. 1996. Ammonoid Paleobiology. New York: Plenum.
558	Leighton LR. 2005. The latitudinal diversity gradient through deep time: testing the "Age of
559	Tropics" hypothesis using Carboniferous productidine brachiopods. Evolutionary
560	Ecology 19:563-581.
561	Liow LH. 2007. Does versatility as measured by geographic range, bathymetric range and
562	morphological variability contribute to taxon longevity? Global Ecology and
563	Biogeography 16 :117-128.
564	Lieberman BS. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate
565	Tectonics, and Evolution. New York: Kluwer Academic/Plenum.
566	Lieberman BS. 2002. Biogeography with and without the fossil record. <i>Palaeogeography</i> ,
567	Palaeoclimatology, Palaeoecology 178:39-52.
568	Lieberman BS, Kimmig J. 2018. Museums, paleontology, and a biodiversity science based
569	approach. In: Rosenberg GD, Clary RM, eds. Museums at the Forefront of the History of

570	Geology: History Made, History in the Making. Geological Society of America Special
571	Paper 535. In press. https://doi.org/10.1130/2018.2535(22)
572	Lieberman BS, Melott AL. 2013. Declining volatility, a general property of disparate systems:
573	from fossils, to stocks, to the stars. <i>Palaeontology</i> 56 :1297-1304.
574	Mayr E. 1942. Systematics and the Origin of Species. Cambridge: Harvard University Press.
575	Myers CE, Saupe EE. 2013. A macroevolutionary expansion of the modern synthesis and the
576	importance of extrinsic abiotic factors. Palaeontology 56:1179-1198.
577	Mii HS, Grossman EL, Yancey TE. 1999. Carboniferous isotope stratigraphies of North
578	America: implications for Carbonifeous paleoceanography and Mississippian glaciation.
579	Geological Socity of America Bulletin 111:960-973.
580	Miller AK, Youngquist WL. 1949. American Permian nautiloids. Geological Society of
581	America Memoir 41:1-217.
582	Miller AK, Dunbar CO, Condra GE. 1933. The nautiloid cephalopods of the Pennsylvanian
583	System in the Mid-continent region. Nebraska Geological Survey Bulletin 9:1-240.
584	Minitab 17 Statistical Software. 2016. State College, PA: Minitab, Inc.
585	Monnet C, De Baets K, Klug C. 2011. Parallel evolution controlled by adaptation and
586	covariation in ammonoid cephalopods. BMC Evolutionary Biology 11:115, 1-21.
587	Montañez IP. 2007. CO ₂ -forced climate and vegetational instability during Late Paleozoic
588	deglaciation. Science 315:87-91.
589	Montañez IP, Poulsen CJ. 2013. The late Paleozoic Ice Age: an evolving paradigm. Annual
590	Review of Earth Planet Science 41:629-656.

591	Myers CE, Lieberman BS. 2011. Sharks that pass in the night: using Geographical Information
592	Systems to investigate competition in the Cretaceous Interior Seaway. Proceedings of the
593	Royal Society of London, Series B 278:681-689.
594	Myers CE, MacKenzie RA, Lieberman BS. 2013. Greenhouse biogeography: the relationship
595	of geographic range to invasion and extinction in the Western Interior Seaway.
596	Paleobiology 39 :135-148.
597	Nelson WJ, Lucas SG. 2011. Carboniferous geologic history of the Rocky Mountain region.
598	New Mexico Museum of Natural History and Science Bulletin 53:115-142.
599	Newell ND. 1936. Some mid-Pennsylvanian invertebrates from Kansas and Oklahoma: III.
600	Cephalopoda. Journal of Paleontology 10:481-489.
601	Orzechowski EA, Lockwood R, Byrnes JEK, Anderson SC, Finnegan S, Finkel ZV, Harnik
602	PG, Lindberg DR, Liow LH, Lotze HK, et al. 2015. Marine extinction risk shaped by
603	trait-environment interactions over 500 million years. Global Change Biology 21:3595-
604	3607.
605	Payne JL, Finnegan S. 2007. The effect of geographic range on extinction risk during
606	background and mass extinction. Proceedings of the National Academy of Sciences, USA
607	104 :10506-10511.
608	Pie MR, Meyer ALS. 2017. The evolution of range sizes in mammals and squamates:
609	heritability and differential evolutionary rates for low- and high-latitude limits.
610	Evolutionary Biology 44:347-355.
611	Plummer FB, Scott G. 1937. Upper Paleozoic ammonites of Texas: the geology of Texas.

