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Background.

Metagenomics has transformed our understanding of microbial diversity across

ecosystems, with recent advances enabling de novo assembly of genomes from

metagenomes. These metagenome-assembled genomes are critical to provide ecological,

evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated.

Metagenomes can now be generated from nanogram to subnanogram amounts of DNA.

However, these libraries require several rounds of PCR amplification before sequencing,

and recent data suggest these typically yield smaller and more fragmented assemblies

than regular metagenomes.

Methods.

Here we evaluate de novo assembly methods of 169 PCR-amplified metagenomes,

including 25 for which an unamplified counterpart is available, to optimize specific

assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by

mapping reads from PCR-amplified metagenomes onto reference contigs obtained from

unamplified metagenomes of the same samples. Then, we compared different assembly

pipelines in terms of assembly size (number of bp in contigs ≥ 10kb) and error rates to

evaluate which are the best suited for PCR-amplified metagenomes.

Results.

Read mapping analyses revealed that the depth of coverage within individual genomes is
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significantly more uneven in PCR-amplified datasets versus unamplified metagenomes,

with regions of high depth of coverage enriched in short inserts. This enrichment scales

with the number of PCR cycles performed, and is presumably due to preferential

amplification of short inserts. Standard assembly pipelines are confounded by this type of

coverage unevenness, so we evaluated other assembly options to mitigate these issues.

We found that a pipeline combining read deduplication and an assembly algorithm

originally designed to recover genomes from libraries generated after whole genome

amplification (single-cell SPAdes) frequently improved assembly of contigs ≥ 10kb by 10 to

100-fold for low input metagenomes.

Conclusions.

PCR-amplified metagenomes have enabled scientists to explore communities traditionally

challenging to describe, including some with extremely low biomass or from which DNA is

particularly difficult to extract. Here we show that a modified assembly pipeline can lead to

an improved de novo genome assembly from PCR-amplified datasets, and enables a better

genome recovery from low input metagenomes.
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Abstract

Background. 

Metagenomics  has transformed our  understanding of  microbial  diversity  across ecosystems,  with

recent  advances  enabling  de  novo  assembly  of  genomes  from metagenomes.  These  metagenome-

assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the

microbes  and viruses  yet  to  be cultivated.  Metagenomes can now be generated from nanogram to

subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification

before  sequencing,  and  recent  data  suggest  these  typically  yield  smaller  and  more  fragmented

assemblies than regular metagenomes.

Methods.

Here we evaluate de novo assembly methods of 169 PCR-amplified metagenomes, including 25 for

which an unamplified counterpart  is  available,  to optimize specific assembly approaches for PCR-

amplified  libraries.  We  first  evaluated  coverage  bias  by  mapping  reads  from  PCR-amplified

metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples.

Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥

10kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes.

Results. 

Read  mapping  analyses  revealed  that  the  depth  of  coverage  within  individual  genomes  is

significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of

high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles

performed, and is  presumably due to  preferential  amplification of short  inserts.  Standard assembly

pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options

to  mitigate  these  issues.  We found that a  strategy combining read  deduplication  and an  assembly

algorithm  originally  designed  to  recover  genomes  from  libraries  generated  after  whole  genome

amplification (single-cell SPAdes) frequently improved assembly of contigs ≥ 10kb by 10 to 100-fold

for low input metagenomes.

Conclusions. 

PCR-amplified  metagenomes  have  enabled  scientists  to  explore  communities  traditionally

challenging  to  describe,  including  some  with  extremely  low  biomass  or  from  which  DNA  is

particularly  difficult  to  extract.  Here  we  show  that  a  modified  assembly  strategy  can  lead  to  an

improved  de  novo genome  assembly  from  PCR-amplified  datasets,  and  enables  a  better  genome

recovery from low input metagenomes.
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Introduction

Microbes  and  their  associated  viruses  dominate  all  ecosystems  on  Earth  and  drive  major

biogeochemical cycles  [1,2]. The vast majority of this microbial and viral diversity has not yet been

cultivated  [3,4],  hence metagenomics,  i.e.  the sequencing of  genomes directly  from environmental

samples, has emerged as a key method to explore these communities [5,6]. Briefly, DNA is extracted

from an environmental sample, sometimes after selecting a subset of the community (e.g. the viruses),

and sequenced, typically as short sequencing “reads”. These reads are assembled into larger contigs,

interpreted as genome fragments, which provides the foundation to investigate functional, ecological,

and evolutionary patterns of the largely uncultivated microbial and viral diversity [7–16]. 

