Supplemental Table S3:

Geographic range values through time in km® by stage (youngest to oldest from left to

right) for the species considered in the analysis.

Genus species Wolfcampian Virgilian Missourian | Desmoinesian Atokan Morrowan

Brachycycloce | bransoni 0 78.539816 78.539816 | 0.250798 0 0

ras

crebri; 0 0.523798 78.539816 | 1176.718476 0 0

ras

Brachycycloce | curtum 0 377.412261 78.539816 | 78.539816 0 0

ras

Brachycycloce | longulum 0 1065.654683 78.539816 | 0.833697 0 0

ras

Brachcyclocer | normale 0 0.494043 78.539816 | 8757.000000 78.539816 0

as

Domatoceras | bradyi 0 78.539816 78.539816 | 0 0 0

Domatoceras | kleihegei 0 0 0.220338 78.539816 0 0

Domatoceras | moorei 0 0 117036.00 | 78.539816 0 0
0000

Domatoceras | sculptile 0 78.539816 78.539816 | 78.539816 0 0

Domatoceras | umbilicatum 78.539816 12010.000000 3440.0000 | 12489.577104 | O 0
00

Domatoceras | williamsi 78.539816 78.539816 0.729789 3762.000000 0 0

Ephippiocer | ferratum 0 2810.000000 127692.00 | 3269.000000 0 0

as 0000

Euloxoceras | greenei 0 7594.000000 3827.0000 | 78.539816 0 0
00

Goniolob bridgep. 0 0 78.539816 | 0 0 0

ras

Mescalites discoidalis 78.539816 0 0 0 0 0

5"”f"’”b”f"’"’”i elaisi 0 0 0 0.466069 0 0

les

Gonioloboce | goniolobum 0 [15174.000000 78.539816 | 78.539816| 0 0 tiert [Officel]: Miss, Virg

ras

Gonioloboce | gracellenae 0 78.539816 0 0 0 0

ras

Gonioloboce | welleri 0 [115412.000000 | 78.539816 | 78.539816| 0 [V { Kommentiert [Office2]: Miss, Virg

ras

Hebetorthoce | unicamera 0 0 0 0.312085 0 0

ras

Knightoceras | abundum 0 0 0.149475 0 0 0

Knightoceras | missouriense 0 0 0 78.539816 0 0

Liroceras liratum 0 0 119598.00 | 78.539816 78.539816 6791.691877
0000

Liroceras milleri 0 0 4731.0000 78.539816 78.539816 0
00

Megapronori | baconi 0 0 0 0 78.539816 78.539816

tes

Metacoceras | angulatum 78.539816 13702.448632 9458.4907 | 0.130773 0 0
34

M bitubercul 0 0 0 78.539816 0 0

Metacoceras | bowmani 0 0 9231.4759 | 0 0 0
93

Metacoceras | cheneyi 0 78.539816 0.639810 78.539816 0 0

Metacoceras | cornutum 0 85771.000000 0.793486 670.592743 0 0

Metacoceras | dubium 5745.847979 78.539816 0.101843 0 0 0




Metacoceras | inconspicuim 0 0 78.539816 | 0 0 0
Metacoceras | jacksonense 0 78.539816 2214.0000 | 0 0 0
00
Metacoceras | knighti 0 0 0.497333 0 0 0
Metacoceras | mutabile 0 0 4982.0000 | 0.175450 0 0
00
Metacoceras | nodosum 78.539816 78.539816 4673.0000 | 78.539816 0 0
00
Metacoceras | perelegans 0 0 0.793486 0 0 0
Metacoceras | sulciferum 0 78.539816 78.539816 | 0 0 0
Metacoceras | sublaeve 78.539816 0 0 0 0 0
Millkoninckioce | elaisi 0 0 1022.8154 | 0 0 0
ras 93
Millkoninckioce | jewetti 0 0 78.539816 | 0 0 0
ras
i kit d 0 0 78.539816 0
ras
Mooreoceras | bakeri 0 4981.349200 4915.0000 | 0 0 0
00
Mooreoceras | condrai 0 78.539816 3676.0000 | 78.539816 78.539816 0
00
Mooreoceras | conicum 0 0 4467.0000 | 78.539816 0 0
00
Mooreoceras | giganteum 0 78.539816 0 0 0 0
Mooreoceras | normale 0 0 4979.0000 | 8202.000000 78.539816 78.539816
00
Mooreoceras | ovale 0 78.539816 2339.0000 | O 0 0
00
Mooreoceras | tuba 0 0 78.539816 | 0 0 0
Mooreoceras | wedingtonianu | 0 0 3758.1137 | 0 0 0
m 39
Orthoceras dunbari 0 0 78.539816 | 78.539816 0 0
Orthoceras kansasense 0 17195728778.0 | 610.05091 | 78.539816 0 0
00000 4
Orthoceras longissimicame | 0 78.539816 78.539816 | 78.539816 0 0
ratum
Orthoceras occidentale 0 78.539816 78.539816 | 78.539816 0 0
’{;:s'“h"'"mi L 0 f78.539814] 9 0 0 0 { Kommentiert [Office3]: Missourian
Phanerocera | compressum 0 0 0 0 24924.000000 | 78.539816
s
Phanerocera | kesslerense 0 0 0 0 0.368368 0
s
Pseudoparalegoc | prazoense 0 0 0 0.505825 0.001144 0
eras
Pseudorthoce | knoxense 78.539816 71899.000000 7577.0000 | 64660.000000 | 30599.000000 | O
ras 00
P P ark 0 0 0 0 0 8916.063243
tes
Pseudopronori | kansasensis 0 0 78.539816 | 0 0 0
tes
Pronorites pseudotimoren | 0 78.539816 78.539816 | 78.539816 78.539816 78.539816| tiert [Officed]: Metapronorites; Kasimovian
Sis 2
Properrinites | boesei 0.559262 0 0 0 0 0
Properrinites | cumminsi 78.539816] 0 0 0 0 0 { Kommentiert [Office5]: Sakmarian
Properrinites | plummeri 78.539816 0 0 0 0 0
Schistoceras | hildrethi 0 [139876.000000 | 23915.000 | 78.539816 78.539816 78539816 | .- { Kommentiert [Office6]: Paraschistoceras; Miss, Virg
000 : : :
Schistoceras | missouriense 78.539816 145678.147758 | 145678.14 | 78.539816 78.539816] 0 I { K tiert [Office7]: Miss, Virg
7758 ’
Schistoceras | unicum 0 0.275353 78.539816 | 78.539816 78.539816| 0 | { K. tiert [Office8]: Eoschistoceras; Missourian




