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Abstract Microbial community assembly is influenced by a continuum (actually the trade-off)

between deterministic and stochastic processes. An understanding of this ecological continuum is

of great significance for drawing inferences about the effects of community assembly processes on

microbial community structure and function. Here, we investigated the driving forces of soil

microbial community assembly in_three different environmental contexts located on subalpine

coniferous forests of the Loess Plateau in Shanxi, China. The variation in null deviations and

phylogenetic analysis showed that a continuum existed between deterministic and stochastic

processes in shaping the microbial community structure, but deterministic processes prevailed. By

integrating the results of redundancy analysis (RDA), multiple regression tree (MRT) analysis and

correlation analysis, we found_that soil organic carbon (SOC)_was the main driver of the

community structure and diversity patterns. In addition, we also found that SOC had a great

influence on the community assembly processes. In conclusion, our results show that deterministic

processes always dominated assembly processes in shaping bacterial community structure jn the

three habitat contexts.

Introduction

Understanding the fundamental ecological mechanisms that drive the assembly processes

of microbial communities is a major challenge in community ecology (Shen et al. 2013),

particularly microbial ecology. The assembly processes of the microbial community in a local

community are generally influenced by two types of ecological processes, including deterministic

and stochastic processes. First, deterministic factors, such as organism traits, interspecies

relationships (e.g., competition, predation, mutualisms, and trade-offs), and environmental factors

(e.g., pH, temperature, salt, and moisture) govern the community structure (Chase & Myers 2011;
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Dumbrell et al. 2010; Ofiteru et al. 2010). Ecologists have traditionally appreciated that the

environmental context determines the assembly processes of microbial communities: “Everything

is everywhere, but the environment selects” (Baas-Becking 1934). For example, environmental

factors such as pH (Tripathi et al. 2018), temperature (Anderson & Laurel 2013), or nitrogen

levels (Xiong et al. 2016) may be major determinants of microbial community structure.

For the other type of community assembly processes (i.e., stochastic processes), it is

assumed that community structures are independent of organism traits and are governed by birth,

death, colonization, extinction, drift, and speciation (Hubbell & BordadeAgua 2004). And it is

hypothesized that species are all ecologically equivalent (Woodcock et al. 2007). Previous studies

have confirmed that both deterministic and stochastic processes act concurrently to regulate the

assembly of ecological communities (Diniandreote et al. 2016; Diniandreote et al. 2015; Zhou

& Ning 2017), but the relative importance may vary in different environmental contexts (Tian

et al. 2017). This may be because fhe variation in ecological selection strength and the rates of

dispersal on different habitat contexts can influence the relative importance of deterministic and

stochastic processes across temporal and spatial scales, in addition to within entire ecosystems

(Chisholm & Pacala 2011, Jurburg et al. 2017). Therefore, investigation into community driving

forces in different habitats can enrich the understanding on the community assembly process.

In this study, soil was sampled from 23 soil plots in subalpine coniferous forests located on

the Loess Plateau in Shanxi province, China. The 16S ribosomal RNA genes of bacteria were

analyzed using high-throughput sequencing. To investigate the driving forces of soil microbial

community assembly, we sampled three sites having different environmental characteristics.

Sampling was performed along three different altitudinal gradients, This study can Jargely enrich ;
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the understanding on microbiology of subalpine mountains. Our aims were as follows: (i) to

quantify the relative roles of deterministic and stochastic processes in bacterial community

dynamics_for three different habitat contexts; and more precisely (ii) to evaluate the effects of

the heterogeneity exists in different sites selected along

Deleted: We hypothesize that the relative importance of

deterministic and stochastic processes would differ due to

altitudinal gradients. ...

environmental factors on microbial community assembly.

Materials and methods

2.1 Site and sampling

A total of 23 soil plots were sampled (Table S1, Figure S1) in August 2016 and August 2017.

The sites were selected because their vegetation was subalpine mountain coniferous forests and

they were located between 1900 m and 3055 m above mean sea level (amsl). The study area has a

warm temperate continental monsoon climate, and mostly cinnamon soil.

This study focused on response patterns along environmental gradients rather than exploring

differences among treatment groups. Thus, we sampled along three altitudinal gradients without

replicates. Previous studies have shown that for continuous environmental drivers, gradient

designs further allow for better extrapolation, characterization of (nonlinear) response functions,

and, consequently, quantitative outputs better suited for ecological models than replicated designs

(Cottingham et al. 2005).

