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Abstract 14 

Biological networks are complex (non-linear), redundant (cyclic) and compartmentalized at the 15 

subcellular level. Rational manipulation of plant metabolism may have failed due to inherent 16 

difficulties of a comprehensive understanding of regulatory loops. We first need to identify key 17 

factors controlling the regulatory loopsfind the master switches of primary metabolism. The 18 

paradigms of plant networks are revised in order to highlight the differences between metabolic 19 

and transcriptional networks. Comparison between animal and plant transcription factors (TFs) 20 

reveal some important differences. Plant transcriptional networks function at a lower hierarchy 21 

compared to animal regulatory networks. Plant genomes contain more transcription factorTFs 22 

than animal genomes, but plant proteins are smaller and have less domains as animal proteins 23 

which are often multifunctional. We briefly summarize mutant analysis and co-expression results 24 

pinpointing some transcription factorTFs regulating starch enzymes in plants. Detailed 25 

information is provided about biochemical reactions, TFtranscription factors and cis regulatory 26 

motifs involved in sucrose-starch metabolism, in both source and sink tissues. Examples about 27 

coordinated responses to hormones and environmental cues in different tissues and species are 28 

listed. Further advancements require combined data from single-cell transcriptomic and 29 

metabolomic approaches. Cell fractionation and subcellular inspection may provide valuable 30 

insights. We propose that shuffling of promotor elements might be a promising strategy to 31 

improve in the near future starch content, crop yield or food quality. 32 

 33 

 34 

Introduction 35 

Plant cells are sessile and totipotent due to the fact that they respondautotrophic organisms fully 36 

exposed to many external environmental signals. While plants must cope with a wide range of 37 

conditions (e.g. light, temperature, water availability, etc.),, while animals cells enjoy more 38 

stable environments since they are able to escape from danger and to migrate searching for food 39 



migrate and create their own internal environment.  Plants are totipotent while aAnimal cells are 40 

non-totipotent due to regulatory restrictions by cytosolic and nuclear factors. Photosynthesis in 41 

plants leads to sucrose and starch that providingserve as food for heterotrophic organisms. This 42 

review summarizes what we know about transcriptional regulation of starch metabolism in 43 

flowering plants. Most genes of starch synthesis and degradation have been widely studied due 44 

to their importance for plant physiology and growth (Zhang et al. 2012). The expression of key 45 

enzymes and their regulatory mechanism at different levels have been investigated 46 

(Sakulsingharoj et al. 2004; Li et al. 2011c; Gámez-Arjona et al. 2011)). However,But their 47 

regulation at transcriptional level is still unclear (Kötting et al. 2010; Geigenberger 2011). The 48 

difficulty may arise by the great number of genes (isozymes) that catalyze the main key 49 

biochemical reactions in autotrophic organisms (Tiessen et al. 2013; Huang et al. 2014). This 50 

review starts by listing relevant enzymes and then proceeds to clarify some paradigms of 51 

biological networks. It continues with examples of gene co-expression analysis that have 52 

pinpointed some transcription factors (TFs) in plant cells. It concludesends by stating the need of 53 

more molecular information by performing single cell transcription analysis combined with 54 

metabolic profiling at the subcellular level. The systematic characterization of all transcription 55 

factorTFs and cis regulatory elements of starch metabolism might provide a promising avenue 56 

for rational crop improvement. 57 

 58 

Survey methodology 59 

The review started with an electronic literature survey that was expanded iteratively. Scientific 60 

articles were searched in PubMed, ISI Web of Science, Google Scholar and other databases such 61 

as EndNote and Mendeley. The first search terms included following key words: starch 62 

metabolism, transcription factors, regulation and plants. The abbreviated names of genes and the 63 

enzyme commission (EC) numbers of key reactions of starch metabolism were also included in 64 

the literature survey. The search also included the names of the first and senior authors of 65 

publications in high impact journals during the last 20 years about starch metabolism. The 66 

pathway of sucrose to starch conversion has been intensively investigated mainly in Arabidopsis 67 

and in potato ((Stitt and Zeeman 2012b) and references therein). 68 

Comprehensive list of starch enzymes  69 

Starch metabolism is a network of reversible biochemical reactions that is orchestrated by more 70 

than 20 proteins annotated with an enzyme commission (EC) number as depicted in Fig 1. some 71 

key enzymes such as ADP-glucose pyrophosphorylase (AGPase, EC:2.7.7.27), starch synthase 72 

(SS, EC:2.4.1.21), granule bound starch synthase (GBSS, EC:2.4.1.242), starch branching 73 

enzyme (SBE, EC:2.4.1.18), starch debranching enzyme (DBE, EC:3.2.1.196), α-amylase 74 

(AMY, EC:3.2.1.1), β-amylase (BAM, EC:3.2.1.2), and many other enzymes and factors 75 

(Comparot-Moss and Denyer, 2009; Lloyd et al., 2005; Stitt and Zeeman, 2012a; Tetlow and 76 

Emes, 2011a). Alkaline pyrophosphatase (PPase, E.C. 3.6.1.1) catalyzes the cleavage of 77 

pyrophosphate (PPi) to orthophosphate (Pi) inside the plastid shifting the equilibrium of the 78 

AGPase reaction towards starch synthesis (Gross and ap-Rees, 1986). 79 
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Additional enzymes such as the R1 protein (Yu et al., 2001) which turned to be the alpha-glucan 80 

water dikinase (GWD, EC:2.7.9.4), the phospho-glucan water dikinase (PWD, EC:2.7.9.5), 81 

disproportionating enzyme (DPE, EC:2.4.1.25), isoamylase (ISA, EC:3.2.1.68), and α-glucan 82 

phosphorylase (PHS, EC:2.4.1.1) are also involved in the breakdown of starch (Streb and 83 

Zeeman, 2012). Membrane transporters participate in the metabolic network connecting several 84 

subcellular compartments such as the ATP transporter (ATT), hexose-phosphate translocator 85 

(HPT), glucose translocator (GLT) and maltose exporter (MEX1) (Liang et al., 2018; Purdy et 86 

al., 2013; Ryoo et al., 2013; Stritzler et al., 2017). A simplified view of starch metabolism is 87 

shown in Fig 1. Cytosolic enzymes are involved such as invertase (INV, EC:3.2.1.26), sucrose 88 

synthase (SUS, EC:2.4.1.13), hexokinase (HK, EC:2.7.1.1), fructokinase (FK, EC:2.7.1.4), 89 

glucose-6-phosphate isomerase (PGI, EC:5.3.1.9) and phosphoglucomutase (PGM, EC:5.4.2.2) 90 

(Bahaji et al., 2015; Stitt and Zeeman, 2012a; Tetlow and Emes, 2011b, 2014). For some of those 91 

enzymes there are both cytosolic and plastidial isoforms. Some cytosolic isoforms are bound to 92 

the outer plastidial membrane allowing for metabolic channeling (Satoh et al. 2008; Hejazi et al. 93 

2012; Kunz et al. 2014; Fettke and Fernie 2015; Malinova et al. 2017; Nakamura et al. 2017). 94 

