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ABSTRACT
The species-rich arborescent assemblages of humid tropical forests encompass much of
the known range of the leaf economics spectrum, often including >20-fold variation in
leaf lifespan. This suite of traits underpins a life-history continuum from fast-growing
pioneers to slow-growing shade-tolerant species. Less is known about the range of leaf
traits in humid temperate forests, and there are conflicting reports about relationships
of these traits with the light requirements of temperate evergreen angiosperms. Here I
quantify the range of leaf functional traits in a New Zealand temperate evergreen forest,
and relationships of these traits with light requirements of juvenile trees and shrubs.
Foliage turnover of saplings of 19 evergreen angiosperms growing beneath gaps (12–
29% canopy openness) and in understories (1.2–2.9%) was measured over 12 months.
Dry mass per area (LMA), dry matter content, thickness, density and nitrogen content
(N) of leaves were also measured. Species minimum light requirements were indexed
as the 10th percentile of the distribution of saplings in relation to canopy openness.
Interspecific variation of leaf lifespan was ∼6-fold in gaps (0.6 to 3.8 yrs), and ∼11-
fold in the understorey (0.7 to 7.7 yrs). Six small tree and shrub species are effectively
leaf-exchangers, with leaf lifespans of c.1 year in gaps—albeit usually longer in the shade.
Interspecific variation in other leaf traits was 2.5 to 4-fold. Lifespans and LMA of both
sun and shade leaves were negatively correlated with species light requirements i.e.,
positively correlated with shade tolerance. However, light environment (gap vs shade)
explained about the same amount of variation in LMA as species’ identity did. Species
light requirements were not significantly correlated with leaf N, dry matter content,
density or thickness—except for a marginally significant correlation with dry matter
content of shade leaves. Species light requirements were thus less consistently related
to leaf structural traits than appears to be the case in humid tropical forests. Whereas
the wide interspecific variation in leaf economic traits of tropical rainforest species
outweighs plastic response to light availability, temperate evergreenwoody angiosperms
appear to occupy a narrower range of the leaf economic spectrum. Standardization of
the light environments in which LMA is measured is vital in comparative studies of
humid temperate forest evergreens, because of countergradient responses of this trait
to light, and because of the relative magnitudes of plastic and interspecific variation in
LMA in these forests.
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INTRODUCTION
The unrelenting evergreenness of humid tropical forests belies the vast range of foliage
turnover rates revealed by comparative studies of their arborescent assemblages, which
often exceeds 20-fold variation (Reich et al., 1991; Russo & Kitajima, 2016). This wide
variation in leaf lifespan, closely linked to a suite of other leaf traits in what has become
widely known as the ‘‘leaf economics spectrum’’ , underpins a life-history continuum from
fast-growing pioneers to slow-growing shade-tolerant species (Lohbeck et al., 2013; Poorter
& Bongers, 2006; Sterck, Poorter & Schieving, 2006;Walters & Reich, 1999). This continuum
is also associated with interspecific variation in wood density (King et al., 2006; Van Gelder,
Poorter & Sterck, 2006). The consistent picture emerging from studies of humid tropical
forests is that low leaf mass per area (LMA), high assimilation rates and low wood density
enable pioneer trees to rapidly pre-empt gaps and clearings, whereas positive long-term net
carbon gain and survival under shade is made possible by robust, long-lived leaves, dense
wood, and low respiration rates. The fast-growing pioneers that colonize gaps in humid
tropical forests have ‘‘high-maintenance’’ foliage: their low-LMA leaves turn over rapidly
(2–6 months) and have high rates of photosynthesis and respiration.

Less can be said with certainty about functional diversity of leaf traits in humid temperate
forests, or about trait relationships with species’ light requirements and life histories.
Tall, fast-growing pioneers of the type found in tropical and subtropical humid forests
are known to be lacking from mid-latitude forests (Lusk, Kooyman & Sendall, 2011a).
Seven-fold variation in leaf lifespans of juvenile trees has been reported from the humid
temperate forests of south-central Chile (Lusk et al., 2008a), but fewer data are available
from comparable assemblages in New Zealand and temperate Australia. In the deciduous
angiosperm assemblages typical of continental temperate climates, interspecific differences
in leaf lifespan are inevitably muted (Van Ommen Kloeke et al., 2012; Walters & Reich,
1999). In evergreen temperate forests, leaf lifespan is once again consistently negatively
correlatedwith species’ reported light requirements (i.e., positively sowith shade tolerance),
but there is no such agreement about relationships of leaf structural traits such as LMA
with light requirements (Fajardo & Siefert, 2016; Hallik, Niinemets & Wright, 2009; Lusk et
al., 2011b; Lusk & Warton, 2007).

