1ABSTRACT

2Background. Different parts of the tree Calophyllum inophyllum L. (nuts, leaves, roots, 3bark, fruits, nut oil and resin) are used in the field of as traditional medicines and 4cosmetics in most of the Pacific Islands: its nuts, leaves, roots, bark, fruits, nut oil and resin. 5The efficacy of the oil as a natural remedy and in the practice of traditional cosmetics has 6been described by many throughout the South Pacific, which drew our attention to finding 7its diversity both chemically and biologicallyled us to investigate C. inophyllum's chemical 8and genetic diversity. A correlative study of the nut resin and leaf DNA from three distinct 9archipelagos in the South Pacific could possible show existing diversity patterns of the C. 10inophyllum plant in the South Pacific was carried out in order to identify diversity patterns 11in C inophyllum across the South Pacific. Methods. This study was applied here on the oil 12resinCallophylum inophyllum plants were sampled from three Pacific countries: French 13Polynesia, New Caledonia and Fiji in order to reveal chemical and biological diversity. We 14extracted pay special attention to the "tTamanu" oil (nut oil) resin for chemo-diversity 15studies and sampled leaf tissues for phylogenetic studies. A We highlight is the 16application of aapplied a method of analysis designed for kernels in small quantities (at a 17microscale level), and used HPLC, with co-elution of in house standards, to establish the 18chemo-diversity of tamanu oil resin. The various oil resin components of *C. inophyllum* 19were defined by comparing the samples chemical profiles from HPLC analyses against 20eleven in-house standards. This objective was accomplished through the HPLC co-21chromatography of plant extracts and by<u>Genetic diversity was assessed using chloroplast</u> 22barcoding markers (the Acetyl-CoA carboxylase (accD) gene and the psaA-ycf3 23intergenicspacer region) universal gene markers in accD and PsaA-Yef3 for the genetic-24identification of C. inophyllum samples from the coastal sites of the three geographically 25isolated island archipelagos. Results. Through corroborative evidence from HPLC chemical 26analyses, the investigation into the effect of geographical isolation and genetic diversity of 27the plant were supported by multivariate analysis (PCA) of chemical data. Our HPLC 28analyses revealed 11 previously known constituents of tamanu oil, with variability among 29plant samples. We also revealed here the isolation of isolated and characterized 2 new 30neoflavonoids from tamanu oil resin namely, tamanolide E1 and E2 which are 31diastereoisomers. Although genetic analyses revealed low genetic variation, our

32multivariate (PCA) analysis of the tamanu oil resin chemical profiles revealed
33differentiation -among geographic regions. For the first time, the use of the chloroplast gene
34loci accD for the diversity studies of Calophyllum inophyllum was also presented. Albeit
35genetic analyses revealed low genetic variations, co-clution experiments discovered tamanu
36resin compounds to be clustered spatially along a geographic plane specifically more
37prominent at some sites. Conclusion. We showed here that chromatographic analyses
38utilizing formalized in-house standards of oil resin compounds for co-clution studies against
39oil resin samples can, in the case of *C. inophyllum*, identify patterns of variation among
40samples and be highly discriminateory and veryinformative of underlying diversity of *C.*41inophyllum samples from different geographical origins.

43INTRODUCTION

42

44The studyChemical and medicinal properties of the Alexandrian laurel (Calophyllum 45<u>inophyllum</u>), otherwise known commonly as beach mahogany, hasve been extensively studied 46throughout the world but more so in the Asia-Pacific region (Leguillier, 2015; Pawar et al., 2011; 47Patil et al., 1993). Endowed with The plant has a myriad of medicinal uses, most of which are 48forinvolve topical applications, most studies have concentrated more on the medicinal aspects of 49the plant. Recent studies such as Leguiller et al., (2015) and Ansel et al., (2016) have managed to 50focused more attention on the cosmetic aspects of the plant in the Pacific region. which shows its 51 importance in the region Other common names for the plant in some Pacific island countries are 52dDilo (Fiji), Ffetau (Samoa), tamanou de bord de mer (New Caledonia) and Ttamanu in the Cook 53Islands and French Polynesia. (Friday and Okano, 2006). Historically, before the conversion of 54Polynesians to Christianity, the tamanu trees were considered as sacred. They were planted 55inside the royal Marae (sacred areas) (Dweck and Meadow, 2002). 56The Dilo or Tamanu plant Calophyllum inophyllum belongs to Kingdom Plantae, Phylum-57Spermatophyta, Class Dicotyledonae, Order Malpighiales, Familythe flowering plant family 58Calophyllaceae, and Genus Calophyllum (APG, 2009; Prabakaran and Brito, 2012). Nand is 59native to the Indo-Pacific region (Africa, India, South East Asia, Australia and the Pacific 60islands) $\frac{1}{10}$ iIt grows to a height of 8 - 15m and has a large canopy with a network of branches. The 61wood is widely used for making cabinet and other furniture, for carving, and for boat and canoe 62building. Furthermore, different parts of the plant have been used in traditional medicine and as

63excellent raw material for cosmetics (Dweck and Meadows, 2002). For example, the oil from 64theits almondsnuts haves been used for medicine against skin infections, as a scar remover as 65well as for other cosmetic uses (Friday and Okano, 2006). In Fiji, the oil is used to cure arthritis 66and joint pain, as an eye wash for conjunctivitis (Cambie and Ash, 1994) and also to prevent 67infantile rash. The resin mixed with strips of bark and leaves is used as a household application 68for the treatment of sore eyes. The green fruit is used against tuberculosis (Cambie and Ash, 691994). In some islands of Polynesia, the oil has been used as an alternative for candle nut oil in 70lamps and also massaged into hair and used as a common topical application for skin diseases 71and burns (Prabakaran and Brito, 2012). A number of studies have revealed the interesting 72biological activity of the oil, which provideshas antibacterial (Yimdjo et al, 2004), antifungal 73(Saravan et al., 2011), anti-inflammatory activity against skin infections (Bhalla et al., 741980). Most recently it has proven useful for wound healing (Leguiller et al., 2015). Such is the 75uniqueness of its properties that the "tTamanu oil" has been recognised as an active cosmetic 76ingredient and recorded as *C. inophyllum* seed oil by the International Nomenclature of Cosmetic 77Ingredients (INCI) (Assouvie, 2013; Ansel et al., 2015).

