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ABSTRACT
Background. DNA methylation, an important epigenetic mark, is well known for its
regulatory role in gene expression, especially the negative correlation in the promoter
region. However, its correlation with gene expression across genome at human
population level has not been well studied. In particular, it is unclear if genome-wide
DNA methylation profile of an individual can predict her/his gene expression profile.
Previous studies were mostly limited to association analyses between single CpG site
methylation and gene expression. It is not known whether DNA methylation of a gene
has enough prediction power to serve as a surrogate for gene expression in existing
human study cohorts with DNA samples other than RNA samples.
Results. We examined DNA methylation in the gene region for predicting gene
expression across individuals in non-cancer tissues of three human population datasets,
adipose tissue of theMultiple TissueHuman Expression Resource Projects (MuTHER),
peripheral blood mononuclear cell (PBMC) from Asthma and normal control study
participates, and lymphoblastoid cell lines (LCL) from healthy individuals. Three
predictionmodels were investigated, single linear regression, multiple linear regression,
and least absolute shrinkage and selection operator (LASSO) penalized regression. Our
results showed that LASSO regression has superior performance among these methods.
However, the prediction power is generally low and varies across datasets. Only 30
and 42 genes were found to have cross-validation R2 greater than 0.3 in the PBMC
and Adipose datasets, respectively. A substantially larger number of genes (258) were
identified in the LCL dataset, which was generated from a more homogeneous cell
line sample source. We also demonstrated that it gives better prediction power not to
exclude any CpG probe due to cross hybridization or SNP effect.
Conclusion. In our three population analyses DNA methylation of CpG sites at gene
region have limited prediction power for gene expression across individuals with linear
regression models. The prediction power potentially varies depending on tissue, cell
type, and data sources. In our analyses, the combination of LASSO regression and all
probes not excluding any probe on the methylation array provides the best prediction
for gene expression.
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BACKGROUND
DNA methylation has long been recognized as an important epigenetic modification
in regulating gene expression (Razin & Riggs, 1980). This process often occurs at CG
dinucleotides sites (CpG sites), adding a methyl group to the cytosine residue (You & Jones,
2012). In mammalian genomes, more than 70% of CpG sites are methylated (Jabbari &
Bernardi, 2004). Many CpGs are clustered into CpG islands and more than 30,000 CpG
islands have been identified in the human genome, most of which are located in promoter
region and are hypo-methylated (Jeziorska et al., 2017). The level of DNA methylation at a
CpG site is often correlated with that of neighbouring CpG sites and influenced by other
genome features, such as genome position and regulatory elements. When combined,
these genome features can effectively predict methylation level of CpG sites in the genome
(Zheng et al., 2017).

The regulatory role of DNA methylation on gene expression has traditionally been
studied with a small number of CpG sites in a limited number of genes. The more recent
application of microarrays and next generation sequencing enables large-scale analysis of
DNA methylation and gene expression across the whole genome (Krueger et al., 2012).
However, most human genome-wide methylation and expression studies in non-cancer
tissues have small sample sizes for comparing controlled groups. Only a limited number of
studies profiled both genome-wide DNAmethylation and gene expression in larger human
populations and examined their relationship across individuals. Del Rey et al. (2013)
studied the genome-wide DNA methylation and gene expression in 83 low-risk subtypes
of Myelodysplastic syndrome (MDS) patients and 36 controls using microarrays. They
found negative correlations between methylation and gene expression across individuals
in a large proportion of differentially expressed and differentially methylated genes, but
they also uncovered substantial positive correlations. In another study of 648 twins, overall
negative correlations were found in the adipose tissue, promoter region (−0.018), gene
body (−0.013) and 3-prime UTR (−0.007) (Grundberg et al., 2013). More recently,Wagner
et al. (2014) profiled the genome wide DNA methylation and gene expression in forearm
skin fibroblast among 62 unrelated individuals. They observed that the association between
gene expression and methylation is not always negative in promoter region or positive in
gene body (Yang et al., 2014).