Problematically, as metagenomics is applied to a broader set of samples, some yield very little DNA

(e.g. a few nanograms), which poses a challenge for library construction [17]. Examples include low-

biomass  environments  like  ice  cores  or  clean  rooms  [18,19],  tough-to-sample  locations  like

hydrothermal vents  [11],  and sampling procedures that  target  subsets of  the community,  e.g.  virus

particles or labeled metabolically active microbes  [20,21]. Sequencing libraries from these types of

samples  require  a  DNA amplification  step  either  before  or  after  adapter  ligation.  In  the  former,

extracted DNA is subjected to whole genome amplification (WGA), typically as Multiple Displacement

Amplification (MDA)[22] or  Sequence-Independent,  Single-Primer Amplification (SISPA)[23].  The

resultant  amplified  product  is  then  sufficient  for  a  standard  library  preparation  and  sequencing.

However, strong amplification biases make these approaches unsuitable for quantitative estimations of

taxa or genes relative abundance [24,25]. Alternatively, tagmentation or adaptase protocols allow sub-

nanogram DNA inputs for adapter ligation, and then use PCR (typically ≥ 9 cycles) to amplify the

ligated DNA [17,26]. In contrast to whole genome amplification, these protocols yield metagenomes

(hereafter “PCR-amplified metagenomes”) for which read mapping enables a quantification of taxa

and/or genes, and are thus the methods of choice for low-input metagenomes. [17,25].

While the impact  of PCR amplification,  sequencing library choice,  and sequencing platforms on

metagenome  reads  composition  has  been  extensively  studied  (e.g.  [17,25,27,28]),  and  specific

assemblers  have been developed for  unamplified and MDA-amplified metagenomes (e.g.  [29,30]),

evaluation  of  de  novo  genome  assembly  from  PCR-amplified  metagenomes  is  needed.  Here  we

compared different approaches for  de novo assembly of PCR-amplified metagenomes generated with

two library preparation kits commonly used on low input samples (Nextera XT and Accel-NGS 1S

Plus). We show that preferential amplification of short inserts can lead to uneven genome coverage and

sub-optimal assembly. We then highlight alternative sequence processing approaches that maximize de

novo genome assembly for PCR-amplified libraries, which will enable scientists to extract as much

information as possible from these datasets.
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Materials & Methods

Origin of samples

Samples and libraries generated as part of 6 different projects were used in this study (Table S1).

Most  of  these  samples  yielded  a  low  amount  of  DNA,  mainly  because  they  targeted  a  specific

community subset such as viruses, cyanobacteria, or metabolically active cells.

The data analyzed here included:

(i) A set of 20 samples from virus fractions along a natural permafrost thaw gradient (“Permafrost-

associated viruses” in Table S1). These were generated using a protocol optimized for recovery of soil

viruses  [33] with minor amendments. Briefly, viruses were resuspended from triplicate soil samples

using a combination of chemical and physical dispersion, filtered through a 0.2 µm polyethersulfone

membrane filter, and viral DNA was extracted using DNeasy PowerSoil DNA extraction kit (Qiagen,

Hilden, Germany, product 12888).

(ii) A set of 14 samples from the viral fraction of Delaware Bay Estuary surface water (“Delaware

Bay viruses”). These surface water viral metagenomes were collected during different seasons from the

Delaware estuary and Chesapeake estuary using a Niskin bottle on board of the RV Hugh R Sharp.

Details of environmental conditions can be found at http://dmoserv3.bco-dmo.org/jg/serv/BCO-DMO/

Coast_Bact_Growth/newACT_cruises_rs.html0%7Bdir=dmoserv3.whoi.edu/jg/dir/BCO-DMO/

Coast_Bact_Growth/,info=dmoserv3.bco-dmo.org/jg/info/BCO-DMO/Coast_Bact_Growth/

new_ACT_cruises%7D.  Viral  communities  were  concentrated  from 0.2  μm filtrates following them filtrates  following  the

FeCl3 flocculation method [34]. Briefly, 10 L of seawater was prefiltered through a 142 mm-diameter

glass  fiber  filter  GA-55  (~0.6µm-pore  size,  Cole-Parmer)  and  a  0.22  µm-pore-size  Millipore

polycarbonate membrane filter (142mm, Millipore) to remove larger organisms and bacteria. One mL

of 10g/L FeCl3 stock solution was added to the 10 L filtrate. After incubating with FeCl3 for 1 hr, the

concentrated viral fraction was collected using a 0.8 µm-pore-size Millipore polycarbonate membrane

filter (Millipore). The concentrated viruses were resuspended using a resuspension buffer, dialyzed to

remove the resuspension buffer, and treated with DNase to remove free DNA. The viral DNA was

extracted using the phenol-chloroform-isoamyl alcohol method.