To avoid the interference of vegetation factors, we sampled plots in the single vegetation type

(i.e.. Larix principis-rupprechtii forests). These sites located on subalpine ecological environments

possess pronounced climatic gradients and climosequences within short distances, with a high

level of environmental heterogeneity (Siles & Margesin 2017)._ Therefore, the sites with different

altitudinal gradients gcorresponded to different environmental contexts and different

environment characteristics.
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Eight plots were sampled from the Wutai Mountain site (WT), which ranges between 1,900

m and 3,055 m amsl. Ten plots were sampled from the Pangquangou Natural Reserve site (PQG),

ranging from 1,950 m and 2,650 m amsl. The last, five plots were sampled from the Luya

Mountain site (LY), which ranges between 2,000 m and 2,400 m amsl. The details of each sample

plots were added in the supplemental files (Table S1). At each sampling site, a 1 m x 1 m

sampling plot was established in situ along the elevation gradient. Five soil cores at a depth of 15

cm were taken at each sampling plot, and then combined to form a single independent soil sample.

Then, the soil samples were sealed in plastic bags and refrigerated, immediately transported to the

laboratory and sieved using a 2 mm mesh. The soil samples were then stored at -80 °C until

further analysis.

The soil samples were subsampled for molecular analysis and the DNA from of 1 g of soil

was extracted using an E.Z.N.A.@ Soil DNA Kit (OMEGA, USA). The quality and quantity of

the DNA extracts were measured using an Infinite 200 PRO plate reader (TECAN, Switzerland).

The DNA purity was assessed based on the A260/A280 absorbance ratios, and only DNA extracts

with absorbance ratios of 1.8~2.0 were used for further analyses. Three DNA samples were

extracted, from each soil sample, which were then combined and sequenced at Shanghai Personal

Biotechnology Co., Ltd. on an Illumina MiSeq sequencing platform based on the bacterial v3—v4

hypervariable region using bacterial 16S universal primers (341F 5'-ACTCCTACGAGGAGCA-3’

and 805R 5'-TTACCGCGGCTGCTGGCAC -3') (Tripathi et al. 2018).
2.2 Bioinformatics analysis

The sequencing data were analyzed using QIIME pipeline (v1.8.0, http://qiime.org/)

(Caporaso JG 2010). The filtered sequence alignments were denoised by DeNoiser (Reeder et al.
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2010) and then screened for chimeras using UCHIME (Edgar et al. 2011). The Archaea and

unknown sequences were removed. The sequences were clustered into operational taxonomic

units (OTUs) at a 97% similarity level using the average neighbor method and taxonomy was blast

to SILVA database by k-mer searching using MOTHUR (Pruesse et al. 2007). The OTU table was

rarefied to 4020 sequences per sample. Ten independent maximum-likelihood phylogenetic trees

based on Jukes—Cantor distance were then constructed using FastTree2 (Price et al. 2009) after the

removal of gaps and hypervariable regions using a Lane mask supplied by QIIME to support

phylogenetic diversity calculations.
2.3 Environmental variables

In the laboratory, soil total carbon (TC), total nitrogen (TN), and total sulfur (TS) were

measured using an elemental analyzer (Vario EL/ MACRO cube, Elementar, Hanau, Germany);

nitrate nitrogen (NO3™_N), ammonium nitrogen (NH4" N), and nitrite nitrogen (NO,~_N) were

measured by an Automated Discrete Analysis Instrument (CleverChem 380, Germany). After

shaking the soil: water suspension (1:2.5 mass/volume) for 30 mins, the soil pH was measured

using a pH meter (HI 3221, Italy). The soil organic carbon in each soil sample was measured using

the potassium dichromate volumetric method (Nelson et al. 1982).
2.4 Null model analysis

A null model was constructed to account for changes in B-diversity while controlling for

stochastic variation and associated changes in a-diversity (i.e., local species richness; 999

iterations) (Chase et al. 2011). We considered the null deviation as the relative difference between

the observed pS-diversity and the null-model S-diversity (Tucker et al. 2016). As such, null

deviation values may represent communities that are more similar than expected by chance (a

negative null deviation value), less similar than expected by chance (a positive null deviation
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value), or close to the chance expectation (values near zero) (Tucker et al. 2016).
2.5 Phylogenetic analysis

Our study used phylogenetic turnover between communities to infer ecological processes

(Stegen et al. 2015). To quantify phylogenetic turnover between communities, we used the

between community mean-nearest-taxon-distance (BSMNTD) metric. BMNTD was calculated

using the R function ‘comdistnt’ (abundance.weighted = TRUE; package “picante”). Then,

we evaluated PB-Nearest Taxon Index (BNTI), which expresses the difference between

observed BMNTD and the mean of the null distribution in units of standard deviations (Stegen

etal. 2013).