78The bioactive components (belonging to neoflavonoid, xanthone and triterpene secondary 79metabolite groups) in this plant are highly rich in all and recognised as having medicinal 80properties as shown in Table 1. The composition of the main neoflavonoid compounds in the oil 81are as follows: calophyllolide, inophyllums (C, D, E and P), tamanolides D and P, calanolide Gut 8270, and finally the calanolides A, B and D (Laure, 2005; Leu et.al., 2009; Assouvie, 2013). 83OfAlso of high great interest is the anti-HIV efficacy of the pyranocoumarins from the 84Calophyllum genus in anti against -HIV (Wang et al., 2006), with recent in advances nowstudies 85also examining their use in promoting cicatrization, and as an anti-aging agent (Leguillier et al., 862015; Ansel et al., 2016). Among this renewed interest into the phytochemistry of this plant is 87includes investigation of tThe compound calanolide A, a minor constituent in of C. inophyllum 88resin extract (Ansel et.al., 2016) has also attracted recent interest because, which is was as stated 89noted by Wang et al., (2006), as it is the only natural product that has progressed into human 90clinical trials with positive results foragainst HIV-1.

91The analysis of the chemical composition of leaves of *C. inophyllum* from various sites in French 92Polynesia and that of fruits originating from various sites in India has revealed a terroir 93effectregional differentiation (Laure *et al.*, 2005, Pawar et al. 2010) betweenfor C. *inophyllum*

94plants found in-land toand those found closer to the coast. In order to evaluate the chemical 95qualities of the different Ttamanu oils of the South Pacific, phytochemical analyzes are therefore 96necessary. Given that secondary metabolites play a role in the adaptation of plants to biotic and 97abiotic factors, it would be interesting to know if as revealed by Pawar *et al.*, 2011, abiotic 98factors such as the geography of harvesting sites have an influence on the chemical profile of 99thetamanu oil.

100In addition to these problems the general question of regional influence on the chemical profiles 101<u>of tamanu oil</u>, it is questionable we also were interested in whether dipyranocoumrins and more 102particularly inophyllums can be used, as described by Pawar et al., 2011, as chemotaxonomic 103 markers for the identification of C. inophyllum from various geographical areas of the South 104Pacific. South. For this To address these questions, an approach to we characterized genetic 105diversity is conducted in parallel with the phytochemical diversity, following a polyphasic -106approach, as observed in polyphasie has been work applied to some microbial research. 107Polyphasic taxonomy is a consensus building method of taxonomy developed to incorporate 108phenotypic, genotypic and phylogenetic data for micro-organisms (Vandamme et al., 1996). 109Research into encompassing applying a dialled down version of this method for plant research, 110utilising only a two pronged approach of genotype and phenotype variation for elucidation of 111diversity has been achieved by Pawar et al. (2011); Lynch et al. (2016), and +Hu et al., 112(2007). Similarly As in to these previous workstudies, the present study aims to gain more insight 113into the diversity of the plant C. inophyllum in the localities of Fiji, French Polynesia and New 114Caledonia by utilizing genetic data from barcoding universal gene markers in accD and psaA-115ycf3. UWe expect that by using these as tools to study the genetic variations and integrating the 116 observed patterns towith corresponding existent HPLC chemical profiles from (phenotypic 117information) for each sample, we can gain new insights that could. An integration of these two 118 pieces of information would help to explain current diversity patterns of in this plant. This 119approach is however different from Pawar et al., (2011) as it does not utilise simple sequence 120repeat markers. Instead, we used sequence data from two chloroplast regions that have been 121employed for barcoding: the accD gene and the psaA-ycf3 intergenic spacer region. The 3 major 122locations for collections are shown on Oceania's map in Fig. 1. The plastid accD gene, which 123encodes for the β-carboxyl transferase subunit of acetyl co-enzyme A carboxylase, is present in 124the plastids of most flowering plants, including non-photosynthetic parasitic plants and is

125involved in fatty acid biosynthesis. Associated with a fast evolving genome region in some 126evolutionary lineages, it has been used in barcoding experiment analyses for Magnoliophyta 127(Lahaye et al., 2007), Mesangiospermae (Lam *et al.*, 2016) and Fabids (Xi *et al*, 2012). Studies 128with C. *Chlamydomonas reinhardtii* and higher plants have shown that ycf3 is required for the 129stable accumulation of the Photosystem 1 complex (Boudreau et al., 1997; Ruf et al., 1997) and it 130appeared to link with psaA

131

132MATERIALS AND METHODS

133

134Sample collection

135The Tamanu almondsnuts were collected during the fruit flushing season of June to August and 136even collected late into the month of December. In New Caledonia, Ttamanu almondsnuts were 137collected under the scientific authorization of the South Province N°2050-2014. In Fiji, all 138samples were collected along the road-sides at each collection site. At each location, a replicate 139sampling plan was applied as observed in the geodata (Table 2). A total of two <u>He</u>eaf samples 140were collected at each tree together with 3-5 almondsnuts. From the leaf composite, one leaf was 141placed in a zip lock bag as a voucher (as for the study as in the Fiji aspect) and two leaf samples 142were stored at -80°C or immediately placed into RNA later solution for DNA extraction. The 143<u>nutsalmonds</u> were placed in polyethylene trays and aired to remove moisture for two weeks 144before they were placed into a solar drier and dried for a period of six to eight weeks. In total, 145there were 22 sampled sites and a total of 85 trees sampled from the 3 major collections in Fiji, 146French Polynesia and New Caledonia. Note that due to the nature of collections being conducted 147in isolated locations from both French Polynesia and New Caledonia, limited amount of materials 148 were collected and thus vouchers specimens could not be deposited for these two research 149 groups. Only the Fiji samples were deposited into a voucher collection in Fiji, kept at the South 150Pacific Regional Herbarium (Table S1).