A lack of standardization of the light environments in which traits are measured might
underlie some of the discrepancies in reporting relationships of leaf structural traits with
light requirements of temperate forest evergreens (Keenan & Niinemets, 2016). LMA shows
strong plastic responses to light availability, with sun leaves being much thicker than shade
leaves of the same species (Poorter et al., 2009), and sometimes also denser. Plastic variation
of LMA along light gradients thus runs counter to interspecific variation relating to species’
shade tolerance (Lusk et al., 2010; Lusk et al., 2008b), with the result that sun leaves of
light-demanding evergreens can have similar LMA to shade leaves of shade-tolerant
species. If juvenile trees are sampled randomly or haphazardly without controlling for
light environment, interspecific differences in traits such as LMAmay be masked by plastic
variation (Laughlin et al., 2017), as differential survival along light gradients results in
light-demanding species being found on average in better-lit environments than their
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more shade-tolerant associates (Kobe, 1999; Lusk, Chazdon & Hofmann, 2006; Poorter &
Arets, 2003). The same biases may be present in databases compiled from reviews of the
literature (see Keenan & Niinemets, 2016).

Here I document the range of leaf traits in a humid temperate forest arborescent
assemblage in New Zealand, and relationships of these traits with species’ light
requirements. Leaf traits were measured in two distinct light environments (understorey
shade and treefall gaps), using hemispherical photography to quantify canopy openness.
It has recently been shown that the microclimates of clearings at the same site favour
very different traits from those of species that regenerate primarily in treefall gaps (Lusk
& Laughlin, 2017). The present study focuses mainly on species sorting along gap to
understorey gradients, rather than the more open environments of clearings.

MATERIALS AND METHODS
Study site
The study was carried out in a humid temperate forest in the Lake Okataina Scenic Reserve
(38.08◦S, 176.42◦E), in the North Island of New Zealand. Sampling was carried out in a 300
ha basin lying at about 400m a.s.l. within the reserve, infilled with tephras (mainly rhyolitic)
derived from the Okataina Volcanic Centre (Pullar, Birrell & Heine, 1973). Climate data
from GIS layers indicate a mean annual temperature of 11.7 ◦C, a frost-free period of 195
days, and mean annual precipitation of 1,659 mm (IIASA/FAO, 2012; Landcare Research
2011). Rainfall is evenly-distributed throughout the year. Although juvenile trees growing
in clearings are exposed to large vapour pressure deficits (>1.5 kPa) during dry spells,
deficits of that magnitude have not been recorded in the understorey and tree-fall gap
environments where traits were measured in the present study (Lusk & Laughlin, 2017).
A research permit to work at the site (66760-RES) was obtained from Department of
Conservation.

The disturbance history of the basin has created a complex vegetation mosaic, including
a wide range of light environments (Lusk & Laughlin, 2017). Most of the basin remains in
tall forest with a canopy dominated by Beilschmiedia tawa (Lauraceae) up to 30 m tall and
scattered emergent conifers up to 45 m, mainly Dacrydium cupressinum and Dacrycarpus
dacrydioides (Podocarpaceae). Conifers occurred at higher densities before selective logging
during the mid-20th century (Nicholls, 1991); this history of logging has left behind several
clearings and a network of skidder tracks, some of which have been converted to walking
tracks. At the north end of the basin is a stand of <2 ha with a canopy dominated by
Weinmannia racemosa (Cunoniaceae), which admits more light to the understorey than the
deep-crowned B. tawa that predominates elsewhere (Beveridge, 1973). As a result, seedlings
and saplings of a wide range of species can be found in the understorey of this stand,
which presumably owes its origin to a small fire or wind damage. All native tree and shrub
species present in the basin are evergreen, except for Fuchsia excorticata (Onagraceae) and
very occasional Plagianthus regius (Malvaceae)—McGlone et al. (2004) describe both as
deciduous, but report that some northern populations of the former retain some leaves
during winter.

Lusk (2019), PeerJ, DOI 10.7717/peerj.6855 3/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.6855


Measurements of leaf traits
I measured a range of leaf traits that have variously been shown to correlate with species’
light requirements in other evergreen forests (Kitajima & Poorter, 2010; Lusk et al., 2010;
Poorter & Bongers, 2006). Although leaf mass per area (LMA) is the structural trait included
in the original leaf economic spectrum concept (Reich et al., 1991; Wright et al., 2004), it
can be informative to partition this trait into leaf thickness and density—it has been
reported that density correlates strongly with species’ shade tolerance in tropical humid
tropical forests, whereas thickness does not (Kitajima & Poorter, 2010). Accordingly, leaf
density and thickness were measured in addition to LMA. Leaf dry matter content is a
widely used alternative to LMA, and has also been found to correlate with species’ light
requirements in some humid forests (Lusk et al., 2010; Poorter, 2009).