Shumardites | cuyleri 0 0.040084 0 0 0 0

Solenochiliu | brammeri 0 0 25888.015 | O 0 0

s 389

Solenochiliu | kempae 0 0 3067.0000 | O 0 0

s 00

Solenochiliu | kerefordensis 0 2277.109781 78.539816 | 0 0 0

s

Solenochiliu | missouriense 0 0 1321.3664 | 0 0 0

s 76

Solenochiliu | newloni 0 78.539816 0 0 0 0

s

Solenochiliu | peculiare 0 0 0 78.539816 0 0

s

Shumarites simondsi 0 0.103678] 0 0 0 0 { Kommentiert [Office9]: Miss, Virg
Solenochiliu | springeri 0 0 0 9839.217950 78.539816 78.539816

s

Solenochiliu | syracusense 0 0 0 78.539816 0 0

s

Vidrioceras uddeni 78.539816] 0 0 0 0 o { Kommentiert [Office10]: Miss, Virg
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Geographic range is an important macroevolutionary parameter frequently considered in
paleontological studies as species’ distributions and range sizes are determined by a
variety of biotic and abiotic factors well known to affect the differential birth and death of
species. Thus, considering how distributions and range sizes fluctuate over time can
provide important insight into evolutionary dynamics. This study uses Geographic
Information Systems (GIS) and analyses of evolutionary rates to examine how in the
Cephalopoda, an important pelagic clade, geographic range size and rates of speciation
and extinction changed throughout the Pennsylvanian and Early Permian in the North
American Midcontinent Sea. This period is particularly interesting for biogeographic and
evolutionary studies because it is characterized by repetitive interglacial-glacial cycles, a
global transition from an icehouse to a greenhouse climate during the Late Paleozoic Ice
Age, and sluggish macroevolutionary dynamics, i.e. low speciation and extinction rates.
The analyses presented herein indicate that cephalopod species diversity was not
completely static and actually fluctuated throughout the Pennsylvanian and Early Permian,
matching findings from other studies. However, contrary to some other studies, the mean
geographic ranges of cephalopod species did not change significantly through time,
despite numerous climate oscillations; further, geographic range size did not correlate with
rates of speciation and extinction. These results suggest that pelagic organisms may have
responded differently to Late Paleozoic climate changes than benthic organisms, although
additional consideration of this issue is needed. Finally, these results indicate that, at least
in the case of cephalopods, macroevolution during the Late Paleozoic was more dynamic
than previously characterized, and patterns may have varied across different clades during
this interval.
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Abstract

Geographic range is an important macroevolutionary parameter frequently considered in
paleontological studies as species’ distributions and range sizes are determined by a variety of
biotic and abiotic factors well known to affect the differential birth and death of species. Thus,
considering how distributions and range sizes fluctuate over time can provide important insight
into evolutionary dynamics. This study uses Geographic Information Systems (GIS) and analyses
of evolutionary rates to examine how in the Cephalopoda, an important pelagic clade, geographic
range size and rates of speciation and extinction changed throughout the Pennsylvanian and
Early Permian in the North American Midcontinent Sea. This period is particularly interesting
for biogeographic and evolutionary studies because it is characterized by repetitive interglacial-
glacial cycles, a global transition from an icehouse to a greenhouse climate during the Late
Paleozoic Ice Age, and sluggish macroevolutionary dynamics, i.e. low speciation and extinction
rates.

The analyses presented herein indicate that cephalopod species diversity was not completely
static and actually fluctuated throughout the Pennsylvanian and Early Permian, matching
findings from other studies. However, contrary to some other studies, the mean geographic
ranges of cephalopod species did not change significantly through time, despite numerous
climate oscillations; further, geographic range size did not correlate with rates of speciation and
extinction. These results suggest that pelagic organisms may have responded differently to Late
Paleozoic climate changes than benthic organisms, although additional consideration of this issue

is needed. Finally, these results indicate that, at least in the case of cephalopods, macroevolution
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during the Late Paleozoic was more dynamic than previously characterized, and patterns may