The complex relationship among DNA methylation, gene expression, and genetic
variants in human populations has also attracted substantial research attention. Bell et al.
(2011) investigated the genetic controls for both methylation QTL (mQTL) and expression
QTL (eQTL) using 77 human lymphoblastoid cell lines (LCLs) from theHapMap collection.
They identified hundreds of mQTLs and eQTLs and showed that these two types of QTLs
overlap significantly. Gutierrez-Arcelus et al. (2013) further examined the relationship
among genetic variants, DNA methylation, and gene expression in three cell types of
umbilical cord samples from 204 newborn babies and found that the relationship between
DNA methylation and gene expression across individuals has a different process from that
across genes with in a genome. The inter-individual relationship is much less clear in terms
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of negative regulation. Both active and passive roles are played by DNA methylation in
regulating gene expression.

Unlike genome-wide DNA methylation, the inter-individual relationship between
genetic variants and gene expression in human populations has been well-studied in both
eQTL identification (Deelen et al., 2015) and gene expression prediction (Xie et al., 2017;
Zeng, Zhou & Huang, 2017). Predicted gene expression is also used as an instrument in
genome wide association studies to reduce multiple testing and identify associated genes
(Gamazon et al., 2015). Similar studies inDNAmethylation is lacking since previous studies
were mostly limited to association analyses between single CpG site methylation and gene
expression. It is not known whether DNA methylation of a gene has enough prediction
power when all CpGs are considered together to serve as a surrogate for gene expression
or enable gene expression to be an instrument in genome wide methylation studies in
human populations. In this study, we examine the DNA methylation and gene expression
relationship in three large human datasets. We determine the overall relationship between
DNA methylation and gene expression across individuals for each gene and evaluate the
predictive potential of DNA methylation data for gene expression. We also demonstrate
that a penalized regression improves the overall prediction.

METHODS
Datasets
Adipose dataset
This dataset is from the MuTHER study, consisting of 856 female European-descent
individuals enrolled in the TwinsUK Adult Twin Registry. The quartile normalized gene
expression and DNA methylation data from subcutaneous fat were downloaded from
ArrayExpress (http://www.ebi.ac.uk/arrayexpress/). The gene expression data (accession
number E-TABM-1140) were generated for 25,160 genes using IlluminaHumanHT-12 v3.0
on 825 individuals. The log2-transformed signals were quantile normalized for each tissue
followed by quantile normalized across the whole population (Grundberg et al., 2012). The
DNA methylation data (accession number E-MTAB-1866) were generated using Illumina
Infinium Human Methylation 450 from 649 female twins. The methylation beta values
were already quantile normalized for each type of probe, ranging from 0 (unmethylated)
to 1 (total-methylated).

PBMC dataset
This dataset was downloaded from Gene Expression Ominbus (GSE40736). It includes 194
inner-city children with 97 cases of atopy and persistent asthma and 97 healthy controls.
All the study participants were 6 to 12 years old from African American, Dominican-
Hispanic andHaitian-Hispanic background (Yang et al., 2015).DNAmethylation datawere
generated using Illumina’s Infinium Human Methylation450k BeadChip. The normalized
methylation M value matrix was downloaded from ftp://ftp.ncbi.nlm.nih.gov/geo/series/
GSE40nnn/GSE40576/matrix/. Gene expression data were generated for 23,612 genes using
Nimblegen Human Gene Expression arrays (12 × 135 k). The normalized data matrix was
downloaded from ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE40nnn/GSE40732/matrix/.
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According to the publication, one outlier sample has been removed after principle
component analysis, SWAN normalization was used for methylation data. Log2
transformation and RMA normalization were used for gene expression data. For each
gene, expression level was standardized across samples.