Two ranges of light environments were defined as sources of sun- and shade-leaf traits
(Tables 1, 2). Sun-leaf traits were measured on plants growing beneath tree-fall gaps,
or besides roads or walking tracks. Shade-leaf traits were measured on juvenile trees
growing mostly in the understorey of the W. racemosa-dominant stand at the north end
of the basin. In each of these two light environments, five to six juveniles (50–200 cm
tall) were selected haphazardly for leaf trait measurements. A Nikon Coolpix 4500 digital
camera (Nikon, Tokyo, Japan) and an EC-08 fisheye adaptor were used to take a photo
immediately above the apex of each of these selected juveniles (as described above), and
Gap Light Analyzer (Frazer, Canham & Lertzman, 1999) was used to estimate % canopy
openness from each photo. Light environments above plants sampled in gaps ranged from
12.0 to 27.8% canopy openness, compared to 1.2 to 3.0% in the understorey. There was
no significant interspecific variation in mean canopy openness above plants sampled in
either gaps (ANOVA, P = 0.97) or shade (P = 0.76). Juveniles of Coprosma robusta could
not be found in understorey environments comparable with those of the other species, so
C. robusta was sampled only in gap environments.

Leaf lifetimes were estimated by following survival of leaves over a 12-month period. The
height of the principal axis of each juvenile wasmeasured to the apex, and all fully-expanded
leaves on this axis were counted. Twelve months later, each plant was revisited, its height
remeasured, and survival of leaves recorded. Abscission scars were counted to determine
mortality of new leaves initiated after the start of the study period; this was important for
species that turn over most or all of their foliage in a single year, such as Aristotelia serrata.

Leaf lifetime (years) was estimated as:

ni(
ni−nf

)
+mn

where ni = initial number of leaves, nf = final number surviving from ni, and mn =

mortality of new leaves initiated since the first census (King, 1994; Lusk et al., 2008a). A few
of the marked plants either suffered major damage by herbivores or disturbance during
the study, or could not be relocated, and leaf lifespan estimates were eventually obtained
from four to five plants of each species in each light environment.

After leaf lifespan measurements, leaves were taken from each of the same plants,
for measurement of sun- and shade-leaf structural traits. Depending on leaf size, one
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Table 1 Study species andminimum light requirements of their saplings, estimated as the 10th per-
centile of the natural distribution of saplings in relation to canopy openness in temperate evergreen
forest, Lake Okataina Scenic Reserve, New Zealand.N indicates the number of sampling points used to
compute the light requirements of each species.

Species Code Family Typical
final
height (m)

Minimum light
requirements
(% canopy openness)

Beilschmiedia tawa Beitaw Lauraceae 30 0.8 (n= 72)
Litsea calicaris Litcal Lauraceae 30 1.3 (n= 43)
Hedycarya arborea Hedarb Monimiaceae 12 1.1 (n= 84)
Laurelia novae-zelandiae Launov Atherospermataceae 35 1.4 (n= 92)
Knightia excelsa Kniexc Proteaceae 35 1.1 (n= 105)
Aristotelia serrata Ariser Elaeocarpaceae 10 3.7 (n= 23)
Elaeocarpus dentatus Eladen Elaeocarpaceae 20 1.7 (n= 29)
Weinmannia racemosa Weirac Cunoniaceae 25 1.7 (n= 27)
Alectryon excelsus Aleexc Sapindaceae 20 1.5 (n= 20)
Melicytus ramiflorus Melram Violaceae 10 1.9 (n= 50)
Myrsine australis Myraus Primulaceae 6 1.8 (n= 28)
Geniostoma ligustrifolium Genlig Loganiaceae 3 1.9 (n= 53)
Coprosma grandifolia Copgra Rubiaceae 6 1.6 (n= 104)
Coprosma robusta Coprob Rubiaceae 6 4.2 (n= 29)
Brachyglottis repanda Brarep Asteraceae 6 3.3 (n= 15)
Carpodetus serratus Carser Rousseaceae 10 2.6 (n= 62)
Pseudopanax arboreus Psearb Araliaceae 8 2.2 (n= 18)
Schefflera digitata Schdig Araliaceae 8 1.9 (n= 35)
Pittosporum tenuifolium Pitten Pittosporaceae 8 3.5 (n= 19)