Isoform expression and sugar signaling depend on the subcellular compartment, cell type, tissue 95 

and stage of development (Tiessen and Padilla-Chacon 2013) 96 

Starch synthesis in leaves and in storage organs 97 

Green leaves synthesize starch inside the chloroplast using ATP and F6P provided directly by the 98 

Calvin Cycle (Fig 1). Reproductive organs like growing tubers, seeds and fruits depend on the 99 

supply of sucrose imported via the phloem by mass flow (Rockwell et al. 2018). Incoming 100 

sucrose is then used for growth, cell wall deposition, respiration and storage processes such as 101 

starch biosynthesis in the plastid. In potato tubers, the adenylate-translocator imports ATP from 102 

the cytosol in counter exchange with ADP and AMP and thus provides the energy equivalents 103 

for starch synthesis (Tjaden et al., 1998). In sink organs, cytosolic sucrose is converted to 104 

fructose and UDP-glucose (UDPglc) through SUS in a reversible reaction (Morell and ap-Rees, 105 

1986; Geigenberger and Stitt, 1993; Zrenner et al., 1995). Using inorganic pyrophosphate (PPi) 106 

in the cytosol, fructose and UDPglc are finally processed to hexose-phosphates that can be 107 

partitioned to maintain both respiration and starch synthesis (Fig 1). Thereby UDP is regenerated 108 

for the SUS reaction. In potato tubers, G6P is imported to the amyloplast by an hexose phosphate 109 

translocator (HPT) (Schott et al., 1995; Kammerer et al., 1998) and converted to glucose-1-110 

phosphate (G1P) by plastidic phosphoglucomutase (Fernie et al., 2001b).  111 

ADP-glucose pyrophosphorylase (AGPase) is a key playerenzyme of starch synthesis 112 

AGPase is the first committed step in the starch synthesis pathway (Smith et al. 1997). The plant 113 

enzyme is a heterotetramer, consisting of two subunits of similar size (AGPL ~51 kD, AGPS ~50 114 

kD ) (Okita et al. 1990). AGPase is a key enzyme exerting major control on the pathway of 115 

starch synthesis in storage as well as in photosynthetic tissue(Tiessen et al. 2002). The enzyme 116 

has a strategic position in the pathway and catalyzes an ATP consuming reaction, making it an 117 

exquisite candidate for regulation according to metabolic control theory (Fig 1). Thus, the 118 

regulatory properties of this enzyme have been subject of many investigations in the past decades 119 
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(Tiessen et al. 2002; Tiessen et al. 2003; Kolbe et al. 2005; Stitt and Zeeman 2012a). In the 120 

cereal endosperm, a cytosolic isoform of AGPase (Shrunken2 and Brittle2) and the Brittle1 121 

transporter are the main providers of ADPglc for starch synthesis in the amyloplast participate in 122 

the starch network (Emes et al. 2003; James et al. 2003; Tiessen et al. 2012a). Some TFs regulate 123 

the expression of several AGPase several isogenes (agpS1-2, agpL1-3) (Table 1 and Figs 2-31). 124 

Starch enzymes and plastidial proteins build metabolic complexes 125 

Some sStarch biosynthetic enzymes assembley in high   molecular weight complexes (Hennen-126 

Bierwagen et al. 2009; Crofts et al. 2015). One consequence of enzyme clustering in space and 127 

time is metabolite-channeling through the formation of multienzyme assemblies known as 128 

metabolons (Sweetlove and Fernie 2013). Proteins that copurified with SSIII, SSIIa, SBEIIa, and 129 

SBEIIb included pyruvate orthophosphate dikinase (PPDK), AGPase and SUS-SH1 forming a   130 

~670-kD complex that may regulate carbon partitioning in developing seeds of cereals (Hennen-131 

Bierwagen et al. 2009). In Arabidopsis leaves, coiled-coil proteins and PROTEIN TARGETING 132 

TO STARCH (PTST) form complexes with starch synthases during granule initiation (Seung et 133 

al. 2015; Seung et al. 2017; Seung et al. 2018). Therefore, transcriptional regulation of one 134 

protein might affect the abundance of other proteins. This may be the case, for example, in the 135 

rice mutant FLOURY ENDOSPERM2 (FLO2), which pleiotropically altered the expression of 136 

many starch genes (She et al. 2010).  137 

 138 

Numerous families and multiple isoforms of starch genes 139 

Several starch synthase isoforms use ADPglc to add its glucose moiety to amylose and 140 

amylopectin molecules in the ordered and crystalline structure of the starch granule (Martin and 141 

Smith 1995; Marshall et al. 1996; Smith et al. 1997; Smith 1999). Different isoforms of 142 

branching enzyme and debranching enzyme are involved in the synthesis of glucans (Ball et al. 143 

1991; Zeeman et al. 1998) (Fig 1). 144 

Starch synthases (SS) are divided into four subfamilies of soluble SSs (SSI, SSII, SSIII, and 145 

SSIV) and one sub-family of granule-bound starch synthases (GBSS) (Patron and Keeling 2005; 146 

Leterrier et al. 2008). Starch phosphorylase (PHO) plays also an important role for starch 147 

synthesis (Satoh et al. 2008; Tetlow and Emes 2011a). Each of these enzymes are encoded by 148 

many different isogenes, forming large enzyme families in plants. In maize, more than 30 genes 149 

participate in starch synthesis (Yan et al. 2009); while in rice are around 21 genes in total (Hirose 150 

et al. 2006). These isozymes have been classified by their tissue-specific expression patterns in 151 

maize and rice: type I starch genes were preferentially expressed in endosperm (reproductive 152 

organs, sink), whereas type II starch genes were preferentially expressed in vegetative tissues 153 

(leaves, source) (Hirose et al. 2006; Fu and Xue 2010; Huang et al. 2014).  154 

Starch synthesis in leaves has been said to be largely similar to that in storage organs (Santelia 155 

and Zeeman 2011; Smith 2012; Stitt and Zeeman 2012b). Table 2 list some key genes in several 156 

plant species. 157 

 158 

Differences between metabolic and transcription networks 159 
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Metabolic and transcriptional regulation are commonly thought to be equivalent in both plant 160 

and animal systems. According to Tom Ap Rees and Mark Stitt, central metabolism of pea is like 161 

the subway map of London (Stitt and ap Rees 1978; Stitt and Ap Rees 1980). Certainly, 162 

compared to animal and bacterial metabolism, plant metabolism is more complex, flexible, 163 

redundant and compartmentalized (Sweetlove and Fernie 2013). Even though the subcellular 164 

compartmentation of plant metabolism is thought to be well understood, unexpected results are 165 

continuously revealed by detailed gene-by-gene studies (Lunn 2006). Usually, metabolic 166 

pathways are not as linear as depicted in most textbooks (Kruger et al. 1999; Berg et al. 2006). 167 

Instead of metabolic pathways, it is more accurate to speak of metabolic networks.  168 

There are some important differences between metabolic and transcriptional networks that must 169 

be taken into account when trying to explore them by correlation analysis. Plant cells may 170 

produce a larger number of chemically distinct metabolites (~10,000) than the number of 171 

enzymes encoded by their DNA (~5,000). In metabolic networks, connections (chemical 172 

reactions) are theoretically reversible, bidirectional and may have certain stoichiometry (Fig 173 