151

152Microscale Extraction, Purification and HPLC Analyses

153From the collected nuts sampled from each of the 85 tree's, a set of 3-5 almondnuts weighing 7-15410g were picked from each set and subjected to a small scale cold extraction consisting of 155maceration and grinding of the almondsnut in a cheese cloth and crushing in a mortar and pestle 156to allow oil absorption. Samples were immersed in EtOAc and sonicated for 5 mins before this 157was partitioned with EtOH at a 1:1 ratio v/v. The EtOH layer was removed and dried in vacuo 158leaving the resin behind. Any remaining oil was de-fatted twice with 40mL hexane in total. 159Resinous extracts were dissolved in EtOAc: cyclohexane at a 1:1 ratio v/v to give a concentration 160of 10mg/mL for final injection. Chromatographic analyses were performed using an Agilent 1100 161series gradient HPLC fitted with a UV/DAD system. The HPLC column used was a Interchrome 162Modula-Cart QS Uptisphere 5μm Si column, and the data were viewed on Agilent Chemstation 163software. The elution conditions were as follows: flow rate 1mL/min, pressure 2500psi max, 164injection volume 4 μL and the step gradient sequence.

165The HPLC analyses of the samples from all three locations (Fiji: RawDataS1, New Caledonia: 166RawDataS2 and French Polynesia: RawDataS3) were subjected under numerous trials to acquire 167the maximum amount of compounds at the shortest runtime. On completion of the analyses, 168eighty resin samples were chosen from the total of eighty five samples and five were discarded 169due to poor alignment and high signal to noise. A further two samples were discarded due to poor 170alignment therefore a total of seventy eight samples were analysed in HPLC. In order to 171concatenate the chemical data and compare sample chromatograms observed at 280nm (which is 172where most picks were observed in the shortest time) against known compounds retention times, 173the removal of noise, redefining and alignments of all data was necessary in order to identify and 174assign each sample peak against the known compounds isolated in previous works by Leu *et al.*, 1752009; Leu, 2009; Laure, 2005 and Laure *et al.*, 2008. Background fitting and identification of 176major peaks of the raw HPLC data were performed using the R package align DE v2.0.1. 177Chromatograms were aligned using a procedure in Scilab version 5.5.1 (Scilab Enterprises, 2012) 178derived from chromaligner (Wang *et al.*, 2010).

179

180Purification of known compounds from commercial **†**tamanu oil resin and Isolation of new 181compounds

182A batch of oil resin extract (157g) from commercial ‡tamanu oil (provided by "Laboratoire de 183Cosmétologie du Pacifique Sud" manufacture) from French Polynesia was first partitioned with 184EtOH and an aqueous alkaline solution of Na₂CO₃ (10%, v/v). Its organic fraction was washed 185with distilled water and then dried with MgSO₄ to give a neutral fraction (53g) after solvent 186evaporation. This fraction was submitted to flash liquid chromatography on an open column with

187a silica gel (240-300 mesh) using a stepwise gradient from cyclohexane to EtOAc yielding 12 188fractions (Table S2). Fractions having similar R_f values on silica gel TLC (cyclohexane-acetone, 18960:40, v/v) were combined. Fractions 7, 9 and 11 were submitted to repeated preparative HPLC 190using a Varian Dynamax Si column (250 × 21.4 mm id, 5 μ m with cyclohexane -EtOAc (10:90) 191in isocratic eluent conditions. This chromatographic purification network led to the isolation of 192new compounds tamanolides E1 and E2 as a mixture (2 mg) besides standard known compounds 193namely, calophyllolide, inophyllums (C, D, E, P), calanolides (Gut 70 and A, 12-oxo-calanolide) 194and tamanolides (D, P).

195

196New Compounds Analysis

197New compounds from were identified by NMR and were further analyzed with a Bruker Avance 198DRX500 spectrometer ($^{1}\text{H} - 500.13 \text{ MHz}$) equipped with a 5 mm triple resonance inverse 199Cryoprobe TXI ($^{1}\text{H}/^{13}\text{C}/^{15}\text{N}$) in CDCl₃-99.8%, (δ_{1H} =7.26pm, δ_{13C} = 77.16ppm). The HR-ESI-MS 200data were collected using a QStar Elite mass spectrometer (Applied Biosystems SCIEX, 201Concord, ON, Canada) equipped with an ESI source operated in positive ion mode. Optical 202rotations were measured with a Perkin-Elmer 241 polarimeter equipped with a sodium (589 nm) 203lamp and a 1 dm cell. The FTIR spectra were established with a Thermo-Nicolet IR 200 204spectrometer on a KBr cell and 4cm⁻¹ resolution.

205

206DNA extraction and Amplification

207Plant DNA was extracted from young leaf tissue using a (Macheral) Plant Nucleospin II kit 208according to the manufacturer's instruction. The leaf samples were first lyophilized in liquid 209nitrogen and crushed before being subjected to the manufacturer's protocols. Two plant universal 210chloroplast regions were targeted for amplification namely; the Acetyl-CoA carboxylase (accD) 211gene and the psaA-ycf3 intergenic spacer region. The amplifications were performed in a Thermo 212Scientific Arktik Thermo Cycler. The PCR was performed using a Qiagen taq polymerase kit and 213primers were diluted to a concentration of 60ρmol before use in the PCR mix. All sample 214amplifications were eluted in distilled milliQ water at 50 μL volumes and tested for yield in 1% 215agarose gel electrophoresis. The PCR program consisted of 92°C of incubation during 2 mins for 2161 cycle and 8 cycles of PCR (denaturation at 92°C for 30sec followed by specific annealing 217temperatures for accD (44°C) and psaA-ycf3 (43°C) all at 30sec, and 72°C for 1min), followed

218by 40 cycles of (92°C for 30sec, extension at primer specific temperature's accD (46°C) and 219psaA-ycf3 at 30 sec, 72°C for 1 min). A final 5 min extension was then carried out at 72°C and 220for only 1 cycle.