LCL dataset
The LCL dataset was generated from Lymphoblastoid cell lines (LCL) of 280 healthy
individuals (96 Han Chinese-American, 96 Caucasian-American and 95 African-
American). Data were downloaded from GSE23120 and GSE36369. Gene expression
microarray data were generated using Affymetrix Human Genome U133 Plus 2.0 Array,
which contains 38,500 well-characterized human genes covered by 54,000 probe sets
(https://www.affymetrix.com/support/technical/datasheets/human_datasheet.pdf) DNA
methylation data were generated using Infinium HumanMethylation450 BeadChip
platform. Quantile normalized M values were used in the analyses.

Dataset cleaning and filtering
To assess the DNA methylation effect in prediction gene expression, we defined the
‘‘methylation probes’’ as the 344,303 probes in Table S1 of Grundberg’s (2012) paper. The
probes on the methylation array but excluded from Table S1, which have potential SNP
effects or cross hybridization effects, are termed ‘‘S&C probes’’. The combinations of these
two types of probes are termed ‘‘all probes’’. The Adipose dataset has 32,478 missing values
in the DNA methylation data. Samples with missing values were excluded from regression
analysis of the respective gene. Among the 485,679 probes in the dataset, 344,201 probes
remained in Adipose dataset after filtering. For the PBMC dataset, 344,180 out of the
485,461 probes in the dataset remained after filtering and 344,202 out of 485,578 probes
remained for the LCL dataset. In order to make the method comparable and the analysis
consistent, only genes that have the LASSO models were used, 8040 genes and 149,152
CpG sites in Adipose dataset, 4,252 genes and 73,553 CpG sites in PBMC dataset and 7514
genes and 143,599 CpG sites in LCL dataset (Table S1).

Modelling the relationship between gene expression and DNA
methylation
CpG probes were mapped to genes using UCSC RefGene annotation. Gene expression and
DNA methylation data for each gene were extracted using in-house perl script. Since there
was no missing value for methylation of the PBMC and LCL dataset, all samples were used
in the regression analysis.

We used three types of regressions, single linear regression, multiple regression, and
least absolute shrinkage and selection operator (LASSO) regression (Tibshirani, 1996), to
model the linear relationship between gene expression and DNA methylation. Squared
correlation (R2) between predicted and observed data was used to compare the three
types of regressions. In the single linear regression, each CpG site was modeled separately
to predict gene expression level. The CpG site that provides maximum R2 was used to
represent each gene. In multiple regressions, all the CpG sites in each gene were used as
predictors and the R2 was calculated. In the LASSO regression with default parameters,
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all CpG sites were used to predict the gene expression. We used the GLMNET package
in R to fit the LASSO model in which penalized parameters were obtained using 10-fold
cross-validation to minimize the mean squared error, while the predictors and response
variables were all standardized.

Cross validation
In addition to calculating the R2 from fitting the models (fitting R2), we also conducted
five-fold cross validation to compare the prediction power of the three regression models
using the validation R2 (R2.cv). Specifically, the samples were randomly separated into
training set (4/5 of data) and testing set (1/5 of data). The procedure was iterated 10 times
and the mean R2 of the 10 five-fold cross validations was used as our final cross validation
R2 for each model. For single regression, cross validation was conducted for each CpG
site and the maximum R2 was used for each gene. For LASSO regression analysis, we first
obtained the optimal penalty parameter using ten-fold cross validation and then used
another five-fold cross validation to evaluate the predictive performance of the model.

Note that we calculated fitting R2 in the LASSO cross validation models. We used the
entire datasets as testing in the LASSO cross validation models in order to obtain the fitting
R2 in a fashion consistent with the multiple and single cross-validation models. In this case,
all the R2 values in the paper are squared correlation of the predicted and the true values
in the training set.

Model comparisons on significant genes
We first identified genes that showed overall model prediction p values less than 0.0001 in
multiple regressions and then compared the three regression models on these genes.

