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 25 

Abstract 26 

Morphological variation is strongly related to variation in the ecological characteristics and 27 

evolutionary history of each taxon. To explore how geographical variation in morphology is 28 

related to different climatic gradients and phylogenetic structure, we analyzed the variation of 29 

morphological traits (body size, bill, and wing) of 64 species of tyrant flycatchers (Tyrannidae) 30 

distributed in Mexico. We measured these morphological traits in specimens from biological 31 

collections and related them to the climatic and topographic data of each collection locality. We 32 

also calculated the phylogenetic structure of flycatcher assemblages of each locality in order to 33 

explore the influence of climatic variables and the phylogenetic structure over on the 34 

morphological variation of tyrant flycatchers, by means of linear mixed-effects models. We 35 

mapped the spatial distribution of the variation of morphological traits in relation to 36 

environmental gradients taking into account the phylogenetic structure. The climatic variables 37 

that better explained the morphological variation were those of temperature ranges (seasonality) 38 

and the results suggest that the phylogenetic clustering increases towards the highlands of Sierra 39 

Madre Oriental and Sierra Madre del Sur, and the lowlands of Balsas Depression. At For the 40 

regional assemblage, the spatial distribution of body size showsed a pattern coincident with the 41 

ecogeographical Bergmann’s rule, with an increasinge in size from south to north. In the tropical 42 

lowland forests assemblage, body size tend to increase in seasonally dry forests (western Mexico) 43 

and decrease in the humid ones (eastern Mexico). At In the assemblage of highland forests and 44 

other types of vegetation, morphological trait values increased. Phylogenetic structure helpeds to 45 

explain the variation of morphology at lower assemblagesthe assemblage level but not at the 46 

regional assemblagelevel. The patterns of trait variation along in the lowlands and highlands 47 

assemblages, suggest that parts of morphological variation is are explained in both by the 48 
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climatic gradients and by the lineage relatedness of communities. Overall, our results suggest that 49 

Mmorphological variation is best explained by a varied set of variables, and that regression 50 

models representing this variation and as well as integrating phylogenetic patterns at different 51 

community levels provide a new understanding into of the mechanisms underlying the links 52 

between among biodiversity, its geographical setting, and the environmental change. 53 

 54 

 55 

Introduction 56 

A long-standing goal in ecology and evolutionary biology is to understand the relationships 57 

among morphological diversity, evolutionary history, environment and geographic distribution. 58 

Environmental drivers of morphological diversity across geography have been extensively 59 

studied in many regions with different taxonomic groups, at different geographic, taxonomic and 60 

functional scales (Losos & Miles, 1994; Cavender-Bares et al., 2009; Kluge & Kessler, 2011; 61 

Violle et al., 2014; Jarzyna et al., 2015; Jarzyna & Jetz, 2016; Lawing et al., 2017; Schneider et 62 

al., 2017; Seeholzer et al., 2017; Phillips et al. 2018; Mazel et al., 2018). As a result of previous 63 

studies that analyze the role of environment and geography as promoters of morphological 64 

diversity, patterns of gradual variation of traits have been detected for many groups. Climate 65 

seems to be one of the main environmental promoters of morphological variation, strongly 66 

influencing the distribution and variation of morphological traits across species and regions (e.g. 67 

James, 1970; Graves, 1991; Kivelä et al., 2011; Maestri et al., 2016; Xu et al., 2017). However, 68 

the role of climate and other environmental variables is poorly understood. Even though many 69 

studies have demonstrated its associations with morphological traits, the question remains to 70 

what extent and by which mechanisms such associations are maintained and may influence 71 
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distribution patterns (Violle et al., 2014). It has been suggested that several variables may act 72 

simultaneously, promoting morphological variation at many taxonomic and geographic scales.  73 

 74 

Morphological diversity across species is driven by several ecological and evolutionary 75 

processes and is usually studied as the evolution of form and function, or ecomorphology (Losos 76 

& Miles, 1994; Ricklefs, 2012; Dehling et al. 2014; Seeholzer et al. 2017; Phillips et al. 2018). 77 

Also, variation in morphological diversity within communities can have effects in structuring 78 

broad-scale biogeographical patterns of species richness along climatic and geographical 79 

gradients (Deutsch et al., 2008; Cicero & Koo, 2012). Morphological variation is related to 80 

ecology and reflects a response to biotic and abiotic environmental factors, and it may determine 81 

species’ responses to climate change (Wainwright and Reilly, 1994; Pontarotti, 2010; Cicero & 82 

Koo, 2012). Climatic variables, such as temperature and precipitation, are recognized as major 83 

factors determining geographical patterns of morphological variation (Hawkins et al., 2007). For 84 

instance, bill size increases with higher temperatures, supporting the hypothesis that larger bills 85 

are an adaptation to release heat while minimizing evaporative water loss in hot, dry 86 

environments (Greenberg et al., 2012). In this way, overall bill size may be related to 87 

physiological responses to regional climates, and the season of critical thermal stress may vary 88 

geographically, even on relatively small spatial scales (Campbell-Tennant, Gardner & Kearney, 89 