221

222Sequencing Alignment and Data Analysis

223The samples were sequenced by GATC Biotech sequencing services, Germany. Data received in 224AB1 format were viewed under the Applied Biosystem's sequencing scanner and corrected for 225contiguous read lengths and miscalled sequence data were removed especially in the beginning 226and at the ends of the raw data files. Files were then aligned using MEGA6 (Tamura *et al.*, 2013) 227before they were matched to nucleotide sequences using the BLASTn tool available at 228https://blast.ncbi.nlm.nih.gov/Blast.cgi. Matches Blasted in NCBI using the nucleotide search 229tool. Only outgroup hits with 96-100% similarity were included into the construction of a 230multiple sequence alignment. Sequences were aligned using Clustal W (Thompson *et al.*, 1994) 231and trees were generated using the MEGA6 phylogeny tools. New haplotypes were deposited 232into the NCBI Genbank using the Bankit tool and accession numbers generated in the process 233(are given in Table S3).

234

235Phylogenetic construction

236All newly determined sequences were checked using the sequencer software for peak intensity 237and also contiguous length. All sequences with contiguous lengths greater than 200bp were 238considered for tree construction using MEGA6. Maximum likelihood (ML) trees were 239constructed for all accD sequences which satisfied our contiguous length criterian. Initial tree(s) 240for a heuristic search were first obtained by applying Neighbor-Joining (Saitou and Nei, 1987) 241and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite 242Likelihood (MCL) approach implemented in MEGA, and tree searches were conducted assuming 243a Tamura-Nei model and a discrete Gamma distribution to model evolutionary rate differences 244among sites (5 categories (+G, alpha parameter = 0.1523)). The analysis involved 18 nucleotide 245sequences and all positions containing gaps and missing data were eliminated. There was a total 246of 234 positions in the final dataset. The optimal tree obtained has been drawn to scale, with 247branch lengths indicating the number of substitutions per site has been shown. A maximum 248likelihood tree was also constructed for the psaA-ycf3 Fiji sequenced data s-only as the Tahiti and

249New Caledonia sequenced data s for this chloroplast region could not be amplified, possibly due 250to DNA deterioration. A Tamura-Nei model (Tamura and Nei, 1993) was assumed. The optimal 251tree has been shown, drawn to scale, with branch lengths measured indetermined by the number 252of substitutions per site. The percentage of trees in which the associated taxa clustered together 253was shown next to the branches. The analysis of this second data set involved 11 nucleotide 254sequences. Positions containing gaps and missing data were eliminated. There was a total of 55 255positions in this dataset.

256

257Statistical Analysis

258Multivariate statistical analysis was applied to all the chemical data in order to reveal the extent 259to which the 12 major compounds making up the chemical compositions of the 47 C. *inophyllum* 260oil resin samples were geographically distributed. Data were normalized by log transformation 261prior to Principle Component Analysis (PCA). PCA was performed with the package Ade4 262ofusing R version 3.1 software (R Development Core Team, 2018) and a PCA biplot was drawn 263using the eMicrosoft Excel software. The diversity of chemical compounds that contributed to 264the highest discrimination at a geospatial level were visualized and a scatter plot was generated 265from Microsoft eExcel.

266

267RESULTS

268

269Chemical composition of extracts

270The fractionation, purification and identification of resin extracts (by spectroscopic methods)
271yielded 11 compounds from commercial than an oil (Fig. 2 A-K), which were identified as
272constituents that had been previously reported (Laure et al., 2008; Leu et al., 2009). In addition to
273calophyllolide, inophyllums (C, D, E, P), calanolides (Gut 70 and A, 12-oxo-calanolide) and
274tamanolides (D, P), these analyses also led to the isolation of two new compounds X1 and X2 as
275an epimeric mixture. The presence of these 2 compounds X1 and X2 from the same peak in two
276fractions was clearly shown in ¹H theoretical (Fig. 3A) and experimental spectra in (Fig. 3B).
277As the chemical shifts shown in Table 3 of these compounds were quite similar, their absolute
278presence proven on the ¹H NMR revealing more signals then expected from one compound and
279which actually corresponded to two sets of signals for two very close compounds that we

280proposed here as X1: tamanolide E1 and X2: tamanolide E2 (Fig. 2L). The chemical

281characteristics of tamanolide E1 and E2 are: amorphous yellowish powder; $\left[\alpha\right]_{25}^{D} = -19.6$ (c 2820.003, CHCl₃). FTIR (CCl₄): 3075, 2979, 2926, 2908, 2877, 2832, 1740, 1695, 1643, 1606, 1575, 2831461, 1382, 1209, 1152, 1121 cm⁻¹. ¹H NMR (CDCl₃, 500MHz) and ¹³C (CDCl₃, 125 MHz) (see 284Table 3); HR-ESI-MS m/z 383.1850 [M+H]⁺ (calcd. for C₂₃H₂₇O₅, 383.1853.).

286Chemical Diversity of C. inophyllum within the 3 regions

287HPLC analysis of *C. inophyllum* was performed to investigate the clustering patterns of 288phytochemical components based on geographical distribution (archipelago). Eleven isolated 289compounds (Fig.4: peaks 1-11), along with two new compounds (Fig.4: peak 12), were used as 290external standards to qualitatively analyzed four sample of *C. inophyllum* from three different 291locations, Fiji West (FW1), New Caledonia Noumea (N1 and N3) and Rotuma Fiji (R4). The 292phytochemical components of each sample were identified by comparing the retention time of the 293external standards (Fig. 4).

294The alignment of all samples through R and Scilab provided a matrix containing the integrated 295peak area of the identified features. Data were normalized by log transformation prior to PCA 296analysis. The samples can be discriminated into three main regions (Fig. 5) with the French 297Polynesian population on the left of the graph, the New Caledonia population on the bottom right 298and the Fiji population on the upper right. Within French Polynesia and Fiji, no discrimination 299between the sites or archipelagos was observed with these first two components.