(iii) A set of 11 samples from the viral fraction of surface water at the San Pedro Ocean-time Series

site (33°33′N, 118°24′W), off the coast of Los Angeles (“SPOT viruses”). Surface water was collected

using a Niskin bottle rosette (5 m) or by bucket (0 m). Viral fraction (<0.22 µm) material was obtained

using  a  peristaltic  pump  to  prefilter  seawater  through  a  0.22  µm  Sterivex  filter  cartridge  (EMD

Millipore) then collection of 0.5 to 1 L of filtrate on a 25 mm 0.02 µm Whatman Anotop filter cartridge

(GE Life Sciences).  DNA from the Anotop cartridge was extracted using the protocol  “Extracting

nucleic acids from viruses on a filter” in ref. [35].

(iv) A set of 18 samples from North-American freshwater lakes (Lake Erie, Lake Michigan, and Lake

Superior)  from which cyanobacteria were selectively sorted using fluorescence activated single-cell

sorting  flow cytometry (“Freshwater  cyanobacteria”  in  Table  S1).  For  each sample,  approximately

100,000 cells were sorted, and DNA was extracted using prepGEM (ZyGEM; Hamilton, New Zealand)

on the cells pellet after 1h centrifugation at 7,200g and subsequent removal of supernatant.

(v)  A set  of  34  samples  from Lake  Mendota  surface  water,  for  which  mini-metagenomes  were

generated by sorting individual gates using fluorescence activated single-cell sorting flow cytometry
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(“Mendota  communities”).  Briefly,  subsets  of  the  total  microbial  cells  were  defined  based  on  a

combination of fluorescence,  forward scatter,  and size scatter,  to generate  mini-metagenomes from

75,000 to 150,000 “similar” cells. DNA from these different cell pools was extracted using prepGEM

(ZyGEM; Hamilton, New Zealand) on the cells pellet after 1h centrifugation at 7,200g and subsequent

removal of supernatant..

(vi)  A set of 20 samples from desert  soil  microbial communities,  from which mini-metagenomes

were generated following incubation with a bio-orthogonal non-canonical amino acid (BONCAT, “Soil

BONCAT”,  [21,36]).  These  samples  were  then  sorted  via  fluorescence  activated  single-cell  flow

cytometry to separate active from inactive microbial cells. DNA was extracted from 100,000 sorted

cells using prepGEM (ZyGEM; Hamilton, New Zealand) on the cells pellet after 1h centrifugation at

7200g and subsequent removal of supernatant.

Library construction and sequencing

Three library preparation methods were used here, including TruSeq DNA PCR-Free DNA Sample

Preparation Kit (Illumina, San Diego, CA, USA), Nextera XT DNA Sample Preparation Kit (Illumina,

San Diego, CA, USA), and Accel-NGS 1S Plus (Swift BioSciences, Ann Arbor, MI, USA). The only

samples which contained enough DNA to create a TruSeq DNA PCR-Free library were some samples

from the “Delaware Bay viruses” project, for which both Nextera XT and 1S Plus libraries were also

created  (Table  S1).  For  the  two  other  virus  projects  (“Permafrost-associated  viruses”  and  “SPOT

viruses”),  both Nextera XT and 1S Plus libraries were created.  Finally,  Nextera XT libraries were

created for all other projects (“Freshwater cyanobacteria”, “Mendota communities”, “Soil BONCAT”,

Table S1). All libraries were prepared according to manufacturer’s instructions, and included as many

PCR cycles as necessary to obtain 200 pM of DNA for sequencing, with a maximum of 20 cycles for

viral metagenomes and 25 cycles for targeted microbial metagenomes. Finally, viral metagenomes were

sequenced  on  either  Illumina  HiSeq-2500  or  Illumina  HiSeq-2000,  and  targeted  microbial

metagenomes with Illumina NextSeq HO, all with 2x151 reads (Table S1).