24a). Metabolites can be chemically interconverted between each other, while genes are fixed 174 

entities. In transcriptional networks, some genes are more important than others; some proteins 175 

are regulatory while others are structural. Therefore, in gene networks, connections are one-176 

directional arrows that have a certain hierarchy (Fig 24b). From a biochemical perspective, 177 

metabolites are structurally much more diverse than genes that are all built from the same 4 178 

letters (nucleotides). But from the functional and regulatory point of view, the opposite is true: 179 

Metabolites can be interconverted and are therefore more or less "equal" (somehow democratic). 180 

Genes on the contrary are "non-equal";  some have a higher hierarchy than others (Fig 24). One 181 

transcription factor may regulate a gene coding for an enzyme but not vice versa. Many genes do 182 

the metabolic work but itself do not regulate DNA transcription or RNA translation. Thus, in 183 

transcriptional networks there are different types of genes: regulator genes and endpoint genes 184 

(Fig 24b). Among the regulator genes, some have higher authority, since they may command 185 

many genes (bothut structural and regulatory genes) and are thus considered higher level factors 186 

(master switches). Connections in metabolic networks should be represented by bi-directional 187 

arrows that have a certain stoichiometry and mass action ratio but no hierarchy (Fig 24a). In 188 

metabolic networks, in addition to standard connections (chemical reactions with an EC 189 

number), there may be regulatory connections related to allosteric regulation of enzymes, most 190 

frequently positive feed forward loops or negative feedback inhibition loops (Fig 24a). 191 

 192 

Differences between animal and plant protein transcription networks 193 

According to the classifications of gene ontology (GO) ~4-8% of the genes are involved in DNA 194 

transcription and regulation, whereas 10-20% of the genes are involved in metabolism (Gene 195 

Ontology Consortium 2004; Maere et al. 2005). In plants, 5–7% of all protein-coding genes 196 

correspond to TFs (Riaño-Pachón et al. 2007; Yilmaz et al. 2009). In animal genomes, TFs make 197 

up 5–8% of the genes (Wang and Nishida 2015). Plant genomes contain 34% more proteins than 198 

animal genomes (Ramírez-Sánchez et al. 2016). On average, an animal genome contains 25,189 199 



proteins, whereas a plant genomes contain 36,795 proteins on average (Ramírez-Sánchez et al. 200 

2016). Consequently, plant genomes code for more TFs (~1,839) than animal genomes (~1,259) 201 

(Fig 24). The fact that plants posses more TFs is relevant for the topology of the regulatory 202 

network. 203 

Across species there is a negative correlation between protein size and protein number in 204 

eukaryotic genomes (Tiessen et al. 2012b). Plant proteins are smaller and have less domains as 205 

animal proteins which are often multifunctional   (Ramírez-Sánchez et al. 2016). Compared to 206 

the average of eukaryotic species, plants have ~34% more but ~20% smaller proteins (Ramírez-207 

Sánchez et al. 2016). Compared to animal genes, plant genes have longer exons but are encoded 208 

by half the number of exons and introns (Ramírez-Sánchez et al. 2016). Consequently, plant 209 

proteins are simpler and have less domains and perform less complex functions (Ramírez-210 

Sánchez et al. 2016). Therefore, some pPlant transcriptional networks need to respond to a wide 211 

range of may display a lower hierarchy due to a strong environmental inputs. Therefore, pPlant 212 

transcriptional networks may have more TFs that regulate gene expression with a lower 213 

hierarchy (Fig 24e) compared to animal networks that work at a higher hierarchy (Fig 24d). The 214 

regulatory hierarchy of plants is similar to that of one celled bacteria in that respect: flat. The 215 

consequences of the differences in the network topology can be observed at the whole organism 216 

level. Regulatory complexity becomes most evident at the tissue culture level: plant cloning can 217 

be simply done with almost any pre-differentiated vegetative cell with a mixture of auxins (roots) 218 

and cytokinin's (shoots), while regeneration and cloning of animals is harder because it requires a 219 

protected environment and a precise mixture of epigenetic, cytosolic, nuclear and membranal 220 

factors (Zuo et al. 2017). Coexpression analysis identified several barriers of animal cloning 221 

during somatic cell nuclear transfer (Zuo et al. 2017). Transcription factors and epigenetic 222 

regulators hampered the embryo reprogramming process (Zuo et al. 2017). In comparison, plant 223 

cells have less barriers of transcriptional reprogramming. Therefore, plant cells are totipotent and 224 

respond to many external environmental signals, similar toas in bacterial cells (Fig 24e). Animal 225 

cells are flexible and can create their own internal environment because they build tissue layers 226 

and are able to migrate between the endo-, meso- or ecto-derm in order toand accommodate to 227 

better conditions. Animals make burrows, nests and liars; the blood circulatory system regulates 228 

glucose levels, oxygen, pH and temperatures in a narrow range, while plant cells are exposed to a 229 

much greater range of environmental variation. For example, dessert plants adapt to diurnal 230 

variations of temperature from 5° C in the morning to 55° C at noon, while mammalian cells stop 231 

working if temperatures drop or rise a few degrees from 37° C. Animals form complex organs 232 

through multiple cell layers that have a predefined cell lineage (fixed transcriptional fate). They 233 

are non-totipotent due to hierarchical restrictions by cytosolic and nuclear factors (Zuo et al. 234 

2017). Animal transcription networks are more hierarchical because they react strongly to cell 235 

lineage, growth factors and cell-to-cell communication (Fig 24d). In comparison, plant organs 236 

are less complex; plant cell are sessile and therefore their transcription networks of plant cells 237 

work less hierarchical because they respond much more directly to hormones and abiotic factors 238 

(Fig 24e). 239 



The number of TFs in the human genome ranges from 1,391 (Vaquerizas et al. 2009) to 1,639 240 

(Lambert et al. 2018) while more than 2017 TFs have been reported in maize (Burdo et al. 2014). 241 

The Arabidopsis genome encodes >1533 TFs, this number was 1.3 times that of Drosophila and 242 

1.7 times that of C. elegans and Saccharomyces (Riechmann et al. 2000).   There are many TF 243 

families that are found only in plants, such as the APETALA2/ethylene responsive element 244 

binding protein (AP2/EREBP), NAC, and WRKY families; the trihelix DNA binding proteins 245 

and the auxin response factors (ARFs) (Riechmann et al. 2000). The DNA-binding with One 246 

Finger (DOF), is a group of plant-specific TFs that are implicated in stress responses, 247 

photosynthesis and flowering induction (Noguero et al. 2013). 248 

 249 

Starch transcription networks in plants 250 

The regulatory network involved in starch metabolism wasis summarized in Figs 2-31. 251 

References of transcription factorsTFs and genes wereare listed in Tables 1 and 2. As it can be 252 

seen in Figs 2-31, the hierarchy of the regulatory network is flat, with most genes responding to 253 

hormones and environmental cues. Currently, we have limited knowledge of master transcription 254 

factorsTFs that with a high hierarchy regulate other transcription factorsTFs of starch 255 

metabolism. This contrasts with several examples of gene regulatory networks in animals that 256 

have multiple layers of hierarchical transcriptional regulation (Cvekl and Zhang 2017). 257 