300The different proportions of the compounds leading to biogeographic discrimination of the three 301regions has been shown in Fig. 6. Compounds calophyllolide and tamanolide E1/E2 were found 302to be negatively loaded on axis 1 which covers 7 to 59% of the total information, the proportion 303of tamanolide E1/E2, Gut 70 calanolide, tamanolide and inophyllum E were the main and 304significant compounds prominent in the composition of the oil resin from French Polynesia, 305while tamanolide P, D and inophyllum C were found to be positively loaded on axis 2 covering 30615-83% of the total information and were more prominently represented more in the Fiji samples, 307while New Caledonia appears to be profoundly represented by other constituents such as 308compound P69, which although unknown and unidentified, appeared to be unique from the PCA

309analysis. Outgroups were observed in the chemical diversity of the Tahiti samples namely from 310the Tuamotu's and Australes as seen in Fig. 5.

311

312Genetic discrimination

313Mega 6 identified the Tamura-Nei model as the best fitting model in ML analyses. Phylogenetic 314relationships assuming this model of substitution for C. *inophyllum* archave been shown in Fig. 3157A and Fig. 7B for the accD gene and for the psaA-ycf3 spacer region, respectively. 316Interestingly, only Raiatea from French Polynesia showed a unique genotype, where it produced 317two2 new haplotypes (T22 and T23) in the accD tree caused by substitutions at positions 134bp 318and 146bp.

319

320DISCUSSION

321

322 <u>CNew chemical isolates and chemical variability section</u>

323Compounds X1 and X2 had a molecular formula of C23H27O5 as determined by high-resolution 324mass spectrum (HR-ESI-MS) (m/z 383.1850 [M+H]+, calcd 383.1853) and NMR data implying 32511 degrees of unsaturation (Table 3, Fig. S1-S10). The 13C NMR spectrum gave a total of 23 326separated resonances and the 135-DEPTQ sequence showed the presence of six methyl, one 327methylene, six methine and ten quaternary carbons including a ketone carbonyl at δ 191.7 ppm 328for compounds X1 and X2. The 1H resonances of both compounds (Fig. S1 and S9) were typical 329of a pyranocoumarin [8] as characterized by the downfield shifted proton at δ 6.16 (1H, s, H-3) 330for an α , β -unsaturated lactone (ring B), and a set of doublet signals [δ 6.66 ppm (1H, d, J = 33110.0Hz, H-8), 5.60 ppm (1H, d, J = 10.0Hz, H-7)], and two methyl singlets at δ 1.54 ppm (3H, s, 332H-19) and δ 1.54 (3H, s, H-20) for the first one (X1) and at δ 1.53 ppm (3H, s, H-19) and δ 1.53 333ppm (3H, s, H-20) for the second one (X2), for a pyrane ring (ring C).

334

335Furthermore, the cycle ring D showed a characteristic cis-configuration with a coupling constant 336of 3.4Hz between H-10 δ 4.69 ppm (1H, qd, J = 6.5, 3.4 Hz) and H-11 δ 2.68 ppm (1H, qd, J = 3377.2, 3.4 Hz) for X1 and between H-10 δ 4.70 ppm (1H, qd, J = 6.5, 3.4 Hz) and H-11 δ 2.69 ppm 338(1H, qd, J = 7.2, 3.4 Hz) for X2 and by NOE crosspeaks correlation between the two methyl 339groups H-21 δ 1,.42 ppm (3H, d, J = 6.6Hz), H-22 δ 1,.15 ppm (3H, d, J = 7.2Hz) for X1, and H-

34021 δ 1,.41 ppm (3H, d, J = 6.6Hz), H-22 δ 1,.15 ppm (3H, d, J = 7.2Hz) for X2, like inophyllum 341E.

342With the aid of the COSY experiment, an isobutyl unit was identified by further analysis of the 343remaining 1H resonances [δ 3.79 ppm (1H, brsxt, J = 7.0Hz, H-13), 1.75 ppm (1H, m, H-14a), 3441.45 ppm (1H, m, H-14b), 0.95 ppm (3H, t, J = 7.4Hz, H-15) and 1.22 ppm (3H, d, J = 6.7Hz, H-34516)] for X1 and δ 3.79 ppm (1H, brsxt, J = 7.0Hz, H-13), 1.75 ppm (1H, m, H-14a), 1.45 ppm 346(1H, m, H-14b), 0.96 (3H, t, J = 7.4Hz, H-15) and 1.22 ppm (3H, d, J = 6.7Hz, H-16)] for X2. 347This isobutyl moiety was assigned to be at the C-4 position, based on the HMBC crosspeaks 348between H-3 (δ 6.16 ppm) and C-13 (δ 37.5 ppm), between H-16 (δ 1.22 ppm) and C-4 (δ 104.7 349ppm), between H-14 (δ 1.45, 1.75 ppm) and C-4 (δ 104.7 ppm), between H-13 (δ 3.79 ppm) and 350the carbons C-3 (δ 109.3 ppm) and C-4a (δ 104.7 ppm). The rest of the HMBC correlations used 351to obtain a complete assignment of the 1H and 13C NMR chemical shift, have been summarized 352and presented in Table 3. The 1H and 13C NMR of both compounds were almost identical to 353those of inophyllum E with the exception of an isobutyl group at C-4 and tamanolide D with the 354exception of the ring D.