Reads contamination filtering and trimming

For all libraries, BBDuk adapter trimming (bbduk.sh https://sourceforge.net/projects/bbmap/ v35.79,

parameters:  ktrim=r,  minlen=40,  minlenfraction=0.6,  mink=11,  tbo,  tpe,  k=23,  hdist=1,  hdist2=1,

ftm=5) was used to remove known Illumina adapters. The reads were then processed using BBDuk

quality filtering and trimming (parameters: maq=8, maxns=1, minlen=40, minlenfraction=0.6, k=27,

hdist=1, trimq=12, qtrim=rl). At this stage reads ends were trimmed where quality values were less

than  12,  and  read  pairs  containing  more  than  three  'N',  or  with  quality  scores  (before  trimming)

averaging less than 3 over the read, or length under 51bp after trimming, as well as reads matching

Illumina artifact, spike-ins or phiX were discarded. Remaining reads were mapped to a masked version

of  human HG19 with BBMap (bbmap.sh v35.79, parameters:  fast  local  minratio=0.84 maxindel=6

tipsearch=4 bw=18 bwr=0.18 usemodulo printunmappedcount idtag minhits=1), discarding all hits over

93% identity. Finally, for all Accel NGS 1S Plus libraries, the first 10 bases of forward and reverse

reads were discarded to avoid contamination by the low complexity adaptase tail, per manufacturer’s

instruction.
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Comparison of different assembly pipelines

The different assembly pipelines tested here included combinations of two types of read correction,

two types of read selection or no read selection, and two types of assemblies (Table S3). The two

methods used for read correction were chosen to represent either a “strict” or “relaxed” read correction.

The “strict” correction used bfc (v. r181 [31]) to remove reads with unique kmers (parameters: “-1 -s

10g -k 21”),  followed by seqtk (v.  1.2-r101-dirty https://github.com/lh3/seqtk) to remove reads for

which paired sequences was removed by bfc (parameters: “dropse”). The “relaxed” read correction

aimed at keeping as many reads as possible, and used tadpole.sh (v. 37.76 https://jgi.doe.gov/data-and-

tools/bbtools/) to correct sequencing errors by leveraging kmer frequency along each read (parameters

“mode=correct ecc=t prefilter=2”).

An additional read selection step was tested to check whether removing some of the reads associated

with regions of high coverage could help  de novo genome assembly. The two approaches evaluated

here included read normalization with bbnorm.sh (v. 37.76 https://jgi.doe.gov/data-and-tools/bbtools/)

in which the kmer-based read depth is leveraged to identify high-depth reads and normalized these to a

defined  depth  (here  100x,  parameters:  “bits=32  min=2  target=100”),  as  well  as  a  deduplication

approach  with  clumpify.sh  (v37.76,  https://jgi.doe.gov/data-and-tools/bbtools/),  in  which  identical

reads  are  identified  and  only  one  copy  retained  (parameters:  “dedupe  subs=0  passes=2”).  These

parameters identify reads as duplicated only if they are an exact match (i.e. no substitution allowed).

The ratio of duplicated reads was calculated by comparing the number of reads after deduplication to

the number of input reads for each library (Table S1).

Finally, two different modes of the SPAdes assembler (v. 3.11 [29,30]) were tested to assess whether

this could also influence assembly. Specifically, the two modes tested were metaSPAdes (option “--

meta”) and single-cellSPAdes (option “--sc”). In both cases, SPAdes was run with the error correction

step skipped (“--only-assembler”) and a fixed set of kmers (“-k 21,33,55,77,99,127”).

Assemblies were evaluated using a standard set of metrics computed with stats.sh from the bbtools

suite (https://jgi.doe.gov/data-and-tools/bbtools/) and a custom perl script. These included cumulative

size of all contigs, cumulative size of all contigs ≥ 10kb, total number of contigs, minimal contig length

among  contigs  making up to  50% of  assembly  size  (N50),  minimal  contig  length  among contigs

making up to 90% of assembly size (N90), and size of the largest contig (Table S3). Kolmogorov–

Smirnov test (from the R package stats [37]) and Cohen’s effect size (as implemented in the R package

effsize [38]) were used to compare distributions of cumulative size of all  contigs ≥ 10kb between

different pipelines.

Assembly errors were estimated for the 25 libraries for which an unamplified library was available

(Table S2) using QUAST [32]. All contigs ≥ 1kb were included in this analysis, with contigs assembled

from the corresponding unamplified library with a standard metagenome assembly pipeline (“strict”

read correction, no read selection, and metaSPAdes assembly) used as a reference genome. QUAST

was run with the “--fast” option enabled, all other parameters left to default. QUAST provides counts

for  three  types  of  misassemblies:  “relocation”  in  which  two  contiguous  sections  from  a  newly

assembled contig map to the same reference sequence but non-contiguously, “inversion” in which two

contiguous sections from a newly assembled contig map to the same reference sequence with one
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fragment being reversed, and “translocation” in which two contiguous sections from a newly assembled

contig map to different contigs in the reference assembly.  Because the assembly from unamplified

libraries  are  not  true  reference  genomes,  i.e.  each  contig  is  not  an  independent  chromosome,  we

ignored  the misassemblies  identified as  “translocation”,  as  these could  represent  cases  where  both

assemblies are correct and produced distinct but overlapping contigs. Instead, the estimated rate of

misassemblies  was  calculated  for  each  assembly  as  the  sum of  the  number  of  “relocations”  and

“inversions” provided by QUAST, divided by the total length of all contigs ≥ 1kb.