In addition, to distinguish more details in the assembly processes, we used the

Raup—Crick metric (Chase et al. 2011), extended to incorporate species’ relative abundances;

referred to as  RCpay. The R script of RCpny can be found at

https://github.com/stegen/Stegen_ctal ISME 2013.

In a given community, we estimated the relative influence of variable selection or

homogeneous selection as the fraction of their comparisons with BNTI > +2 or BNTI < -2,

respectively. We regard the fraction of the between community comparisons with [BNTI| < 2 and

RCpray > +0.95 as dispersal limitation, while |BNTI| < 2 and RCpny < -0.95 is considered

homogenizing dispersal (Diniandreote et al. 2015; Stegen et al. 2013; Stegen et al. 2015).
2.6 Network analysis

The co-occurrence network was constructed based on the Spearman correlation matrix

offered in the ‘psych’ package in R. In this network, the nodes represent OTUs and the edges

that connect these nodes represent correlations between OTUs. Only those connections with

correlation coefficients > 0.6 and P < 0.05 were used in the network. Thus, positive
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correlations indicate co-occurring OTUs based on abundances, whereas negative correlations

indicate that the OTUs are mutually exclusive (Barberan et al. 2012). P-values were false

discovery rate (FDR) adjusted to control for the analysis (FDR < 0.05). The network analysis

was completed using the ‘igraph’ package in R.

2.7 Statistical analysis

All statistical analyses were performed in the R environment using the ‘vegan’, ‘ggplot2’,

‘ggpubr’, and ‘corrplot’ packages. A Venn diagram was used to visualize the shared OTUs among

the sites. A correlation matrix graph was used to demonstrate the correlation between soil

physicochemical factors and was constructed using the_‘corrplot’ packages in R. Multivariate

regression tree analysis (MRT) was used to explain the relationship between bacterial

a-diversity estimates and environmental variables in a visualized tree, and diversity indices

were normalized to the same mean before performing MRT analysis (Ge et al. 2008). Based

on the longest gradient lengths from the results of detrended correspondence analysis (DCA),

we selected redundancy analysis (RDA) to quantify the effects of environmental variables on

microbial community composition (Mo et al. 2018). Forward selection of PCNM variables

based on permutation tests was chosen to identify 2 of the 23 extracted PCNM variables that

significantly (P < 0.05) explained the spatial structure. The PCNM eigenfunctions, which

represent the ‘spectral decomposition of the spatial relationship across sampling locations’,

can be considered as the spatial variables in the ordination-based analysis. The contributions

of environmental filtering and the space variable (PCNM) to the variation in bacterial

community composition were calculated by using variance partitioning analysis (VPA)

(CANOCO for Windows Version 5.0). The mantel test was performed in the R environment
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using the ‘vegan’ packages.
Results
Physicochemical properties of the soils from the different sites

The soil physicochemical properties varied across the different sampling sites (Figure 1).
Briefly, the contents of ammonium nitrogen and nitrite nitrogen were the highest at LY sites (36.91
and 0.16 mg-kg-1, respectively), and were lowest at WT sites (17.41 and 0.04 mg-kg!,
respectively). The contents of nitrate nitrogen (6.45 mg-kg'), SOC (70.29 mg-g™), TC (6.4%),
and TN (0.51%) were the highest at WT sites, and were the lowest at LY sites.

TN was significantly positively correlated with TC and SOC (P < 0.05) and significantly
negatively correlated with pH value (P < 0.05; Figure 2). TC and pH showed a significant
negative correlation (P < 0.05). SOC was significantly positively correlated with nitrate nitrogen
(P < 0.0.5) and significantly negatively correlated with nitrite nitrogen (P < 0.05). This indicated

that the sites sampled had different environment characteristics.