2015; Danner and Greenberg, 2015).   90 

Other factors such as evolutionary history also have been found to determine geographical 91 

gradients in species variation (Jetz & Rahbek, 2002, Kissling et al., 2007).  For instance, habitat 92 

filtering is an ecological process by which species are eliminated from a community because of 93 

morphological or /ecological similarity with other established members of the community 94 

(Wainwright and Reilly, 1994). Under this interpretation, the variation of morphological 95 
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5 

 

variables across communities and geography is proportional to the amount of phylogenetic 96 

dissimilarity among communities (Pillar and Duarte 2010), taking into account that morphology 97 

is structured by phylogeny at the species level if there is phylogenetic signal. Morphological 98 

variation occurs within and across species, so the complex interaction of evolutionary history and 99 

environment makes it difficult to identify the underlying causes of broad scale patterns of 100 

variation (Endler, 1977; Ricklefs & Miles, 1994; Violle et al., 2014; Forister et al., 2015). 101 

The recognition of the promoters of broad scale patterns of morphological variation is 102 

challenging due to the differential response of organisms' traits to environmental variation and 103 

geographical settings (Violle et al. 2014). This limits our ability to elucidate the causes and 104 

consequences of the patterns of species’ morphological diversity. For instance, the geographical 105 

patterns of community structure and morphological variation in response to climatic gradients has 106 

shown contrasting effects of the same environmental variables (e.g. Forister et al., 2015; van de 107 

Pol et al., 2016; Lawing et al., 2017). To understand how morphological diversity arises, it is 108 

necessary to explore and quantify how species’ morphological traits are related to their ecology, 109 

how they vary geographically along environmental gradients, consider both large and small 110 

spatial scales in the same region, and account for the historical contingencies limiting the 111 

distribution of species assemblages and their traits (Cavender-Bares et al., 2009). In this sense, 112 

phylogenetic structure and distributional data provide the historical framework to quantify 113 

ecological, geographical and evolutionary patterns, in order to infer the processes that established 114 

them (Saito et al. 2016; Sobral & Cianciaruso 2016, Phillips 2018). Also, quantifying the 115 

geographical distribution of morphological variation may help disentangle trade-offs found in the 116 

relationship between morphology and environmental and phylogenetic variables. Then, analyses 117 

of the distribution of morphological variation are necessary for improving regional and global 118 
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predictions of morphological and functional change (Diniz-Filho, 2004; Rodríguez & Ojeda, 119 

2014). 120 

To evaluate broad scale patterns of morphological variation and the underlying processes 121 

which promote them, it is necessary to quantify the distribution of morphological traits in relation 122 

to the ecology of related functional groups of species. In that sense, some authors have found that 123 

the global patterns of functional richness are associated with environmental variables (Kissling et 124 

al., 2009; Brum et al., 2012). To describe how morphology varies geographically with 125 

environment, we explored the spatial distribution of a set of morphological variables in relation 126 

to climatic gradients of a mainly insectivorous assemblage of birds, the tyrant flycatchers 127 

(Tyrannidae). The tyrant flycatchers constitute a functional group of species that use insects and 128 

arthropods as their main food resource (Hespenheide 1971; Sherry 1984). This taxon includes 129 

more than 400 species distributed across the Americas (IOU, 2018) occurring in almost every 130 

habitat. They are adapted to different elevations and occupy all vertical forest strata (Fitzpatrick 131 

et al., 2004, Ridgely and Tudor, 2009). We chose the Tyrannidae of Mexico as a model system 132 

because: (1) they are widely distributed in the country (Ridgely et al., 2005; Berlanga et al., 133 

2008); (2) the natural history, phylogenetic structure, and functional significance of their 134 

morphological traits is relatively well known (Ohlson, Fjeldså & Ericson, 2008; Tello et al., 135 

2009); (3) their morphology can be related to their ecology (e. g., Fitzpatrick 1980, 1981, 1985); 136 

and (4) their morphology varies across environmental and geographical gradients (Brum et al., 137 

2012).  138 

Our main goal was to investigate the variation of morphology across geography and to 139 

determine the relationship of environmental climatic gradients as explanatory factors of 140 

morphological function-related traits. We have considered the phylogenetic structure of Mexican 141 

flycatchers as a factor that may help to explain how broad scale patterns in species variation are 142 



7 

 

established and how historical contingencies influence the response of morphological variation to 143 

the environment. Our specific objectives were to test (1) whether climate conditions 144 

(temperature, precipitation, and their seasonality), are associated with the observed variation in 145 

morphology across tyrant flycatchers assemblages; (2) the influence of the phylogenetic structure 146 

of assemblages on the geographic distribution of morphological variation and its response to 147 

climate; and (3) to map the spatial distribution of morphological variation along climatic 148 

gradients. Because traits are related to the ecology of the organism, for instance foraging 149 

behavior or habitat use (Fitzpatrick, 1985), morphological variation is expected to reflect species’ 150 

responses to environmental gradients. Then, the approach we used takes into account varied 151 

ranges in climate and seasonality within a lineage, abiotic variables influencing the geographic 152 

distribution of species, and the phylogenetic relationships among the tyrant flycatchers. Taking 153 

into account phylogenetic relationships within a community by accounting for phylogenetic 154 

structuring, may help to understand the influence of the composition of a community on the 155 

response of traits to environmental variation (Bonetti & Wiens, 2014; Maestri et al., 2016).  156 