to 10 of the youngest fully-expanded intact leaves were taken from each plant, avoiding
leaves damaged by herbivores. Leaves were placed immediately in re-sealable plastic bags
with moist tissue paper, and fresh weight determined within six hours of removal. Fresh
leaves were photographed, and area calculated using ImageJ software (Schneider, Rasband
& Eliceiri, 2012). Leaf volume was estimated using Archimedes’ principle. The leaf was
immersed in a small container of water placed on an electronic balance, and displaced
volume determined from the change in apparent weight. A small amount of detergent was
added to the water to reduce hydrophobicity of leaf surfaces, and reduce bubble formation.
Leaf thickness was later estimated dividing volume by area. Leaves were oven-dried at
60 ◦C for three days before measuring dry weight; drying was initiated within eight hours
of leaf excision in all cases, minimizing the effect of dark respiration on non-structural
carbohydrates, which can contribute up to 25% of leaf dry mass (Lusk & Piper, 2007). Leaf
density was then calculated as dry mass / fresh volume. Leaf samples were pooled to obtain
one estimate of total nitrogen content of each species in each light environment, using the
Dumas combustion method.
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Table 2 Mean leaf trait values (± 1 SD) of temperate evergreen saplings growing in gap and understorey environments, Lake Okataina Scenic
Reserve, New Zealand. Species codes are given in Table 1. nd, no data.

Species Light Canopy openness (%)
above trait measurements

Dry matter
content (%)

Leaf mass per
area (g m−2)

Density
(g cm−3)

Thickness
(mm)

Life lifespan
(yr)

N (%)

