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The atypoid mygalomorphs include spiders from three described families that build a
diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs,
trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally
supported the monophyly of Atypoidea, but prior studies have not sampled all relevant
taxa. Here we generated a dataset of ultraconserved element loci for all described atypoid
genera, including taxa (Mecicobothrium and Hexurella) key to understanding familial
monophyly, divergence times, and patterns of entrance web evolution. We show that the
conserved regions of the arachnid UCE probe set target exons, such that it should be
possible to combine UCE and transcriptome datasets in arachnids. We also show that
different UCE probes sometimes target the same protein, and under the matching
parameters used here show that UCE alignments sometimes include non-orthologs. Using
multiple curated phylogenomic matrices we recover a monophyletic Atypoidea, and reveal
that the family Mecicobothriidae comprises four separate and divergent lineages. Fossil-
calibrated divergence time analyses suggest ancient Triassic (or older) origins for several
relictual atypoid lineages, with late Cretaceous / early Tertiary divergences within some
genera indicating a high potential for cryptic species diversity. The ancestral entrance web
construct for atypoids, and all mygalomorphs, is reconstructed as a funnel-and-sheet web.
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37 Abstract
38

39 The atypoid mygalomorphs include spiders from three described families that build a 
40 diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs, 
41 trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally 
42 supported the monophyly of Atypoidea, but prior studies have not sampled all relevant 
43 taxa. Here we generated a dataset of ultraconserved element loci for all described 
44 atypoid genera, including taxa (Mecicobothrium and Hexurella) key to understanding 
45 familial monophyly, divergence times, and patterns of entrance web evolution. We show 
46 that the conserved regions of the arachnid UCE probe set target exons, such that it 
47 should be possible to combine UCE and transcriptome datasets in arachnids. We also 
48 show that different UCE probes sometimes target the same protein, and under the 
49 matching parameters used here show that UCE alignments sometimes include non-
50 orthologs. Using multiple curated phylogenomic matrices we recover a monophyletic 
51 Atypoidea, and reveal that the family Mecicobothriidae comprises four separate and 
52 divergent lineages. Fossil-calibrated divergence time analyses suggest ancient Triassic 
53 (or older) origins for several relictual atypoid lineages, with late Cretaceous / early 
54 Tertiary divergences within some genera indicating a high potential for cryptic species 
55 diversity. The ancestral entrance web construct for atypoids, and all mygalomorphs, is 
56 reconstructed as a funnel-and-sheet web. 
57
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58

59 Introduction
60

61 Phylogenetic evidence now overwhelmingly indicates that the mygalomorph spiders, 
62 including trapdoor spiders and their kin, are divided into the primary clades 
63 Avicularioidea and Atypoidea (Hedin & Bond, 2006; Bond et al. 2012; Hamilton et al. 
64 2016; Garrison et al. 2016, Wheeler et al. 2017; Hedin et al. 2018a; Fernández et al. 
65 2018, Opatova et al. 2019). Avicularioidea includes the most familiar mygalomorphs 
66 (e.g., tarantulas), and the bulk of known taxonomic diversity (World Spider Catalog, 
67 2019). Phylogenomic analyses based on sequence-capture data have now dramatically 
68 changed our understanding of family-level diversity and interrelationships within the 
69 avicularioids (Hamilton et al. 2016; Hedin et al. 2018a; Opatova et al. 2019), with many 
70 families previously suspected of non-monophyly now known to constitute multiple 
71 independent lineages (Hedin et al. 2018a; Opatova et al. 2019).
72

73 Avicularioids are sister to Atypoidea, the latter group representing an old taxonomic 
74 hypothesis (Simon, 1892). Atypoidea was first suggested then refuted by morphology, 
75 then supported by few-gene molecular studies, and is now seemingly confirmed by 
76 phylogenomic approaches. This clade, sometimes referred to as the “atypical 
77 tarantulas” (Gertsch, 1949), includes three described families (Antrodiaetidae, Atypidae, 
78 Mecicobothriidae) whose members possess dorsal abdominal tergites (Fig. 1B, E, G). 
79 These tergites are believed to represent the vestiges of abdominal segmentation, as 
80 found in spider relatives and early-diverging spiders. Adult male atypoids possess a 
81 palpus with a conductor, females have bipartite spermathecal organs, and members of 
82 both sexes typically possess six spinnerets (Eskov & Zonstein, 1990). This clade is 
83 relatively ancient, as multiple fossil genera placed within the three described families 
84 are known from the Lower Cretaceous (100-112 MYA) of Mongolia (Eskov & Zonstein, 
85 1990). Dalla Vecchia and Selden (2013) placed the Triassic (210-215 MYA) 
86 Friularachne into Atypoidea, but left the family-level placement unspecified. 
87

88 Atypoids utilize silk to build many different types of burrow entrance constructs (Coyle, 
89 1986). The mecicobothriid genera Mecicobothrium, Megahexura, Hexura, and Hexurella 
90 are all ground-dwelling spiders found living under objects or in earthen crevices, using 
91 elongate spinnerets to build silken funnel-and-sheet webs (Gertsch & Platnick, 1979; 
92 Costa & Pérez-Miles, 1998; pers. obs.; Fig. 1A, B, D, F). The atypid genera either live 
93 in subterranean burrows with open silk-lined entrances (Calommata), or build cryptic 
94 silken capture tubes extending horizontally or vertically from burrow entrances (all 
95 atypid genera, Schwendinger, 1990; Fourie, Haddad & Jocqué, 2011; Fig. 1C). Finally, 
96 the antrodiaetids live in subterranean burrows with silken turret or collapsible collar 
97 entrances (Antrodiaetus), or build trapdoors to cover their burrows (Aliatypus, Coyle, 
98 1971; Fig. 1E, G, H). Most atypoid taxa are distributed on northern continents, although 
99 Mecicobothrium occurs in southern South America, and Calommata species are found 

100 in east Asia and throughout sub-Saharan Africa (World Spider Catalog, 2019). 
101