 157 

Hypothesis and assumptions 158 

Given that climatic gradients and phylogenetic structure of an area potentially play a role as 159 

promoters or constrainers of morphological variation, and because this role may vary in strength 160 

and direction, we analyzed the morphological data by constructing regression models in order to 161 

explain the relationship between morphology, environment and phylogenetic structure. We 162 

hypothesized that, once historical and geographic factors are accounted for: Hypothesis 1) 163 

climate gradients explain morphological change across geography; and hypothesis 2) 164 

phylogenetic structure of a community should influence morphological variation of the co-165 

occurring species. To supportFor hypothesis 1, we assumed that morphology would should show 166 
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clinal variation related to one or more climatic variables, then and a latitudinal pattern when the 167 

model is translated into a map. Conversely, to support for hypothesis 2, we would expect that we 168 

assumed that morphological change cannot solely be explained by climatic variables, but that 169 

also phylogenetic structure would is also be significantly associated to variation in morphology 170 

(evidence for hypothesis 2). Latitudinal variation in morphology is likely to be affected by the 171 

phylogenetic composition of the area, that is, the variation of morphological traits across 172 

geography is expected to be proportional to the amount of phylogenetic dissimilarity among 173 

communities (Duarte, 2011). Phylogenetically clustered areas are expected to show different 174 

patterns of morphological variation than areas that are phylogenetically overdispersed. Because 175 

of the tendency of species to remain in an environmental space similar to that of their ancestors 176 

(Wiens & Graham, 2005) we expect that morphological variation within assemblages will be 177 

constrained. Phyllogenetically clustered assemblages are more likely to be restricted in their 178 

climatic ranges, whereas phyllogenetically overdispersed assemblages are more likely to be 179 

found in the transition zones where there is a high species turnover (Graham et al., 2009) sepecies 180 

competition influences the local trait composition of a community (Wainwrighth & Reilly, 1994). 181 

Phylogenetic structure alone is unlikely to explain the variation of morphology; instead it is 182 

expected to influence morphology along with climatic variables, meaning that the response of the 183 

trait could be driven by either environmental filtering (species are filtered from a community due 184 

to morphological or ecological similarity with other co-occurring species), other biotic 185 

interactions (e.g. competition), or random factors (Cavender-Bares et al., 2009; Lawing et al., 186 

2017). 187 

 188 

METHODS 189 

Morphological traits data and data treatment 190 
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Morphological data. In order to construct regression models of environmentally-related 191 

morphological variation, the morphological traits were associated to locality-specific climate, 192 

topographic and phylogenetic structure data. We obtained morphological data from a sample of 193 

296 skin specimens from 60 species of Tyrannidae distributed in Mexico (Table S1). We 194 

measured five traits (Claramunt, 2010, following recommendations by Eck et al., 2011): body 195 

size (using mass data as a proxy), bill length, bill width, and bill depth (the last two taken at the 196 

anterior border of the nostrils), and wing chord (wing length from the carpal joint to the tip of the 197 

longest primary feather without flattening the wing). We selected these traits because they have 198 

been associated use of environmental space in birds (Miles & Ricklefs, 1984). Size is a 199 

significant attribute at all levels of organization, as it predicts and explains the variation of many 200 

organismal and species traits, from the proportion of parts to metabolic rates to the distribution 201 

patterns (Schmidt-Nielsen, 1975; Brown, 1995; Diniz-Filho, 2004; Bonner, 2011). Bill size can 202 

be positively correlated with temperature in avian taxa (Allen's rule), and the common 203 

explanation for this pattern is that larger surface area of the appendage functions to dissipate 204 

excess heat in warm climates and small area to retain heat in cold climates (Symonds & 205 

Tattersall, 2010; Greenberg, 2012). The bill is also the functional trait by which birds obtain 206 

food, so it can be related to habitat and ecomorphological variation (Mazer & Wheelwright, 207 

1993; Jones; 2012). The relative variation of bill measures represents its variation in size and 208 

shape. Finally, wing chord plays a role in determining the aerodynamics and mechanical aspects 209 

of the avian wing, thus it interacts with the effective exploitation of habitat; so it is strongly 210 

related with ecology and behavior (Hamilton, 1961; Lockwood, 1998, Swaddle & Lockwood, 211 

1998, Gatesy & Dial; 1996). Together, body size, bill size and wing chord represent 212 

morphological traits that are related to the flycatcher ecology. 213 
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In general, we only measured adult male specimens to homogenize the data set and to 214 

avoid morphological variations associated with sexual dimorphism. In some cases, we had to 215 

measure female specimens (~8%  specimens) to complete the sample, and used these data based 216 

on a previous test (Cortés-Ramírez, Ríos-Muñoz & Navarro-Sigüenza, 2012) that showed that  217 

the variation between sexes is smaller than interspecific variation (sensu Claramunt, 2010). We 218 

took all the measurements with digital or analog Mitutoyo calipers, with a precision of 0.01 mm.  219 