have varied across different clades during this interval.
Introduction

Much work has focused on the relationship between geographic range size and rates of
speciation and extinction (e.g., Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990;
Lieberman, 2000; Jablonski & Roy, 2003; Rode & Lieberman, 2004, 2005; Kiessling &
Aberhan, 2007; Liow, 2007; Payne & Finnegan, 2007; Abe & Lieberman, 2009; Stigall, 2010;
Myers & Saupe, 2013; Myers, MacKenzie, & Lieberman, 2013; Dunhill & Wills, 2015;
Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe et al., 2015; Castiglione et al., 2017,
Pie & Meyer, 2017; Simoes et al., 2016; Lam, Stigall, & Matzke, 2018; Schneider, 2018).
Furthermore, the use of Geographic Information Systems (GIS) has greatly facilitated
investigations into this macroevolutionary relationship (Stigall & Lieberman, 2006; Hendricks,
Lieberman, & Stigall, 2008; Dunhill, 2012; Myers, MacKenzie, & Lieberman, 2013; Dunhill &
Wills, 2015; Lieberman & Kimmig, 2018). Here, we focus on how geographic range size and
rates of speciation and extinction changed throughout the Pennsylvanian and Early Permian in
the North American Midcontinent Sea in the Cephalopoda, an important clade of pel@:
invertebrates (Landman, Tana Davis, 1996; Monnet, De Baets, & C. Klug, 201 1; K&rn et
al., 2015), using GIS. Thispetiod is particularly interesting for biogeographic and evolutionary
analysis because it is characterized by repetitive glacial-interglacial cycles, a glob@ansition
from an icehouse to greenhouse climate during the Late Paleozoic Ice Age (LPIA) (Montafiez &
Poulsen, 2013). Further, it is generally considered a time of sluggish macroevolutionary

dynamics, i.e. low speciation and extinction rates and low degrees of faunal turnover, that have
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been demonstrated in studies of other marine invertebrate taxa (Sepkoski, 1998; Stanley &
Powell, 2003; Bonelli & Patzkowsky, 2011). H@Ver, Balseiro (2016) did document the
existence of some profound @volutionary turnover over the course of this interval in regions
closer to the ice sheets, such as present day western Argentina. Furthermore, recently
Segessenman & Kammer (2018) showed that advanced cladid crinoids do display elevated rates
of evolution and turnover during this time interval, although three other subclasses of crinoids do
show subdued evolutionary rates. It is worth noting that fusulinid foraminifera also fit the pattern
shown in the advanced cladids (Groves & Lee, 2008; Groves & Yue, 2009; Segessenman &

Kammer, 2018).

There have been a variety of hypotheses proposed for the postulated §ltuggish macroevolutionary
dynamics of the LPIA. Some studies contend that this pattern is a result of environmental
changes linked to glacial cycling while others point to tectonic activity (Stanley and Powell,
2003; Powell, 2005; Fielding, Frank, & Isbell, 2008; DiMichele et al., 2009; Falcon-Lang &
DiMichele, 2010; Bonelli and Patzkowsky, 2011; Cecil, DiMichele, & Elrick, 2014;
Segessenman & Kammer, 2018). To date, many of the studies focusing on the
macroevolutionary dynamics of the LPIA have concentrated on benthic marine invertebrates
(e.g., Stanley & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011; Balseiro, 2016;
Segessenman & Kammer, 2018) as they are highly diverse and very abundant. However, it is
valuable to explicitly investigate evolutionary patterns in pelagic marine invertebrates as these
are also diverse and abundant organisms in le?lreé‘l’aleozoic marine ecosystems (Landman,
Tanabe, & Davis,1996; Monnet, De Baets, & Klug, 2011;Kétn et al., 2015). In particular, given

the significant role that geographic factors play in speciation (Mayr, 1942; Eldredge & Gould,
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1972; Jablonski, 1986; Brooks & McLennan, 1991; Wiley & Lieberman, 2011; Jablonski &
Hunt, 2015; Pie & Meyer, 2017), we might expect that pelagic organisms, because of their
innately greater dispersal ability (at least as adults), might show different patterns relative to taxa

that were benthic (Rojas et al., 2017; Yacobucci, 2017).

This study focuses on cephalopods from the Pennsylvanian-Early Permian (Morrowan, Atokan,
Desmoinesian, Missourian, Virgilian, and Wolfcampian) in the Midcontinent Sea of the United
States as knowledge of the systematic affinities, geographic distribution and overall diversity of
cephalds during this interval is relatively well understood (Miller, Dunbar, & Condra,1933;
Newell, 1936; Plummer & Scott, 1937; Miller & Youngquist, 1949; Landman, Tanabe, & Davis,
1996; Kroger, 2005; Kétn et al., 2015), the stratigraphy of the region is well constrained (Heckel,
2008, 2013), and there are extensive exposures of fossiliferous units in the region. Moreover, at
this time the Midcontinent Sea was bordered by the Antler Orogeny to the north, the Ancestral
Rocky Mountain Orogeny to the west/northwest and the Ouachita Mountain belt to the
south/southeast (as well as various structural arches), such that it constituted a distinct
biogeographic region for marine invertebrates (Wells et al., 2007; Nelson & Lucas, 2011;

Joachimski & Lambert, 2015).