613	Pope JP. 2012. Description of Pennsylvanian units, revision of stratigraphic nomenclature and
614	reclassification of the Morrowan, Atokan, Desmoinesian, Missourian, and Virgilian
615	stages in Iowa. Iowa Department of Natural Resources Special Report Series 5:1-140.
616	Powell MG. 2005. Climatic basis for sluggish macroevolution during the late Paleozoic ice age.
617	Geology 33 :381-384.
618	Powell MG. 2007. Latitudinal diversity gradients for brachiopod genera during late Paleozoic
619	time: links between climate, biogeography and evolutionary rates. Global Ecology and
620	Biogeography 16 :519-528.
621	Raymond A, Metz C. 2004. Ice and its consequences: glaciation in the Late Ordovician, Late
622	Devonian, Pennsylvanian-Permian and Cenozoic compared. Journal of Geology 112:655-
623	670.
624	Rios NE, Bart HL Jr. 2018. GEOlocate: a platform for georeferencing natural history
625	collections data. https://www.geo-locate.org .
626	Roark A, Flake R, Grossman EL, Olszewski T, Lebold J, Thomas D, Marcantonio F, Miller
627	B, Raymond A, Yancey T. 2017. Brachiopod geochemical records from across the
628	Carboniferous seas of North America: evidence for salinity gradients, stratification, and
629	circulation patterns. Palaeogeography, Palaeoclimatology Palaeoecology 485:136-153.
630	Rode AL, Lieberman BS. 2004. Using GIS to unlock the interactions between biogeography,
631	environment, and evolution in Middle and Late Devonian brachiopods and bivalves.
632	Palaeogeography, Palaeoclimatology, Palaeoecology 211:345-359.
633	Rode AL, Lieberman BS. 2005. Intergrating evolution and biogeography: a case study

634	involving Devonian crustaceans. Journal of Paleontology 79:267-276.
635	Rojas A, Patarroyo P, Mao L, Bengtson P, Kowalewski M. 2017. Global biogeography of
636	Albian ammonoids: a network-based approach. Geology 45:659-662.
637	Rook DL, Heim NA, Marcot J. 2013. Contrasting patterns and connections of rock and biotic
638	diversity in the marine and non-marine fossil records of North America.
639	Palaeogeography, Palaeoclimatology, Palaeoecology 372:123-129.
640	Rothwell Group LP. 2016. PaleoWeb: Free Plate Tectonics Software. Lakewood, CO.
641	Saupe EE, Qiao H, Hendricks JR, Portell RW, Hunter SJ, Soberón J, Lieberman BS. 2015.
642	Niche breadth and geographic range size as determinants of species survival on
643	geological time scales. Global Ecology and Biogeography 24:1159-1169.
644	Sawin RS, West RR, Franseen EK, Watney WL, McCauley JR. 2006. Carboniferous-
645	Permian boundary in Kansas, midcontinent, USA: current research in earth sciences.
646	Kansas Geological Survey, Bulletin 252, Part 2:1-13.
647	Sawin RS, Franseen EK, West RR, Ludvigson GA, Watney WL. 2008. Clarification and
648	changes in Permian stratigraphic nomenclature in Kansas: current research in earth
649	sciences. Kansas Geological Survey, Bulletin 254, Part 2:1-4.
650	Sawin RS, Franseen EK, Watney WL, West RR, Ludvigson GA. 2009. New stratigraphic
651	rank for the Carboniferous, Mississippian, and Pennsylvanian in Kansas: current research
652	in earth sciences. Kansas Geological Survey, Bulletin 256, Part 1:1-4.
653	Schneider CL. 2018. Marine refugia past, present, and future: lessons from ancient geologic
654	crises for modern marine ecosystem conservation. In: Tyler CL, Schneider CL, eds
655	Marine Conservation Paleobiology. Berlin: Springer, 163-208.

030	Segessenman DC, Kammer 1 w. 2016. Testing evolutionary rates during the rate Paleozoic ice
657	age using the crinoid fossil record. Lethaia 51:330-343.
658	Sepkoski JJ Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the
659	Royal Society of London 353 :315-326.
660	Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC, Heins L, Herzog K, Lieberman
661	BS. 2016. The evolving theory of evolutionary radiations. Trends in Ecology and
662	Evolution (TREE) 31 :27-34.
663	Stanley SM. 1979. Macroevolution. San Francisco: W. H. Freeman.
664	Stanley SM. 1990. The general correlation between rate of speciation and rate of extinction:
665	fortuitous causal linkages. In: Ross RM, Allmon WD, eds. Causes of Evolution: a
666	Paleontological Perspective. Chicago: University of Chicago Press, 103-127.
667	Stanley SM, Powell MG. 2003. Depressed rates of origination and extinction during the late
668	Paleozoic ice age: a new state for the global marine ecosystem. <i>Geology</i> 31 :877-880.
669	Stigall AL. 2010. Using GIS to assess the biogeographic impact of species invasions on native
670	brachiopods during the Richmondian Invasion in the type-Cincinnatian (Late Ordovician,
671	Cincinnati region). Palaeontologia Electronica 13(1), 5A:1-19.
672	Stigall AL, Lieberman BS. 2006. Quantatative palaeobiogeography: GIS, phylogenetic
673	biogeographical analysis and conservation insights. Journal of Biogeography 33:2051-
674	2060.
675	Tabor NJ. 2007. Permo-Pennsylvanian palaeotemperatures from Fe-Oxide and phyllosilicate
676	δO18 values. Earth and Planetary Science Letters 253:159-171.