For statistical analysis we used natural log-transformed measures in order to normalize the 220 

dataset, and because all morphological measurements may scale with overall body size, we made 221 

bill and wing size measurements relative to body size by dividing each measurement by body 222 

mass. Relative variation of the three bill measurements was obtained by performing a principal 223 

component analysis (PCA) to reduce the dimensionality of bill variation (Table S2), retaining the 224 

first principal component as representative of bill variation and size. The first principal 225 

component represented 86% of bill variation and overall size of the bill. Each morphological 226 

variable was evaluated independently from the other variables. 227 

 228 

Environmental and geographic data.  229 

Climatic variables. We considered the geographic location of each specimen to obtain locality-230 

specific climate data based on a set of 19 bioclimatic variables (Hijmans et al., 2005). To reduce 231 

the dimensionality without eliminating bioclimatic variables, we constructed four climatic 232 

indexes by applying a PCA on climatic variables following Alvarado-Cárdenas et al. (2013, 233 

Table 1). These four indexes represent annual temperature variation, temperature range or 234 

seasonality, variation of precipitation in the most humid season, and variation of precipitation in 235 

the driest season. We decided to use the first principal component of each climatic index, as they 236 

account for most of the climatic variation in the study area (Table S3). For each specimen we 237 
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extracted locality-specific climate index data using a geographic information system. We used the 238 

climatic index data for each individual as a fixed explanatory variable in the regression models. 239 

 240 

Topographic variables. In order to separate the effects of the geographical setting, we used the 241 

USGS Digital Elevation Model (altitude, USGS, 2015, https://lta.cr.usgs.gov/GTOPO30) and 242 

aspect as predictor variables in all regression models. To facilitate the use of aspect as a variable 243 

that describes topographic orientation, we transformed it using the cosine to express northness 244 

and the sine for eastness following Kobelkowsky-Vidrio, Ríos-Muñoz, & Navarro-Sigüenza 245 

(2014).  246 

 247 

Historical distribution and relatedness data 248 

Assemblages of the tyrant flycatchers. In order to discriminate the effects of the 249 

evolutionary/historical distributional of the tyrant flycatchers, we divided the data into three 250 

separate sets taking into account characteristics of three constructed assemblages of tyrant 251 

flycatchers distributed across Mexico. We defined an assemblage as a temporal and spatial 252 

arrangement in which species potentially occur and interact; i.e., the pool of species in a 253 

geographic area (Halffter & Moreno, 2005, Lessard et al., 2016). We defined three assemblages 254 

on the basis of environmental factors delimited by elevation and vegetation type (Fig. 1, Table 255 

S1): Type I- Assemblage of the lowland forests (species distributed only below 1500 m), Type II- 256 

Assemblage of the highland forests (species present mainly above 1500 masl) and other types of 257 

vegetation, and the Regional assemblage (species distributed in both assemblages, which 258 

represent the species distributed in all Mexico). We assigned the species to each assemblage and 259 

carried out statistical analysis independently for each data set. We focused on the type I 260 

assemblage data because Mexican lowland forests are characterized by high levels of species 261 
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richness, endemism, and habitat specialization, and patterns of biogeographic distribution define 262 

them as areas with a particular evolutionary history (Ríos-Muñoz & Navarro-Sigüenza, 2012; 263 

Olguín-Monroy et al., 2013). The Type II and Regional assemblage datasets were used to contrast 264 

the response of morphological variation to environmental gradients at different spatial scales and 265 

community levels. It is known that the influence of different variables on the morphological 266 

variation change at different scales of analysis (Lawing et al., 2017). 267 

 268 

Phylogenetic signal and phylogenetic structure. We reconstructed a phylogenetic tree for the 269 

species of Tyrannidae distributed in Mexico using Jetz et al.’s (2012) bird tree with the Hackett et 270 

al. (2008) backbone (Fig. S1), in order to calculate the phylogenetic signal of traits and the 271 

phylogenetic structure of the localities. The phylogenetic signal was calculated for each 272 

morphological variable using the generalized K statistics (Adams, 2014). Phylogenetic signal 273 

indicates the tendency of related species to resemble each other more than species drawn at 274 

random from the same tree (Blomberg & Garland, 2002). Generalized K statistics tests a null 275 

model of evolution of a trait by Brownian motion (drawn at random from the tree), K = 1 276 

indicates that trait evolution is consistent with Brownian motion model, while K<1 indicates less 277 

similarity in the trait than expected under Brownian motion model, and K>1 indicates greater 278 

similarity in the trait than expected under Brownian motion model (Blomberg et al., 2003). 279 

Phylogenetic signal tests were conducted using the geomorph package (Adams & Otarola-280 