 258 

The identification of TFs directly involved in the regulation of starch enzymes have been made 259 

through different strategies (mutant characterization & coexpression networks) (Table 1 and 260 

Table 2). Genome-wide analysis of starch genes in potato leaves and potato tubers revealed 261 

tissue-specific expression of isoenzymes (Van Harsselaar et al. 2017). Therefore, we need to 262 

build regulatory schemes separately for photosynthetic and storage organs (Figs 2 and 3). 263 

 264 

Transcriptional control of transitory starch in leaves  265 

There are several interesting examples of transcriptional correlation between photosynthesis and 266 

starch biosynthesis. In maize, ZmDOF1 enhances transcription from the C4 phosphoenol 267 

pyruvate carboxylase (PEPC) promoter and ZmDOF2 blocks this transactivation and represses 268 

PEPC expression (Yanagisawa 2000) (Fig 2). In sweet potato, a DOF protein called SRF1 was 269 

found to have an indirect positive effect on starch synthesis (Tanaka et al. 2009) (Fig 2). In 270 

switchgrass, PvBMY1 (BioMass Yield 1) and PvBMY3 (BioMass Yield 3) regulate 271 

photosynthesis and starch synthesis (Ambavaram et al. 2018). In Arabidopsis, BAM5 is regulated 272 

by two TFs, WRKY DNA-binding domain 75 (WRKY75, At5g13080) and NAC domain-273 

containing protein 96 (NAC096, At5g46590) (Bumee et al. 2013) (Fig 2). In the Atidd5 and col 274 

mutants, the reduction of SS4 expression led to a significant increase in the number of starch 275 

granules (Ingkasuwan et al. 2012). In rice, CRCT was shown to positively control the expression 276 

of BEIIa, OsAGPL1, OsAGPS1 and GPT2, all of which are classified as vegetative organ 277 

isoforms (Morita et al. 2015) (Fig 2). 278 



Microbial volatiles promote the accumulation of starch in leaves via a photoreceptor-mediated 279 

control (Li et al. 2011a). The transcriptional and post-translational regulation network may 280 

involve NTRC-mediated changes in the redox status of plastidial enzymes (Li et al. 2011a). 281 

 282 

Plant transcription networks are Transitory starch is highly responsive to the external 283 

environment 284 

Transcripts of many starch genes are regulated by both an endogenous clock and by the diurnal 285 

cycle (i.e. light/dark cycle) (Lu 2005; Ral 2006) and also by sugar availability and different 286 

hormones (Blasing et al. 2005; Graf and Smith 2011). The plant clock regulates developmental 287 

transitions like flowering, dormancy and the onset of senescence and bud break to ensure that 288 

they occur at an appropriate season or time of the day (Flis et al. 2016). For example, the rice 289 

GBSSII is regulated by a circadian rhythm (Dian et al. 2003). In Arabidopsis leaves, expression 290 

of the GBSS1 gene is controlled by two clock transcription factors (TFs), namely the LATE 291 

ELONGATED HYPOCOTYL (LHY) and the Myb-related CIRCADIAN CLOCK 292 

ASSOCIATED 1 (CCA1) (Tenorio et al. 2003) (Figs 21). 293 

Also, some SS isoforms are affected by photoperiods (Lu 2005; Ral 2006). Even though 294 

regulation of starch genes at the transcriptional level has been reported, but much less is known 295 

about translational control of protein synthesis (Kötting et al. 2010). Diurnal changes in the 296 

transcriptome of Arabidopsis leaves revealed both transcriptional and posttranscriptional 297 

regulation of starch enzymes (Smith 2004). Strong transcriptional control of starch genes occurs 298 

towards the end of the light (Zeeman et al. 2007; Tsai et al. 2009; Streb and Zeeman 2012). 299 

Different AGPase isoforms respond differently to photoperiod, circadian clock or sugar 300 

(Geigenberger 2011; Seferoglu et al. 2013). The Arabidopsis genes APL3 and APL4 are induced 301 

by both Suc and hexoses in leaves (Li et al. 2002; Thellin et al. 2009; Michalska et al. 2009). In 302 

lentil leaves, some AGPase isoforms are differentially regulated during short and long days 303 

(Seferoglu et al. 2013). DOF transcription factors are implicated in stress responses, 304 

photosynthesis and flowering induction (Noguero et al., 2013). Overall, it can be said that the 305 

expression of isogenes is certainly tissue-dependent, such as in the case of AGPase (Huang et al. 306 

2014).  307 

The duration of the photoperiod has two major consequences for plant growth and metabolism. 308 

Firstly, a longer night requires alterations in the timing of growth and the diurnal allocation of 309 

carbon (Sulpice et al. 2009; Sulpice et al. 2014). Secondly, shorter light periods decrease growth 310 

because less light energy is available to sustain carbon fixation by photosynthesis. The transient 311 

reserves of carbon are used as a energy buffer during darkness (Smith and Stitt, 2007; Stitt and 312 

Zeeman, 2012). In Arabidopsis, expression of LSF1, LSF2, SEX4/PIPKIS1, BAM3 and BAM9 313 

were regulated by the clock-, C- and light-signaling (Flis et al. 2016) (Fig 2). At dawn, while 314 

starch biosynthesis was transcriptionally down-regulated, β-amylase was strongly up-regulated 315 

(Flis et al. 2016). This enzyme is normally synthesized at late grain filling,  The activity of β-316 

amylase is associated with starch grains normally during late grain filling and also , and has been 317 

shown to be important during germination (Radchuk et al. 2017). The rate of starch synthesis in 318 
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the green leaves is increased during short photoperiods because a higher amount of carbon is 319 

required for sucrose synthesis during the long night (Pokhilko et al. 2014; Sulpice et al. 2014; 320 

Mugford et al. 2014). Overall, it can be said that the expression of many starch genes in 321 

photosynthetic tissues is light- and time-regulated (Fig 2), while in sink organs, transcriptional 322 

regulation might depend more upon from the levels of sugars and/or phytohormones (Fig 3). 323 

Plant transcription networks are highly responsive to hormones 324 

The coordinated regulation of gene expression in sink and source sink tissues is orchestrated by 325 

light, sugars and energy status (Geigenberger 2011).   In addition to light and sugars, hormones 326 

and volatiles also play a key role. Ethylene and other hormones such as abscisic acid (ABA), 327 

salicylic acid (SA) and jasmonic acid (JA) are major players in coordinating signaling networks 328 

involved in the response to biotic and abiotic factors in plants (Foyer et al. 2012). TheA highly 329 

expressed GBSS gene was strongly repressed during ethylene-induced ripening in the banana 330 

pulp (Zhu et al. 2011). Also, the rice DNA-binding protein OsBP-5 forms a heterodimer with 331 

OsEBP- 89, an ethylene-responsive element-binding protein that negatively regulates GBSSI 332 

expression (Zhu et al. 2003). 333 

ABA treatment can promote AGPase and SS activity and decrease α-amylase and β-amylase (Liu 334 

et al. 2018b). ABA regulates sucrose import into the developing endosperm leading to a 335 

repression of AGPS1a, AGPL1, SUT1, SuSy2, GBSSI, SSI, SBEI, PUL1 and ISA1genes 336 