102 Faircloth et al. (2012) first used the sequence capture of ultraconserved elements 
103 (UCEs) in phylogenomic analyses of various amniote lineages. In vertebrates more 
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104 generally, core UCE regions show extreme sequence conservation, making design of 
105 broad-utility nucleotide baits possible (e.g., for all fishes, all amniotes, etc.). The function 
106 and genomic position of vertebrate UCEs has remained somewhat elusive, although 
107 most are believed to have regulatory functions and lie outside of exons (e.g., Bejerano 
108 et al. 2004; Polychronopoulos et al. 2017; McCole et al. 2018). More recently, UCE 
109 baits have been designed for megadiverse arthropod lineages, including arachnids and 
110 multiple insect orders (Faircloth et al. 2015; Faircloth, 2017). Bossert and Danforth 
111 (2018) showed that a universal set of 100 UCEs are shared across all arthropods, and 
112 that these “core” UCEs are entirely or partially exonic in origin, thus differing from 
113 vertebrate UCEs. In this paper we further explore the function of genomic regions 
114 captured by the arachnid UCE bait set. This set was tested in situ by Starrett et al. 
115 (2017), and has been used in multiple phylogenomic studies (Derkarabetian et al. 
116 2018a; Hedin et al. 2018a, 2018b; Wood et al. 2018). Knowing the functional role of 
117 arachnid UCEs has clear importance in phylogenomic analyses, potentially impacting 
118 sequence alignment, model selection, data partitioning, detection of paralogy, and so 
119 on. This is particularly true in a lineage such as spiders, where an ancient whole-
120 genome duplication event has occurred (Clarke et al. 2015; Schwager et al. 2017), 
121 perhaps complicating orthology assignment. 
122

123 Interrelationships within Atypoidea have varied considerably in past molecular 
124 phylogenetic studies (Fig. 2), and no prior studies have simultaneously sampled all 
125 known (described) atypoid genera. Here we present such an analysis with all genera, 
126 including key taxa such as Mecicobothrium and the diminutive Hexurella, neither 
127 included in prior molecular phylogenetic analyses. Using an annotated UCE locus set 
128 with BLAST evidence for gene function and orthology, we demonstrate that Atypoidea is 
129 monophyletic, while revealing multiple cases of non-monophyly within described 
130 families. Early-diverging atypoid lineages are often species-poor (approximating 
131 monotypic) and use silk to build funnel-and-sheet webs, while more diverse silken 
132 constructs have evolved in derived atypoid lineages. Similar patterns of species and 
133 web diversification occur in parallel in the avicularioids (Opatova et al. 2019).
134

135 Materials & Methods
136

137 Taxon sampling. Representatives of all nine described atypoid genera (World Spider 
138 Catalog, 2019) were sampled. Within genera, the sample included all three known 
139 species in the synonymized genus Atypoides (species now included in Antrodiaetus, 
140 Hendrixson & Bond, 2007), two species of originally-described Antrodiaetus which span 
141 the hypothesized root node of this taxon (Hendrixson & Bond, 2007, 2009), two species 
142 of Aliatypus which span the hypothesized root node of this genus (Satler et al. 2011), 
143 both described Hexura species, two geographically separated species of Hexurella, two 
144 geographically distant populations of the monotypic Megahexura fulva, and two species 
145 of the genus Sphodros. Only Mecicobothrium, Calommata and Atypus were 
146 represented by single specimens (Table S1). To confirm atypoid monophyly we 
147 sampled a handful of representative avicularioid taxa, including genera representing 
148 multiple early-diverging avicularioid lineages (Bond et al. 2012; Hedin et al. 2018a; 
149 Opatova et al. 2019). Mygalomorphs are sister to araneomorph spiders – we used an 
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150 early-diverging araneomorph lineage (Hypochilus) to root trees. In total, we gathered 
151 original UCE data for 15 specimens; data for 12 specimens were taken from previous 
152 studies (Starrett et al. 2017; Hedin et al. 2018a; Table S1). Permits for the collection of 
153 Australian specimens were granted by the Queensland Environmental Protection 
154 Agency (permit #WISP01242003).
155

156 DNA extraction. Most specimens were preserved for DNA studies (preserved in high 
157 percentage ethyl alcohol at -80C), and genomic DNA was extracted from leg tissue 
158 using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). For a handful of 
159 tissues preserved in 70–80% we used either standard phenol/chloroform extractions 
160 with 24-hour incubation for lysis, or used a modification of the Tin, Economo & 
161 Mikheyev (2014) protocol (Table S1). All extractions were quantified using a Qubit 
162 Fluorometer (Life Technologies, Inc.) and quality was assessed on agarose gels. 
163 Between 22–500 ng total DNA was used for UCE library preparation (Table S1). 
164

165 UCE data collection & matrix assembly. UCE data were collected in multiple library 
166 preparation and sequencing experiments. Up to 500 ng of genomic DNA was used in 
167 sonication, using a Covaris M220 Focused-ultrasonicator. Library preparation followed 
168 methods previously used for arachnids as in Starrett et al. (2017), Derkarabetian et al. 
169 (2018a, 2018b), and Hedin et al. (2018a, 2018b). Target enrichment was performed 
170 using the MYbaits Arachnida 1.1K version 1 kit (Arbor Biosciences; Faircloth, 2017) 
171 following the Target Enrichment of Illumina Libraries v. 1.5 protocol 
172 (http://ultraconserved.org/#protocols). Libraries were sequenced on an Illumina HiSeq 
173 2500 (Brigham Young University DNA Sequencing Center).
174