Castillo, 2013) in R version 3.4.1 (R Core Team, 2017). 281 

To determine if the species in a particular area were more closely related than expected by 282 

chance, we measured the phylogenetic structure of the Tyrannidae distributed at each locality. To 283 

calculate the metric, we used the Net Relatedness Index (NRI, Webb et al., 2002) in the R-284 

package PhyloMeasures (Tsirogiannis & Sandel, 2016). Values of NRI greater than zero indicate 285 
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phylogenetic clustering and values lower than zero indicate phylogenetic evenness or 286 

overdispersion. Phylogenetic clustering is found when the co-occurring species of an area are 287 

more closely related than expected by chance. Phylogenetic evenness or overdispersion is found 288 

when the coexisting species of an area are less related than expected by chance (Webb et al., 289 

2002). To calculate the NRI for each locality, we used the reconstructed phylogenetic hypothesis 290 

and we established which species likely co-occur by extracting presence data from distributional 291 

hypotheses for Mexican Tyrannidae, generated elsewhere using ecological niche models 292 

(Navarro-Sigüenza et al., unpubl. data). 293 

 294 

Statistical analyses 295 

The regression models  296 

We evaluated the effects of environmental gradients and phylogenetic structure on morphological 297 

variation in the tyrant flycatchers of Mexico using regression models. We constructed trait maps 298 

(see below) and obtained our inferences based on the fitting of linear mixed-effects models 299 

predicting morphological variation in body size, bill and wing length. We used linear mixed-300 

effects modeling because our data are nested in the sense that samples derive from multiple 301 

species, and from each species we have various specimens.  302 

 To find the best fitting models for each morphological variable (and assemblage dataset), 303 

we followed the protocol recommended by Zuur et al. (2009). In the first step, we started with a 304 

model for each morphological variable that contained all the predictor variables and their 305 

interaction in the fixed part of the model. There are seven fixed predictor variables (temperature 306 

variation index, temperature range or seasonality index, variation of precipitation in humid 307 

season, variation of precipitation in the dry season, topographic setting, altitude, and phylogenetic 308 

structure) and four interactions (relationships between altitude and the temperature and 309 
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precipitation indexes, Table 2, Table S4 model 1). After obtaining the more complex linear 310 

model, we made a new model allowing random intercepts for the nested structure of individuals 311 

of a species within a subfamily (Table 2, Table S4 model 2). The random intercept implies that 312 

the basal value of the response is influenced by the nested structure of the data, so measures 313 

within a species are more likely to be correlated just because they belong to the same 314 

phylogenetic group (Militino et al., 2010). Next, we allowed random slopes and intercepts for 315 

individuals of a species within a subfamily (random intercept), influenced by the phylogenetic 316 

structure of the communities (random slope, Table 2, Table S4 model 3). Letting the slope to 317 

change implies that morphological traits can change between communities in function of how 318 

closely related are the species distributed on it. Then, we included the optimal variance structure 319 

to the optimal model for the random terms (Table 2, Table S4 model 4). We considered that 320 

different variance exist for the observations that have distinct phylogenetic membership. Next, 321 

we selected the best fitting model structure for the fixed terms by sequentially adding each 322 

predictor variable and their interactions (Table 2) to the optimal random and variance structure 323 

model (Table S4 models 5-16). We tested if phylogenetic structure influenced morphological 324 

variation (Evidence for hypothesis 2, Table S4 model 12) by including it to the best fitting model 325 

for the fixed terms. Finally, we included the interaction term between phylogenetic structure and 326 

the climatic variables that best explained the morphological variation (temperature seasonality, 327 

model 17). The interaction between phylogenetic structure and temperature seasonality implies 328 

that phylogenetic structure modifies the effect of temperature seasonality on the morphological 329 

variation within assemblages. The final products of the procedure described were nine best fitting 330 

models predicting each morphological variable, at each assemblage, in relation to climatic 331 

variables, phylogenetic structure and phylogenetic membership (Table S4, Table 3). We 332 

considered the best-fitting model for each variable the one with the highest maximum likelihood 333 
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(ML), the Akaike information criterion (AIC), and Bayesian informative criterion (BIC, Burnham 334 

& Anderson, 2002). We performed all statistical analyses using the nlme (Pinheiro et al., 2013) 335 

package in R version 3.4.1 (R Core Team, 2017). 336 

 337 

Mapping the spatial variation of morphological traits 338 

To map the spatial variation of the morphological traits, we extrapolated the best-fitting models 339 

into GIS layers. First, we extracted the value of the predictor climatic variable in each pixel (30 340 

seconds per sideresolution) of Mexico within each assemblage. Then, we translated the best-341 

fitting model formula for the climatic index value at each pixel. For instance, if the model was: 342 

“Size expected at pixel X = slope*value of climatic index at pixel X + intercept”, we obtained a 343 

different value for the morphological variable at each pixel according to the model and the 344 

variation of the predictor variable, generating a map of the measurements of the functional traits 345 

(Moles et al., 2011). We performed all analyses using the Maptools (Lewin et al., 2011) package 346 

in R version 3.4.1 (R Core Team, 2017). Trait maps were visualized using ArcGIS 10 (ESRI, 347 