Coverage bias analysis

Quality-checked reads were mapped to reference assemblies to estimate contigs coverage and assess

potential coverage biases along these contigs. For libraries for which an unamplified metagenome was

available (i.e.  the 11 samples from the “Delaware Bay viruses” project,  Table S2),  contigs from a

standard metagenome assembly of the unamplified library were used as reference.  For every other

PCR-amplified  library,  contigs  obtained  through  the  “best”  assembly  pipeline,  i.e.  relaxed  read

correction  with  tadpole.sh  (https://jgi.doe.gov/data-and-tools/bbtools/),  read  deduplication  with

clumpify.sh (https://jgi.doe.gov/data-and-tools/bbtools/), and assembly with SPAdes single-cell (error

correction turned off, k-mers of 21, 33, 55, 77, 99, 127 [30]) were used as reference. The mapping was

computed  using  BBMap  (bbmap.sh  https://jgi.doe.gov/data-and-tools/bbtools/)  with  random

assignment  of  ambiguously  mapped  reads  (parameters:  “mappedonly=t  interleaved=t

ambiguous=random”). 

For contig coverage comparison to unamplified libraries (Fig. S1A), individual contig coverage was

normalized by the library size (i.e. total  number of bp in library). For estimation of coverage bias

associated with high and low depth of coverage regions along individual contigs, bam files were parsed

using a custom perl script to (i) identify unique mapping events, i.e. combinations of unique mapping

start coordinate and insert size, and (ii) calculate for each unique mapping the number of different reads

providing this exact mapping, the corresponding GC% of the insert, and the size of the insert. This was

performed on all contigs ≥ 10kb if  these totaled ≥ 50kb, or on all  contigs ≥ 2kb otherwise. For 3

libraries (BYXNC, BYXNG, and COHNO), no contigs ≥ 2kb were generated, and the coverage bias

was thus not estimated (Table S1).

To quantify the insert size bias, high and low depth regions were first defined for each contig as

follows: inserts with a read depth ≥ 70% the maximum read depth of the contig were considered as

high depth, while inserts with a read depth ≤ 30% of the contig maximum read depth were considered

as low depth. For each library, the distribution of insert size for each of these two types of inserts was

gathered, and these were compared using the non-parametric Kolmogorov–Smirnov test (from the R

package stats [37]). Cohen’s effect size (as implemented in the R package effsize [38]) was also used to

assess the magnitude of the difference between the means of the two distributions.

All graphical representations were generated with R [37] using the following packages: ggplot2 [39],

dplyr [40], and RColorBrewer [41].

Data availability
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Reads for the different metagenomes are available on https://genome.jgi.doe.gov/portal/, using the

links listed in Table S1. Results from the different assembly pipelines are available for each library at

http://portal.nersc.gov/dna/microbial/prokpubs/BenchmarksPCRMetagenomes/.

Results & Discussion

Coverage biases and assembly pipelines were evaluated across 169 PCR-amplified metagenomes

(Table  S1).  These  included  87  viromes,  i.e.  virus-particle-enriched  metagenomes,  and  82  targeted

microbial metagenomes, i.e. generated after flow cytometry cell sorting and representing only a small

subset  of  the  microbial  community.  Paired  PCR-amplified  metagenomes  generated  with  the  two

common library  preparation  kits  (Nextera  XT and  1S  Plus)  were  available  and  could  be  directly

compared for 42 samples (Table S1). In addition, unamplified (TruSeq) libraries were available for 11

samples and used as a reference “standard metagenome” for these samples (Table S2).

Insert length bias of PCR amplification leads to uneven coverage along genomes

Contrary to protocols including an amplification of the DNA pool prior to library construction (e.g.