(Mukherjee et al. 2015) (Fig 3). Microbial volatiles may promote the accumulation of starch in 337 

leaves via a photoreceptor-mediated control (Li et al., 2011a). The transcriptional and post-338 

translational regulation network may involve NTRC-mediated changes in the redox status of 339 

plastidial enzymes (Li et al., 2011a). 340 

An ethylene-responsive factor, ZmEREB156 is involved in the regulation of ZmSSIIIa in 341 

response to the synergistic effect between Suc and ABA (Huang et al. 2016). An ethylene 342 

receptor, ETR2, increases starch accumulation in the internodes of rice (Wuriyanghan et al. 343 

2009). Overall, it can be said that the expression of many starch genes is strongly hormone-and 344 

sugar -regulated (Fig 3). 345 

 346 

Transcription factors involved into the regulation of starch metabolism 347 

The identification of transcription factors directly involved in the regulation of starch enzymes 348 

have been made through different strategies (mutant characterization & coexpression networks) 349 

(Table 1 and Table 2).  350 

 351 

There are several interesting examples of transcriptional correlation between photosynthesis and 352 

starch biosynthesis. In maize, ZmDOF1 enhances transcription from the C4 phosphoenol 353 

pyruvate carboxylase (PEPC) promoter and ZmDOF2 blocks this transactivation and represses 354 

PEPC expression (Yanagisawa, 2000) (Fig 1). An effect on gene expression was also described 355 

for FLOURY ENDOSPERM2 (FLO2) in rice seeds by mutant analysis (She et al., 2010). In 356 

sweet potato, a DOF protein called SRF1 was found to have an indirect positive effect on starch 357 

synthesis (Tanaka et al., 2009) (Fig 1). In switchgrass, PvBMY1 (BioMass Yield 1) and 358 
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PvBMY3 (BioMass Yield 3) regulate photosynthesis and starch synthesis (Ambavaram et al., 359 

2018).   360 

Transcriptional regulators of sucrose degradation 361 

SRF1 negative regulates the vacuolar invertase gene (Ibbfruct2) (Tanaka et al., 2009). In 362 

cassava, MeERF72 is a negative regulator of MeSus1 (Liu et al., 2018a). In arabidopsis, AtSUS2 363 

and AtSUS3 genes are down regulated by LEC2 (Angeles-Núñez and Tiessen, 2012). In maize, 364 

ZmPTF1 regulates sus1, sus2, sh1B and two invertase genes (Li et al., 2011c). ZmbZIP91 lowers 365 

osmotic pressure by consuming sucrose in the maize endosperm, thus increasing sucrose fixation 366 

from the source to the sink (Chen et al., 2016). 367 

 368 

Transcriptional control of storage starch in tubers and seeds 369 

In barley, SUSIBA2, a sugar-inducible TF belonging to the WRKY class, bound to the ISA1 370 

promoter and exhibited a similar expression pattern as ISA1 (Sun 2003) (Fig 3). Furthermore, 371 

WRKY4 and TIFY5a (a plant-specific TF) were co-expressed with starch synthesis genes in 372 

potato tubers (Van Harsselaar et al. 2017) (Fig 3). In rice it has been reported that OsSERF1 373 

influences grain filling and starch synthesis. It binds directly to the GBSSI promoter and 374 

regulates RPBF which in turn also directly binds to pGBSSI (Schmidt et al. 2014). OsSERF1 can 375 

also negatively regulate the expression of AGPL2, SSI, SSIIIa and GBSSI (Schmidt et al. 2014) 376 

(Fig 3). 377 

 378 

Transcriptional regulators of sucrose degradation 379 

In sweet potato, SRF1 negatively regulates the vacuolar invertase gene (Ibbfruct2) (Tanaka et al. 380 

2009). In cassava, MeERF72 is a negative regulator of MeSus1 (Liu et al. 2018a). In 381 

Arabidopsis, AtSUS2 and AtSUS3 genes are down regulated by LEC2 (Angeles-Núñez and 382 

Tiessen 2012). In maize, ZmPTF1 regulates sus1, sus2, sh1B and two invertase genes (Li et al. 383 

2011c). ZmbZIP91 lowers osmotic pressure by consuming sucrose in the maize endosperm, thus 384 

increasing sucrose fixation from the source to the sink (Chen et al. 2016). Mutant analysis 385 

determined that FLOURY ENDOSPERM2 (FLO2) altered the expression of SUS and other 386 

genes of sucrose-starch metabolism in rice seeds (She et al. 2010). FLO2 harbors a 387 

tetratricopeptide repeat motif mediating protein-protein interactions rather than acting itself as a 388 

TF (Fig 3). 389 

 390 

Co-expression networks reveal rRegulatory modules of starch genes 391 

In addition to mutant studies, coexpression networks have been analyzed in 392 

arabidopsisArabidopsis, rice and maize (Tsai et al. 2009; Fu and Xue 2010; Bumee et al. 2013; 393 

Chen et al. 2016). Genes constrained to a specific tissue and genes that are co-regulated across 394 

different samples, have been identified by simple linear correlation of transcript abundances 395 

(Aoki et al. 2007). Co-expression analysis is a powerful tool to identify genes, that regulate 396 

specific metabolic pathways, in a systematic manner. This analysis assumes that genes with 397 

similar expression patterns may be functionally associated (Yonekura-Sakakibara et al. 2008). A 398 
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novel photoperiod regulatory mechanism has been coined as translational coincidence (Seaton et 399 

al. 2018). In maize, a co-expression network was constructed using data from 60 different 400 

stages/tissues of the inbred genotype B73. This constitutes a ’developmental’ network that 401 

characterizes the gene expression pattern of the organs of that crop plant. One example was the 402 

identification of ZmbZIP91 which regulates the expression of other starch genes in maize (Chen 403 

et al. 2016). Another example was the identification of Rice Starch Regulator 1 (RSR1) by a co-404 

expression analysis (Fu and Xue 2010). RSR1 was found to be negatively co-expressed with 405 

starch synthesis genes and was experimentally confirmed as a modulator of starch metabolic 406 

enzymes in rice (Fig 3). 407 

 408 

Some modules have been classified for starch biosynthesis suggesting a general transcriptional 409 

co-regulation (Tsai et al. 2009). Some starch genes were co-expressed with transcription 410 

factorsTFs of the bZIP family such as MYB,   NAC (for NAM, ATAF, and CUC) or 411 

AP2/EREBP families (Fu and Xue 2010). In rice, a gene member of the AP2/EREBP family 412 

(RSR1) was the only one that negatively co-expressed with type I starch synthesis genes (Fu and 413 

Xue 2010) (Fig 3). In Arabidopsis, the Transcription Activation Factor1 (ATAF1) activates the 414 

expression of TREHALASE1 and leads to a sugar starvation metabolome through reduced 415 

trehalose-6-phosphate levels (Fig 2). Coordinated   transcriptional responses of starch metabolic 416 

genes triggered by ATAF1 largely overlap with expression patterns of carbon starved plants 417 

(Garapati et al. 2015). Starch levels were elevated in ataf1 knockout plants and reduced in 418 