Aleexc Gap 12.2–20.8 46.7± 3.3 88.7± 8.4 0.45± 0.08 0.21± 0.02 2.4± 2.0 2.2
Aleexc Shade 1.3–2.6 43.1± 3.5 55.6± 3.3 0.49± 0.06 0.13± 0.02 3.5± 1.5 2.2
Ariser Gap 13.0–23.1 29.2± 3.1 50.2± 27.8 0.22± 0.03 0.24± 0.06 0.6± 0.1 2.2
Ariser Shade 2.1–2.6 25.2± 2.7 33.8± 5.8 0.23± 0.02 0.15± 0.02 0.7± 0.0 2.8
Beitaw Gap 12.8–22.2 42.8± 1.1 100.0± 22.9 0.43± 0.04 0.23± 0.03 2.3± 1.4 1.6
Beitaw Shade 1.3–2.4 40.7± 3.3 74.4± 5.2 0.44± 0.04 0.17± 0.00 3.8± 1.5 1.5
Brarep Gap 13.4–23.7 30.1± 2.7 83.7± 7.4 0.29± 0.07 0.31± 0.07 1.1± 0.1 1.5
Brarep Shade 1.5–2.8 22.1± 2.4 45.7± 10.5 0.20± 0.03 0.23± 0.01 1.4± 0.2 1.9
Carser Gap 11.6–22.8 29.9± 4.5 59.1± 14.8 0.25± 0.06 0.23± 0.03 1.1± 0.5 2.2
Carser Shade 1.5–2.6 24.6± 3.7 29.6± 1.9 0.26± 0.03 0.11± 0.02 2.2± 0.7 2.2
Copgra Gap 12.2–18.8 24.8± 4.8 68.7± 10.2 0.20± 0.01 0.35± 0.04 1.4± 0.3 2.2
Copgra Shade 1.2–2.3 21.5± 1.5 47.6± 16.5 0.17± 0.03 0.28± 0.04 2.5± 0.9 1.9
Coprob Gap 12.0–28.8 27.4± 5.4 71.5± 12.3 0.23± 0.02 0.32± 0.05 1.1± 0.3 1.7
Coprob Shade nd nd nd nd nd nd nd
Eladen Gap 13.0 –19.3 39.1± 6.6 78.2± 14.8 0.32± 0.03 0.24± 0.04 1.5± 0.3 1.5
Eladen Shade 1.3–2.6 35.6± 3.5 42.4± 2.0 0.28± 0.04 0.15± 0.02 2.2± 1.1 1.6
Genlig Shade 1.4–2.9 15.2± 1.8 33.4± 2.7 0.12± 0.02 0.28± 0.04 1.7± 0.6 1.9
Genrup Gap 12.8–21.1 20.1± 2.2 64.3± 6.2 0.18± 0.02 0.35± 0.07 1± 0.2 1.6
Hedarb Gap 12.2–18.2 24.0± 2 71.6± 25.2 0.19± 0.04 0.37± 0.1 2± 0.6 2.7
Hedarb Shade 1.3–2.5 22.4± 2.6 58.3± 5.3 0.19± 0.03 0.31± 0.02 5.8± 2.8 2.9
Kniexc Gap 12.8 –25.6 42.6± 1.8 106.5± 47.1 0.31± 0.03 0.34± 0.1 3.8± 2.2 0.9
Kniexc Shade 1.3–2.6 41.5± 2.2 75.6± 2.9 0.37± 0.02 0.21± 0.02 7.7± 5.4 1.3
Launov Gap 12.8–18.2 25.2± 4.3 83.5± 25.6 0.2± 0.03 0.37± 0.06 1.9± 0.4 1.8
Launov Shade 1.3–2.8 25.0± 3 56.6± 11.7 0.19± 0.02 0.3± 0.05 4.6± 1.5 2.4
Litcal Gap 12.8–18.2 32.6± 5.3 83.1± 16.2 0.28± 0.06 0.26± 0.04 2.3± 0.9 1.6
Litcal Shade 1.3–2.9 27.8± 3.4 59.8± 8.5 0.27± 0.04 0.22± 0.01 3.9± 1.8 1.8
Melram Gap 12.2–25.6 26.6± 4.9 73.4± 24.4 0.25± 0.04 0.29± 0.05 1.1± 0.2 2.4
Melram Shade 1.4–2.6 22.1± 2.5 45.0± 5.0 0.19± 0.01 0.24± 0.02 1.7± 0.5 2.7
Myraus Gap 12.5–27.8 33.8± 0.9 83.7± 1.0 0.28± 0.03 0.3± 0.02 1.6± 0.4 1.2
Myraus Shade 1.6–2.8 30.3± 2.2 56.0± 2.7 0.25± 0.04 0.23± 0.05 2.5± 0.9 1.2
Pitten Gap 12.8 –27.5 37.0± 6.7 75.2± 27.7 0.36± 0.05 0.21± 0.05 1.6± 0.6 1.7
Pitten Shade 1.5–2.9 29.6± 5.3 41.7± 5.0 0.31± 0.04 0.14± 0.02 1.8± 0.7 1.8
Psearb Gap 14.0 –25.2 32.2± 1.2 113.8± 25.8 0.24± 0.03 0.49± 0.05 1.3± 0.3 1.6
Psearb Shade 1.4–2.4 25.6± 2.5 65.4± 4.4 0.19± 0.03 0.34± 0.03 2.2± 0.5 1.6
Schdig Gap 13.2–18.8 25.4± 3.3 75.8± 8.2 0.25± 0.01 0.3± 0.03 1.1± 0.2 2.1
Schdig Shade 1.2–2.6 18.5± 2.0 35.2± 2.4 0.17± 0.01 0.21± 0.01 1.9± 0.4 3
Weirac Gap 12.0–24.6 36.2± 2.3 103.3± 31.0 0.32± 0.05 0.33± 0.05 2.7± 1.7 1.5
Weirac Shade 1.3–2.4 34.1± 3.6 71.9± 8.3 0.32± 0.02 0.22± 0.04 3.2± 1.3 1.3
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Quantifying species light requirements
Distributions of juvenile trees 50–200 cm tall were quantified in relation to canopy
openness determined from hemispherical photographs. Sampling was carried out on a
series of transects run through old-growth stands, including tree-fall gaps of varied sizes
and forest margins. Sets of parallel transects were run through forest stands, spaced at least
20 m apart, A total of 748 points were sampled at random intervals (10 to 15 m apart)
along transects. Presence of juvenile trees and shrubs 50–200 cm tall was recorded in a
circular plot of 1-m diameter, centred on the sample point. Although multiple juveniles of
some species were often found in the same plot, only presence or absence data are used in
the present analysis. A Nikon Coolpix 4500 digital camera (Nikon, Tokyo, Japan) and an
EC-08 fisheye adaptor were used to take a photo at 1.5 m height at each sampling point. A
spirit level fitted to the lens cap was used to level the camera, and photos were taken mostly
while the solar disc was either obscured by clouds or below the horizon, to avoid errors
caused by flaring and reflection. Gap Light Analyzer (Frazer, Canham & Lertzman, 1999)
was used to estimate % canopy openness from each photo.

The 10th percentile of the distribution of each species in relation to canopy openness
was used as an approximation of the lowest light levels tolerated by each species (Lusk et
al., 2008a). This parameter is referred to hereafter as minimum light requirements (MLR).
MLR represents an inversion of traditional shade tolerance ratings, i.e., shade-tolerant taxa
have low MLRs, and light-demanders score high. Only species represented on at least 15
sampling plots were considered, yielding 18 species (Table 1).