677	Tabor NJ, Poulsen CJ. 2007. Paleoclimate across the late Pennsylvanian-early Permian tropical
678	paleolatitudes: a review of climate indicators, their distribution, and relation to
679	palaeophysiographic climate factors. Palaeogeography, Palaeoclimatology,
680	Palaeoecology 268 :293-310.
681	US Geological Survey. 2017. U.S. Geologic Names Lexicon ("Geolex"). Retrieved from the
682	National Geologic Map Database: https://ngmdb.usgs.gov/Geolex/search .
683	Vrba ES. 1980. Evolution, species, and fossils: how does life evolve? South African Journal of
684	Science 76 :61-84.
685	Waterhouse JB, Shi GR. 2010. Late Palaeozoic global changes affecting high-latitude
686	environments and biotas: an introduction. Palaeogeography, Palaeoclimatology,
687	Palaeoecology 298 :1-16.
688	Wells MR, Allison PA, Piggott MD, Gorman GJ, Hampson GJ, Pain CC, Fang F. 2007.
689	Numerical modeling of tides in the late Pennsylvanian Midcontinent Seaway of North
690	America with implications for hydrography and sedimentation. Journal of Sedimentary
691	Research 77:843-865.
692	Wieczorek C, Wieczorek J. 2015. Georeferencing calculator (version 20160920). Museum of
693	Vertebrate Zoology, University of California, Berkeley. http://manisnet.org/gci2.html .
694	Wiley EO, Lieberman BS. 2011. Phylogenetics, 2 nd edition. New York: J. Wiley & Sons.
695	Yacobucci MM. 2017. Marine life in a greenhouse world: cephalopod biodiversity and
696	biogeography during the early Late Cretaceous. Paleobiology 43:587-619.
697	Zeller DE, ed. 1968. The stratigraphic succession in Kansas. Kansas Geological Survey, Bulletin
698	189 :1-81.

699	
700	Figure Captions
701	
702	Figure 1: Distribution of Pennsylvanian cephalopods.
703	Distribution of Pennsylvanian nautiloid and ammonoid data points (red, left) and Permian
704	nautiloid and ammonoid data points (blue, right) across the midcontinent region of North
705	America. Plotted using ArcGIS v. 10.3 (ESRI, 2014) software at 1: 20,000,000.
706	
707	Figure 2: Occurrence points of Metacoceras sp. and Mooreoceras sp.
708	For the Virgilian, shown on possible paleogeography of that stage, at 1:1,000,000,000 scale;
709	plotted using PaleoWeb (The Rothwell Group LP, 2016).
710	
711	Figure 3: Mean geographic range size in km ² of cephalopods through time.
712	Nautiloid species (left) and ammonoid species (right) range changes occur but are not
713	statistically significant when analyzed using non-parametric tests or when log transformed data
714	are analyzed using parametric tests.
715	
716	Figure 4: Speciation and extinction rates through time.
717	Values given in per Myr and derived from Table 1.

Table 1(on next page)

Speciation rates (S) per millions of years (Myr), extinction rates (E) per Myr, and rate of turnover (R) per Myr, for each stage across all cephalopods.

Species richness values, species carryover from the previous stage, new species originating in the stage, N_0 , N_f , and duration (in Myr) also given.

Table 1:

Speciation rates (S) per millions of years (Myr), extinction rates (E) per Myr, and rate of turnover (R) per Myr, for each stage across all cephalopods, with species richness values, species carryover from the previous stage, new species originating in the stage, N_o , N_f , and duration (in Myr) also given.