The LZate Paleozoic Ice Age (LPIA) was the longest lived glacial period of the Phanerozoic and is
relatively well understood due to numerous stratigraphic, sedimentologic, paleontologic, and
isotopic studies (e.g., Mii, Grossman, & Yancey,1999; Isbell, 2003; Stanley & Powell, 2003;
Raymond & Metz, 2004; Montafiez, 2007; Powell, 2007; Tabor & Poulsen, 2007; Fielding,

Frank, & Isbell, 2008; Heckel, 2008; DiMichele et al., 2009; Bonelli & Patzkowsky, 2011;
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Montafez & Poulsen, 2013; Balseiro, 2016; Roark et al., 2017; Segessenman & Kammer, 2018).
Glacial cycling in the midcontinent region has received much study (e.g., Isbell, 2003; Heckel,
2008, 2013). Modern synthesis of the glacial history indicates that the Morrowan to ([Eatly
Desmoinesian represented a localized glacial period, the Zaté Desmoinesian to Early Virgilian
represented a widespread interglacial period with minor glaciation, and the LZate Virgilian to
Early Wolfcampian represented the apex of widespread glaciation (Montafez & Poulsen, 2013).
Modeling predicts that sea-level oscillations in the Late Pennsylvanian were between 50-100
meters depending upon the number and volume of melting ice sheets, and that water
temperatures are estimated to have been between 4-7°C cooler during glacial maxima than inter-
glacial periods (Heckel, 1986; Isbell, 2003; Montafiez, 2007; Tabor, 2007; Heckel, 2008; Cecil,
DiMichele, & Elrick, 2014). The sea-level and temperature changes were likely to have had an
important influence on species distribution and geographic range size during this time

(Waterhouse & Shi, 2010).
Materials and methods

Taxa considered, stratigraphic correlation, specin@ examined, and georeferencing: 79
species belonging to 26 genera (13 nautiloids and 13 ammonoids) of cephalopods in the
Pennsylvanian-Permian North American Midcontinent Sea were considered (Table S1). These
represent the most abundant, well preserved, and taxonomically well understood species. Range
reconstructions relied on the occurrence records of specimens from: the Division of Invertebrate
Paleontology, Biodiversity Institute, University of Kansas (KUMIP); the University of lowa
Paleontology Repository (Ul); and the Yale University Peabody Museum of Natural History

(YPM). These institutions house the most complete repository of cephalopod diversity from this
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region and time as well as contain many of t@pe specimens of the species examined.
Moreover, all specimens used in the analysis were/personally examined and taxonomically=
vetted, with species assignments and deten@tions made by the first author. Over 1,100

specimens were identified to species level'in this study (Kolis, 2017).

Specimens Wer@igned to the Virgilian, Misﬁan, Desmoinesian, Atokan, Morrowan, or
Wolfcampian (Stagesiusing the USGS National Geologic Map Database (U.S. Geological Survey,
2017), Sawin et al. (2006, 2008, 2009), Zeller (1968), Pope (2012), and Heckel (2013). The
temporal boundaries of stages were derived from Davydov, Korn, and Schmitz (2012) (Table

S2).

All specimen localities were georeferenced during the course of the study. GEOLocate (Rios and
Bart, 2018) and the MaNIS Georeferencing Calculator (Wieczorek, 2015) were used to obtain
coordinates and uncertainty radii. All points were calculated in decimal degrees within the
WGS84 model in the GEOLocate (Rios & Bart, 2018) world topo layer to ensure consistency
and accuracy in determinations. Most uncertainty radii were less than 10 kms. Any specimens
with questionable locality information were excluded from analyses, as were specimens with an
uncertainty radius larger than the county they were contained within. This left 950 specimens
(Table S1) to use in range reconstruction and statistical analysis of geographic range through
geologic time. All statistical analyses were performed using Minitab® Statistical Software

Minitab v. 17 (Minitab, 2016) and R-Studio Version 3.4.0.

Range reconstruction using GIS: Methods for range reconstruction follow Rode & Lieberman

(2004, 2005), Stigall & Lieberman (2006), Hendricks, Lieberman, & Stigall (2008), Myers &
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Lieberman (2011), Myers, MacKenzie, and Lieberman (2013), and Dunhill & Wills (2015). In
particular, after specimen occurrence data were georeferenced and assigned to temporal bins,
Excel CSV files were compiled for the occurrence points for all specimens within species. CSV
files were imported into ArcGIS v. 10.3 (ESRI, 2014) and layers were created using geographic
coordinate system ‘WGS 1984 and projected coordinate system ‘WGS 1984 World Mercator’
(Fig. 1). These layers were input into PaleoWeb (The Rothwell Group LP, 2016) to rotate
coordinates into continental configuration and geographic position of the midcontinent region
during the Pennsylvanian-Early Permian (Fig. 2). These paleo-coordinate layers were then re-

projected into ArcMap (ESRI, 2014).

Geographic range values were calculated for each species (Table S3) using minimum bounding
geometry. This method has been shown to provide the most accurate method for reconstructing
changes in geographic range, especially for fossil taxa (Darroch & Saupe, 2018). Convex hulls or
buffers were given to every specimen occurrence point in each species and these shapefiles were
re-projected in ‘South America-Albers Equal Area Conic’. This model was used to accommodate
the rotation of species occurrence coordinates into the southern hemisphere during the Late
Paleozoic. Species with three or more occurrence points were given a convex hull that spanned
the entire area between occurrences. In this way, multiple occurrence points were combined to
recreate the geographic range of a single species. Species with only one occurrence point were
given a 10km? buffer; species with just two occurrence points were given a 10km? wide buffer
which was used, in conjunction with their distance, to derive an area value (following Rode &
Lieberman [2004, 2005], Hendricks, Lieberman, & Stigall [2008], Myers & Lieberman [2011],

and Myers, MacKenzie, and Lieberman [2013]).
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Assessing fossil record bias: A common concern when studying the fossil record is that there
might be biases that could lead to inaccurate or artifactual findings. This concern can be
manifold, but the two most pertinent issues here involve incomplete sampling and/or issues of
stratigraphic bias. While it is important to be cognizant of the fact that the fossil record is
incomplete, it is worth recognizing that there is a large body of research that demonstrates many
of the biogeographic patterns preserved in the fossil record, particularly in marine settings,
represent real biological phenomena, rather than taphonomic artifacts (Myers & Lieberman,
2011; Rook, Heim, & Marcot, 2013; Dunhill & Wills, 2015). Further, it is also prudent to realize
that sampling bias is a common issue in studies of extant biodiversity and species distribution,
and much work needs to be done in this area to alleviate the biases of the extant biota

(Lieberman, 2002; Carrasco, 2003).