175 Raw demultiplexed reads were processed with the PHYLUCE pipeline (Faircloth, 2016). 
176 Quality control and adapter removal were conducted with the ILLUMIPROCESSOR wrapper 
177 (Faircloth, 2013). Assemblies were created with VELVET (Zerbino et al. 2008) and/or 
178 TRINITY (Grabherr et al. 2011), both at default settings. When contigs from both 
179 assemblies were available, these were combined for probe matching, retrieving 
180 assembly-specific UCEs and overall increasing the number of UCEs per sample relative 
181 to using only a single assembly method. Contigs were matched to probes using 
182 minimum coverage and minimum identity values at liberal values of 65. UCE loci were 
183 aligned with MAFFT (Katoh & Standley, 2013) and trimmed with GBLOCKS (Castresana, 
184 2000; Talavera & Castresana, 2007), using --b1 0.5 --b2 0.5 --b3 6 --b4 6 settings in the 
185 PHYLUCE pipeline. 
186

187 UCE locus annotation, Matrix filtering, and Phylogenomic analyses. 698 loci were 
188 found in a PHYLUCE 70% occupancy matrix. For the consensus sequence from each 
189 locus alignment, BLAST X searches in Geneious 10.1 (Biomatters Ltd.) were conducted 
190 against a local database (max e value of 1x10-10) comprising protein sequences for four 
191 arachnid taxa: Limulus polyphemus (https://www.ncbi.nlm.nih.gov/genome/787), Ixodes 
192 scapularis (https://www.ncbi.nlm.nih.gov/genome/?term=523), Stegodyphus mimosarum 
193 (https://www.ncbi.nlm.nih.gov/genome/?term=12925) and Parasteatoda tepidariorum 
194 (https://www.ncbi.nlm.nih.gov/genome/?term=13270). 
195
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196 BLAST annotation indicated that essentially all spider UCE loci are either entirely exonic, or 
197 exons with flanking introns (see Results). This annotation information allowed us to further 
198 curate PHYLUCE alignments in several ways. First, we discovered that some individual loci were 
199 part of the same protein, likely exons (or parts thereof) separated by introns (see Results). 
200 Second, annotation indicated that some UCE loci could potentially include paralogs of the 
201 same protein, or orthologs of two or more different proteins. We thus visually inspected all 
202 UCE locus alignments and excluded loci with non-orthology as evidenced by congeneric taxa 
203 with divergent sequences, using RAxML gene trees (see below) to confirm this non-orthology. 
204 Finally, annotation allowed us to define exon/intron boundaries, and exclude a majority of 
205 intron sequence for some analyses.
206

207 Three matrices were assembled for phylogenomic analyses, including 1) 70% 
208 occupancy PHYLUCE unfiltered (including same protein duplicates, some loci with non-
209 orthologs), 2) 70% exon + intron, no “paralogs”, retaining one UCE locus from a set 
210 including duplicates (alignment with most sequences, or longest alignment if 
211 approximately same number of taxa), 3) 70% filtered as #2 above, plus using stricter 
212 GBLOCKS settings (--b1 0.5 --b2 0.85 --b3 4 --b4 8) to further trim alignments. We 
213 visually checked to confirm that these trimmed alignments comprised mostly exon data. 
214 Unpartitioned and partitioned concatenated maximum likelihood analyses were run for 
215 each dataset above. Unpartitioned analyses were conducted with RAxML version 8.2 
216 (Stamatakis, 2014) using a complex GTRGAMMA model and 200 rapid bootstrap 
217 replicates. Partitioned maximum likelihood analyses were conducted using IQ-TREE 
218 (Nguyen et al. 2015; Chernomor, von Haeseler & Minh, 2016) with partitions and 
219 models determined using ModelFinder (Kalyaanamoorthy et al. 2017), and support 
220 estimated via 1000 ultrafast bootstrap replicates (Hoang et al. 2018). Finally, we used 
221 SVDquartets (Chifman & Kubatko 2014; Chifman & Kubatko 2015) with n = 500 
222 bootstraps, as implemented in PAUP* 4.0a163 (Swofford, 2003).
223

224 Web Evolution and Divergence Time Analysis. Mesquite version 3.51 (Maddison & 
225 Maddison, 2018) was used to reconstruct ancestral states for entrance web constructs, 
226 with tip values scored as seven different discrete states. Tip scorings were derived from 
227 published literature (references in Introduction), supplemented with original observation. 
228 Maximum likelihood reconstructions were produced using the one-parameter Markov k-
229 state model (Lewis, 2001), using the RAxML exon only topology as input.
230

231 We estimated absolute divergence times using the lognormal relaxed clock model 
232 (Thorne, Kishino & Painter, 1998) implemented in Phylobayes 4.1c (Lartillot & Philippe, 
233 2004). We used the exon only matrix, with the RAxML topology as a constraint tree. 
234 Four MCMC chains were run in parallel, stopping after 30,000 points. Analyses were 
235 checked for convergence, and considered converged when the largest discrepancy 
236 observed across bipartitions (maxdiff) was equal to 0. Posterior estimates of ages and 
237 highest posterior density (HPD) values were summarized on a single target tree from all 
238 input trees using TreeAnnotator (Bouckaert et al. 2014). Three fossil calibrations were 
239 used, with a soft bounds model (Yang & Rannala, 2006) and a birth death prior on 
240 divergence times, as follows: 1) minimum age for the root node of mygalomorphs = 240 
241 MYA, based on Rosamygale, the oldest known mygalomorph fossil (Selden & Gall, 
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242 1992). This taxon was placed by original authors as an avicularioid, but is treated more 
243 conservatively here. 2) minimum age for the root node of Atypoidea = 210 MYA, based 
244 on Friularachne (Dalla Vecchia & Selden, 2013). We also used an alternative second 
245 calibration, using the Eskov and Zonstein (1990) fossils Ambiortiphagus and 
246 Cretacattyma to set the minimum age for the most recent common ancestor of Atypidae 
247 <> Antrodiaetidae at 100 MYA. 3) minimum age for the root node of Avicularioidea = 
248 216 MYA, based on Edwa (Raven, Jell & Knezour, 2015), a likely early-diverging 
249 avicularioid. For all three calibrations we used a maximum age of 390 MYA, 
250 corresponding to the age of fossil Uraraneida, the putative sister group of spiders 
251 (Selden, Shear & Sutton, 2008). This approximate age is in accord with maximum dates 
252 derived from other molecular clock analyses of spiders (Ayoub et al. 2007; Wood et al. 
253 2012; Starrett et al. 2013; Fernández et al. 2018; Opatova et al. 2019).
254