2011). 348 

 349 

RESULTS 350 

Relationship between climatic gradients and morphological variation 351 

Climatic gradients were positively associated positively with morphological variation of the three 352 

measured traits in all three assemblages (Table 3). All best fitting models included at least one 353 

climate variable among the fixed terms, specifically, temperature seasonality (temperature range) 354 

or mean variation. Temperature appeareds to explain variation in morphology at all levels 355 

analyzed. At the regional assemblage, for body size, bill and wing length, temperature is was 356 

related positively and significantly to morphological change, and which reflects an increase in the 357 
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morphological variables values as temperature seasonality increases. The magnitude of the 358 

response is higher for body and bill sizes (slopes 0.42 and 0.65, respectively), whereas for wing 359 

length it is close to zero (slope = 0.091); that means that although it is positive and reflects an 360 

increase in the morphological variable values, this change is small. In other words, while the 361 

climatic seasonality increases, wing length will does not tend to increase as much as body and 362 

bill size with increasing climatic seasonality, itwhich reflects a poor association between wing 363 

length and temperature range index. 364 

For type I and type II assemblages, the relationship between morphological variables and 365 

temperature range is was also positive but not significant for some variables (p-value>0.05). For 366 

instance, the regression models for bill size and temperature range, and wing length and 367 

temperature range, in for the assemblage II (highland forests and other types of vegetation) 368 

assemblage indicates that the relationship is not significantly different from 0 (there is no 369 

relationship between the morphological variable and temperature range). Also, fFor assemblage I 370 

the (lowland forests) assemblage, regression model forthe relationship between wing and 371 

temperature range is was not significant either. Only the relationship between body size and 372 

temperature range is was significantly positive in all assemblages. The relationship between bill 373 

variation and temperature range is was significant in lowland forests assemblage I, but the 374 

magnitude of the response wasis less steep (slope=0.43). 375 

 376 

Influence of phylogenetic structure on morphological variation 377 

Linear mixed-effects models results indicated that phylogenetic relatedness also helped to explain 378 

morphological variation in type I and type II assemblages, for body size, bill and wing variables 379 

(Table 3). At In assemblage II (highland forests and other types of vegetation) assemblage, 380 

models for bill and wing were not significant (p-value>0.05), whereas the model for body size is 381 
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was significant and positively related to phylogenetic structure (slope= 0.60). A positive 382 

correlation between body size and phylogenetic structure means that body size values increase at 383 

in areas with where more phylogenetically related species co-occurring at the community 384 

(phylogenetic clustering), and decreases in areas with less phylogenetically related species 385 

(phylogenetic overdispersion). For assemblage I (lowland forests), phylogenetic structure was 386 

positively correlated to with bill variation, and negatively correlated towith bosdy size. The 387 

relationship between wing and phylogenetic structure was not significant. The results indicate 388 

that there is a tendency of decreasinge in body size while when communities becaome more 389 

phylogenetically clustered. 390 

Our results indicate that phylogenetic structure exhibits a geographical pattern (Fig. 2). 391 

Both highland and lowland forests assemblages presented comprised areas with phylogenetic 392 

overdispersion and phylogenetic clustering (Table S5). Areas of higher phylogenetic clustering 393 

appeared to be distributed along the lowland areas of the Balsas Depression, and the highlands of 394 

Sierra Madre del Sur (mountain range in the southern Mexico) and Sierra Madre Oriental 395 

(mountain range in eastern Mexico). Areas with high phylogenetic overdispersion are mainly 396 

distributed in southeastern Mexico (i.e. southeastern Yucatan Peninsula, Tehuantepec Isthmus). 397 

We also measured the phylogenetic signal of the morphological traits, in order to explore 398 

the tendency of the traits to resemble each other taking into account phylogenetic relatedness. 399 

Phylogenetic signal analysis which returned a values of K = 0.85 for body size, K = 0.88 for bill 400 

variation, and K = 0. 87 for wing chord. All values were statistically significant at α = 0.05. 401 

These values indicate that although the phylogenetic signal for each morphological variable at the 402 

species level is lower than 1, values are close to a Brownian motion model (no tendency of traits 403 

to resemble each other due to phylogenetic relatedness), which means that they are slightly less 404 

similar than expected due to phylogenetic relatedness. 405 
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 406 

Spatial variation of  morphological traits in relation to environmental gradients 407 

Overall, trait variation was explained by temperature gradients and phylogenetic structure at 408 

assemblages other than the regional level. Mapping the predictions of the best fitting models 409 

(Table 3) yielded different patterns of spatial distribution for morphological variation (Figures 3-410 

5), across the geography at different scales. Maps represent the gradient of change of the 411 

morphological traits with respect to the environmental variable that better explain their variation. 412 

We only mapped the statistically significant models. At the regional assemblage (Fig. 3), for the 413 

three morphological variables, morphological trait values increased with increasing latitude. 414 

Phylogenetic structure does not help to explain morphological variation in the regional 415 

assemblage. Lowland forests assemblage showed a morphological trait variation from northeast 416 

to southwest (Fig. 4), in which body size and bill size increases towards the southwest. In the 417 

lowland forests assemblage, bill size increases with increasing phylogenetic structure. 418 