ATAF1 overexpressors (Garapati et al. 2015). The expression of the TRE1, TPP5 and TPP6 419 

genes was alsois induced by bZIP11 (Ma et al. 2011) (Fig 21). In maize, ZmbZIP91 only binds 420 

to the promoters of pAGPS1, pISA1, pSSIIIa, and pSSI (Chen et al., 2016). ZmNAC36 was 421 

proven to be involved in starch synthesis (Zhang et al., 2014) (Fig 1). In arabidopsis, BAM5 is 422 

regulated by two TFs, WRKY DNA-binding domain 75 (WRKY75, At5g13080) and NAC 423 

domain-containing protein 96 (NAC096, At5g46590) (Bumee et al., 2013) (Fig 1). A gene 424 

member of the AP2/EREBP family (RSR1) was the only one that negatively co-expressed with 425 

type I starch synthesis genes (Fu and Xue, 2010) (Fig 1).  426 

 427 

In barley, SUSIBA2, a sugar-inducible TF belonging to the WRKY class, bound to the  ISA1 428 

promoter and exhibited a similar expression pattern as ISA1 (Sun, 2003) (Fig 1). Furthermore, 429 

WRKY4 and TIFY5a (a plant-specific TF) were co-expressed with starch synthesis genes (Van 430 

Harsselaar et al., 2017). In the Atidd5 and col mutants, the reduction of SS4 expression led to a 431 

significant increase in the number of starch granules (Ingkasuwan et al., 2012). Also it has been 432 

reported that SERF1 regulates grain filling and starch synthesis by directly regulating RPBF 433 

(directly binding to pGBSSI)  (Schmidt et al., 2014); but it can negatively regulate the expression 434 

of AGPL2, SSI, SSIIIa, and GBSSI and bind directly to the GBSSI promoter too (Schmidt et al., 435 

2014). CRCT positively controls the levels of starch by regulating the expression of a subset of 436 

genes responsible for starch synthesis (Fig 1). In rice, CRCT was shown to control the 437 



expression of BEIIa, OsAGPL1, OsAGPS1 and GPT2, all of which are classified as vegetative 438 

organ isoforms (Fukayama et al., 2015) (Fig 1). 439 

 440 

Cis-regulatory elements of starch metabolism 441 

Isogenes with highly variable promoteor sequences show the largest divergence in expression 442 

(Lemmon et al. 2014). The prominence of cis elements may indicate that cis regulation is a more 443 

effective evolutionary mechanism than trans regulation for adapting isogene expression to 444 

increase fitness under a changing environments (Lemmon et al. 2014). Therefore, a rational 445 

approach of cis element shuffling and targeted editing of promoteor motifs may yield better 446 

results for crop improvement than transgenic approaches. Instead of inserting new coding 447 

determining sequences (CDS) from heterologous species with strong viral promotors such as 448 

35S, it may be safer to shuffle promotoer elements and edit the untranslated regions (UTRs) of 449 

endogenous genes. A cisgenic finetunning may have less biosafety regulatory restrictions than 450 

the commercial transgenic strategy. In addition to motifs known to be present in C starvation-451 

induced genes (CACGTG/ACGT), motifs associated with the response to hormones, sugars, light 452 

and circadian regulation are also enriched in starch genes (Cookson et al. 2016; Li et al. 2018). 453 

Bioinformatic analysis revealed regulatory cis-elements putatively responsible for the spatio-454 

temporal pattern of AtSUS2 expression such as the W-box (ttgact) and SEF3 (aaccca) motifs 455 

(Angeles-Núñez and Tiessen 2012). An bZIP TF called REB interacts with the ACGT elements 456 

in the promoters of both Wx and SBE1 (CAI 2002). A cis-acting motif with a signature of 457 

[ATC][AC][CTG][ATC]AAAGN[AC] [GCA][ATC] was found in   20 out of 24 (~83 %) of 458 

group I genes (ISA, GWD1, SS3, GBS1, AMY3, AMY2, SBE3, ISA1, DPE2, SS2, SEX4-LIKE2, 459 

PHS1, PHS2, SEX4, BAM2, ISA3, SS4, SBE2, MEX1, SS1, GWD3, APS1, PGM1 Y DPE1); 460 

mutation of this cis-element induced APS1 expression in roots, indicating that this cis-element 461 

could mediate transcriptional repression (Tsai et al. 2009). A shifted electrophoresis band was 462 

only detected when ZmbZIP91 was incubated with the biotin-labelled ACTCAT element, which 463 

indicated that ZmbZIP91 is able to bind directly to ACTCAT elements but not TCATT elements 464 

(Chen et al. 2016). Some bZIP TFs (bZIP63/At5g28770, , bZIP11/At4g34590, 465 

bZIP53/At3g62640, bZIP2/At2g18160 and bZIP1/At5g49450) facilitate SnRK1 signaling via 466 

their recruitment to G-box motifs (Baena-González et al. 2007). In rice, OsbZIP58 was shown to 467 

bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, OsWx, OsSSIIa, 468 

OsSBE1, OsBEIIb, and OsISA2 (Wang et al. 2013) (Fig 31). OsbZIP20, REB/OsbZIP33, 469 

OsbZIP34, and OsbZIP58 can bind to both the C53 and Ha-2   fragments and may regulate the 470 

expression of SBE1 and Wx (Wang et al. 2013) (Fig 31). In maize, ZmbZIP91 only binds to the 471 

promoters of pAGPS1, pISA1, pSSIIIa, and pSSI (Chen et al. 2016). 472 

 473 

Co-expression networks 474 

Genes constrained to a specific tissue and genes that are co-regulated across different samples, 475 

have been identified by simple linear correlation of transcript abundances (Aoki et al., 2007). 476 

Co-expression analysis is a powerful tool to identify genes that regulate specific metabolic 477 
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pathways in a systematic manner. This analysis assumes that genes with similar expression 478 

patterns may be functionally associated (Yonekura-Sakakibara et al., 2008). A novel photoperiod 479 

regulatory mechanism has been coined as translational coincidence (Seaton et al., 2018). In 480 

maize, a co-expression network was constructed using data from 60 different stages/tissues of the 481 

inbred genotype B73. This constitutes a ’developmental’ network that characterizes the gene 482 

expression pattern of the organs of that crop plant. One example was the identification of 483 

ZmbZIP91 which regulates the expression of other starch genes in maize (Chen et al., 2016). 484 

Another example was the identification of Rice Starch Regulator 1 (RSR1) by a co-expression 485 

analysis (Fu and Xue, 2010).  RSR1 was found to be negatively co-expressed with starch 486 

synthesis genes and was experimentally confirmed as a modulator of starch metabolic enzymes 487 

in rice.  488 

Perspectives to identify transcription factorTFs related to plant yield 489 

Identification of all transcription factorTFs and cis-elements would enable a future strategy of 490 

rational metabolic design in order to turn on starch synthesis in tissues that lack starch (Tsai et al. 491 

2009). Increasing crop yield has remained one of the main goals of plant breeding. The fine-492 

tuning of CRCT expression in transgenic rice may contribute to the future development of crop 493 

varieties optimized for biorefinery purposes (Morita et al. 2015). In the domestication of maize 494 

from teosinte, starch metabolism in the grains was highly correlated with yield and harvest index. 495 

