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Abstract Microbial community assembly is influenced by a continuum (actually the trade-off) 23 

between deterministic and stochastic processes. An understanding of this ecological continuum is 24 

of great significance for drawing inferences about the effects of community assembly processes on 25 

microbial community structure and function. Here, we investigated the driving forces of soil 26 

microbial community assembly in three different environmental contexts located on subalpine 27 

coniferous forests of the Loess Plateau in Shanxi, China. The variation in null deviations and 28 

phylogenetic analysis showed that a continuum existed between deterministic and stochastic 29 

processes in shaping the microbial community structure, but deterministic processes prevailed. By 30 

integrating the results of redundancy analysis (RDA), multiple regression tree (MRT) analysis and 31 

correlation analysis, we found that soil organic carbon (SOC) was the main driver of the 32 

community structure and diversity patterns. In addition, we also found that SOC had a great 33 

influence on the community assembly processes. In conclusion, our results show that deterministic 34 

processes always dominated assembly processes in shaping bacterial community structure in the 35 

three habitat contexts. 36 

Introduction 37 

Understanding the fundamental ecological mechanisms that drive the assembly processes 38 

of microbial communities is a major challenge in community ecology (Shen et al. 2013), 39 

particularly microbial ecology. The assembly processes of the microbial community in a local 40 

community are generally influenced by two types of ecological processes, including deterministic 41 

and stochastic processes. First, deterministic factors, such as organism traits, interspecies 42 

relationships (e.g., competition, predation, mutualisms, and trade-offs), and environmental factors 43 

(e.g., pH, temperature, salt, and moisture) govern the community structure (Chase & Myers 2011; 44 
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Dumbrell et al. 2010; Ofiţeru et al. 2010). Ecologists have traditionally appreciated that the 46 

environmental context determines the assembly processes of microbial communities: “Everything 47 

is everywhere, but the environment selects” (Baas-Becking 1934). For example, environmental 48 

factors such as pH (Tripathi et al. 2018), temperature (Anderson & Laurel 2013), or nitrogen 49 

levels (Xiong et al. 2016) may be major determinants of microbial community structure.  50 

 For the other type of community assembly processes (i.e., stochastic processes), it is 51 

assumed that community structures are independent of organism traits and are governed by birth, 52 

death, colonization, extinction, drift, and speciation (Hubbell & BordadeAgua 2004). And it is 53 

hypothesized that species are all ecologically equivalent (Woodcock et al. 2007). Previous studies 54 

have confirmed that both deterministic and stochastic processes act concurrently to regulate the 55 

assembly of ecological communities (Diniandreote et al. 2016; Diniandreote et al. 2015; Zhou 56 

& Ning 2017), but the relative importance may vary in different environmental contexts (Tian 57 

et al. 2017). This may be because the variation in ecological selection strength and the rates of 58 

dispersal on different habitat contexts can influence the relative importance of deterministic and 59 

stochastic processes across temporal and spatial scales, in addition to within entire ecosystems 60 

(Chisholm & Pacala 2011, Jurburg et al. 2017). Therefore, investigation into community driving 61 

forces in different habitats can enrich the understanding on the community assembly process. 62 

In this study, soil was sampled from 23 soil plots in subalpine coniferous forests located on 63 

the Loess Plateau in Shanxi province, China. The 16S ribosomal RNA genes of bacteria were 64 

analyzed using high-throughput sequencing. To investigate the driving forces of soil microbial 65 

community assembly, we sampled three sites having different environmental characteristics. 66 

Sampling was performed along three different altitudinal gradients. This study can largely enrich 67 
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the understanding on microbiology of subalpine mountains. Our aims were as follows: (i) to 75 

quantify the relative roles of deterministic and stochastic processes in bacterial community 76 

dynamics for three different habitat contexts; and more precisely (ii) to evaluate the effects of 77 

environmental factors on microbial community assembly.  78 

Materials and methods 79 

2.1 Site and sampling 80 

A total of 23 soil plots were sampled (Table S1, Figure S1) in August 2016 and August 2017. 81 