Dynamics of bacterial community composition and diversity

A total of 4258 OTUs were identified from 1,062,241 high-quality sequences recovered

from 23 soil samples. Good’s coverage ranged from 95.19% to 99.75%, indicating that the

identified sequences were representative of most of the bacterial sequences in the collected

soil samples. Rarefaction curve analyses, which generally yielded asymptotic curves,

indicated that the numbers of sampling plots were enough. Detailed information of the

sequencing results is provided in Table S2.

The soil microbial community composition varied across the different sampling sites (Figure

3). There were 15 bacterial phyla with relative abundances of more than 0.01% (Figure 3a). As
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shown in the Venn diagram, 869 bacterial shared OTUs were observed in all sampling sites. There

were 46 bacterial phyla identified (Figure 3b). The abundance of Proteobacteria at all sites was

the highest (mean relative abundance = 30.59%), and followed by Acidobacteria (19.63%),

Actinobacteria (16.51%) and Chloroflexi (13.22%). Briefly, the mean relative abundance of

Proteobacteria was the most at PQG (34.39%), and that of Actinobacteria was the highest at LY

(26.29%). The mean relative abundances of Acidobacteria (28.68%) and Chloroflexi (16.09%)

were the highest at WT. There were 31 bacterial families with relative abundances of more than

0.01% (Figure 3c). Based on the clustering graph, the sampling plots of each of the sites roughly

clustered together (Figure 3d). The community a-diversity indices varied at the different sites

(Figure 4). Briefly, the phylogenetic diversity (pd) and the number of observed species (sobs) were

the highest at WT sites (P < 0.05). There was no significant difference in the ACE index, Chao

index, Shannon index and Simpson index at the different sites (P > 0.05). This indicated that the

sites sampled had different soil microbial community structure.

Effects of environmental factors on microbiome dynamics

Based on the results of the DCA (axis length =1.02), we used RDA to identify the abiotic

environmental drivers that influenced bacterial community composition (Figure 5; permutation

test, P < 0.01). The results demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria

were mainly driven by pH, while SOC, TC, and TN were the main abiotic drivers of

Parcubacteria and Planctomycetes.

In the MRT analysis (Figure 6), we observed that the diversity indices (normalized) were

mainly split by SOC, explaining 36.75% in the first spilt. The correlation analysis showed similar

results: SOC was significantly correlated with bacterial communities at the phylum level (e.g.,
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Proteobacteria, Bacteroidetes, and Chloroflexi). Given its contribution to explaining community

distribution patterns, SOC was further used as a descriptor for the environmental gradients.

The variation partitioning analysis showed that environmental variables (20.3%) explained

more variation of microbial community structure than spatial variables (1.9%). This suggested that

both deterministic and stochastic processes were involved in the assembly of microbial

communities, and that deterministic processes were dominant. The unexplained variable was

78.6% (Figure 7).

Nonrandom co-occurrence patterns of the microbial community

Network analysis was applied to explore the interspecific relationship patterns in the

microbial communities (Figure 8). Compared with the LY- and WT- network, the PQG-network

exhibited more edges (87), more vertices (40), more modularity (0.691), higher average degree

(4.35) and average clustering coefficients (0.858), but less the numbers of modules (6) (Table S3).

Strong positive correlations were observed at all sites, while negative correlations were rare. The

size of the nodes corresponds to betweenness centralization values.

The bacterial community assembly processes

According to the null model analysis, our results demonstrated that the null deviation values

varied at different sites (ranging from 0.29 to 0.57; Figure 9a). The bacterial communities at WT

deviated significantly from the null expected value (relative null deviation = 0.45) and were

greater than that at LY site and PQG site (relative null deviation = 0.32 and 0.34, respectively)

(P<0.05).

Most importantly, we observed that the microbial community was more greatly shaped by

variable selection (BNTI > +2) (Figure 9b). From LY to WT, we observed a gradual increase in the
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relative role of deterministic processes compared to stochastic processes (Figure 9¢). Based on the

regression analysis of the environmental variables with assembly process parameters, we found

that SOC had a great influence on community assembly processes (Figure 9d). The mantel test

between BNTI and SOC matrices indicated the similar conclusion (P < 0.05, R = 0.509).

Discussion

Compared to LY, the microbial community at WT was more greatly driven by deterministic

processes. The driving effects of the deterministic processes gradually increased from LY to WT.