Gene Ontology (GO) and pathway enrichment analysis
For top 2,000 genes with highest R2, we use The Database for Annotation, Visualization and
Integrated Discovery (DAVID ) at https://david.ncifcrf.gov/ (Huang, Sherman & Lempicki,
2008) to conduct GO term enrichment analysis based on modified Fisher Exact Test. The
background genes were set to be the genes on the expression array, HumanHT-12_V3_0_
R2_11283641_A. The significantly overrepresented GO terms were selected based on the
EASE Score, which is the geometric mean of p-values on logarithm scale for the member
terms. We applied medium classification stringency in the DAVID website to our data.
‘‘GOTERM_BP_FAT’’ was used to obtain more information in biological processes of
the Gene Ontology enrichment analysis. ‘‘KEGG_PATHWAY’’ was selected for pathway
enrichment analysis in the same fashion. The most enriched GO terms and pathways with
low p-value or FDR were shown in the results.

Gene expression prediction using different type of probes on the
methylation microarray
The probes excluded by Table S1 of Grundberg’s (2012) paper were treated as probes
with SNP and/or hybridization effects (S&C probes). We compared these probes, the
methylation probes, and the combination of these two types of probes in predicting gene
expression.
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Analysis codes
We wrapped up our major analysis codes into a package at https://github.com/dorothyzh/
MethylXcan. It includes all three regressions and calculates the squared correlation for each
model. The package is written in R and Perl, and has been tested under linux or MACSOX
system. Users can use this package on the datasets described here or on their own data
after formatting their methylation data, expression profiling data, and annotation files as
specified by the package.

RESULTS
Association between single CpG methylation and gene expression is often conducted in
human populations when both transcriptome and methylome are profiled. In this study
we set out to find whether combining all CpG sites in a gene can better predict the gene
expression in a human population. We obtained three human datasets, an Adipose dataset
generated from subcutaneous fat tissue, a PBMC dataset from Childhood Asthma study,
and a lymphoblastoid cell line (LCL) dataset. To evaluate the predicting power of DNA
methylation on gene expression, we conducted three types of linear regression analyses,
single regression, multiple regression, and LASSO regression for each gene. Squared
correlation (R2) was used for model comparisons. To focus on DNAmethylation effect, we
first left out CpG probes that overlap SNPs or cross-hybridize to multiple locations (S&C
probes). In addition, since some genes fail to establish a LASSO model due to the lack of
predictive information in DNA methylation, we only focus on genes with valid LASSO
models for comparing different regression methods. In the three datasets, the total number
of genes varies from 26,736 to 32,946 after quality control and normalization. About 1/6
to 1/3 of these genes have valid LASSO models with slightly bigger numbers when S&C
probes are included (Table 1). In general, a large fraction of the genes with LASSO models
have prediction R2 greater than 0.1, but the number of genes quick reduces to hundreds
and tens when R2 increases to 0.2 and 0.3 (Table 1).

Multiple regressions using all methylation CpGs from a gene predict
gene expression the best in model fitting
As a reference, we first conducted association analysis on each methylation probe in
predicting gene expression using single regression. Most of the genes with valid LASSO
models have at least one significant CpG at nominal significance level of 0.05. For example,
in the Adipose dataset, 7,326 out of 8,040 genes have at least one CpG site significant at 0.05
level and 3460 out of 8040 genes have at least one CpG site significant at 0.0001. However,
the prediction power represented by the largest R2 in each gene is generally low. Only
19 genes have R2 greater than 0.3 and 486 genes have R2 larger than 0.1 when the most
predictive CpG site is considered (Table 1). Similar results were obtained from the PBMC
and LCL datasets, except that the PBMC dataset has a substantially smaller number of genes
with a CpG significant at 0.0001 level (582 out of 4,252 genes) although the distribution
of the estimated R2 is similar to that from the Adipose dataset. This could be due to the
smaller sample size or the nature of the PBMC tissue source. On the other hand, the LCL
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Table 1 The number of genes with prediction R2 larger than thresholds in single, multiple and LASSO regressions.