The sites were selected because their vegetation was subalpine mountain coniferous forests and 82 

they were located between 1900 m and 3055 m above mean sea level (amsl). The study area has a 83 

warm temperate continental monsoon climate, and mostly cinnamon soil. 84 

This study focused on response patterns along environmental gradients rather than exploring 85 

differences among treatment groups. Thus, we sampled along three altitudinal gradients without 86 

replicates. Previous studies have shown that for continuous environmental drivers, gradient 87 

designs further allow for better extrapolation, characterization of (nonlinear) response functions, 88 

and, consequently, quantitative outputs better suited for ecological models than replicated designs 89 

(Cottingham et al. 2005). 90 

To avoid the interference of vegetation factors, we sampled plots in the single vegetation type 91 

(i.e., Larix principis-rupprechtii forests). These sites located on subalpine ecological environments 92 

possess pronounced climatic gradients and climosequences within short distances, with a high 93 

level of environmental heterogeneity (Siles & Margesin 2017). Therefore, the sites with different 94 

altitudinal gradients corresponded to different environmental contexts and different 95 

environment characteristics. 96 
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Eight plots were sampled from the Wutai Mountain site (WT), which ranges between 1,900 104 

m and 3,055 m amsl. Ten plots were sampled from the Pangquangou Natural Reserve site (PQG), 105 

ranging from 1,950 m and 2,650 m amsl. The last, five plots were sampled from the Luya 106 

Mountain site (LY), which ranges between 2,000 m and 2,400 m amsl. The details of each sample 107 

plots were added in the supplemental files (Table S1). At each sampling site, a 1 m × 1 m 108 

sampling plot was established in situ along the elevation gradient. Five soil cores at a depth of 15 109 

cm were taken at each sampling plot, and then combined to form a single independent soil sample. 110 

Then, the soil samples were sealed in plastic bags and refrigerated, immediately transported to the 111 

laboratory and sieved using a 2 mm mesh. The soil samples were then stored at -80 °C until 112 

further analysis. 113 

The soil samples were subsampled for molecular analysis and the DNA from of 1 g of soil 114 

was extracted using an E.Z.N.A.@ Soil DNA Kit (OMEGA, USA). The quality and quantity of 115 

the DNA extracts were measured using an Infinite 200 PRO plate reader (TECAN, Switzerland). 116 

The DNA purity was assessed based on the A260/A280 absorbance ratios, and only DNA extracts 117 

with absorbance ratios of 1.8~2.0 were used for further analyses. Three DNA samples were 118 

extracted, from each soil sample, which were then combined and sequenced at Shanghai Personal 119 

Biotechnology Co., Ltd. on an Illumina MiSeq sequencing platform based on the bacterial v3-v4 120 

hypervariable region using bacterial 16S universal primers (341F 5′-ACTCCTACGAGGAGCA-3′ 121 

and 805R 5′-TTACCGCGGCTGCTGGCAC -3′) (Tripathi et al. 2018). 122 

2.2 Bioinformatics analysis 123 

The sequencing data were analyzed using QIIME pipeline (v1.8.0, http://qiime.org/) 124 

(Caporaso JG 2010). The filtered sequence alignments were denoised by DeNoiser (Reeder et al. 125 