MDA, SISPA), the read composition of a PCR-amplified metagenome should accurately reflect the

original community composition. This has been previously demonstrated  [17], and could be verified

here  by observing the coverage of  reference  contigs  (obtained from unamplified  metagenomes)  in

PCR-amplified metagenomes. Overall,  nearly all contigs assembled from unamplified metagenomes

were detected in PCR-amplified datasets (>90% of contigs with ≥ 5x average coverage depth, Table

S2), and there was a strong correlation between unamplified and PCR-amplified coverage for shared

contigs (average Pearson correlation r2=0.77 for Nextera XT and 1S Plus library methods, Table S2,

Fig. S1).

In contrast, PCR-amplified metagenomes displayed a relatively high percentage of duplicated reads

compared to  unamplified  datasets  (~  25-85%, Fig.  S1B),  which  contribute  to  an uneven depth  of

coverage along individual contigs (Fig. 1A). This unevenness can be measured through the coefficient

of variation of coverage depth (standard deviation divided by average coverage, for each contig) which

was relatively low for unamplified metagenomes (34% on average) but higher in all PCR-amplified

libraries (58% average,  20-357% range, Table S1).  Regions  with high depth of coverage were not

linked to any systematic GC bias but were enriched for short inserts (Fig. S2). As for the ratio of

duplicated reads, the difference in insert size between high and low depth regions tended to increase

with the number of PCR cycles performed (Fig. 1B). This suggests that some of the uneven coverage

along genomes is due to over-amplification of short inserts, which make up a larger proportion of the

read pool with each additional PCR cycle.

De novo genome assembly can be improved using tailored read curation and assembly pipeline

Uneven coverage can hamper assembly because standard metagenome assembly pipelines expect a

uniform coverage along each genome, and leverage this signal to solve repeats and ambiguities  [29].

We thus looked at three data processing steps that could be customized for PCR-amplified libraries.

First, standard metagenome assemblies typically use a strict read correction and remove reads with low

depth which are potentially erroneous  [31]. Even if these low-depth reads are correct, they represent
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low abundance sequences that would likely not assemble well anyway, and removing them reduces the

time  and  resources  (CPU and  memory)  required  for  the  assembly.  In  the  case  of  PCR-amplified

libraries however, these low-depth reads might be important to retain, in order to correctly assemble

even high-depth contigs (Fig. 1A). Second, read selection tools have been developed to either remove

duplicated reads, or computationally normalize libraries, i.e. cap at a defined maximum depth. These

tools have been primarily designed for MDA datasets, the majority of which deriving from single cell

amplification, however these could be helpful as well for PCR-amplified metagenomes. Finally, some

assemblers offer customized options for metagenomes and for single-cell  (MDA) libraries,  and we

tested whether single-cell options might perform better on these PCR-amplified metagenomes.

Over the 12 combinations tested, a pipeline including “relaxed” read correction, read deduplication,

and single-cell assembly parameters provided the largest assemblies, although the level of improvement

varied (Fig. 2A, Table S3). While the cumulative length of contigs ≥ 1kb only moderately increased

compared to a standard assembly (median: 1.17x, Fig. S3A), the cumulative length of contigs ≥ 10kb

showed a much larger improvement (median: 3.6x, range: 0.95–3,806x, ks-test p-value: 1e-07, cohen’s

effect size: 0.66, Fig. S3B). Since large contigs tend to be more relevant for downstream applications,

such as genome binning and annotation, systemically applying this alternative assembly strategy on

PCR-amplified metagenomes maximizes the information recovered from these datasets. Overall, when

considering contigs ≥ 10kb, the alternative strategy provided the largest assembly for 130 samples, and

was within 80% of the largest assembly for another 17 samples (Fig. S3C), suggesting it would be a

suitable default choice for any PCR-amplified metagenome.

The  level  of  assembly  improvement  observed  was  in  part  linked  to  the  number  of  PCR cycles

performed for each metagenome (Fig. 2B, Table S3). Specifically, samples that required 9 to 12 PCR

cycles typically assembled well with the standard metagenome pipeline, with 8Mb in contigs ≥ 10kb on

average, which was improved with the alternative assembly to an average of 26Mb (cohen’s effect size:

0.68). Samples that required 14 to 18 PCR cycles were improved further as standard assemblies yielded

an  average  of  2Mb  in  contigs  ≥  10kb  per  metagenome  as  compared  to  15Mb  from  alternative

assemblies (cohen’s effect size: 0.9). Lastly, the assembly of samples that required 20 to 25 PCR cycles

remained limited with either approach, though still slightly improved from 562kb to 2Mb in contigs ≥

10kb for the standard versus alternative approaches (cohen’s effect size: 0.68). 

Finally, we analyzed the samples for which both unamplified and PCR-amplified metagenomes were

available to evaluate the error rate in assemblies obtained from the alternative strategy (Table S1).