6 7

1

2 3

4 5

Stage	Species Richness	Species Carryover	New Species	N _o	N_{f}	Duration	R	S	E
Wolfcampian	13	7	6	7	13	14		0.0442	
Virgilian	38	32	6	32	38	5	-0.3040	0.0343	0.3383
Missourian	55	33	22	33	55	3	-0.0103	0.1703	0.1805
Desmoinesian	41	12	29	12	41	3	0.3372	0.4096	0.0724
Atokan	15	7	8	7	15	2	0.2694	0.3811	0.1116
Morrowan	8	0	8	0	8	6			

Table 2(on next page)

Pearson correlation test for association between S and geographic range and E and geographic range across all cephalopods and for ammonoids and nautiloids individually.

Pearson's r and P-values given.

1 Table 2:

- 2 Pearson correlation test for association between S and geographic range and E and
- 3 geographic range across all cephalopods and for ammonoids and nautiloids individually,
- 4 with Pearson's r and P-values given.

5

Taxon - Speciation	Pearson's r	P-value	Taxon – Extinction	Pearson's r	P-value
All Cephalopods – S	-0.541	0.347	All Cephalopods – E	0.925	0.075
Nautiloids- S	-0.463	0.432	Nautiloids – E	0.913	0.087
Ammonoids – S	-0.519	0.370	Ammonoids – E	0.803	0.197

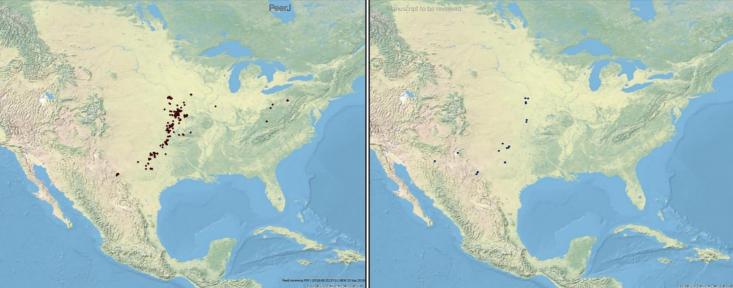

6

Figure 1(on next page)

Distribution of Pennsylvanian cephalopods.

Distribution of Pennsylvanian nautiloid and ammonoid data points (red, left) and Permian nautiloid and ammonoid data points (blue, right) across the midcontinent region of North America. Plotted using ArcGIS v. 10.3 (ESRI, 2014) software at 1: 20,000,000.

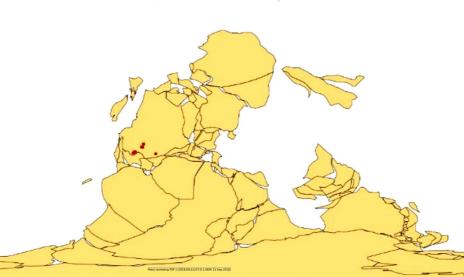


Figure 2(on next page)

Occurrence points of Metacoceras sp. and Mooreoceras sp.

For the Virgilian, shown on possible paleogeography of that stage, at 1:1,000,000,000 scale; plotted using PaleoWeb (The Rothwell Group LP, 2016).

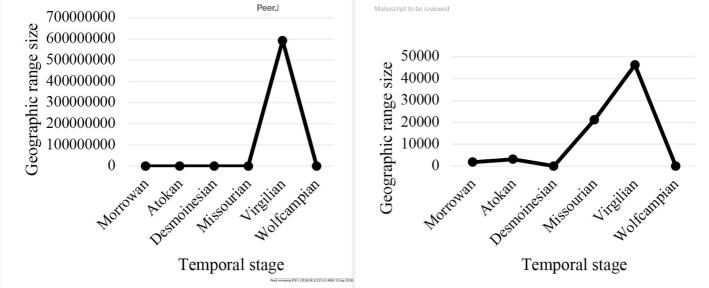


Figure 3(on next page)

Mean geographic range size in km² of cephalopods through time.

Nautiloid species (left) and ammonoid species (right) range changes occur but are not statistically significant when analyzed using non-parametric tests or when log transformed data are analyzed using parametric tests.

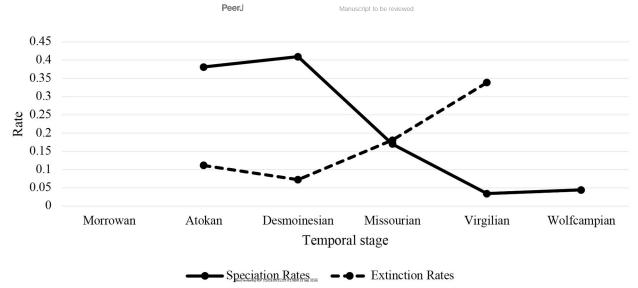


Figure 4(on next page)

Speciation and extinction rates through time.

Values given in per Myr and derived from Table 1.