2010) and then screened for chimeras using UCHIME (Edgar et al. 2011). The Archaea and 126 

unknown sequences were removed. The sequences were clustered into operational taxonomic 127 

units (OTUs) at a 97% similarity level using the average neighbor method and taxonomy was blast 128 

to SILVA database by k-mer searching using MOTHUR (Pruesse et al. 2007). The OTU table was 129 

rarefied to 4020 sequences per sample. Ten independent maximum-likelihood phylogenetic trees 130 

based on Jukes-Cantor distance were then constructed using FastTree2 (Price et al. 2009) after the 131 

removal of gaps and hypervariable regions using a Lane mask supplied by QIIME to support 132 

phylogenetic diversity calculations.  133 

2.3 Environmental variables 134 

In the laboratory, soil total carbon (TC), total nitrogen (TN), and total sulfur (TS) were 135 

measured using an elemental analyzer (Vario EL/ MACRO cube, Elementar, Hanau, Germany); 136 

nitrate nitrogen (NO3-_N), ammonium nitrogen (NH4+_N), and nitrite nitrogen (NO2-_N) were 137 

measured by an Automated Discrete Analysis Instrument (CleverChem 380, Germany). After 138 

shaking the soil: water suspension (1:2.5 mass/volume) for 30 mins, the soil pH was measured 139 

using a pH meter (Hl 3221, Italy). The soil organic carbon in each soil sample was measured using 140 

the potassium dichromate volumetric method (Nelson et al. 1982). 141 

2.4 Null model analysis 142 

A null model was constructed to account for changes in β-diversity while controlling for 143 

stochastic variation and associated changes in α-diversity (i.e., local species richness; 999 144 

iterations) (Chase et al. 2011). We considered the null deviation as the relative difference between 145 

the observed β-diversity and the null-model β-diversity (Tucker et al. 2016). As such, null 146 

deviation values may represent communities that are more similar than expected by chance (a 147 

negative null deviation value), less similar than expected by chance (a positive null deviation 148 



value), or close to the chance expectation (values near zero) (Tucker et al. 2016). 149 

2.5 Phylogenetic analysis 150 

Our study used phylogenetic turnover between communities to infer ecological processes 151 

(Stegen et al. 2015). To quantify phylogenetic turnover between communities, we used the 152 

between community mean-nearest-taxon-distance (βMNTD) metric. βMNTD was calculated 153 

using the R function ‘comdistnt’ (abundance.weighted = TRUE; package “picante”). Then, 154 

we evaluated β-Nearest Taxon Index (βNTI), which expresses the difference between 155 

observed βMNTD and the mean of the null distribution in units of standard deviations (Stegen 156 

et al. 2013). 157 

 In addition, to distinguish more details in the assembly processes, we used the 158 

Raup–Crick metric (Chase et al. 2011), extended to incorporate species’ relative abundances; 159 

referred to as RCbray. The R script of RCbray can be found at 160 

https://github.com/stegen/Stegen_etal_ISME_2013.  161 

In a given community, we estimated the relative influence of variable selection or 162 

homogeneous selection as the fraction of their comparisons with βNTI > +2 or βNTI < −2, 163 

respectively. We regard the fraction of the between community comparisons with |βNTI| < 2 and 164 

RCbray > +0.95 as dispersal limitation, while |βNTI| < 2 and RCbray < -0.95 is considered 165 

homogenizing dispersal (Diniandreote et al. 2015; Stegen et al. 2013; Stegen et al. 2015). 166 

2.6 Network analysis 167 

The co-occurrence network was constructed based on the Spearman correlation matrix 168 

offered in the ‘psych’ package in R. In this network, the nodes represent OTUs and the edges 169 

that connect these nodes represent correlations between OTUs. Only those connections with 170 

correlation coefficients > 0.6 and P < 0.05 were used in the network. Thus, positive 171 



correlations indicate co-occurring OTUs based on abundances, whereas negative correlations 172 

indicate that the OTUs are mutually exclusive (Barberán et al. 2012). P-values were false 173 

discovery rate (FDR) adjusted to control for the analysis (FDR < 0.05). The network analysis 174 

was completed using the ‘igraph’ package in R. 175 

2.7 Statistical analysis  176 

All statistical analyses were performed in the R environment using the ‘vegan’, ‘ggplot2’, 177 

‘ggpubr’, and ‘corrplot’ packages. A Venn diagram was used to visualize the shared OTUs among 178 

the sites. A correlation matrix graph was used to demonstrate the correlation between soil 179 

physicochemical factors and was constructed using the ‘corrplot’ packages in R. Multivariate 180 

regression tree analysis (MRT) was used to explain the relationship between bacterial 181 