The possibility that biases in the fossil record might lead to artifactual results was assessed in a
few different ways. First, the relationship between outcrop availability and the geographic range
of Pennsylvanian and Permian cephalopods was determined (see Myers & Lieberman, 2011). A
percent coverage table of the range size of species overlaid against temporal outcrop availability
was created using ArcGIS v. 10.3 (ESRI, 2014). A low percentage of overlap between range size
and outcrop area would suggest species distributions are more likely to reflect ‘real’
biogeographic patterns while a high percentage of overlap would suggest the presence or absence
of outcrop was significantly influencing results (Myers & Lieberman, 2011; Myers, MacKenzie,
& Lieberman, 2013; however, see also Dunhill, 2012 for an alternative viewpoint). The second
test used was an “n-1” jackknifing analysis. This procedure sub-sampled species range size

within each temporal bin to test the resilience of data to outliers. Mean range size estimations
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were generated for each temporal bin; these were input into a one-way ANOVA to compare
jackknife estimates with the initial geographic range size estimates (Myers & Lieberman, 2011;
Myers, MacKenzie, & Lieberman, 2013). Finally, a Pearson rank correlation test was performed
to test the association of occurrence points and geographic range size; a close correlation would
indicate that reconstructed ranges were very much dependent on sampling and suggest that
reconstructed biogeographic patterns might be an artifact of a biased fossil record (Myers,

MacKenzie, & Lieberman, 2013).

Speciation and extinction rate calculations: Speciation and extinction rates were calculated in
order to consider macroevolutionary dynamics in cephalopods from the Late Paleozoic
Midcontinent Sea. Macroevolutionary rates were calculated using the following equation,

presented in Foote (2000) and Rode & Lieberman (2005):

I\Isz()ert

where Ny is the species richness at the beginning of a temporal bin, N¢ is the species richness at
the end of a temporal bin, t is the duration of a temporal bin, and r is the total rate of diversity
change. The temporal bins used were North American stages. Species richness values (Ny) were
determined for each temporal bin and were parsed into ‘carry-over’ (Ny) and ‘new’ species
richness values to ensure the accuracy of speciation and extinction rate calculation. In this way,
it was possible to calculate the rate of diversity change between bins. For example, 1 a¢oxan= (In
No-Desmoinesian — 1N No-atokan)/ t Atokan- Speciation rate within each temporal bin was calculated

using the equation S akan= (In Ng.atokan — 1IN No_atokan)/ tatokan, @and extinction rate within each
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temporal bin was calculated using the equation E a¢kan= S Atokan — I Atokan fOT €ach temporal stage

(Foote, 2000; Rode & Lieberman, 2005).

Results

Paleobiogeographic patterns: Geographic range data were analyzed separately across all
cephalopods and individually for both nautiloids and ammonoids. Species geographic range size
data were tested for normality within each temporal stage using the Anderson-Darling normality
test. Range size data within each temporal stage were not normally distributed for any data
combination (P < 0.005). Instead, distributions were left skewed across all temporal stages for
every data grouping. Data were subsequently log-transformed to normalize data, and statistical

analyses were performed on both original and transformed data.

In general, geographic range size (either mean of transformed data or median of original) of
ammonoids and nautiloids increases during the Missourian and Virgilian stages (Fig. 3), which
loosely correlates with a time of sea-level rise due to warming during an interglacial (Isbell,
2003; Montafiez & Poulsen, 2013). However, none of the changes were statistically significant.
For instance, Mann-Whitney U Tests found no statistically significant changes (at P < 0.05) in
median geographic range size for any temporal stages separately across all cephalopods, as well

as individually for nautiloids and ammonoids, even prior to correction for multiple comparisons.

The same was true for two-sample t-tests performed on log-transformed data which again found

no statistically significant changes (at P < 0.05) in mean geographic range size though time, even
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prior to correction for multiple comparisons. Furthermore, a one-way ANOVA, either with or
without the assumption of equal variance, failed to find any significant differences (at P < 0.05)
between stages for log-transformed mean geographic range size across all cephalopods as well as

individually for nautiloids and ammonoids.

Analysis of macroevolutionary rates: Speciation rate (S) and extinction rate (E) were
calculated for the Atokan, Desmoinesian, Missourian, and Virgilian stages across all
cephalopods and within nautiloids and ammonoids, respectively. The S and E presented across
all cephalopods are comprised of two calculations; one calculation included taxa that only
occurred in a single temporal stage (Table 1; Fig. 4), while the other calculation excluded taxa
that occurred in a single temporal stage (Table S4). S and E was also calculated for ammonoids
and for nautiloids including (Tables S5, S6) and excluding taxa that occurred in a single stage
(Tables S7, S8). Note, due to the dependence of calculations on diversity metrics from both
adjacent stages, it is not possible to accurately calculate the rate of biodiversity change (R), or S
and E for the first stage considered, the Morrowan, nor R or E for the last stage considered, the
Wolfcampian (these are thus left blank in Table 1 and Tables S4-S8). While it might have been
possible to infer S and E using other methods, to do so would exaggerate the significance of edge

effects and thus be problematic (Foote, 2000).