Many efforts have been made to increase yield by modifying the regulatory properties of key 496 

starch metabolism enzymes (Smidansky et al. 2002; Smidansky et al. 2003; Smith 2008; Li et al. 497 

2011b; Kang et al. 2013). But several first attempts have failed. In order to achieve a substantial 498 

increase in the rate of starch synthesis, the expression of a large set of enzymes and transporters 499 

need to be activated simultaneously in the pathway. This is not a simplistic one-enzyme strategy 500 

as in the first generation of transgenic plants. We need to elucidate all transcription factorTFs 501 

involved in the regulation of starch metabolic enzymes. Master regulators at the post-502 

transcriptional level have been found such as TOR1 and SNRK1 (sucrose and energy signaling). 503 

We still need to find master switches at the transcriptional level for starch metabolism. The 504 

possible existence of transcriptional "master switches" for starch is an idea not yet widely 505 

accepted among colleagues. Currently, it is assumed that starch can be synthesized whenever 506 

there is light (energy) and enough CO2 inside photosynthetic leaves, or whenever enough oxygen 507 

(energy), sucrose and hormones are supplied to storage organs. However, microscopy reveals 508 

that not all cells make starch, thus we wonder why some differentiated cells are full of it while 509 

others completely lack it.  510 

With the advantage of new transcriptomic technologies, it will be possible to build regulatory 511 

networks that can help to elucidate the transcription factorTFs behind the expression patterns of 512 

starch metabolic genes. But we must solve it the old problem arises as when studying 513 

metabolism, that whole organs and cell mixtures are homogenized and analyzed in bulk. 514 

Subcellular analysis of metabolism is needed to pinpoint key regulation sites. For example, 515 

detailed subcellular inspection using fluorescent microscopy allowed to distinguish the metabolic 516 

source of blue glow in banana leaves, fruit skin and pulp (Tiessen 2018). When epidermis cells 517 
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are mixed with stomatal, palisade and mesophyll cells, it will turns then impossible to elucidate 518 

all transcription factorTFs reliably that are responsible for the metabolic differences among those 519 

cells. Some cells have chlorophyll, sugars and starch while other not. Therefore, single cell 520 

transcriptomic data needs to be generated urgently to better understand regulation of starch 521 

metabolism in plants. Both metabolites and transcripts should be measured in the same samples 522 

always. In addition to co-expression networks, we should also take more advantage of other 523 

strategies such as yeast one hybrid and yeast two hybrid to uncover the regulatory network 524 

behind of each metabolism. Currently, there are many Arabidopsis mutant reports describing TFs 525 

altering flower development or plant morphology, whereas so much remains unknown about 526 

similar TFs regulating primary metabolism. In crop plants providing abundant food supply such 527 

as maize, tThere is still hope to find some master transcription factorsTFs controlling the energy 528 

pathway.  529 

 530 

Conclusions 531 

This review highlighted the importance of distinguishing different types of biological networks, 532 

namely metabolic networks and transcriptional regulatory networks (Fig 4). Comparisons 533 

between animal and plant transcriptional networks revealed differences in the number of genes, 534 

size of the proteins and the regulatory hierarchies. A comprehensive list of enzymes and 535 

chemical reactions that are involved in starch metabolism in plants was provided (Tables 1-2). 536 

The review focused on transcription factorTFs and cis-regulatory elements that are relevant for 537 

starch synthesis and degradation. Targeted mutations of cis elements may become a breeding 538 

tool in the near future. Genetic diversity may be increased by a strategy of "rational shuffling of 539 

minimal promotor elements". Detailed information about all relevant transcription factorTFs and 540 

regulatory motifs may improve plant sink strength, crop yield and food quality. 541 
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Figure Legends 858 

 859 

Figure 1. Overview of starch enzymes. Starch metabolism is a network of biochemical reactions 860 

that is orchestrated by some key enzymes such as ADP-glucose pyrophosphorylase (AGPase, 861 

EC:2.7.7.27), starch synthase (SS, EC:2.4.1.21), granule bound starch synthase (GBSS, 862 

EC:2.4.1.242), starch branching enzyme (SBE, EC:2.4.1.18), starch debranching enzyme (DBE, 863 

EC:3.2.1.196), α-amylase (AMY, EC:3.2.1.1), β-amylase (BAM, EC:3.2.1.2), and many other 864 

enzymes and factors (Lloyd et al. 2005; Comparot-Moss and Denyer 2009; Tetlow and Emes 865 

2011b; Stitt and Zeeman 2012b). Alkaline pyrophosphatase (PPase, E.C. 3.6.1.1) catalyzes the 866 

cleavage of pyrophosphate (PPi) to orthophosphate (Pi) inside the plastid shifting the 867 

equilibrium of the AGPase reaction towards starch synthesis (Gross and ap-Rees, 1986). 868 

Additional enzymes such as the alpha-glucan water dikinase (GWD, EC:2.7.9.4), the phospho-869 

glucan water dikinase (PWD, EC:2.7.9.5), disproportionating enzyme (DPE, EC:2.4.1.25), 870 

isoamylase (ISA, EC:3.2.1.68), and α-glucan phosphorylase (PHS, EC:2.4.1.1) are also 871 

involved in the breakdown of starch (Streb and Zeeman 2012). Membrane transporters 872 

participate in the metabolic network connecting several subcellular compartments such as the 873 

ATP transporter (ATT), hexose-phosphate translocator (HPT), glucose translocator (GLT) and 874 

maltose exporter (MEX1) (Purdy et al. 2013; Ryoo et al. 2013; Stritzler et al. 2017; Liang et al. 875 

2018). Cytosolic enzymes are involved such as invertase (INV, EC:3.2.1.26), sucrose synthase 876 

(SUS, EC:2.4.1.13), hexokinase (HK, EC:2.7.1.1), fructokinase (FK, EC:2.7.1.4), glucose-6-877 

phosphate isomerase (PGI, EC:5.3.1.9) and phosphoglucomutase (PGM, EC:5.4.2.2) (Bahaji et 878 

al., 2015; Stitt and Zeeman, 2012a; Tetlow and Emes, 2011b, 2014). 879 

In potato tubers, the adenylate-translocator imports ATP from the cytosol in counter exchange 880 

with ADP and AMP and thus provides the energy equivalents for starch synthesis (Tjaden et al., 881 

1998). In sink organs, cytosolic sucrose is converted to fructose and UDP-glucose (UDPglc) 882 

through SUS in a reversible reaction (Morell and ap-Rees, 1986; Geigenberger and Stitt, 1993; 883 

Zrenner et al., 1995). Using inorganic pyrophosphate (PPi) in the cytosol, fructose and UDPglc 884 

are finally processed to hexose-phosphates that can be partitioned to maintain both respiration 885 

and starch synthesis. Thereby UDP is regenerated for the SUS reaction. In potato tubers, G6P 886 

is imported to the amyloplast by an hexose phosphate translocator (HPT) (Schott et al., 1995; 887 