α-diversity estimates and environmental variables in a visualized tree, and diversity indices 182 

were normalized to the same mean before performing MRT analysis (Ge et al. 2008). Based 183 

on the longest gradient lengths from the results of detrended correspondence analysis (DCA), 184 

we selected redundancy analysis (RDA) to quantify the effects of environmental variables on 185 

microbial community composition (Mo et al. 2018). Forward selection of PCNM variables 186 

based on permutation tests was chosen to identify 2 of the 23 extracted PCNM variables that 187 

significantly (P < 0.05) explained the spatial structure. The PCNM eigenfunctions, which 188 

represent the ‘spectral decomposition of the spatial relationship across sampling locations’, 189 

can be considered as the spatial variables in the ordination-based analysis. The contributions 190 

of environmental filtering and the space variable (PCNM) to the variation in bacterial 191 

community composition were calculated by using variance partitioning analysis (VPA) 192 

(CANOCO for Windows Version 5.0). The mantel test was performed in the R environment 193 



using the ‘vegan’ packages. 194 

Results  195 

Physicochemical properties of the soils from the different sites 196 

The soil physicochemical properties varied across the different sampling sites (Figure 1). 197 

Briefly, the contents of ammonium nitrogen and nitrite nitrogen were the highest at LY sites (36.91 198 

and 0.16 mg·kg-1, respectively), and were lowest at WT sites (17.41 and 0.04 mg·kg-1, 199 

respectively). The contents of nitrate nitrogen (6.45 mg·kg-1), SOC (70.29 mg·g-1), TC (6.4%), 200 

and TN (0.51%) were the highest at WT sites, and were the lowest at LY sites.  201 

TN was significantly positively correlated with TC and SOC (P < 0.05) and significantly 202 

negatively correlated with pH value (P < 0.05; Figure 2). TC and pH showed a significant 203 

negative correlation (P < 0.05). SOC was significantly positively correlated with nitrate nitrogen 204 

(P < 0.0.5) and significantly negatively correlated with nitrite nitrogen (P < 0.05). This indicated 205 

that the sites sampled had different environment characteristics. 206 

Dynamics of bacterial community composition and diversity 207 

A total of 4258 OTUs were identified from 1,062,241 high-quality sequences recovered 208 

from 23 soil samples. Good’s coverage ranged from 95.19% to 99.75%, indicating that the 209 

identified sequences were representative of most of the bacterial sequences in the collected 210 

soil samples. Rarefaction curve analyses, which generally yielded asymptotic curves, 211 

indicated that the numbers of sampling plots were enough. Detailed information of the 212 

sequencing results is provided in Table S2. 213 

The soil microbial community composition varied across the different sampling sites (Figure 214 

3). There were 15 bacterial phyla with relative abundances of more than 0.01% (Figure 3a). As 215 
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shown in the Venn diagram, 869 bacterial shared OTUs were observed in all sampling sites. There 218 

were 46 bacterial phyla identified (Figure 3b). The abundance of Proteobacteria at all sites was 219 

the highest (mean relative abundance = 30.59%), and followed by Acidobacteria (19.63%), 220 

Actinobacteria (16.51%) and Chloroflexi (13.22%). Briefly, the mean relative abundance of 221 

Proteobacteria was the most at PQG (34.39%), and that of Actinobacteria was the highest at LY 222 

(26.29%). The mean relative abundances of Acidobacteria (28.68%) and Chloroflexi (16.09%) 223 

were the highest at WT. There were 31 bacterial families with relative abundances of more than 224 

0.01% (Figure 3c). Based on the clustering graph, the sampling plots of each of the sites roughly 225 

clustered together (Figure 3d). The community α-diversity indices varied at the different sites 226 