Specifically, we used QUAST [32] to identify “relocation”, i.e. cases in which contiguous regions of a

newly assembled contig are non-contiguous in the reference assembly, and “inversion”, i.e. cases in

which the orientation of contiguous regions differs between the new assembly and reference contigs.

This suggested that the alternative assembly strategy generated more erroneous contigs than a standard

assembly pipeline (cohen’s effect size: 0.7, Fig. 2C, Fig. S3D). For these metagenomes, the amount of

additional errors (median: 2x) remains much lower than the additional number and size of long contigs

(median: 24x, Table S3), so the alternative assembly strategy still seems relevant for most applications,

yet this higher error rate must be considered when analyzing these datasets.

Conclusions
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The ability to prepare and sequence libraries from samples containing nanograms or less of DNA has

been a tremendous advance for the fields of metagenomics and microbial ecology, and many biological

insights have already been derived from these data. Here we highlight how a PCR amplification bias

for shorter inserts can hamper standard  de novo  genome assembly  for viral and microbial low-input

metagenomes, and propose an alternative assembly strategy  able to reduce its impact. This will aid

scientists  in  maximizing genomic  context  from low input  metagenomes,  and should help  improve

understanding of challenging ecosystems and targeted subsets of microbial and viral communities.
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Figure & Supplementary Material legends

Figure 1. Coverage bias within individual contigs for unamplified and PCR-amplified libraries.

A.  Example  of  coverage  bias  along  a  single  contig  from  sample  1064195  (contig

1064195_contig_573). Reads from libraries ASXXB, BWNCO, and BWWYG (Table S2) were mapped

to the same contig, and read depth along sliding windows of 100bp is displayed for each library on the

y-axis. Windows on the edges of the contig (within 200bp of the 5’ or 3’end) were excluded as read

depth is not as reliable in these end regions. B. Illustration of the insert size bias associated with high

depth of coverage regions in PCR-amplified libraries.  For each library,  the number of PCR cycles

performed for the library is indicated on the x-axis, while the Kolmogorov–Smirnov distance between

the insert size distribution of low- versus high-depth regions is indicated on the y-axis. The magnitude

of the difference between the means of the two distributions was also estimated using Cohen’s effect

size (d) and is indicated by the dot color. For clarity, only libraries for which the mean insert size was

lower in high depth regions are included in the plot, and the 22  libraries which showed the opposite

trend are not plotted (Table S1). KS: Kolmogorov–Smirnov

Figure 2. Optimized pipeline for assembly of PCR-amplified metagenomes. A. Distribution of the

cumulative size of long (≥ 10kb) contigs (y-axis) obtained across all  PCR-amplified libraries from

different assembly pipelines (x-axis). Assembly pipelines are indicated along the x-axis (see Table S3).

B. Cumulative size of long (≥ 10kb) contigs obtained with a standard (green) or optimized (purple)

assembly pipeline for different ranges of library PCR amplifications (x-axis). Coloring of the assembly

pipelines is identical as in panel A. C. Estimated error rate (y-axis) from different assembly pipelines

(x-axis) across all PCR-amplified libraries. These assembly errors were estimated for the 25 libraries

for  which  an unamplified  reference  assembly  was available  (Table  S2).  Coloring  of  the  assembly

pipelines is identical as in panels A and B. Dedup.: Deduplication, Meta: metaSPAdes, SC: single-cell

SPAdes.
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Table  S1.  Description  of  samples  and  libraries  analyzed. The  first  tab  lists  information  about

individual samples including the list  of all  libraries generated for each sample, and the second tab

includes information about each library.

Table S2. Samples including both unamplified and PCR-amplified libraries.  List of the 25 PCR-

amplified for which an unamplified dataset was available,  alongside specific metrics that could be

calculated using the unamplified dataset as reference, i.e. correlation of average depth of coverage of

contigs,  and  percentage  of  contigs  from the  unamplified  assembly  detected  in  the  PCR-amplified

library. A contig was considered as detected if ≥ 1 read(s) from the PCR-amplified library mapped to it.

Table S3. Results from the different assembly pipelines tested. The first tab lists the different steps

and tools tested. The second tab includes the results of  de novo genome assembly with the different

pipelines for each PCR-amplified library. For the 25 PCR-amplified libraries for which an unamplified

reference was available, this second tab also includes estimates of assembly errors for each assembly

pipeline obtained with QUAST.