355Complete assignments of X1 and X2 were made based on 1D and 2D NMR experiments, of 356which compound X1 was suggested as tamanolide E1 while compound X2 was the H-13 epimer 357of X1 and suggested as tamanolide E2. Proton NMR spectrum (Fig. 3) of different HPLC 358fractions revealed X1 and X2 as a mixture from two compounds whose signals were close to each 359other with a varied ratio (70/30 to 40/60). The chemical shifts of both compounds are listed in 360Table 3. Different fractions of a collected HLPC peak show a variation of proportion 70/30 next 36140/60 of two close signals in the 1H NMR spectrum (Fig. 3). The aAssignment of the resonances 362was performed based on the basis of 1D and 2D NMR experiments (1H, 13C-DEPTQ135, 363COSY, HSQCed, HMBC and NOESY). One compound was identified as tamanolide E1 while 364the second compound was concluded to be the H-13 epimer form tamanolide E2. 365Finally, the structures of 11 known compounds are shown (Fig. 2) including the two new 366compounds assigned as tamanolide E1 and E2 after elucidation from exhaustive NMR analysis 367(1H, 13C-DEPTQ135, COSY, HSQCed, HMBC, NOESY), including the comparison of 368experimental and theorieal theoretical results (Fig. 3A and B) and by comparison with NMR data 369of the phenylcoumarin back bone from inophyllum E and tamanolide D.

370Consistent with earlier findings (Prabakaran and Britto, 2012; Laure *et al.*, 2008), calophyllolide 371remains as the dominant major compound in <u>t</u>Tamanu resin for all chemotypes isolated.
372Calanolide A which is the most potent of all C. *inophyllum* compounds with anti-HIV-1 activity 373(Wang *et al.*, 2006) was found as a minor component in C. *inophyllum* oil. The 374pyranocoumarine2s inophyllum B and P (also active against HIV-1-) were also have been isolated 375here. The former is not only the most active but it is also the only natural product undergoing 376clinical trials against HIV-1 (Liang, 2006). As seen in Fig. 4, the 280nm UV spectrum revealed 377the maximum number of peaks and therefore standards and samples were targeted for 378visualization at this wavelength.

379All the standards isolated here as seen in Fig. 4 have been isolated in previous studies from 380French Polynesian C. *inophyllum* oil (Leu *et al.*, 2009a; Leu *et al.*, 2009b; Laure, 2005). A 381unique characteristic of C. *inophyllum* oil is the presence of a resin which has been shown as well 382to contain most neoflavonoid biologically active constituents (Ansel *et al.*, 2016). Previous 383studies by McKee *et al.*, 1998 and Li *et al.*, 2007 have indicated the use of HPLC analyses to 384investigate differences in chemical profiles from different populations. In our case, we have 385looked at samples from three localities. The population from New Caledonia was characterised 386by peaks not found in earlier studied populations and these novel peaks suggest new and specific 387chemomarkers. Unique to this study as shown in the biplot on Figure 6 is that we were able to 388show the chemodiversity of the Tamanu resin oil across the three study sites if we only use 389thosebased on chemical compounds that contribute to the highest discrimination at a geographical 390level from the PCA analysis. This point is important and rather unique in the study as this reveals 391the chemical specificity of compounds and their proportions in Tamanu resin by geographical 392locations across the South Pacific.

393

394DNA variability

395This is the first reported work on *C. inophyllum for the* usinguse of the universal chloroplast 396barcoding regions, the gene accD and the intergenic region psaA-ycf3 on *C. inophyllum*. Low 397levels of genetic variation were found with these markers, and this variation was not functionally 398linked to differences in chemical composition. The absence of genetic variation among Fiji psaA-399ycf3 regions suggests that for *C. inophyllum* low genetic variation in *C. inophyllum. might also* 400*be the case for populations in other geographical localities*. However, analyses of additional

401chloroplast gene regions or nuclear ISSR markers may yet reveal more discrimination within the 402Fiji archipelago and between populations from different archipelagos.

403

404CONCLUSIONS

405

406Our results are informative in revealing that chemical differences in tamanu resin can be a tool 407for the discrimination of samples and geographic regions. In our case, chromatographic data 408proved to be more informative and highly discriminative thaen DNA barcoding data, possibly 409owing to low genetic variation in the chloroplast regions utilized. Additional chloroplast 410barcoding regions or utilization of nuclear microsatellites may give a better perspective on the 411eurrent patterns of genetic diversity. Of interest were haplotypes (T22 and T23) which were 412distinct from the more commonly found C. *inophyllum* genotype. Polyphasic taxonomy that 413considers both chemical diversity and genetic diversity presents the best approach to delineate 414biological variation across geographical boundaries. However, higher levels of genetic resolution 415are required to explaincharacterize variation in the disjunct distribution of C. *inophyllum* across 416the South Pacific and to bring insight into the diversification processes that have occurred 417following geographic isolation. This diversification has included novel pyranocoumarins 418compounds characterized by this study: in tamanolide E1 and E2 (C-13 epimers as a mixture).

420ACKNOWLEDGEMENTS

421

422This paper is dedicated to the memory of our wonderful colleague, supervisor and friend Prof 423William Aalbersberg who has passed away. We thank and greatly appreciate him for his wisdom 424and inspiring research leadership. We are grateful to the people of French Polynesia, Fiji and 425New Caledonia for giving us access to sampling areas to collect our nuts and leaf samples. We 426thank Cloe Check, Juliette Prevost, Nicolas Martin, and Ranitea Ly for performing HPLC 427analysis on all the samples. We also thank Mr. John Bennett for supplying oil extracts and 428assisting in the processing of samples in Fiji as well as Mr. Olivier Touboul (LCPS) for ‡tamanu 429sample collection in French Polynesia. Special thanks to Mr. Marika Tuiwawa and Mr. Alivereti 430Naikatini for their assistance in the sample collection and deposition of samples in Fiji.

432REFERENCES

433

434Angiosperm Phylogeny Group, 2009. "An update of the Angiosperm Phylogeny Group 435classification for the orders and families of flowering plants: APG III". *Botanical Journal of the* 436*Linnean Society* 161: 105–121 DOI: 10.1111/j.1095-8339.2009.00996 437Ansel J , Lupo E , Mijouin L , Guillot S , Butaud J , Ho R , Lecellier G , Raharivelomanana P, 438Pichon C. 2016. Biological activity of Polynesian *Calophyllum inophyllum* oil extract on human 439skin cells. *Planta Medica* 82: 961-966.