(Figure 4). Briefly, the phylogenetic diversity (pd) and the number of observed species (sobs) were 227 

the highest at WT sites (P < 0.05). There was no significant difference in the ACE index, Chao 228 

index, Shannon index and Simpson index at the different sites (P > 0.05). This indicated that the 229 

sites sampled had different soil microbial community structure. 230 

Effects of environmental factors on microbiome dynamics 231 

Based on the results of the DCA (axis length =1.02), we used RDA to identify the abiotic 232 

environmental drivers that influenced bacterial community composition (Figure 5; permutation 233 

test, P < 0.01). The results demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria 234 

were mainly driven by pH, while SOC, TC, and TN were the main abiotic drivers of 235 

Parcubacteria and Planctomycetes.  236 

In the MRT analysis (Figure 6), we observed that the diversity indices (normalized) were 237 

mainly split by SOC, explaining 36.75% in the first spilt. The correlation analysis showed similar 238 

results: SOC was significantly correlated with bacterial communities at the phylum level (e.g., 239 
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Proteobacteria, Bacteroidetes, and Chloroflexi). Given its contribution to explaining community 242 

distribution patterns, SOC was further used as a descriptor for the environmental gradients. 243 

The variation partitioning analysis showed that environmental variables (20.3%) explained 244 

more variation of microbial community structure than spatial variables (1.9%). This suggested that 245 

both deterministic and stochastic processes were involved in the assembly of microbial 246 

communities, and that deterministic processes were dominant. The unexplained variable was 247 

78.6% (Figure 7). 248 

Nonrandom co-occurrence patterns of the microbial community 249 

Network analysis was applied to explore the interspecific relationship patterns in the 250 

microbial communities (Figure 8). Compared with the LY- and WT- network, the PQG-network 251 

exhibited more edges (87), more vertices (40), more modularity (0.691), higher average degree 252 

(4.35) and average clustering coefficients (0.858), but less the numbers of modules (6) (Table S3). 253 

Strong positive correlations were observed at all sites, while negative correlations were rare. The 254 

size of the nodes corresponds to betweenness centralization values.  255 

The bacterial community assembly processes 256 

According to the null model analysis, our results demonstrated that the null deviation values 257 

varied at different sites (ranging from 0.29 to 0.57; Figure 9a). The bacterial communities at WT 258 

deviated significantly from the null expected value (relative null deviation = 0.45) and were 259 

greater than that at LY site and PQG site (relative null deviation = 0.32 and 0.34, respectively) 260 

(P<0.05).  261 

Most importantly, we observed that the microbial community was more greatly shaped by 262 

variable selection (βNTI > +2) (Figure 9b). From LY to WT, we observed a gradual increase in the 263 



relative role of deterministic processes compared to stochastic processes (Figure 9c). Based on the 264 

regression analysis of the environmental variables with assembly process parameters, we found 265 

that SOC had a great influence on community assembly processes (Figure 9d). The mantel test 266 

between βNTI and SOC matrices indicated the similar conclusion (P < 0.05, R = 0.509). 267 

Discussion 268 

Compared to LY, the microbial community at WT was more greatly driven by deterministic 269 

processes. The driving effects of the deterministic processes gradually increased from LY to WT. 270 

Given this, we inferred that a continuum existed between deterministic and stochastic processes in 271 

the assembly of microbial communities in the study area. This is consistent with previous studies 272 

(Chase et al. 2011; Tucker et al. 2016; Jurburg et al. 2017; Tian et al. 2017), which pointed out the 273 

relative importance of the two processes varied in the different environmental contexts. For 274 

example, in terms of plants, aggregation in temperate forests reflect stronger environmental 275 

correlations, suggesting a key role for species-sorting processes (deterministic processes) (Myers 276 

et al. 2013). In terms of microorganisms, previous studies have noted that bacterial community 277 

assembly is largely governed by stochastic processes in early successional soils, with the relative 278 

roles of deterministic processes increasing progressively in later successional soils (Diniandreote 279 

et al. 2015; Ferrenberg et al. 2013; Hanson et al. 2012).   280 

Previous research has confirmed this continuum could be dependent on varying 281 

environmental conditions and the characteristics of organisms (Zhou et al. 2013). 282 