Kammerer et al., 1998) and converted to glucose-1-phosphate (G1P) by plastidic 888 

phosphoglucomutase (Fernie et al., 2001b). 889 

Abreviations: Fru, fructose; Glc, glucose; Fru6P, fructose-6P; UDP-Glc, UDP-glucose; Glc1P, 890 

glucose-1P; Glc6P, glucose-6P; ADP-Glc, ADP-glucose. Enzymes are in dark green: sus1, 891 

sus2, and sus3, sucrose synthase isoform 1, 2, and 3; fk, fructokinase; pgi, glucose-6-892 

phosphate isomerase; pgm, phosphoglucomutase; agp, ADP-glucose pyrophosphorylase; 893 

agpS, agp small subunit; agpL, agp large subunit; ssI, ssII, ssIII and ssIV, starch synthase type 894 

I, II, III and IV; pho, phosphorylase; sbeI, sbeII, starch branching enzyme I, II; isa1, isa2, isa3, 895 

isoamylase isoform 1, 2, 3; pul, pullulanase; wx (gbss1), granule bound starch synthase 1; Ida1, 896 

limit dextrinase 1; amy3, alpha-amylase 3; bam1, bam2, bam3, bam5, beta-amylase isoform 1, 897 

2, 3, 5; sex4, starch excess 4; lsf2, like sex four 2; gwd, glucan water dikinase; pwd, 898 

phosphoglucan water dikinase; phs1, plastidial starch phosphorylase 1; dpe1, dpe2, 899 

disproportionating enzyme 1, 2; glct, glucose transporter; mex1, maltose exporter 900 
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 902 

Figure 21. Starch metabolism and regulatory transcription factors (TFs)Regulatory factors of 903 

starch metabolism in leaves. Metabolites are in black letters while : Fru, fructose; Glc, glucose; 904 

Fru6P, fructose-6P; UDP-Glc, UDP-glucose; Glc1P, glucose-1P; Glc6P, glucose-6P; ADP-Glc, 905 

ADP-glucose. Enzymes are in dark green: sus1, sus2, and sus3, sucrose synthase isoform 1, 2, 906 

and 3; fk, fructokinase; pgi, glucose-6-phosphate isomerase; pgm, phosphoglucomutase; agp, 907 

ADP-glucose pyrophosphorylase; agpS, agp small subunit; agpL, agp large subunit; ssI, ssII, 908 

ssIII and ssIV, starch synthase type I, II, III and IV; pho, phosphorylase; sbeI, sbeII, starch 909 

branching enzyme I, II; isa1, isa2, isa3, isoamylase isoform 1, 2, 3; pul, pullulanase; wx (gbss1), 910 

granule bound starch synthase 1; Ida1, limit dextrinase 1; amy3, alpha-amylase 3; bam1, bam2, 911 

bam3, bam5, beta-amylase isoform 1, 2, 3, 5; sex4, starch excess 4; lsf2, like sex four 2; gwd, 912 

glucan water dikinase; pwd, phosphoglucan water dikinase; phs1, plastidial starch 913 

phosphorylase 1; dpe1, dpe2, disproportionating enzyme 1, 2; glct, glucose transporter; mex1, 914 

maltose exporter 1. TFs are in blue or red color indicating activation or repression. 915 

Abbreviations: AGPase, ADP-glucose phyrophosphorylase; AtATAF1, Arabidopsis thaliana 916 

Transcription Activation Factor;  AtCCA1, Arabidopsis thaliana CIRCADIAN CLOCK 917 

ASSOCIATED 1; AtCOL, Arabidopsis thaliana Constant-like; AtIDD, Arabidopsis thaliana 918 

Indeterminate domain; AtLHY, Arabidopsis thaliana LATE ELONGATED HYPOCOTYL; ATP, 919 

Adenosine triphosphate; BAM, beta-amylase; BE, Branching enzyme; bZIP11, basic leucine 920 

zipper TF 11; CRCT, CO2 Responsive CCT protein; GBSS, Granule bound starch synthase; 921 

Glc, Glucose; GPT2, Glucose-phosphate translocator 2; HP, Hexose-phosphates; LSF, LIKE 922 

SEX FOUR; NAC96, NAC domain TF 96; PHS1, α-glucan phosphorylase 1; PPi, 923 

Pyrophosphate inorganic; PvBMY, Pisum sativum BiomassYield TF; S6P, Sucrose-6P; SEX, 924 

Starch excess; SS, Starch synthase; T6P, Trehalose-6P; TPP, Trehalose pPhosphatase; TRE1, 925 

Trehalase 1; WRKY75, WRKY domain TF; ZmDOF, Zea mays DNA binding with one finger TF. 926 

ERF72, Ethylene responsive factor 72; PBMY1, PBMY3, BioMass Yield 1, 3; EREB156, 927 

Ethylene response element binding protein 156; bZIP91, basic leucine zipper TF 91; CRCT, 928 

CO2 Responsive CCT protein; NAC36, NAC domain TF 36; SERF1, Salt-responsive ERR1; 929 

RPBF, rice prolamin box binding factor; bZIP58, bZIP TF 58; NAC96, NAC domain TF 96; 930 

WRKY75, WRKY domain TF; DOF1, DOF2, DNA binding with one finger 1,2; LEC2, Leafy 931 

cotyledon 2; IDD5,IDD8,  Indeterminate domain 5, 8; COL, Constant-like; RSR1, Rice starch 932 

regulator 1; SRF1, Storage root factor DOF TF; ETR2, Subfamily II ethylene receptor; BP-5, 933 

MYC-like TF; BP-89, Apetala2/EREB; SUSIBA2, Sugar signaling in barley. 934 

 935 

Figure 3. Regulatory factors of starch metabolism in storage organs. TFs are in blue or red 936 

color indicating activation or repression. Abbreviations: AtLEC2, Arabidopsis thaliana Leafy 937 

cotyledon 2; BP-5, MYC-like TF; BP-89, Apetala2/EREB; ETR2, Subfamily II ethylene receptor; 938 

Fru, Fructose; Glc, Glucose; HP, Hexose-phosphates; HvSUSIBA2, Hordeum vulgare Sugar 939 

signaling in barley 2; IbSRF1, Ipomoea batatas Storage root factor DOF 1; MeERF72, Manihot 940 

esculenta Ethylene responsive factor 72; OsbZIP58, Oryza sativa basic leucine zipper TF 58; 941 

OsFLO2, Oryza sativa FLOURY ENDOSPERM2; OsRPBF, Oryza sativa Rice prolamin box 942 

binding factor; OsRSR1, Oryza sativa Rice starch regulator 1; OsSERF1, Oryza sativa Salt-943 

responsive ERR1; SRF1, Storage root factor DOF TF; StTIFY5a, Solanum tuberosum TIFY 944 

domain 5a; StWRK4, Solanum tuberosum WRK4, SUS, Sucrose synthase; ZmbZIP91, Zea 945 



mays basic leucine zipper TF 91; ZmEREB156, Zea mays Ethylene response element binding 946 

protein 156; ZmNAC36, Zea mays NAC domain TF 36; ZmPTF1, Zea mays Pi starvation-947 

induced transcription factor 1. 948 

 949 

Figure 42. Regulation networks in plants. (A) Metabolic network. (B) Transcriptional network. 950 

(C) Gene composed of coding determining sequence (CDS) and promoteor region containing 951 

transcription factor binding elements (D) gene regulation network with high hierarchy (animals). 952 

(E) gene regulation network with low hierarchy (plants). 953 