Across all cephalopods, S was high in the Atokan and Desmoinesian, fell in the Missourian, and
reached very low levels in the Virgilian and Wolfcampian (Fig. 4). By contrast, E was low in the
Atokan and Desmoinesian, began to rise in the Missourian, and reached even higher levels in the

Virgilian (Fig. 4). Essentially, across all cephalopods examined, when S is high, E is low, and
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when S is low, E is high. This is potentially contrary to the pattern expected with an ecological
opportunity model of speciation (Simdes et al., 2016), although the specific processes driving the
diversification could not be determined at this time. However, it is possible that when S was
high there may have been many short-lived species that could not be sampled that were actually

going extinct, and this phenomenon would artificially depress E.

As expected, S and E are lower when singletons are excluded (see Tables 1, S4). (See
Segesseman & Kammer [2018] for a recent discussion of how singletons can affect manifest
patterns in these types of studies.) Notably though, S and E patterns diverge somewhat between
ammonoids and nautiloids when considered individually. For instance, in nautiloids S is high in
the Atokan and Desmoinesian, then declines to moderate in the Missourian, and is at its lowest in
the Missourian and Wolfcampian (Table S6), whereas in ammonoids S is only high in the
Atokan, declines to moderate in the Desmoinesian, declines somewhat more in the Missourian
and then remains essentially constant through the Wolfcampian (Table S5). In addition, E is low
in ammonoids during the Desmoinesian and Missourian but high in the Atokan and
Wolfcampian (Table S5), whereas in nautiloids there are no observed extinctions during the
Atokan; values remain quite low in the Desmoinesian, rise somewhat in the Missourian, and then

rise again in the Virgilian (Table S6).

An important caveat regarding the calculation of S is that many of the species analyzed belong to
genera that were widely distributed beyond the Midcontinent Sea during the Late Paleozoic.
Thus, although none of the species considered in these analyses occurred outside of the

Midcontinent Sea, their close relatives did. It is conceivable that while speciation events and
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300 rates by necessity are treated as occurring in situ herein, this might not always have been the
301 case. Instead, some speciation events could have occurred outside of the Midcontinent Sea with
302 subsequent invasion events into that region. These invasions would appear as in situ speciation
303 events in this analysis, although they actually were not. In the absence of phylogenetic

304 hypotheses for the genera considered it is not currently possible to consider how much of the
305 pattern pertaining to speciation rate shown in Fig. 4 is due to invasion instead of speciation.

306 Further, a related phenomenon could affect the calculation of E: at times what were treated as
307 extinction events might have simply been local extinctions in the Midcontinent Sea which could
308 have included emigration to other regions. As mentioned previously, it does not appear that any
309 of the species considered occur outside of the Midcontinent Sea, but a phylogenetic hypothesis
310 for these groups would be valuable for considering this issue in greater detail.

311

312 Relationship between biogeography and macroevolutionary rates: Mean geographic range
313 size increased during the Missourian and Virgilian and declined in the Wolfcampian (Fig. 3);
314 speciation rates were high in the Atokan and Desmoinesian and fell in the Virgilian (Fig. 4);
315 extinction rates were low in the Atokan and Desmoinesian and rose in the Virgilian (Fig. 4). The
316 Pearson correlation test in Minitab 17 (Minitab, 2016) was used to examine the association

317 between geographic range and either speciation rate extinction rate in greater detail. No

318 significant (at P < 0.05) correlation between speciation or extinction rate and range size was

319 found across all cephalopods or within ammonoids or nautiloids individually (Table 2).

320 However, in cases the values approach P = 0.05: for instance, the association between

321 geographic range size and extinction for all cephalopods and for ammonoids alone. Notably, an

322 association between geographic range size and extinction has been documented by numerous
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studies (e.g. Vrba, 1980; Jablonski, 1986; Eldredge, 1989; Stanley, 1990; Jablonski & Roy,
2003; Rode & Lieberman, 2004, 2005; Kiessling & Aberhan, 2007; Payne & Finnegan, 2007;
Stigall, 2010; Dunhill & Wills, 2015; Jablonski & Hunt, 2015; Orzechowski et al., 2015; Saupe
et al., 2015; Castiglione et al., 2017; Pie & Meyer, 2017; Lam, Stigall, & Matzke, 2018;
Schneider, 2018) and thus is a very robust phenomenon in general and likely to be operating to
some extent herein. However, over this time interval and for this particular group of species the

association is not statistically significant (Table 2).

Analysis of fossil record bias: The low percentage of overlap between cephalopod species
geographic ranges and available outcrop, less than 1% in 29 out of 30 species (Table S9; the one
species with a larger percentage value, Orthoceras kansasense, occurs throughout the
Midcontinent Sea), suggests the results are not simply an artifact of an incomplete fossil record,
at least pertaining to outcrop availability. The “n-1" jackknifing analysis also supports the
robustness of the reconstructed ranges, as no statistically significant differences were found
between the mean of the reconstructed and subsampled range values for any time interval (all P-
values > 0.9), suggesting that one or a few occurrence records are not having a major influence
on biogeographic patterns. Similar results were found in other taxa and time periods by Hunt,
Roy, & Jablonski (2005), Myers & Lieberman (2011), and Myers, MacKenzie, & Lieberman
(2013). Finally, the Pearson correlation test shows no correlation (-0.055, P-Value = 0.789)
between the number of occurrence points and geographic range size; this provides further
evidence that the biogeographic signatures of Late Paleozoic cephalopods are unlikely to be