Statistical analyses
One-way ANOVA was used to test for interspecific variation in the light environments
in which leaf traits were measured. All trait data except leaf dry matter content were
log10-transformed before analysis, in order to meet the assumption of additivity of effects
(Quinn & Keough, 2002). The field sampling procedure meant light environments were
effectively nested within species, as species were not all compared in common plots using
a full factorial design. Nested ANOVA were therefore used to test for leaf trait differences
between sun and shade leaves, and among species. In addition to cross-species correlations,
relationships among leaf traits and species light requirements were also measured using
phylogenetic least squares regression (PGLS: Symonds & Blomberg, 2014), to take into
account the influence of phylogeny on trait relationships. COMPARE 4.6 (Martins, 2004)
was used to carry out PGLS contrasts. A fully-resolved tree of the 19 species was obtained
from the Angiosperm Phylogeny Group website (Stevens, 2001), although the lack of
Coprosma robusta in the understorey meant only 18 species were included in the analysis
of shade leaf traits. All other analyses were carried out in Statistica (Stat Soft. Inc., Tulsa,
OK 74104, USA)

RESULTS
Inter- and intraspecific variation in leaf traits
ANOVA showed highly significant interspecific variation in all traits, as well as highly
significant effects of light environment on all traits except for leaf density, which was only
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Table 3 Summary of nested ANOVA testing the effects of light environment (gap versus shade) and
species on leaf traits (n= 4−6 of each species in each light environment). Light environment was nested
within species, as species were not all compared in common garden plots. Coprosma robusta was omitted
from ANOVA, as leaf traits of this species were available only from gaps.

Effect SS df MS F p

(a) log(LMA)
Intercept 548.1 1 548.1 67465 <0.0001
Species 1.712 17 0.101 12.39 <0.0001
Light(Species) 1.805 18 0.1003 12.34 <0.0001
Error 1.162 143 0.0081

(b) log(Density)
Intercept 61.56 1 61.56 6563 <0.0001
Species 2.923 17 0.1719 18.33 <0.0001
Light(Species) 0.2755 18 0.01530 1.632 0.0595
Error 1.341 143 0.00938

(c) log(Thickness)
Intercept 64.08 1 64.08 10901 <0.0001
Species 2.410 17 0.1418 24.12 <0.0001
Light(Species) 1.105 18 0.06138 10.44 <0.0001
Error 0.8405 143 0.00588

(d) Dry matter content
Intercept 154683 1 154683 12414 <0.0001
Species 9585.4 17 563.8 45.25 <0.0001
Light(Species) 869.8 18 48.3 3.878 <0.0001
Error 1781.8 143 12.5

(e) log(Leaf lifespan)
Intercept 13.04 1 13.04 454.8 <0.0001
Species 5.611 17 0.3300 11.51 <0.0001
Light(Species) 2.592 18 0.144 5.023 <0.0001
Error 3.984 139 0.02866

marginally affected by light (Table 3). ANOVA of leaf N data was not possible, due to the
lack of replication resulting from pooling of leaf samples.

Interspecific variation of most traits was more marked in shade leaves than in sun leaves.
This was especially true of leaf lifespan, which ranged 0.6 to 3.8 years in gaps, and 0.7 to 7.7
years in the understorey (Table 2). Other traits showed narrower ranges of values, spanning
2.4- to 3-fold variation in gaps, and 2.5- to 3.9-fold variation in the understorey.

Leaf lifespan was the trait that respondedmostly strongly to light, shade leaves on average
living about 70% longer than sun leaves of the same species (Table 2). LMA also responded
strongly to light, leaves from plants growing in gaps on average having 58%more dry mass
per area than shade leaves of the same species (Table 2); light environment explained just
as much variation in LMA as species identity did (Table 3). Light environment had least
effect on leaf density and leaf dry matter content, which respectively averaged only 10 and
11% higher in gap plants than in understorey conspecifics; variation in these two traits was
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therefore dominated by the effect of species (Table 3). Leaf N of most species was similar
in the two light environments (Table 2).

Trait correlations with species’ minimum light requirements
The three traits included in the original leaf economic spectrum (LMA, leaf N, and leaf
lifetimes) were tightly coordinated in both sun and shade leaves (Kendall’s coefficient
of concordance = 0.78 and 0.76 respectively, P < .0001; Fig. 1A). They showed varied
correlations with the other traits making up the dataset (Table 4).

Species’ minimum light requirements ranged from 0.8% (Beilschmiedia tawa) to 4.2%
(Coprosma robusta) (Table 1). Species light requirementswere strongly negatively correlated
with leaf lifespans, especially those of shade leaves (Table 4; Fig. 1C); leaf lifespan was thus
positively correlated with species’ shade tolerance. Light requirements were also negatively
correlated with LMA (Fig. 1B), although this relationship was only marginally significant
in gaps (P = 0.048) and non-significant according to PGLS (Table 4). Light requirements
were not significantly correlated with any other structural trait or with leaf N, except for
a marginally significant correlation with dry matter content of shade leaves under PGLS
(Table 4).