255 Results 
256

257 Voucher data, input DNA values, assembled contig numbers, and UCE locus 
258 numbers are found in Table S1. Except for museum samples of Mecicobothrium, all 
259 samples returned multiple 100s of loci for all matrices. We highlight Mecicobothrium – 
260 although we are confident in the results presented here (based on identical placement 
261 across all analyses), future studies with fresh specimens should verify the 
262 phylogenetic placement discussed below. Raw reads from fifteen original samples 
263 have been submitted to the SRA (SAMN10839235 - 10839249).
264

265 Annotation of the ~ 700 loci derived from the PHYLUCE pipeline indicates that spider 
266 UCEs are primary exonic in origin, as essentially all (> 98%) alignments BLAST to 
267 proteins found in Stegodyphus and Parasteatoda spiders, with relatively high BIT 
268 scores (Tables S2, S3). We note that Stegodyphus and Parasteatoda are true 
269 spiders in the clade sister to mygalomorphs; we did not conduct custom BLAST 
270 searches against mygalomorphs, as the only sequenced genome (Acanthoscurria) is 
271 low coverage and incomplete (Sanggaard et al. 2014). Even the handful of UCE loci 
272 without BLAST hits contained open reading frames of variable length, and these could 
273 represent proteins that are particularly divergent from araneomorphs, or restricted to 
274 mygalomorphs. 
275

276 We found that 112 total alignments mapped to the same 74 proteins (i.e., different 
277 alignments hit same protein; Tables S2, S3). We confirmed that the conserved 
278 regions of these separate alignments represented different exons of typically large 
279 proteins, and that these exons are likely separated by very long introns (using the 
280 known short exon- long intron structure of spiders as models, see Sanggaard et al. 
281 2014). BLAST and visual assessment of the 70% PHYLUCE matrices indicated that 
282 106 alignments included non-orthologous sequences, and this was confirmed via 
283 RAxML analysis of these individual alignments (.tre files in Data S1). Non-orthology 
284 was also indicated by annotation, as most alignments including “paralogs” hit two or 
285 more different proteins at similar BIT score values (Table S2). The issue of non-
286 orthology is further discussed below. The final matrices were populated as follows: 1) 
287 PHYLUCE unfiltered 70% occupancy (698 loci, 191855 basepairs), 2) 70% filtered exon 
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288 + intron (480 loci, 137170 basepairs), 3) 70% filtered exon only (480 loci, 71483 
289 basepairs). All aligned matrices and .tre files are available in Data S1.
290

291 Except for one node, all nine phylogenomic analyses recover an identical branching 
292 topology within Atypoidea, albeit with variation in branch lengths and node support 
293 (Fig. 3). The single node in question involves the interrelationships of Antrodiaetus 
294 riversi, A. gertschi, and A. hadros, all previously in the synonymized genus Atypoides. 
295 Overall, the following pertinent clades were recovered with high support (bootstrap > 
296 95 and posterior probability > 0.95) in all analyses: Avicularioidea, Atypoidea, 
297 Atypidae, and all genera with multiple sampled species. The fragmentation of 
298 mecicobothriids into four separate lineages is strongly supported, with the genus 
299 Hexura nested within Antrodiaetidae. The three known species in the synonymized 
300 genus Atypoides form a clade sister to “traditional” Antrodiaetus species (Fig. 3), 
301 consistent with the well-supported 4-gene results of Hendrixson & Bond (2009, figs. 1, 
302 2). Results of character evolution and divergence time analyses are presented and 
303 discussed below.
304

305 Discussion
306

307 Arachnid UCEs. We discovered that the arachnid bait set targets and recovers 
308 mostly exons, as suggested by Bossert and Danforth (2018) for arthropod UCE baits 
309 in general (see also Branstetter et al. 2017 and Bossert et al. 2018 for 
310 hymenopterans). As such, arachnid UCE work is essentially exon capture, with 
311 flanking introns also captured for some loci. This of course has important implications 
312 for data analysis, because as we have shown here, this functional information can be 
313 used to refine analyses is various ways. Our finding also means that it might be 
314 possible to extract UCE loci from large spider / arachnid transcriptome datasets (e.g., 
315 Sharma et al. 2015; Garrison et al. 2016; Fernández et al. 2018), particularly at 
316 deeper phylogenetic levels where exon-only data would provide sufficient signal. 
317 Such a combined strategy was recently used in bee phylogenomics (Bossert et al. 
318 2018).
319

320 Obviously, orthology is a fundamental premise in phylogenetic analyses. We found 
321 that the PHYLUCE unfiltered matrix included alignments with non-orthologs, confirmed 
322 via RAxML analysis. This “paralogy” persisted despite bioinformatic filters in place at 
323 both probe design (Faircloth, 2017) and PHYLUCE pipeline (Faircloth, 2016) stages. 
324 Our findings should not be taken as a criticism of these filters, because initial probe-
325 design does not guarantee perfect orthology (Faircloth, 2017), and because we 
326 matched contigs to probes at liberal values (minimum coverage and minimum identity 
327 values of 65). Here we anticipated a tradeoff, as increasing this value would likely 
328 decrease non-orthology, but at the same time reduce the number of returned loci. 
329 Part of the issue is that the arachnid bait set was designed for sequence capture 
330 across all arachnids (Faircloth, 2017; Starrett et al. 2017), with a common ancestor 
331 that likely lived over 500 MYA (e.g., Rota-Stabelli, Daley & Pisani, 2013). Of all 
332 available UCE bait sets (e.g., amniotes, fish, various insects), this represents the 
333 greatest phylogenetic depth – the design of more taxon-specific bait sets within 
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334 Arachnida, in combination with more stringent probe matching values is expected to 
335 largely (but probably not entirely) alleviate issues with non-orthology. 
336