440DOI: 10.1055/s-0042-108205

441Assouvie N. 2013. Le Tamanu (*Calophyllum inophyllum* L.) en Polynésie Française et autre 442espèces du genre *Calophyllum*: De l'usage en médecine traditionnelle à l'émergence d'un 443médicament anti-VIH. Thèse de doctorat en pharmacie, Université de Bordeaux Ségalen, p 122, 444n° 2013BOR2P019.

445Bhalla TN, Saxena RC, Nigam SK, Misra G, Bhargava KP. Calophyllolide—A new 446non-steroidal anti-inflammatory agent. Indian J. Med. Res. 1980, 72, 762–765. 447Boudreau E, Takahashi Y, Lemieux M., and Rochaix, J.-D. (1997). The chloroplast ycf3 and ycf4 448open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the 449photosystem I complex. EMBO J. 16, 6095–6104. DOI: 10.1093/emboj/16.20.6095 450Cambie RC, and Ash J. 1994. Dicotyledons in Fijian Medicinal Plants. CSIRO Australia, 119 - 451120.

452Dweck AC and Meadows T. 2002. Tamanu (*Calophyllum inophyllum*) - the African, Asian, 453Polynesian and Pacific Panacea. *Int J Cosmet Sci.* 24(6):341-8. doi: 10.1046/j.1467-4542494.2002.00160.x.

455

456Friday JB, and Okano D. 2006. Calophylum inophyllum (Kamani). Species profiles for Pacific 457Island Agroforestry. Ver 2.1. Permanent Agriculture Resources (PAR), Hōlualoa, Hawaiʻi. http://458www.traditionaltree.org

459Hu Y, Zhang Q, Xin H, Qin L-P, Lu B-R, Rehman K, Zheng H (2007). Association between 460chemical and genetic variation of Vitex roduntifolia population from different locations in China: 461its implication for quality control of medicinal plants. Biomedical Chromatography 21:967–975. 462DOI: 10.1002/bmc.841

```
463Ishikawa, T. 2000. Anti HIV-1 Active Calophyllum Coumarins: Distribution, Chemistry and 464Activity. Heterocycles 53 (2): 453-474. DOI: 10.3987/REV-99-526
```

465Itoigawa M, Ito C , Hugh T , Tan W , Kuchide M , Tokuda H , Nishino H , Furukawa H. 2001.

466Cancer chemo preventive agents, 4-phenylcoumarins from *Calophyllum inophyllum*. *Cancer* 467*Letters* 169 : 15–19. DOI : 10.1016/S0304-3835(01)00521-3

468Jin L , Tabe Y , Kimura S , Zhou Y , Kuroda J , Asou H , Inaba T , Konopleva M , Andreeff M , 469Miida T. 2011. Antiproliferative and proapoptotic activity of GUT-70 mediated through potent 470inhibition of Hsp90 in mantle cell lymphoma. *British Journal of Cancer* 104 : 91 – 100. DOI: 47110.1038/sj.bjc.6606007

472Kostova I, and Mojzis J. 2007. Biologically active coumarins as Inhibitors of HIV-1. *Future HIV* 473*Therapy* 1(3): 315-329. DOI: 10.2217/17469600.1.3.315

474Lahaye R, Van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, 475Barraclough T, and Savolainen V. 2007. DNA barcoding the floras of biodiversity hotspots. 476*PNAS* Vol 5 (8): 2923-2928. DOI: 10.1073 /pnas.0709936105

477Lam V, Merckx V, and Graham S. 2016. A few-gene plastid phylogenetic framework for 478mycoheterotrophic monocots. *American Journal of Botany* 103(4): 1-17. DOI: 47910.3732/ajb.1500412

480Laure F. 2005. Etude de la composition chimique et de la biodiversité du Calophyllum 481inophyllum de Polynésie Française. Thèse de doctorat de chime, Université de la Polynésie 482Française, p 357, n° 2005POLF0001.

483Laure F, Raharivelomanana P, Butaud J-F, Bianchini J-P, Gaydou EM. 2008. Screening for Anti-484HIV-1 inophyllums by HPLC-DAD of Calophyllum inophyllum leaf extracts from French 485Polynesia Islands. *Analytica Chimica Acta* 624: 147-153.

486DOI: 10.1016/j.aca.2008.06.046

487Léguillier T, Lecsö-Bornet M, Lémus C, Rousseau-Ralliard D, Lebouvier N, Hnawia E, Nour M, 488Aalbersberg W, Ghazi K, Raharivelomanana P, Rat P. 2016. The Wound Healing and 489Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative 490Therapeutic Strategy to Treat Infected Wounds. *PLoS ONE* 10(9):1-20. DOI: 10.1371/491Leu T, Raharivelomanana P, Soulet S, Bianchini J-P, Herbette G and Faure R. 2009. New 492tricyclic and tetracyclic pyranocoumarins with an unprecedented C-4 substituent. Structure

493elucidation of Tamanolide, Tamanolide D and Tamanolide P from *Calophyllum inophyllum* of 494French Polynesia. *Magnetic Resonance in Chemistry* 46: 989-993. DOI: 10.1002/mrc.2482 495Leu T. 2009. Contribution à la connaissance de la flore polynésienne: évaluation de l'intérêt 496pharmacologique de quelques plantes médicinales et étude phytochimique du Tamanu 497(Calophyllum inophyllum L. – Clusiaceae) [dissertation]. Papeete, Tahit: Université de la 498Polynésie Française.

499Li HL, Zhang WD, Zhang C, Han T, Liu R-H, Hu J, Chen HS. 2007. Comparative analysis of 500chemical profile of wild and cultivated populations of Corydalis saxicola by high performance 501liquid chromatography. *Phytochemical Analysis* 18:393–400. DOI: 10.1002/pca.994 502Liang W, Tao M, and Gang L. 2006. Recent Progress in Calophyllum Coumarins as Potent Anti-503HIV Agents *In* Liang X, and Fang W. 2006. *Medicinal Chemistry of Medicinal Natural Products*. 504Wiley-Interscience. pp 325-350.