Dataset Regress
model

Model fitting R2 Cross validation R2 Genes w/
LASSOmodel

All genes

>0.1 >0.2 >0.3 >0.1 >0.2 >0.3

Single 486 87 19 106 16 2
Multiple 2,178 476 116 722 166 38Adipose

LASSO 1,702 360 113 827 179 42

8,040 26,736

Single 851 108 14 381 33 4
Multiple 3,358 1,163 382 746 109 30PBMC

LASSO 2,382 561 142 1,022 165 30

4,252 31,030

Single 1,753 465 126 419 82 21
Multiple 5,138 2,170 975 1,663 575 185

Methylation probes

LCL

LASSO 4,246 1,740 805 2,030 751 258

7,514 32,946

Single 591 115 33 103 21 5
Multiple 3,037 760 211 898 226 64Adipose

LASSO 2,283 536 178 1,008 259 76

8,864 26,736

Single 1,330 212 58 666 90 34
Multiple 4,455 1,902 694 994 197 64PBMC

LASSO 3,207 870 235 1,465 289 66

5,064 31,030

Single 1,888 533 155 425 88 32
Multiple 5,870 2,573 1,267 1,757 627 221

All probes

LCL

LASSO 4,646 2,029 999 2,155 840 335

7,498 32,946

Notes.
All genes, the total number of genes in a dataset after quality control and normalization; Genes w/LASSO model, the number of genes with valid LASSO models; All probes,
the combination of methylation probes and probes with cross-hybridization/SNP effects.

dataset has a larger number of genes with higher R2 from single CpG regression analysis,
which could be related to the homogeneous nature of cell lines.

Since multiple CpG sites from each gene were assayed on the methylation microarray,
we applied multiple linear regression to utilize all methylation CpG sites in the gene region
as predictors simultaneously. The R2 explained by the regression model did improve
substantially for the majority of genes compared with that from the single linear regression
(Fig. 1). As expected, the significant genes from multiple regression analyses tend to have
larger R2 compared with the non-significant genes. The improvement of R2 from the
multiple regression over single regress in the PBMC and LCL datasets is similar to that in
the Adipose dataset (Fig. 1).

Compared with multiple regressions, LASSO regression did not generate R2 quite as
high in all datasets (Figs. 1D–1F), which is also indicated by smaller number of genes with
R2 exceeding each threshold (Table 1). For example, the number of genes with R2 greater
than 0.2 decreased from 476 to 360 for the Adipose dataset, from 1,163 to 561 for the
PBMC datasets, and from 2,170 to 1,704 for the LCL dataset. Similar trend was observed
at the other two thresholds for all three datasets.

It is widely recognized that gene expression is negatively correlated with DNA
methylation level in the promoter region but often positively correlated with DNA
methylation level in gene body (Ball et al., 2009;Wu et al., 2010; Jones, 2012). The different
directions of correlation among CpG sites in the same gene may lead to perceptions that
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Figure 1 Goodness of fit R2 comparison among three regressionmodels. R2 values from multiple re-
gression are compared to those from single (top three panels) and lasso (bottom three panels) regressions
in three datasets, Adipose (A, D), PBMC (B, E) and LCL (C, F). R2 values shown here are on cubic root
scale for visualization clarity. ‘‘single’’, single linear regression with the most significant CpG site as predic-
tor; ‘‘multiple’’, multiple regression with all methylation CpG sites in a gene as predictors. Red points rep-
resent significant genes from multiple regressions at significance level of 0.0001. Blue solid line is the iden-
tity line and the dashed lines represent R2 of 0.1.

Full-size DOI: 10.7717/peerj.6757/fig-1

combining all CpG sites is not advantageous in the prediction of gene expression. However,
the multiple and lasso regressions can accommodate coefficients in different directions
without affecting prediction power. Nevertheless, we tested CpG sites from promoter
region and those from gene body for prediction separately in the LCL dataset. As expected,
neither performs as well as combined (Fig. S1).