337 Empirical studies have shown that large phylogenomic datasets can be misled even 
338 when a minute fraction of loci include non-orthologs (e.g., Brown & Thomson, 2017; 
339 Gatesy et al. 2018). Here analysis of the PHYLUCE unfiltered matrix (with most 
340 characters but also non-orthologs) returned trees with the same branching topology 
341 within Atypoidea as for filtered matrices (Fig. 3). However, these trees vary somewhat 
342 in branch support (Fig. 3), but importantly produce maximum likelihood topologies 
343 that differ conspicuously in estimated branch lengths (measured in nucleotide 
344 substitutions per nucleotide site). For example, estimated IQ-TREE branch lengths 
345 derived from the PHYLUCE unfiltered matrix are 1.5-3X longer than those estimated 
346 from the 70% filtered exon + intron matrix (Fig. S1), with both matrices produced 
347 using the same GBLOCKS settings. Exon-only trees have even shorter branch 
348 lengths (.tre files in Data S1), but this comparison is confounded by removal of a 
349 different class of data (faster-evolving intron sites). To the extent that branch lengths 
350 influence downstream inferences (e.g., estimates of divergence times, lineage-
351 through-time analyses, etc.), these differences in matrix filtering could have potential 
352 analytical impacts.
353

354 We discovered that some UCE loci treated as separate alignments actually represent 
355 exons of the same protein. Via annotation, we confirmed that the conserved regions 
356 of these separate alignments represented different exons of typically very large 
357 proteins. Although unknown for the taxa studied here, these exons are likely 
358 separated by very long introns (using the known short exon- long intron structure of 
359 spiders as models, Sanggaard et al. 2014). Inclusion of “duplicate” loci should not 
360 negatively impact concatenated phylogenomic analyses. But if the exons represent a 
361 single recombinational unit, then treating duplicate alignments as independent would 
362 violate analytical assumptions of coalescent-based analyses. Also, for population-
363 level analyses relying upon SNPs from UCE loci (e.g., Derkarabetian et al. 2018b), 
364 many commonly-used downstream analyses assume no linkage and inclusion of 
365 duplicate loci would not be justified.
366

367 To summarize, we used custom annotation and manual checking of alignments to 
368 show that 1) core regions of arachnid UCEs represent exons, 2) non-orthology 
369 sometimes persists in UCE alignments, despite upstream bioinformatic filters, 3) 
370 some “separate” loci in the arachnid bait set represent different exons of the same 
371 protein (although separated by introns of unknown length). We argue that manual 
372 checking of alignments derived from an analytical pipeline remains important (see 
373 also Bossert et al. 2018 for another UCE example). Table S3 summarizes which UCE 
374 loci have been recovered in arachnid studies to date, and whether these loci are 
375 duplicates or potentially non-orthologous. This summary information could be used to 
376 further refine UCE analyses in arachnids, e.g., to manually adjust the published bait 
377 set to remove duplicates and paralogous loci, where non-orthology is unlikely to be 
378 rectified with more stringent probe match values. As has happened for almost all 
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379 other UCE bait sets, the refinement of the arachnid set is an expected and natural 
380 outcome of knowledge gained through empirical study.
381

382 Atypoid Phylogeny. We found strong support for the monophyly of Atypoidea 
383 (following Simon, 1892), based on a molecular phylogenetic sample with all described 
384 living genera. Our sample included the key genera Hexurella and Mecicobothrium, 
385 never previously sampled in a molecular phylogenetic analysis, and also included 
386 multiple early-diverging lineages from Avicularioidea (Hedin et al. 2018a, Opatova et 
387 al. 2019). The Atypoidea hypothesis was championed early (Chamberlin & Ivie, 1945; 
388 Coyle 1971; Coyle 1974) but ultimately fell out of favor as putative synapomorphies 
389 for the group were interpreted as plesiomorphies (Platnick, 1977; Gertsch & Platnick, 
390 1979), and the original cladistic morphological analyses for mygalomorphs failed to 
391 recover this clade (Raven, 1985; Goloboff, 1993). However, at approximately the 
392 same time, Eskov and Zonstein (1990) argued for atypoid monophyly, and these 
393 ideas were later supported by early Sanger-based research (Hedin & Bond, 2006; 
394 Bond et al. 2012), although these molecular studies never included all described 
395 genera. 
396

397 The presumed monophyly and placement of mecicobothriids is key in arguments 
398 regarding atypoid monophyly. Similar to early-diverging “diplurid” mygalomorphs, 
399 living mecicobothriid genera use elongate lateral spinnerets to build silken funnel-and-
400 sheet webs. Platnick (1977) considered mecicobothriids to be more closely related to 
401 “diplurids” than to atypids or antrodiaetids, although he only examined Megahexura 
402 and Hexura. Similarly, Goloboff (1993) recovered mecicobothriids (scored as a single 
403 terminal) in an early-diverging grade with “diplurids”, but moving the root placement in 
404 his preferred phylogeny by one branch recovers atypoid monophyly. In this sense, 
405 both the exposed polyphyly of mecicobothriids (see below), and the phylogenomic 
406 placement of Hexurella and Mecicobothrium as ancient, early-diverging atypoids that 
407 closely straddle the primary division in mygalomorphs (Fig. 3), become centrally 
408 important in helping to understand past arguments over morphological homology and 
409 polarity. Proposed morphological polarities and diagnostic characters for all primary 
410 atypoid lineages are discussed below in the Taxonomy section.
411