DISCUSSION
Leaf lifespans in the arborescent assemblage at Okataina spanned ∼6-fold interspecific
variation in gaps, and ∼11-fold in the understorey (Table 2). The absence from this
temperate assemblage of the fast end of the leaf trait spectrum found in humid tropical
forests results in an approximate halving of the log-scaled range of leaf lifespans found in
the tropics. Some tropical pioneer trees turn over their foliage in as little as two months
(Poorter & Bongers, 2006; Reich et al., 1991; Williams, Field & Mooney, 1989), whereas the
shortest-lived leaves found in the assemblage at Okataina were those of Aristotelia serrata,
which lived about 7 months on average in gaps, and about 8 months in the shade (Table 2).
A. serrata is a small, fast-growing tree associated mainly with treefall gaps and the edges
of tracks at Okataina (Lusk & Laughlin, 2017). Woody assemblages in temperate South
America appear to span a similar range of leaf economics to that found at Okataina, with
no species reported as having a leaf lifespan of <6 months (Damascos & Prado, 2001; Lusk
& Corcuera, 2011; Lusk et al., 2011b). However, the few deciduous trees present in both
regions probably have slightly shorter leaf lifespans (e.g., Dungan, Duncan & Whitehead,
2003). The assemblage at Okataina did not include any species with the very high leaf
nitrogen levels found in some tropical pioneers (Poorter & Bongers, 2006; Reich et al.,
1991), although comparable levels (c. 4%) have been reported from some New Zealand
native leguminous trees not sampled at Okataina (McGlone et al., 2004).

Species light requirements were less consistently related to leaf structural traits than
appears to be the case in humid tropical forests, despite strong relationships with leaf
lifespan in both gaps and shade (Fig. 1). Although shade-tolerant evergreens in tropical
and subtropical rainforests often have dense leaves (Kitajima & Poorter, 2010; Lusk et
al., 2010), light requirements of New Zealand temperate evergreens at Okataina were only
weakly (and non-significantly) correlatedwith density of shade leaves (Table 4), and showed
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Figure 1 Relationships among leaf traits andminimum light requirements of 19 temperate forest ev-
ergreens.Gap and understorey data are shown by open and filled (black) symbols, respectively. (A) Leaf
lifespan vs. leaf mass per area; (B) Leaf mass per area vs. species’ minimum light requirements; (C) Leaf
lifespan vs. species’ minimum light requirements. Solid lines show relationships significant at P = 0.05;
correlation coefficients appear in Table 4.

Full-size DOI: 10.7717/peerj.6855/fig-1

Lusk (2019), PeerJ, DOI 10.7717/peerj.6855 10/17

https://peerj.com
https://doi.org/10.7717/peerj.6855/fig-1
http://dx.doi.org/10.7717/peerj.6855


Table 4 Correlations among sapling light requirements (MLR) and leaf traits of 19 temperate evergreens, New Zealand; only 18 species were
sampled in the shade.Values to the lower left of the diagonal show Pearson cross-species correlations; results from phylogenetic least squares re-
gression appear to the upper right.

(log)MLR (log)LMA (log) Thickness (log) Density DMC (log)N (log)LL

(a) Sun leaves (gaps)
(log)MLR −0.41 0.00 −0.24 −0.26 0.12 −0.73**

(log)LMA −0.47* 0.36 0.00 0.54* −0.58** 0.71**

(log)Thickness −0.12 0.33 −0.59** 0.00 −0.15 0.07
(log)Density −0.23 0.53* −0.59** 0.93** 0.00 0.52*

DMC −0.30 0.57* −0.48* 0.93** −0.46* 0.00
(log)N 0.14 −0.57* −0.14 −0.33 −0.44 −0.50*

(log)LL −0.74** 0.74** 0.06 0.51* 0.60** −0.45

(b) Shade leaves (understorey)
(log)MLR −0.65** 0.00 −0.31 −0.44 0.33 −0.83**

(log)LMA −0.66** 0.36 0.00 0.61** −0.70** 0.72**

(log)Thickness −0.24 0.34 −0.65** 0.00 −0.02 0.23
(log)Density −0.32 0.49* −0.65** 0.95** 0.00 0.36
DMC −0.44 0.61** −0.49* 0.95** −0.61** 0.00
(log)N 0.23 −0.55* −0.02 −0.43 −0.55* −0.50*

(log)LL −0.84** 0.73** 0.22 0.38 0.48* −0.30

Notes.
*P < 0.05.
**P < 0.01.