LASSO regression shows better prediction in cross-validation
To better assess the accuracy of the predictive models, we performed 5-fold cross validation
on single, multiple regressions, and LASSO regressions to estimate the prediction R2. The
results showed that the LASSO regression produced much larger R2 values than the single
regression and less dramatic but discernible increases over multiple regressions (Fig. 2).
These differences are also reflected in the number of genes with R2 exceeding the three
thresholds. For example, 827 genes (10.29%) from the Adipose dataset have R2 greater
than 0.1 from LASSO regression, while 722 genes (8.98%) and 106 genes (1.32%) have
R2 greater than 0.1 from multiple regression and single regression, respectively (Table 1).
For genes with R2 greater than 0.3, LASSO regression has 42 genes (0.52%) while multiple
regression and single regression have 38 (0.47%) and 2 genes (0.02%), respectively. These
results indicate that penalized regression has better prediction than multiple or single
regressions in cross-validation. Cross validation tends to overcome bias and over-fitting
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Figure 2 Prediction R2 comparison among regressionmodels in cross validation. Cross-validation R2

from LASSO regression are compared to those from single regression (top three panels) and multiple re-
gression (bottom three panels) for three datasets, Adipose (A, D), PBMC (B, E) and LCL (C, F). Five-fold
validation was used for all regression models. R2 shown here are on cubic root scale for visualization clar-
ity. The red points represent the significant genes from multiple regressions (p< 0.0001). Blue solid line is
the identity line and the dashed lines represent R2 of 0.1. single.cv, cross-validation R2 of single regression;
multiple.cv, cross-validation R2 of multiple regression; cross-validation R2 of LASSO regression.

Full-size DOI: 10.7717/peerj.6757/fig-2

issues. As expected, cross-validation R2 values are generally lower than those from the
model fittings, which is reflected by the smaller number of genes with R2 values greater
than the R2 thresholds (Table 1). Similar results were obtained from the PBMC dataset and
the LCL dataset.

To make sure that the prediction R2 is larger than thoses from random chance,
we compared the cumulative R2 from the three datasets with those from the the null
distribution of correlations based on Fisher z-transfromation in quantile–quantile plots
(Fig. 3). All datasets showed that the observed R2 values are much larger than the expected
R2 values from random chance. In addition, the departure is the largest in the LCL
dataset followed by the Adipose dataset and the PBMC dataset when methylation probes
were considered, indicating that the LASSO models capture a larger proportion of the
transcriptome variability in the LCLdataset than in the other two datasets. This is potentially
due to the combination of sample size and nature of different tissues.

To rule out the possibility that prediction R2 is mainly driven by the variability of
gene expression and the variability of DNA methylation across individuals in the study
population, we first examined the correlation between the variability of gene expression
with R2 from LASSO regression. No obvious correlation was observed (Fig. S2). For
assessing the correlation between DNA methylation variability and prediction R2, we took
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Figure 3 The prediction R2 is beyond random chance. Sorted R2 values from three datasets, Adipose
(A, B), PBMC (C, D) and LCL (E, F), are compared with those from the null distribution of R2 based on
Fisher z-transformation (straight line). (A, C, E) are from methylation probes, after excluding probes that
have cross-hybridization or SNP effects. (B, D, F) are from all probes, the combination of methylation
probes and probes with cross-hybridization/SNP effects. Five-fold cross validation was used for LASSO re-
gression models.

Full-size DOI: 10.7717/peerj.6757/fig-3

the CpG with maximum R2 from single regression and examined the correlation between
its variability with the prediction R2 from LASSO regression. We only observed a potential
positive correlation in the Adipose dataset when the R2 is greater than 0.5, where there are
a small number of genes (Fig. S3).