412 Our phylogenomic results for all described meciobothriid genera convincingly confirm 
413 the non-monophyly of this family (Fig. 3). This result is consistent with prior molecular 
414 phylogenetic analyses that included Megahexura and Hexura, never recovered as 
415 sister taxa (Fig. 2). Mecicobothriid genera are actually morphologically 
416 heterogeneous, with each living genus displaying morphological apomorphies in 
417 somatic and genital morphology, particularly in female spermathecal morphology (see 
418 Gertsch & Platnick, 1979, Eskov & Zonsthen1990, see below). Non-monophyly and 
419 ancient divergences also help to explain the vexing biogeographic disjunction 
420 (Hexurella, Hexura, Megahexura from the western US; Mecicobothrium from southern 
421 South America) observed for included genera. Both fossil-calibrated molecular clock 
422 estimates indicate that Hexurella and Mecicobothrium stem lineages were likely 
423 present during the Triassic, well before the fragmentation of Pangea (Fig. 4, Fig. S2).
424
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425 Cryptic Species, Webs, Parallel Diversification – Many mygalomorph genera are 
426 relatively ancient, morphologically conserved, and dispersal-limited, traits which lead 
427 to cryptic speciation. Cryptic species are common in mygalomorphs (e.g., Bond et al. 
428 2001; Castalanelli et al. 2014; Leavitt et al. 2015), and found in the atypoids that have 
429 been examined closely, antrodiaetids in particular (Hendrixson & Bond 2007; Satler et 
430 al. 2011; Starrett et al. 2018). For example, the single described species Antrodiaetus 
431 riversi from central California is actually a complex of multiple cryptic species (Hedin, 
432 Starrett & Hayashi, 2013). Based on relative branch lengths recovered in 
433 phylogenomic analyses (Fig. 3), and estimated Cretaceous / early Tertiary ages for 
434 genera (Fig. 4, Fig. S2) we predict that cryptic species also occur in the Californian 
435 Megahexura, in Hexurella, and in Hexura from Oregon. Hexura is interesting in that 
436 the two described parapatric species are apparently ancient, perhaps similar to 
437 patterns seen in Ensatina oregonensis / picta salamanders from the rich mesic forests 
438 of Oregon (e.g., Kuchta et al. 2009).
439

440 Character reconstructions indicate rather unambiguously that the ancestral entrance 
441 web construct for Atypoidea is a funnel-and-sheet web (Fig. 5), with multiple entrance 
442 types derived from this state. Trapdoors in the antrodiaetid genus Aliatypus may have 
443 evolved directly from funnel-and-sheet webs, rather than from collapsible collars 
444 (contra Coyle, 1971). The well-supported placement of Hexura inside Antrodiaetidae 
445 (Fig. 3), as also found in the phylogenomic results of Opatova et al. (2019), is key in 
446 this character evolution inference.
447

448 We also reconstructed a funnel-and-sheet web as the ancestral state for all 
449 mygalomorphs (Fig. 5). Our sample for avicularioids is small, but importantly, includes 
450 all key early-diverging lineages (Bond et al. 2012; Hedin et al. 2018a; Opatova et al. 
451 2019). Using a much more comprehensive taxon sample, Opatova et al. (2019) also 
452 reconstruct the ancestral web for avicularioids as a funnel-and-sheet web. Many 
453 authors have discussed mecicobothriid and “diplurid” web similarities as an example 
454 of convergence, for example Gertsch (1949) stated that “the hind spinnerets of these 
455 spiders are greatly elongated …. probably an adaptation for spinning the sheet web, 
456 … illustrates how in widely unrelated creatures similar activities often lead to the 
457 production of similar morphological features”. Instead, our phylogenomic results 
458 indicate that the funnel-and-sheet, and elongate lateral spinnerets used to produce 
459 these webs, is likely the plesiomorphic condition in mygalomorphs. One caveat is that 
460 our funnel-and-sheet scoring may be an over-simplification of homology for these 
461 taxa. For example, many early-diverging “diplurids” build massive sheet-like space 
462 webs that serve to capture prey (Coyle, 1986), features not obviously present in early-
463 diverging atypoid webs.
464

465 Atypoid Taxonomy – Here we summarize the revised taxonomy of Atypoidea and all 
466 included families, focusing on extant taxa (summarized in Fig. 6). The composition of 
467 the family Mecicobothriidae is revised. Megahexura and Hexurella are removed from 
468 Mecicobothriidae and each included in new families, while Hexura is transferred to the 
469 family Antrodiaetidae. Also within Antrodiaetidae, the genus Atypoides is formally 
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470 removed from synonymy with Antrodiaetus. All nomenclatural changes proposed are to 
471 be attributed to Hedin and Bond.
472

473 The electronic version of this article in Portable Document Format (PDF) will represent a 
474 published work according to the International Commission on Zoological Nomenclature 
475 (ICZN), and hence the new names contained in the electronic version are effectively 
476 published under that Code from the electronic edition alone. This published work and 
477 the nomenclatural acts it contains have been registered in ZooBank, the online 
478 registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be 
479 resolved and the associated information viewed through any standard web browser by 
480 appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: 
481 urn:lsid:zoobank.org:pub:A7E6FD73-9D49-4B55-911F-5D105B09A52C. The online 
482 version of this work is archived and available from the following digital repositories: 
483 PeerJ, PubMed Central and CLOCKSS." 
484

485 Family Hexurellidae (NEW FAMILY) (urn:lsid:zoobank.org:act:504C322E-8FAC-4E25-
486 806C-DCE37372112E)
487

488 Type genus. Hexurella Gertsch & Platnick, 1979 (urn:lsid:nmbe.ch:spidergen:00010) 
489 (type species H. pinea Gertsch & Platnick, 1979)
490

491 Diagnosis. As a consequence of its monogeneric status, characters used to diagnose 
492 Hexurellidae are those characters also attributed to the type genus Hexurella, as 
493 follows: 1) males having a gently coiled embolus (not corkscrew shaped (illustrated by 
494 Gertsch & Platnick, 1979, figures 77, 84, 87, 90); 2) posterior lateral spinnerets with 
495 four segments; and 3) spermathecae composed of a single bursal opening branching 
496 into four short, and relatively thicker bulbs (Gertsch & Platnick, 1979, figure 79). 
497 Conversely, megahexurid taxa appear to have much thinner spermathecal bulbs in 
498 which pairs share a bursal opening. As is the case for other new taxa and ranks 
499 proposed below, a more thorough examination of this new family’s morphology will be 
500 an important next step in diagnosing these groups. 
501