simply an artifact of the fossil record.
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Diversity patterns: Across all cephalopods, species richness increased from the Morrowan to
the Atokan, peaked in the Desmoinesian, and decreased through the Wolfcampian (Fig. S1). A
similar pattern is seen in the nautiloids (Fig. S2). However, the ammonoids (Fig. S3) demonstrate
an earlier peak in the Atokan, followed by a Desmoinesian to Virgilian plateau, with a decrease
in the Wolfcampian. Notably, previous studies of Late Paleozoic brachiopod communities in
Bolivia showed a consistent trend between diversity and glacial cycling with increased diversity
during glacial periods and decreased diversity during inter-glacial periods (Badyrka, Clapham, &
Lopez, 2013). However, there seems to be less consistency between species richness trends and
glacial cycling in the Midcontinent Sea. For instance, there is an increase in cephalopod species
richness throughout the Morrowan to Desmoinesian associated with localized glaciation, and an
interglacial period with generally minor glaciation is associated with a decrease in cephalopod
species richness from the Desmoinesian to Virgilian, yet by contrast widespread glaciation is

associated with a decrease in species richness from the Virgilian to the Wolfcampian.

Discussion

Geographic range shifts through time are one of the pervasive phenomena in the history of
life; these are manifest both within species and higher-level clades, occur at a number of
different time scales, and are frequently linked to climatic change (Wiley & Lieberman, 2011).
Specific examples do come from the Late Paleozoic, a time of extensive climate change
including profound glaciation along with numerous glacial and interglacial cycles (Montaiiez and
Poulsen, 2013). Those changes impacted patterns of geographic range in both terrestrial plant
(e.g., DiMichele et al., 2009; Falcon-Lang & DiMichele, 2010) and marine invertebrate

ecosystems (e.g., Leighton, 2005; Powell, 2007; Waterhouse & Shi, 2010). When it comes to
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marine invertebrates from this time interval, most of the focus has been on the highly diverse
benthic faunas (e.g., Stanely & Powell, 2003; Powell, 2007; Bonelli & Patzkowsky, 2011;
Balseiro, 2016; Segessenman & Kammer, 2018); however, taxa that have a pelagic life style (as
adults) are also worth examining. Herein, 79 pelagic species of cephalopods were examined for
patterns of range size change using GIS and although in general these species exhibit some
evidence for changes in geographic range size (Fig. 3), those changes were not statistically
significant nor can they be directly tied to climate change. In a similar vein, many
paleontological studies have demonstrated that species with larger geographic ranges tend to
have lower extinction rates than species with narrower geographic range sizes (e.g., Vrba, 1980;
Jablonski, 1986; Eldredge, 1989; Stanley, 1990; Rode & Lieberman, 2004; Stigall & Lieberman,
2006; Payne & Finnegan, 2007; Stigall, 2010; Hopkins, 2011; Dunhill & Wills, 2015). Again,
this phenomenon was not found to be statistically significant in the case of the Late Paleozoic

cephalopod species considered herein (Table 2).

There may be a few different explanations for these findings. First, it may be that cephalopod
species were not significantly affected by the glacial-interglacial climatic cycles transpiring
within the Late Paleozoic Midcontinent Sea. A second possible explanation, perhaps coupled to
the first, is that since cephalopods are highly mobile, they can more easily occunv a greater
portion of their potential range relative to taxa that are benthic (at least as adults), such as
brachiopods. Further, perhaps the available potential range of cephalopod species does not
change much in glacial relative to interglacial regimes. This may seem unlikely given the vast
fluctuations in sea level occurring at the time, but pelagic marine organisms, because of their

ease of dispersal, may more easily maintain consistent geographic ranges relative to benthic
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counterparts. Another possible explanation for the pattern retrieved is that, given the limits of
stratigraphic correlation, sample size, and the completeness of the fossil record, it was necessary
for the analyses of species distribution conducted herein to focus on the time scale of geological
stages, whereas in actuality there were climatic changes occurring within stages (Heckel, 2008,
2013); these probably did cause fluctuations in species’ geographic ranges within stages, but
simply could not be observed in the present study. A final set of explanations are related to the
issue of sampling. For instance, it was more difficult for the analyses presented herein to detect
a relationship between geographic range size and macroevolutionary rate because speciation and
extinction rates could only be calculated for four stages. Further, a common concern when
studying the fossil record is that there might be biases that can lead to inaccurate findings. This
concern can be manifold, and although it is not entirely obviated by the results presented
regarding the apparent quality of the fossil record suggested by the various tests presented, it

does become harder to invoke as a specific, primary reason for results retrieved.

Another finding perhaps contrary to what might typically be expected for the Late Paleozoic is
that there was at least some evolutionary diversification and turnover within cephalopods, such
that species diversity did fluctuate throughout the Pennsylvanian and Early Permian.
Pennsylvanian rates of macrevolution are typically classified as ‘sluggish’ or ‘stolid’ across all
marine animals, and Sepkoski (1998) formalized the notion that there was a marked decline in
evolutionary rates of Carboniferous and Permian marine faunas. Stanley & Powell (2003)
reiterated this result and identified low mean macroevolutionary rates for marine invertebrate
taxa. Bonelli & Patzkowsky (2011) also documented a pattern of low turnover in the face of