little relationship with that of sun leaves (Table 4). Notably, leaf densities of two relatively
shade-tolerant species (Laurelia novae-zelandiae and Hedycarya arborea) were among the
lowest found at Okataina (≤ 0.20 g cm−3 in both gaps and shade: Table 2). Species’ light
requirements were significantly correlated with LMA, especially in the shade (Fig. 1A), in
part reflecting the thickness of the leaves of the two aforementioned shade-tolerant species
(Table 2). However, the correlation with LMA of sun leaves was weaker when phylogenetic
relationships were taken into account by PGLS (Table 4). The long leaf lifespans of L.
novae-zelandiae andH. arborea probably depend to a high degree on chemical (rather than
physical) deterrence of herbivores, as both genera are known to be rich in alkaloids and
essential oils (Brophy, Goldsack & Forster, 2005; Leitão et al., 1999; Urzua & Cassels, 1978).

Standardization of the light environments in which LMA is measured may be especially
important in comparative studies of temperate evergreen assemblages. Not only does
interspecific variation of LMA in relation to light requirements run counter to plastic
responses to light (as in other evergreen forests: Lusk et al., 2008b), but the effect of light
on LMA at Okataina was of similar size to that of species identity (Table 3), reflecting
a narrower range of the leaf economic spectrum than that present in the arborescent
assemblages of humid tropical forests. If this reduced range of leaf traits is typical of humid
temperate forest evergreen assemblages, lack of standardization of light environments
in some studies may thus explain the variety of reported relationships of LMA with
light requirements of temperate evergreen angiosperms, including relationships that are
diametrically opposed to that reported here (Fajardo & Siefert, 2016; Hallik, Niinemets &
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Wright, 2009). Leaf dry matter content and leaf density were less sensitive than LMA to light
environment, species’ identity greatly exceeding the effect of light in explaining variation
in these traits (Table 3). However, leaf dry matter content and especially leaf density were
less useful indicators of shade tolerance than LMA, as they were only weakly related with
species’ light requirements in the arborescent assemblage at Okataina (Table 4).

The ample representation of small trees with leaf lifetimes of about one year at Okataina
(Table 2) suggests the scarcity of the deciduous habit in the New Zealand flora is more
a reflection of weak seasonality than of soil fertility (cf. McGlone et al., 2004). Deciduous
or semi-deciduous species account for <5% of New Zealand’s woody flora (McGlone et
al., 2004); this figure is very low in comparison with temperate floras from continental
climates of the northern hemisphere, but falls within the range of values found in other
oceanic temperate climates of the southern hemisphere—the proportion of (semi-)
deciduous woody species in southern Chile is somewhat higher (c.8%), but only a single
deciduous tree is native to Tasmania (Duretto, 2009+). Although nutrient conservation
is considered one of the advantages of evergreenness (Aerts, 1995), those evergreens that
replace their entire canopies annually (sometimes termed ‘‘leaf-exchangers’’) will be almost
as nutrient-demanding as deciduous trees. Despite moderate soil C:N ratios and low total
P at Okataina (Lusk, Jorgensen & Bellingham, 2015), six of the 19 study species fit this
description, with leaf lifespans of 12–13 months in gaps (Table 3); these species retained
their leaves longer in the shade, ranging from a 27% increase in Brachyglottis repanda to a
100% increase in Carpodetus serratus. Another species (Aristotelia serrata) turned over its
foliage in well under a year in both gaps and shade (Table 2). All of these seven species are
small, fast-growing trees and shrubs that are widespread throughout New Zealand, most of
them associated with treefall gaps at Okataina (Lusk & Laughlin, 2017),. Elsewhere, another
New Zealand Coprosma species has also been found to turn over its foliage in about one
year (Richardson et al., 2010), as has the long-lived canopy tree Fuscospora fusca (Wardle,
1984).

CONCLUSIONS
This study makes two main contributions to the literature. Firstly, the dataset reported
here—covering over half the arborescent assemblage at the site—confirms that humid
temperate forests lack the fast end of the leaf economics spectrum found in their tropical
counterparts, reflecting the absence of the fast-growing tall pioneers that exploit treefall
gaps at low latitudes (Lusk, Kooyman & Sendall, 2011a). Secondly, this study underlines
the importance of standardizing the light environments in which leaf traits (especially
LMA) of humid temperate evergreens are measured. Without standardization, the strong
plastic response of LMA to light may mask interspecific variation in LMA associated with
species’ light requirements, which is less wide-ranging than in humid tropical forests.
Insufficient standardization of light environments, coupled to countergradient variation in
LMA (Conover & Schultz, 1995; Lusk et al., 2008b), may thus explain the lack of consistency
in reported relationships of LMA with light requirements of temperate evergreen trees.
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