502 Distribution. Distributed in upland habitats of southern California, northern Baja 
503 California, and central/southern Arizona (Gertsch & Platnick, 1979). Undescribed 
504 species likely occur in the mountains of northern Sonora, Mexico.
505

506 Family Mecicobothriidae Holmberg, 1882 (urn:lsid:nmbe.ch:spiderfam:0003) (new 
507 circumscription)
508

509 Type genus. Mecicobothrium Holmberg , 1882 (urn:lsid:nmbe.ch:spidergen:00011) 
510 (type species Mecicobothrium thorelli Holmberg, 1882)
511

512 Diagnosis. Characters used to diagnose the family are those characters attributed to 
513 the type genus. Adult males of described species have a long and distinctly coiled 
514 corkscrew-shaped palpal embolus (e.g., Gertsch & Platnick, 1979, figures 45, 48, 49; 
515 Lucas et al. 2006 figures 1-3) that distinguishes members of this family from all other 
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516 atypoid taxa. Males also have a unique anterior cheliceral apophysis (Gertsch & 
517 Platnick, 1979, figures 40-42; Lucas et al. 2006 figures 20-21). Females have distinct 
518 spermathecal bulbs comprising four receptacles with the outer pair much shorter and 
519 rounder than the inner two (Gertsch & Platnick, 1979, figure 38); we note that females 
520 of M. baccai are unknown. 
521

522 Distribution. The two described species are known from Argentina, Uruguay, and 
523 Brazil. 
524

525 Family Megahexuridae (NEW FAMILY) (urn:lsid:zoobank.org:act:0D009AAF-B71C-
526 4FFA-A580-DCD67BAA48AB)
527

528 Type genus. Megahexura Kaston, 1972 (urn:lsid:nmbe.ch:spidergen:00012)
529  (type species Hexura fulva Chamberlin, 1919)
530

531 Diagnosis. Characters used to diagnose the family Megahexuridae are those attributed 
532 to the type genus. Members of this family can be diagnosed from other atypoid taxa by 
533 having a carapace with expanded pleurites at the posterior lateral corners (Gertsch & 
534 Platnick, 1979, figures 51, 53). Megahexurid females have spermathecae with four thin 
535 elongate bulbs, with a single receptacle opening for each pair (Gertsch & Platnick, 
536 1979, figure 57). 
537

538 Distribution. The single described species (M. fulva) is known from upland habitats of 
539 southern and central California (Gertsch & Platnick, 1979), although populations likely 
540 occur in northern Baja California. Megahexura fulva likely includes cryptic species (Fig. 
541 4, Fig. S2). 
542

543 Family Antrodiaetidae Gertsch,1940 (urn:lsid:nmbe.ch:spiderfam:0002)
544 (new circumscription)
545

546 Type genus. Antrodiaetus Ausserer, 1871 (urn:lsid:nmbe.ch:spidergen:00007)
547 (type species Antrodiaetus unicolor (Hentz, 1842))
548

549 List of included genera.
550 Aliatypus Smith, 1908 (urn:lsid:nmbe.ch:spidergen:00006)
551 Antrodiaetus Ausserer, 1871 (urn:lsid:nmbe.ch:spidergen:00007)
552 Hexura Simon, 1884 (urn:lsid:nmbe.ch:spidergen:00009)
553

554 Atypoides O. Pickard-Cambridge, 1883. (type species Atypoides riversi O. Pickard-
555 Cambridge, 1883 by monotypy). Here formally removed from synonymy of Antrodiaetus 
556 Ausserer, 1871 contra Hendrixson and Bond 2007: 752.
557 List of included species. 
558 Atypoides riversi O. Pickard-Cambridge, 1883
559 Atypoides hadros Coyle 1968
560 Atypoides gertschi Coyle 1968
561
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562 Diagnosis. Adult male antrodiaetids possess a palpal bulb with a branched conductor, 
563 with inner and outer conductor sclerites (following Coyle, 1971, figure 325). The 
564 possession of this character state in Hexura was noted in the addendum of Eskov and 
565 Zonstein (1990), based on observations of Dr. F. Coyle, and confirmed by our study of 
566 male Hexura specimens.
567

568 Following Coyle (1968), the genus Atypoides can be distinguished from Antrodiaetus in 
569 having three pairs of spinnerets (Coyle, 1968, figures 30-32), with adult males 
570 possessing cheliceral apophyses (Coyle, 1968, figures 46-52). Many features separate 
571 Atypoides and Antrodiaetus from Hexura and Aliatypus.
572

573 Distribution. Aliatypus and Hexura are known from the western United States (Coyle, 
574 1974; Gertsch & Platnick, 1979), Atypoides is from the western US and the southern 
575 Ozarks (Coyle, 1968; Hedin, Starrett & Hayashi, 2013), while Antrodiaetus includes 
576 species in Japan and more broadly in North America (Coyle, 1971; Hendrixson & Bond, 
577 2007). Cryptic species are likely in all four genera.
578

579 Comments. Although megahexurids are sister to antrodiaetids, we do not place them in 
580 the same family for three primary reasons. First, these families share a common 
581 ancestor that likely existed over 200 million years ago (Fig. 4). This level of divergence 
582 would exceed any intra-familial divergence in described mygalomorph families (see 
583 Opatova et al. 2019). Second, these families differ in important diagnostic characters, 
584 including female spermathecal morphology, but importantly megahexurid males lack the 
585 key antrodiaetid palpal bulb with diagnostic inner and outer conductor sclerites (Fig. 6). 
586

587 Conversely, one could argue that Aliatypus and Hexura each deserve family-level status 
588 (the latter an available family rank name, Hexurinae Simon 1889), sister to other 
589 antrodiaetids. Again, although heterogenous from a web construct perspective (Fig. 5), 
590 antrodiaetids share morphological synapomorphies, with a level of inter-generic 
591 temporal divergence comparable to other described mygalomorph families (Fig. 4, 
592 Opatova et al. 2019).
593