Using all probes improves prediction power for gene expression
In order to evaluate DNAmethylation power in predicting gene expression, we first left out
a large proportion of probes potentially affected by genetic or cross-hybridization effects

Zhong et al. (2019), PeerJ, DOI 10.7717/peerj.6757 10/20

https://peerj.com
https://doi.org/10.7717/peerj.6757/fig-3
http://dx.doi.org/10.7717/peerj.6757#supp-1
http://dx.doi.org/10.7717/peerj.6757


(Table S1). However, using all probes on the array is preferred if our goal is to achieve
better prediction accuracy of gene expression. To evaluate the prediction power from all
probes, we included all available probes in LASSO regression and found that the overall
prediction power did increase compared to the models using only the methylation probes
(Fig. 3). We observed more genes with R2 values exceeding the thresholds (Table 1). In
addition, the largest R2 value is much larger when all probes are used compared to that
from only the methylation probes. For example, the largest R2 is 0.92 from all probes
compared to 0.74 from only methylation probes in the Adipose dataset. Similarly, the
largest R2 increases from 0.71 to 0.88 in the PBMC dataset and from 0.76 to 0.87 in the LCL
dataset. Furthermore, valid LASSO models are available for more genes when all probes
are used (Fig. S4).

The increase of prediction power on gene expression from all types of probes on the
methylation microarray suggests that there is contribution from the probes with potential
SNP effects or cross hybridization effects. To further assess the size and nature of their
contribution, we separately estimated the prediction power of the methylation probes, S&C
probes, and the combination of them (all probes). The results showed that the S&C probes
have independent prediction power from the methylation probes and the combination of
both has increased prediction power over the methylation probes alone (red points vs black
line in Figs. 4A, 4C and 4E). The prediction power from the S&C probes was also estimated
for genes with enough SNP probes to form a LASSO model and their prediction power
are mostly above zero (blue points in Fig. 4). The fact that the blue points are randomly
distributed instead of following the black line suggests that the two sources of R2 are not
correlated; therefore, the genetic effect and epigenetic effect do not seem to coexist in the
same genes. Figure 5 shows some examples of genes with large prediction powers from
either methylation probes or S&C probes. As expected, the methylation probes tend to
show continuous methylation values while the S&C probes tend to show categorical values
due to limited genotypes of the samples.

GO term analysis of better predicted genes
To examine the potential biological function of the genes showing relatively higher
predictability, we conducted gene ontology (GO) enrichment analysis using DAVID on
genes with R2 larger than 0.2 from LASSO regression of methylation CpGs. At false
discovery rate (FDR) of 0.01, cell adhesion, lipids metabolism, and regulation of immune
system are among the most significantly enriched terms in the Adipose dataset (Table S2),
which seem to be consistent with the previous findings for subcutaneous fat cells (Berg &
Scherer, 2005). For the PBMC dataset, the most significantly enriched terms are mostly
related to defense and immune functions, lymphocyte aggregation, T cell activation,
inflammatory response, as well as cell adhesion. These results appear to be reasonable
for atopy and persistent asthma blood cells. For the LCL data, some terms related to cell
adhesion, migration, communication, and morphogenesis are highly enriched. Same GO
term analyses were also conducted for R2 from all CpG probes and similar results were
obtained.
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Figure 4 Comparison of R2 from using methylation probes, S&C probes and all probes. LASSO re-
gression R2 values from three datasets, Adipose (A, B), PBMC (C, D) and LCL (E, F), were generated from
methylation probes (black line), S&C probes (probes with cross-hybridization/SNP effects) (blue points),
and all probes (the combination of methylation probes and probes with cross-hybridization/SNP effects)
(red points). The 95% confidence interval of R2 from methylation probes is shown as a grey shadow.

Full-size DOI: 10.7717/peerj.6757/fig-4

DISCUSSION
We examined the relationship between gene expression and DNA methylation across the
genome using data from three large human studies. We explored three linear regression
models for predicting gene expression and found that shrinkage based LASSO multiple
regression provides the best prediction. However, even with LASSO regression, the
methylation probes can predict expression in only a small proportion of genes with
moderate prediction power.We also demonstrated that using all probes on the methylation
array does improve prediction power to some degree.