Conversely, body size increases in areas with low phylogenetic structure (overdispersion) and 419 

decreases in areas with phylogenetically clustereingd (Fig. 2A). Geographically, thisat means that 420 

phylogenetic structure decreases body size in areas where temperature gradients predict an 421 

increase in body size, and it increases in body size where temperature gradients predict a 422 

decrease. For the type II assemblage (Fig. 5), we mapped body size and bill variation, which are 423 

explained by temperature seasonality. Increases in body size and bill variation were predicted in 424 

areas of higher phylogenetic clustering and in southwestern Mexico (Fig. 2B).  425 

 426 

DISCUSSION 427 

Our results suggest that both climatic variables and phylogenetic structure influence the 428 

morphological variation of Mexican tyrants, but the influence of the phylogenetic structure varies 429 
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between different assemblages and morphological traits. When we focused on how climatic 430 

gradients explain the variation in morphology, our results suggest that temperature seasonality is 431 

the most influential climatic variable, but the magnitude of the influence varies across different 432 

assemblages. This variable assumedly represents tolerance limits of species to variation in 433 

temperature, likely influencing morphological variation through maintaining habitat use through 434 

time (Wiens & Graham, 2005). Our results showed a latitudinal pattern that is consistent with the 435 

Bergmann’s rule for birds: as temperature increases, body mass is likely to decrease (McNab, 436 

1971). This is a common finding in many studies, because the total surface area of an animal is a 437 

proxy for heat dissipation, and predicts that a larger size can be reached in colder climates than in 438 

warmer ones, which is linked to the temperature economy of the animal (Salewski and Watt, 439 

2017). Due to the distribution of temperature at the regional assemblage, the latitudinal pattern is 440 

likely to show an increase in body size from south to north (Fig. 3), but some studies found 441 

exceptions at anotherin other regions (e.g. James, 1970). 442 

Patterns of morphological variation in western Mexico type I and II assemblages showed 443 

a pattern in which the tendency to increase in size was predicted in direction to both highlands 444 

and lowlands of western Mexico (Fig. 4 and Fig. 5), which also contain areas with the highest 445 

values of phylogenetic structure. A larger body size in less vegetated or highly seasonal areas 446 

may be an adaptation to live in these types of isolated environments, and higher phylogenetic 447 

structuring agrees with the fact that western areas have been identified as a complex 448 

biogeographical and ecological setting in which a highly endemic and phylogeographically 449 

structured bird fauna occurs (e.g. García-Trejo & Navarro-Sigüenza, 2004; Navarro-Sigüenza et 450 

al., 2004; Ríos-Muñoz & Navarro-Sigüenza, 2012; Arbeláez-Cortés et al., 2014). For  patterns of 451 

morphological variation in the eastern lowlands, like the phylogenetically overdispersed Yucatan 452 

Peninsula or the Tehuantepec Isthmus, relatively constant (i.e., less seasonal) temperatures in the 453 
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east, may have influenced the distribution of lineages and the variation of its their morphological 454 

traits, and consequently the particular phylogenetic community structure in those regions (Martin 455 

et al., 2018).  456 

The results of several studies support the idea that environmental gradients influence the 457 

phylogenetic structure of the communities and therefore, phylogenetic clustering increases with 458 

decreasing temperature, meaning that closely related species tend to have a strong phylogenetic 459 

signal, and more similar traits and geographic distributions than expected by chance (Helmus et 460 

al., 2007; Donoghue, 2008; Graham et al., 2009; Flynn et al., 2011; Tedersoo et al., 2012; Miller 461 

et al., 2013). For instance, Miller et al. (2013) found that the tendency of species to remain in an 462 

environmental space similar to that of their ancestors (niche conservatism, Wiens & Graham, 463 

2005) constrains honeyeater assemblages in arid regions, along a gradient of decreasing 464 

precipitation. Instead, we found that tyrant’s assemblages became more phylogenetically 465 

clustered along a gradient of increasing temperature seasonality, but with low phylogenetic 466 

signal. Our findings might reflect that variation in morphological traits of phyllogenetically 467 

clustered assemblages is more restricted in their climatic ranges. Moreover, on another study, 468 

Graham et al. (2009) found that phylogenetic diversity of hummingbird communities of the 469 

Andean region tend to be phylogenetically clustered at higher elevations and colder areas, and to 470 

be overdispersed at lower elevations, whereas in the transition zone between lowlands and 471 

highlands there is a species turnover of relatively distant related species that can be associated to 472 

the environmental gradient. We found similar results in which phylogenetically clustered 473 

communities are found in the western areas (Fig. 2) which includes mountainous ranges above 474 

1500 masl (southern Sierra Madre Oriental, and the Sierra Madre del Sur), although lowland 475 

areas like the Balsas Depression also show high values of phylogenetic clustering.  476 
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Phylogenetic clustering at higher elevations supports the idea of environmental filtering, a 477 

pattern where similar traits are selected above other variations because they have an advantage 478 

within the community and the environment, also allowing the coexistence of close relatives 479 