505Lynch RC, Vergara D, Tittes S, White K, Schwartz CJ, Gibbs MJ, Ruthenburg TC, deCesare K, 506Land, DP & Kane, NC (2016). Genomic and Chemical Diversity in Cannabis. Critical Reviews in 507Plant Sciences 35: (6), 349-363. DOI: 10.1080/07352689.2016.1265363 508Nei M, and Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, 509New York.

510McKee TC, Covington CD, Fuller RW, Bokesch HR, Young S, Cardellina JH II, Kadushin MR, 511Soejarto DD, Stevens P, Cragg GM, Boyd MR. 1998. Pyranocoumarins from tropical species of 512genus Calophyllum: a taxonomic study of extracts in National Cancer Institute Collection. 513*Journal of Natural Products* 61:1252–1256. DOI: 10.1021/np980140a

514Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, Caranfa MJ, Breen 515AL, Bartus HR, Johnson RK, Hertzberg RP, Westley JW. 1993. The Inophyllums, novel 516inhibitors of HIV-1 reverse transcriptase isolated from Malaysian tree, *Calophyllum inophyllum* 517*Linn. Journal of Medicinal Chemistry* 36: 4132–4138. DOI: 10.1021/jm00078a001 518Prabakaran K, Britto SJ. 2012. Biology, Agroforestry and Medical Value of Calophyllum 519inophyllum L. (Clusiacea): A Review. *International Journal of Natural Products Research* 1 (2): 52024-33. Pawar KD, Swati JP, Shubhada RT. 2011. Association between chemical and genetic 521variation in Calophyllum inophyllum, a medicinally important tree of the Western Ghats of India. 522Plant Systematic Evolution 292: 257–265. DOI 10.1007/s00606-010-0409-8 523R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for 524Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

525Ruf S, Kossel H, and Bock, R. (1997). Targeted inactivation of a tobacco intron-containing open 526reading frame reveals a novel chloroplast-encoded photosystem I–related gene. J. Cell Biol. 527139, 95–102. DOI: 9314531.

528Rzhetsky A, and Nei, M. 1992. A simple method for estimating and testing minimum evolution 529trees. *Molecular Biology and Evolution* 9: 945-967. DOI:

53010.1093/oxfordjournals.molbev.a040771

531Saitou N, and Nei M. 1987. The neighbor-joining method: A new method for reconstructing 532phylogenetic trees. *Molecular Biology and Evolution* 4: 406-425. DOI:

53310.1093/oxfordjournals.molbev.a040454

534Saravanan, R & Dhachinamoorthi, D & Senthilkumar, K & Thamizhvanan, K. (2011).

535Antimicrobial activity of various extracts from various parts of Calophyllum inophyllum L..

536Journal of Applied Pharmaceutical Science. 1. 102-106.

537Saxena RC, Nath R, Palit G, Nigam SK, Bhargava KP. 1982. Effect of Calophyllolide, a non-538steroidal anti-inflammatory agent, on capillary permeability. *Journal of Medicinal Plant* 539*Research* 44(4): 246-248. DOI: 10.1055/s-2007-971459

540Scilab Enterprises .2012. Scilab: Free and Open Source software for numerical computation 541(Windows 8, Version 5.5.1) [Scilab]. Available from: http://www.scilab.org

542Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong 543transition-transversion and G + C-content biases. *Molecular Biology and Evolution* 9: 678-687. 544DOI: 10.1093/oxfordjournals.molbev.a040752

545Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S. (2013). MEGA6: Molecular 546Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution* 30: 2725-2729. 547Tamura K. and Nei M. (1993). Estimation of the number of nucleotide substitutions in the control 548region of mitochondrial DNA in humans and chimpanzees. *Molecular Biology and Evolution* 54910:512-526. DOI: 0131~4038/93/1003-0

550Thompson JD, Higgins DG, and Gibson TJ. (1994). CLUSTAL W: improving the sensitivity of 551progressive multiple sequence alignment through sequence weighting, position-specific gap 552penalties and weight matrix choice. *Nucleic Acids Research*. 22 (22): 4673-4680. DOI: 55310.1093/nar/22.22.4673

554Quisumbing E. 1951. Medicinal Plants of the Philippines. In Dweck, A.C and Meadows, T. 2002.

555Tamanu (Calophyllum inophyllum) – the African, Asian, Polynesian and Pacific Panacea.

556International Journal of Cosmetic Science (24): 1-8.

557DOI: 10.1046/j.1467-2494.2002.00160

573

558Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J. Polyphasic taxonomy, a 559consensus approach to bacterial systematics. Microbiological Reviews. 1996;60(2):407-38. DOI: 560PMC239450

561Wang L, Ma T, and Liu G. 2006. Recent Progress in *Calophyllum* Coumarins as Potent Anti-HIV 562Agents *In* Liang, X.; and Fang, W. 2006. *Medicinal Chemistry of Medicinal Natural Products*. 563Wiley-Interscience. pp 325-350.

564Wang S, Ho T, Kuo C, Tseng C. 2010. Chromaligner: a web server for chromatogram alignment. 565*Bioinformatics* 26 (18): 2338-2339. DOI: 10.1093

566Yimdjo MC, Azebaze GA, Nkengfack AE, Meyer AM, Bodo B, Fomum ZT. 2004.

567Antimicrobial and cytotoxic agents from *Calophyllum inophyllum*. *Phytochemistry* 65: 2789–5682795. DOI: 10.1016/j.phytochem.2004.08.024

569Xi, Z; Ruhfel, R. B; Schaefera, H; Amorimd, A. M; Sugumarane, M; Wurdack, K. J; Endress, P. 570K; Matthews, M. L; Stevens, P. F; Mathews, S; and Davis, C. 2012. Phylogenomics and a 571posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. *PNAS* 572109(43): 17519–17524. DOI: 10.1073/pnas.1205818109