594 Conclusions
595

596 Early-diverging atypoid lineages are ancient, often species-poor (approximating 
597 monotypic), and use silk to build funnel-and-sheet webs. The evolution of more 
598 diverse silken entrance constructs is found in more derived atypoid lineages. Similar 
599 patterns of species-poor early-diverging lineages, and diverse entrance constructs 
600 evolving in more derived lineages occurs in parallel in the avicularioid mygalomorphs 
601 (Opatova et al. 2019). In this sense, atypoids and avicularioids represent comparable 
602 evolutionary experiments, although the latter clade has clearly evolved a greater 
603 diversity of taxa, morphologies, and web constructs. How the competitive interplay of 
604 these parallel lineages has impacted diversification dynamics in deep time would be 
605 an interesting topic for further study.
606
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875 Figure Legends
876

877 Figure 1. Images of live animals and entrance web constructs, not to scale. A) 
878 Hexurella apachea, Cochise County, AZ. MCH 18_029. B) Mecicobothrium thorelli, 
879 image by G. Pompozzi. C) Atypus karschi. Honshu, Tottori, Japan. MCH 15_016. D) 
880 Megahexura fulva, Fresno County, CA. MCH 09_018. E) Aliatypus californicus. Contra 
881 Costa County, CA. MCH 10_031. F) Hexura picea. Lincoln County, OR. MCH 14_040. 
882 G) Antrodiaetus unicolor, Jackson County, NC. H) Atypoides (= Antrodiaetus) riversi, 
883 San Mateo County, CA. MCH 10_015. Arrows point to dorsal abdominal tergites in 
884 images B, E and G. All photos (other than Mecicobothrium) by M. Hedin. 
885

886 Figure 2. Summary of previous molecular phylogenetic analyses including members of 
887 Atypoidea. References as in text.
888

889 Figure 3. Tree topology from RAxML concatenated analysis, based on filtered exon + 
890 intron matrix. Support values for all nine analyses either indicated directly, or by circles 
891 at nodes (when exceeding 95 or 0.95 for all). Support values within (Namirea, Euagrus, 
892 Bymainiella, Calisoga) clade not shown, as these relationships vary across analyses 
893 (see .tre files in Data S1). Also, two low support nodes not shown for PHYLUCE unfiltered 
894 SVD results, as follows: Antrodiaetus apachecus + A. roretzi (67), Antrodiaetus hadros 
895 + A. gertschi (68).
896

897 Figure 4. Chronogram derived from Phylobayes analyses, estimated using calibration 
898 with minimum age for the root node of Atypoidea = 210 MYA. HPD values in brackets. 
899 Results using the alternative calibration included as Fig. S2. Geological times from 
900 http://www.geosociety.org/documents/gsa/timescale/timescl.pdf. 
901

902 Figure 5. Ancestral character reconstruction for entrance web constructs. Proportional 
903 likelihood values for funnel-and-sheet web shown at internal nodes. 
904

905 Figure 6. Summary of new taxonomy and diagnostic morphological characters. See text 
906 for references and explanation of terms.
907
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Figure 1
Images of live animals and entrance web constructs

A) Hexurella apachea, Cochise County, AZ. MCH 18_029. B) Mecicobothrium thorelli, image
by G. Pompozzi. C) Atypus karschi. Honshu, Tottori, Japan. MCH 15_016. D) Megahexura

fulva, Fresno County, CA. MCH 09_018. E) Aliatypus californicus. Contra Costa County, CA.
MCH 10_031. F) Hexura picea. Lincoln County, OR. MCH 14_040. G) Antrodiaetus unicolor,
Jackson County, NC. H) Atypoides (= Antrodiaetus) riversi, San Mateo County, CA. MCH
10_015. Arrows point to dorsal abdominal tergites in images B, E and G. All photos (other
than Mecicobothrium) by M. Hedin.
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Figure 2(on next page)

Summary of previous molecular phylogenetic analyses including members of Atypoidea.

References as in text.
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Figure 3(on next page)

Tree topology from RAxML concatenated analysis, based on filtered exon + intron
matrix.

Support values for all nine analyses either indicated directly, or by circles at nodes (when
exceeding 95 or 0.95 for all). Support values within (Namirea, Euagrus, Bymainiella, Calisoga)
clade not shown, as these relationships vary across analyses (see .tre files in Data S1). Also,
two low support nodes not shown for Phyluce unfiltered SVD results, as follows: Antrodiaetus

apachecus + A. roretzi (67), Antrodiaetus hadros + A. gertschi (68).
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Figure 4(on next page)

Chronogram derived from Phylobayes analyses, estimated using calibration with
minimum age for the root node of Atypoidea = 210 MYA.

HPD values in brackets. Results using the alternative calibration included as Fig. S2.
Geological times from http://www.geosociety.org/documents/gsa/timescale/timescl.pdf .
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Figure 5(on next page)

Ancestral character reconstruction for entrance web constructs.

Proportional likelihood values for funnel-and-sheet web shown at internal nodes.
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Figure 6(on next page)

Summary of new taxonomy and diagnostic morphological characters.

See text for references and explanation of terms.

PeerJ reviewing PDF | (2019:01:34648:1:2:NEW 25 Mar 2019)

Manuscript to be reviewed



Megahexuridae

Antrodiaetidae

Atypidae

Megahexura

Aliatypus

Atypoides

Antrodiaetus

Hexura

Sphodros

Atypus

Calommata

Mecicobothrium

Hexurella
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male palpal tarsus w/ prolateral lobe, cork-screw shaped embolus

male cheliceral apophysis

spermathecae with four receptacles, outer pair short & round

expanded posterolateral pleurites

spermathecae with 4 elongate receptacles

male embolus coiled

4-segmented posterior lateral spinnerets

spermathecae with four short receptacles, single bursa

male cheliceral apophysis

elongate maxillary lobes

truncate posterior median spinnerets

male bulb with branched conductor

pseudo-segmented 

male tarsi

atypoid conductor
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