(Webb et al., 2002). Phylogenetic clustering in lowlands like the Balsas Depression supports the 480 

idea of the effect of dispersal barriers over community structuring, where communities are 481 

phylogenetically similar despite their large differences in species composition, a pattern 482 

reflecting the influence biogeographic barriers (Graham et al., 2009) that promote regions with a 483 

set of related species with a common and isolated history, like areas of endemism (Harold & 484 

Mooi, 1994).  485 

The phylogenetic overdispersion patterns we found could be more related to the 486 

expectation that competition influences the local trait composition of a community by promoting 487 

the filling of the morphological and ecological space exploited (Wainwright & Reilly, 1994); but 488 

it can could also be associated with the distribution of a lineage along a transition zone, that is, an 489 

area where a mixed set of distinct biotic elements overlap (Morrone 2004). Areas found with 490 

higher phylogenetic overdispersion have been recognized by other authors as areas where 491 

different biotic elements overlap, e.g parts of the Mexican Transition Zone (Sierra Madre 492 

Oriental), Yucatan Peninsula and the limits of the Tehuantepec Isthmus (Morrone, 2006, 2014).  493 

Contradictory to the expectations of patterns of phylogenetic structuring, our data show 494 

low phylogenetic signal, so traits are less similar than expected due to phylogenetic relatedness. 495 

We would have expected a strong phylogenetic signal, as closely related species of a community 496 

tend to occupy similar morphological space due to common ancestry, especially in 497 

phylogenetically clustered areas. Overdispersion of traits driven by competitive interactions and 498 

divergent trait evolution, as well as the taxonomic and spatial scale, may have influenced the 499 

results by masking phylogenetic signal patterns at different assemblages (Webb et al., 2002; 500 
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Cavender-Bares et al., 2006; Lawing et al., 2017). The latter seems to be the case for tyrant 501 

flycatchers, as many closely related clades that supposedly have a similar distribution of traits, 502 

are concentrated in the same areas of high phylogenetic structure. For example, closely related 503 

and morphologically similar Empidonax and Contopus are concentrated southeastward, while 504 

another set of closely related Empidonax are found concentrated westward (i.e. E. difficilis, E. 505 

occidentalis, E. fulvifrons and C. cooperi, C. pertinax and C. sordidulus). On the other hand, the 506 

areas that have more phylogenetically diverse communities (phylogenetic overdispersion) are 507 

found in southeastern tropical region, for example the Yucatan Peninsula.  508 

Another contradicting pattern revealed by our analyses was defined by the discordant 509 

response of variation in body size in relation to temperature seasonality and phylogenetic 510 

structure (Fig. 4). Our results indicate that body size increases as temperature seasonality 511 

increases, but as communities became more phylogenetically clustered, body size decreases, 512 

resulting in a trade-off between the influences of temperature seasonality and phylogenetic 513 

structure over variation in body size. An evolutionary trade- off suggests that the functional trait 514 

of body size is limited by the action of another trait of evolutionary and ecological importance, 515 

like the relatedness of the species occurring within the community. Trade- offs can occur at 516 

different hierarchical levels, and situations can even occur in which the selection on traits of 517 

individual organisms is opposed to the selection on an emergent characteristic at the species level 518 

(Jablonski, 2007), establishing variation patterns that cannot be fully explained by analyzing a 519 

single level. Then, the variation of a characteristic of the individual like body size could be 520 

opposed to the selection of a property at the species level (Diniz-Filho, 2004), like the structuring 521 

of communities. 522 

 523 

CONCLUSIONS 524 
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Our analyses demonstrate that the environment has an effect on morphological variation that is 525 

mediated by the phylogenetic structure of communities across geography. The use of different 526 

environmental variables to elucidate patterns of morphological change in lineages, with distinct 527 

levels of phylogenetic signal, and varied patterns of lineage composition across space provides 528 

greater explanatory power than only taking into account species richness or abundance, or simply 529 

presence/absence distributional data (Olson et al., 2009; Maestri et al., 2016; Lawing et al., 530 

2017). Several authors have noticed that morphological variation is best explained by a varied set 531 

of variables, given that the effect of a single climatic variable, most of the time explains variation 532 

only at one scale (taxonomic or geographic, James 1970; Dial 2008; Olson et al. 2009; Martínez-533 

Monzón et al. 2017). Assessing the distribution of ecomorphological traits of organisms is the 534 

best way to predict change over an environmental gradient (Olson et al. 2009; Santos et al. 2016) 535 

and consequently, regression models representing variation of functional traits provide new 536 

insights into elucidating the general mechanisms that relate biodiversity across environmental 537 

and geographical changes (Violle et al. 2014). A spatial visualization of the predicted response of 538 

trait variation in relation to environmental factors can integrate individual and interspecific level 539 

responses to evaluate the importance of morphological adaptation in the explanation of broader 540 

scale processes. Finally, our results highlight that to allow a better understanding of the spatial 541 

distribution patterns of morphological traits, and the processes that promote them in different 542 

assemblages, it is necessary to consider the relationship of different ecomorphological traits of 543 

the species in conjunction with the phylogenetic composition of the communities. 544 
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