major episodes of sea-level rise and fall due to climatic change. The results from the analyses
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presented herein could indicate that macroevolutionary rate, at least in the case of Late Paleozoic
cephalopods, was more dynamic than often thought. One possible reason for this result is that
cephalopods are a fairly evolutionarily volatile group (Lieberman & Melott, 2013) relative to
many other marine invertebrate groups and have relatively high rates of diversification (Stanley,
1979; Jacobs et al., 1994; Landman, Tanabe, & Davis,1996; Monnet, De Baets, & Klug, 2011;
Korn, Klug, & Walton, 2015; Korn et al., 2015); thus, they would generally be expected to have
higher rates of speciation and extinction than typical. However, this may not be the entire
explanation, as other groups also seem to show elevated rates of speciation and extinction during
this time interval. For instance, Balseiro (2016) did document evolutionary turnover at high
latitudes, and elevated evolutionary rates have also been found in fusulinid foraminifera (Groves
& Lee, 2008; Groves & Yue, 2009) and advanced cladid crinoids (Segessenman & Kammer,
2018). Ultimately, we support the contention raised by Segessenman & Kammer (2018) that
patterns from a few individual groups do not refute the general pattern of sluggish
macroevolution postulated for this time period in the history of life. The results may lend
credence to the notion that macroevolutionary patterns across all marine animals are rarely

unitary for any one time period in the history of life, and instead often tend to be variegated.

Conclusions

Patterns of range size change in late Paleozoic cephalopods from the North American
Midcontinent Sea were investigated using GIS. These species do exhibit some evidence for
changes in geographic range size through time, but the changes were not statistically significant

nor could they be directly tied to climate change. Further, in contradistinction to what is usually
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found in the fossil record, cephalopod species with larger geographic ranges were not found to
have lower extinction rates than species with narrower geographic ranges. These distinctive
patterns may perhaps be related to the fact that cephalopods are pelagic and highly mobile.
Finally, the group shows more evolutionary diversification and turnover during the
Pennsylvanian and Early Permian than is typical of other marine invertebrate groups and this

could be related to the fact that cephalopods are an evolutionarily volatile group.
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Figure Captions

Figure 1: Distribution of Pennsylvanian cephalopods.

Distribution of Pennsylvanian nautiloid and ammonoid data points (red, left) and Permian
nautiloid and ammonoid data points (blue, right) across the midcontinent region of North

America. Plotted using ArcGIS v. 10.3 (ESRI, 2014) software at 1: 20,000,000.

Figure 2: Occurrence points of Metacoceras sp. and Mooreoceras sp.
For the Virgilian, shown on possible paleogeography of that stage, at 1:1,000,000,000 scale;

plotted using PaleoWeb (The Rothwell Group LP, 2016).

Figure 3: Mean geographic range size in km? of cephalopods through time.
Nautiloid species (left) and ammonoid species (right) range changes occur but are not
statistically significant when analyzed using non-parametric tests or when log transformed data

are analyzed using parametric tests.

Figure 4: Speciation and extinction rates through time.

Values given in per Myr and derived from Table 1.
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Table 1(on next page)

Speciation rates (S) per millions of years (Myr), extinction rates (E) per Myr, and rate of
turnover (R) per Myr, for each stage across all cephalopods.

Species richness values, species carryover from the previous stage, new species originating

in the stage, N, N, and duration (in Myr) also given.
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1 Table1:

2 Speciation rates (S) per millions of years (Myr), extinction rates (E) per Myr, and rate of

3 turnover (R) per Myr, for each stage across all cephalopods, with species richness values,

4  species carryover from the previous stage, new species originating in the stage, N,, Ny, and

5 duration (in Myr) also given.

6

7
Stage Species Species New N, N¢ | Duration R S E

Richness | Carryover | Species

Wolfcampian 13 7 6 7 13 14 0.0442
Virgilian 38 32 6 32 38 5 -0.3040 0.0343 | 0.3383
Missourian 55 33 22 33 55 3 -0.0103 0.1703 | 0.1805
Desmoinesian 41 12 29 12 41 3 0.3372 0.4096 | 0.0724
Atokan 15 7 8 7 15 2 0.2694 0.3811 | 0.1116
Morrowan 8 0 8 0 8 6

8
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Table 2(on next page)

Pearson correlation test for association between S and geographic range and E and
geographic range across all cephalopods and for ammonoids and nautiloids individually.

Pearson’s r and P-values given.
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1 Table 2:

2 Pearson correlation test for association between S and geographic range and E and
3 geographic range across all cephalopods and for ammonoids and nautiloids individually,
4  with Pearson’s r and P-values given.

’ Taxon — Speciation | Pearson’sr | P-value | Taxon— Extinction | Pearson’sr | P-value
All Cephalopods — S -0.541 0.347 | All Cephalopods —E 0.925 0.075
Nautiloids— S -0.463 0.432 | Nautiloids — E 0.913 0.087
Ammonoids — S -0.519 0.370 | Ammonoids — E 0.803 0.197

6
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Figure 1(on next page)
Distribution of Pennsylvanian cephalopods.

Distribution of Pennsylvanian nautiloid and ammonoid data points (red, left) and Permian
nautiloid and ammonoid data points (blue, right) across the midcontinent region of North

America. Plotted using ArcGIS v. 10.3 (ESRI, 2014) software at 1: 20,000,000.
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Figure 2(on next page)

Occurrence points of Metacoceras sp. and Mooreoceras sp.

For the Virgilian, shown on possible paleogeography of that stage, at 1:1,000,000,000 scale;
plotted using PaleoWeb (The Rothwell Group LP, 2016).
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Figure 3(on next page)

Mean geographic range size in km? of cephalopods through time.

Nautiloid species (left) and ammonoid species (right) range changes occur but are not
statistically significant when analyzed using non-parametric tests or when log transformed

data are analyzed using parametric tests.
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Figure 4 (on next page)

Speciation and extinction rates through time.

Values given in per Myr and derived from Table 1.
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