Three types of regression models were examined in our study for their prediction
power evaluated by squared correlation (R2). The single linear regression is based only
on the best predictive CpG in each gene, therefore, has least prediction power. The
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Figure 5 Example genes with high prediction power. R2 is from LASSO regression models. Adipose,
PBMC and LCL are the three datasets. X-axis indicates the predicted expression levels from LASSO regres-
sion models; y-axis indicates observed expression levels for each dataset (methyl, methylation probes; all,
all probes).

Full-size DOI: 10.7717/peerj.6757/fig-5

multiple regression has increased power when all CpG sites in each gene are included as
predictors; however, it has substantial over-fitting problem for genes with large number
of CpGs. The shrinkage based LASSO regression overcomes the over-fitting problem
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without losing predictability. LASSO imposes sparsity among the coefficients and puts
constraint on the overall absolute values of the regression coefficients, which forces
certain coefficients to be zero. This property is beneficial in avoiding model overfit as
well as variable selection and model interpretability. In this study, not all expressed
genes have LASSO models because LASSO fails to select informative predictors in some
genes even with minimum penalization, which indicates that no predictive information
exists in the DNA methylation data at these genes. LASSO is not the only shrinkage-
based regression method. There are other penalty regression models, such as the Ridge
(Hoerl & Kennard, 1970), elastic net (Zou & Hastie, 2005), elastic net with rescaled-
coefficients and grouped lasso (Yuan & Lin, 2006; Meier, Van De Geer & Bühlmann,
2008). Further evaluation is needed for their merits in improving prediction in this
setting.

The prediction power from DNA methylation in our analysis seems to be much lower
than that from DNA sequence variants evaluated in different human tissues (Gamazon
et al., 2015). One potential reason for relative low prediction power we observed from
DNA methylation is the complex mechanisms of gene expression regulation. In addition
to DNAmethylation, transcription factors, histone modification (Verdin & Ott, 2015), and
non-coding RNAs (Janowski et al., 2005; Ting et al., 2005; Ting, McGarvey & Baylin, 2006;
Kaikkonen, Lam & Glass, 2011) all play critical roles in gene transcription regulation (Jones,
2015). Some more comprehensive tools, such as FEM (Jiao, Widschwendter & Teschendorff,
2014) and ROADMAP (Kundaje et al., 2015), may help integrate the influences of the
other factors on gene expression. Another potential reason for low prediction power of
methylation is that the landscape of DNAmethylation differs dramatically across cell types,
tissues (Lokk et al., 2014), ages (Teschendorff et al., 2010), and races (Song et al., 2015). The
relationship between gene expression and DNA methylation could also vary substantially
across these factors. The correlation between gene expression and DNA methylation from
bulk studies at population level encompasses all these variabilities; therefore, it is not
surprising to see lower prediction power in the PBMC and adipose datasets compared to
the LCL dataset. The potential of DNA methylation alone as surrogate for gene expression
is likely to be limited in general, especially in the tissues with mixed cell types, such as
PBMC, which is used widely in human population studies. The combination of DNA
methylation and genotype, should be more powerful for this purpose, as indicated by the
increased prediction power when SNP-containing probes were included in the prediction
models (Figs. 3 and 4). This can be a promising future direction.

CONCLUSIONS
We explored three regression methods to predict gene expression using DNA methylation,
single regressions, multiple regressions, and LASSO penalized regression. LASSO regression
reduces over-fitting and improved the prediction power. All three datasets we analysed
show relatively low prediction power. The better predictive genes are dataset specific and
their function varies in different tissues or cell types. Overall, we will recommend caution
for using one’s methylation profile to predict one’s transcriptome.
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List of Abbreviations

SNP single nucleotide polymorphisms
LASSO least absolute shrinkage and selection operator
R2 squared correlation
S&C the probes have potential SNP effects or cross hybridization effects
MuTHER Multiple Tissue Human Expression Resource Project
PBMC peripheral blood mononuclear cell
LCL lymphoblastoid cell
MDS myelodysplastic syndrome
GO gene ontology
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