Given this, we inferred that a continuum existed between deterministic and stochastic processes in

the assembly of microbial communities in the study area. This is consistent with previous studies

(Chase et al. 2011; Tucker et al. 2016; Jurburg et al. 2017; Tian et al. 2017), which pointed out the

relative importance of the two processes varied in the different environmental contexts. For

example, in terms of plants, aggregation in temperate forests reflect stronger environmental

correlations, suggesting a key role for species-sorting processes (deterministic processes) (Myers

et al. 2013). In terms of microorganisms, previous studies have noted that bacterial community

assembly is largely governed by stochastic processes in early successional soils, with the relative

roles of deterministic processes increasing progressively in later successional soils (Diniandreote

et al. 2015; Ferrenberg et al. 2013; Hanson et al. 2012).

Previous research has confirmed this continuum could be dependent on varying

environmental conditions and the characteristics of organisms (Zhou et al. 2013).

Environmental factors, such as salinity (Lozupone & Knight 2007), pH (Fierer & Jackson 2006;

Griffiths et al. 2011), C/N ratio (Bates et al. 2011), soil C (Drenovsky et al. 2004), nitrogen levels

(Xiong et al. 2014), and the structure of the plant community (Lundberg et al. 2012) may be major
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determinants of microbial community structure. Our results demonstrated that pH, SOC, TC, and

TN were the main abiotic drivers of microbial community compositions. More importantly, based

on the integrated results of the MRT analysis, RDA, and correlation analysis, we identified SOC

as a general descriptor that encompassed the environmental gradients by which the communities

responded to.

Our results demonstrated that SOC differed significantly at different sites, and was

significantly correlated with nitrate nitrogen, nitrite nitrogen and TN (P < 0.05). This indicated

that SOC was closely related to soil fertility and possessed the highest weighting. Litters from the

trees will impact SOC, which in turn will impact the community assembly structure, and this is

perhaps the reason gexplaining why variable selection increases from LY to WT sites. The

relationships between SOC and bacterial community assembly have also been reported across a

broad range of microbial ecosystems (Bastida et al. 2013). Most importantly, we also observed

that SOC was closely associated with the community assembly process. Similar results reported

that the relative roles of stochastic and deterministic processes can vary with the successional age

of soils and can primarily be attributed to the covariance of soil pH with age (Tripathi et al. 2018).

The unexplained variation in VPA (78.6%) could be due to stochastic influences [e.g. drift or

speciation (Caruso et al. 2011)], unmeasured soil physicochemical properties [e.g. metal ion

concentration (Gombeer et al. 2015)] or interactions between species [e.g. competition (Caruso et

al. 2011)]. In fact, in other studies of microbial communities using VPA, the unexplained portions

may also account for more than 50 % (Liao et al. 2016; Mo et al. 2018).

In deterministic processes, not only environmental filtering, but also interspecies interactions

have a great influence on community assembly. Ecologists recently accepted that competition
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and environmental processes act simultaneously (Zhang et al. 2018). In the network analysis,

the higher modularity indicates that the network became denser, suggesting that the microbial

communities are highly complex (Olesen et al. 2007). Interestingly, the modularity was the highest

at PQG (0.691). This may be related to the greater sampling scales and elevation gradients, and

thus greater environmental heterogeneity at PQG. The average path distance represents the

shortest path between two nodes (Wang et al. 2016), which demonstrated irregular variation at WT

(Zheng et al. 2017). Strong positive correlations were observed among sites, while negative

correlations were rare (Figure 8a—c). This implied that microbes might cooperate in order to adapt

to similar niches. In the network, positive links could be attributed to niche overlap and

cross-feeding, while negative relationships could be attributed to competition and amensalism

(Faust & Raes 2012). From an ecological perspective, the peripherals may represent specialists,

whereas module hubs and connectors may be more generalists and network hubs may be

super-generalists (Figure 8d—f) (Deng et al. 2012). It is interesting to observe that the module hubs

and connectors differed at the different sites.

Conclusion

We quantified the importance of the deterministic and stochastic processes driving the

bacterial community assembly on different sites in subalpine coniferous forests, and showed that

P
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deterministic processes prevailed. Moreover, SOC was closely related to microbial community

structure and greatly influenced the processes of community assembly.
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