Figure S1.  PCR-amplified  metagenomes  are  quantitative  but  include a significant  amount of

duplicated reads.  A. Comparison of depth of coverage between unamplified (TruSeq,  x-axis)  and

PCR-amplified (Nextera XT or Accel-NGS 1S Plus, y-axis) libraries. The average depth of coverage

was computed for each contig as the average read depth normalized by the total size of the library. The

1:1 equivalence is indicated with a black line, while a linear best fit is shown in blue. For clarity, only

1,000 contigs randomly selected from each sample are plotted. Contigs with no reads mapped in the

PCR-amplified library were not included. To be able to directly compare the two plots, only samples

for  which  both  a  Nextera  XT and  1S  Plus  libraries  were  available  are  included  (Table  S1).  The

subpanels show the correlation coefficient (Pearson and Spearman) of a sample-by-sample correlation

between depth of coverage in unamplified and PCR-amplified libraries, either for all contigs or only for

contigs ≥ 10kb with a depth of coverage ≥ 10x. B. Percentage of duplicated reads (y-axis) as a function

of the number of PCR cycles performed during library creation (x-axis). Underlying data are availabe

in Table S1.

Figure  S2.  Insert  size  and  GC  content  distribution  for  all  vs  high-depth  regions. A &  B.

Distribution of insert size for all regions (green) or only regions with high depth of coverage (orange)

across PCR-amplified libraries. In panel A, all insert sizes were centered around 500bp to enable a

more direct comparison between libraries. Panel B shows the same data without this transformation

(i.e. raw insert size). C & D. Distribution of GC % for all regions (green) or only regions with high

depth of coverage (orange). For panel C, each library GC% was centered around 50%, while panel D

shows the same data without this transformation. 

Figure S3. Assembly size and estimated error rates for different assembly pipelines. Comparison

of the output of different assembly pipelines applied to PCR-amplified libraries. Panels A & B show the

cumulative length of all contigs (A) or contigs ≥ 10kb (B) across assembly pipelines (x-axis). Panel C
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displays the cumulative length of contigs ≥ 10kb relative to the largest value for each library, i.e. as a

percentage of the “best” assembly for this library (“best” being defined as the largest cumulative length

of  contigs  ≥  10kb).  Panel  D displays  the  distribution  of  estimated  error  rates  across  the  different

assembly pipelines, for the 25 libraries for which error rates could be estimated (Table S2 & S3).

Norm.: Normalization, Dedup.: Deduplication, Meta: metaSPAdes, SC: single-cell SPAdes.
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Figure 1

Coverage bias within individual contigs for unamplified and PCR-amplified libraries.

A. Example of coverage bias along a single contig from sample 1064195 (contig

1064195_contig_573). Reads from libraries ASXXB, BWNCO, and BWWYG (Table S2) were

mapped to the same contig, and read depth along sliding windows of 100bp is displayed for

each library on the y-axis. Windows on the edges of the contig (within 200bp of the 5’ or

3’end) were excluded as read depth is not as reliable in these end regions. B. Illustration of

the insert size bias associated with high depth of coverage regions in PCR-amplified libraries.

For each library, the number of PCR cycles performed for the library is indicated on the x-

axis, while the Kolmogorov–Smirnov distance between the insert size distribution of low-

versus high-depth regions is indicated on the y-axis. The magnitude of the difference

between the means of the two distributions was also estimated using Cohen’s effect size (d)

and is indicated by the dot color. For clarity, only libraries for which the mean insert size was

lower in high depth regions are included in the plot, and the 22 libraries which showed the

opposite trend are not plotted (Table S1). KS: Kolmogorov–Smirnov

PeerJ reviewing PDF | (2018:12:33685:0:0:NEW 21 Dec 2018)

Manuscript to be reviewed



Figure 2

Optimized pipeline for assembly of PCR-amplified metagenomes.

A. Distribution of the cumulative size of long (≥ 10kb) contigs (y-axis) obtained across all

PCR-amplified libraries from different assembly pipelines (x-axis). Assembly pipelines are

indicated along the x-axis (see Table S3). B. Cumulative size of long (≥ 10kb) contigs

obtained with a standard (green) or optimized (purple) assembly pipeline for different ranges

of library PCR amplifications (x-axis). Coloring of the assembly pipelines is identical as in

panel A. C. Estimated error rate (y-axis) from different assembly pipelines (x-axis) across all

PCR-amplified libraries. These assembly errors were estimated for the 25 libraries for which

an unamplified reference assembly was available (Table S2). Coloring of the assembly

pipelines is identical as in panels A and B. Dedup.: Deduplication, Meta: metaSPAdes, SC:

single-cell SPAdes.
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