Environmental factors, such as salinity (Lozupone & Knight 2007), pH (Fierer & Jackson 2006; 283 

Griffiths et al. 2011), C/N ratio (Bates et al. 2011), soil C (Drenovsky et al. 2004), nitrogen levels 284 

(Xiong et al. 2014), and the structure of the plant community (Lundberg et al. 2012) may be major 285 



determinants of microbial community structure. Our results demonstrated that pH, SOC, TC, and 286 

TN were the main abiotic drivers of microbial community compositions. More importantly, based 287 

on the integrated results of the MRT analysis, RDA, and correlation analysis, we identified SOC 288 

as a general descriptor that encompassed the environmental gradients by which the communities 289 

responded to.  290 

Our results demonstrated that SOC differed significantly at different sites, and was 291 

significantly correlated with nitrate nitrogen, nitrite nitrogen and TN (P < 0.05). This indicated 292 

that SOC was closely related to soil fertility and possessed the highest weighting. Litters from the 293 

trees will impact SOC, which in turn will impact the community assembly structure, and this is 294 

perhaps the reason explaining why variable selection increases from LY to WT sites. The 295 

relationships between SOC and bacterial community assembly have also been reported across a 296 

broad range of microbial ecosystems (Bastida et al. 2013). Most importantly, we also observed 297 

that SOC was closely associated with the community assembly process. Similar results reported 298 

that the relative roles of stochastic and deterministic processes can vary with the successional age 299 

of soils and can primarily be attributed to the covariance of soil pH with age (Tripathi et al. 2018). 300 

The unexplained variation in VPA (78.6%) could be due to stochastic influences [e.g. drift or 301 

speciation (Caruso et al. 2011)], unmeasured soil physicochemical properties [e.g. metal ion 302 

concentration (Gombeer et al. 2015)] or interactions between species [e.g. competition (Caruso et 303 

al. 2011)]. In fact, in other studies of microbial communities using VPA, the unexplained portions 304 

may also account for more than 50 % (Liao et al. 2016; Mo et al. 2018).  305 

In deterministic processes, not only environmental filtering, but also interspecies interactions 306 

have a great influence on community assembly. Ecologists recently accepted that competition 307 
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and environmental processes act simultaneously (Zhang et al. 2018). In the network analysis, 309 

the higher modularity indicates that the network became denser, suggesting that the microbial 310 

communities are highly complex (Olesen et al. 2007). Interestingly, the modularity was the highest 311 

at PQG (0.691). This may be related to the greater sampling scales and elevation gradients, and 312 

thus greater environmental heterogeneity at PQG. The average path distance represents the 313 

shortest path between two nodes (Wang et al. 2016), which demonstrated irregular variation at WT 314 

(Zheng et al. 2017). Strong positive correlations were observed among sites, while negative 315 

correlations were rare (Figure 8a-c). This implied that microbes might cooperate in order to adapt 316 

to similar niches. In the network, positive links could be attributed to niche overlap and 317 

cross-feeding, while negative relationships could be attributed to competition and amensalism 318 

(Faust & Raes 2012). From an ecological perspective, the peripherals may represent specialists, 319 

whereas module hubs and connectors may be more generalists and network hubs may be 320 

super-generalists (Figure 8d-f) (Deng et al. 2012). It is interesting to observe that the module hubs 321 

and connectors differed at the different sites. 322 

Conclusion 323 

We quantified the importance of the deterministic and stochastic processes driving the 324 

bacterial community assembly on different sites in subalpine coniferous forests, and showed that 325 

deterministic processes prevailed. Moreover, SOC was closely related to microbial community 326 

structure and greatly influenced the processes of community assembly.  327 
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