1	Deterministic processes dominate soil microbial community assembly along an
2	environmental gradient in subalpine coniferous forests,
3	Pengyu Zhao ¹ , Jiabing Bao ¹ , Xue Wang ¹ , Yi Liu ² , Cui Li ² , Baofeng Chai ¹
4	¹ Institute of Loess Plateau, Shanxi University, Taiyuan 030006, hina
5	² Faculty of Environment Economics, Shanxi University of Finance and Economics
6	Taiyuan
7	*Corresponding author:
8	Name: Baofeng Chai
9	E-mail: bfchai@sxu.edu.cn
10	Address: Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, China
11	TEL: 13603583312
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

leroux 22/1/19 17:01

Supprimé: govern

leroux 22/1/19 17:35

Commentaire [1]: Or across sites?

Or along 3 environmental gradients? (one per site)

→ this should be made clear

leroux 22/1/19 17:03

Commentaire [2]: The region studied will be indicated in the abstract; other information is more important for the title

leroux 22/1/19 17:02

Supprimé: on the Loess Plateau, China

Abstract Microbial community assembly is influenced by a continuum between deterministic and stochastic processes. An understanding of this ecological continuum is of great significance for drawing inferences about the effects of community assembly processes on microbial community structure and function. Here, we investigated the forces driving soil microbial community assembly along an environmental gradient in subalpine coniferous forests of the Loess Plateau in Shanxi, China. The variation in null deviations and phylogenetic analysis showed that a continuum (actually a trade-off) existed between deterministic and stochastic processes in shaping the microbial community structure, but deterministic processes prevailed in driving the microbial community assembly processes. By integrating the results of redundancy analysis (RDA), multiple regression tree (MRT) analysis and correlation analysis, we found that soil organic carbon (SOC) was the main driver of the community structure and diversity patterns. In addition, we also found that SOC had a great influence on the community assembly processes. Across sites, there were significant difference in interspecific relationships of microbial communities. In conclusion, our results show that deterministic processes always dominated stochastic processes for shaping bacterial community structure along the studied environmental gradient, in particular in relation with SOC

41

42

43

44

45

46

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Introduction

Understanding the fundamental ecological mechanisms that drive the assembly processes of microbial communities is a major challenge in community ecology (Shen et al. 2013), particularly microbial ecology. The assembly processes of the microbial community in a local community are generally influenced by two types of ecological processes, including deterministic

leroux 22/1/19 16:34

Supprimé: of

leroux 22/1/19 17:35

Commentaire [3]: Or across sites?

Or along 3 environmental gradients? (one per site)

→ this should be made clear

[1]

leroux 22/1/19 16:35

Commentaire [4]: Is this what you meant?

leroux 22/1/19 16:35

Supprimé: (this can be understood as the trade-off)

leroux 22/1/19 16:36

Supprimé: . Most importantly

leroux 22/1/19 16:36

Supprimé: to be a general descriptor that encompassed the environmental gradients in which the communities responded to, it could explain more variation in

leroux 22/1/19 17:04

Commentaire [5]: Unclear; what do you mean?

leroux 22/1/19 16:38

Supprimé: contribute to the understanding of the ecological continuum between

leroux 22/1/19 17:04

Supprimé:

leroux 22/1/19 16:38

Supprimé: versus

leroux 22/1/19 16:39

Supprimé: in

leroux 22/1/19 17:36

Commentaire [6]: Or across sites?

Or along 3 environmental gradients? (one per site)

leroux 22/1/19 16:40

Supprimé: and the response mechanisms of community structure to environmental ...[4]

[3]

leroux 22/1/19 17:05

Commentaire [7]: is this indeed your main message (see reviewer query to be clear...[5]

relationships (e.g., competition, predation, mutualisms, and trade-offs), and environmental factors (e.g., pH, temperature, salt, and moisture) govern the community structure (Chase & Myers 2011; Dumbrell et al. 2010; Offteru et al. 2010). Ecologists have traditionally appreciated that the environmental context determines the assembly processes of microbial communities: "Everything is everywhere, but the environment selects" (Baas-Becking 1934). For example, environmental factors such as pH (Tripathi et al. 2018), temperature (Anderson & Laurel 2013), or nitrogen levels (Xiong et al. 2016) may be major determinants of microbial community structure. Additionally, there is little doubt that interspecies relationships may also be an important force influencing the community structure and dynamic (Mayfield & Levine 2010).

For the other type of community assembly processes (i.e., stochastic processes), it is assumed that community structures are independent of organism traits and are governed by birth, death, colonization, extinction, drift, and speciation (Hubbell & BordadeAgua 2004). And it is hypothesized that species are all ecologically equivalent (Woodcock et al. 2007). Recently, it has been accepted that the two ecological processes exist in a continuum (Gravel et al. 2006).

Deterministic and stochastic processes can represent two complementary parts along a continuum of ecological forces shaping community structure (Gravel et al. 2006). Deterministic processes are at one end of the continuum, whereas stochastic processes are at the other end. Variation in ecological selection strength and the rates of dispersal can influence the ecological continuum across temporal and spatial scales, in addition to within entire ecosystems (Chisholm & Pacala 2011). Previous studies have confirmed that the ecological continuum varies based on environmental conditions or the characteristics of the organisms inhabiting the environments

leroux 22/1/19 16:42

Supprimé: stresses

leroux 22/1/19 16:42

Supprimé:,

93	(Diniandreote et al. 2016; Diniandreote et al. 2015; <u>Jurburg et al. 2017;</u> Zhou & Ning 2017).
94	For example, stochastic processes may dominate microbial community assembly within
95	successional stages, while deterministic processes may prevail during the transition periods
96	between successional stages (Ferrenberg et al. 2013). Given this, we hypothesize, that the
97	relative importance of deterministic and stochastic processes would differ, among sites
98	selected along an environmental gradient due to XXX. However, studies focused on the
99	mechanisms of community assembly are generally limited to specific spatial and temporal scales
100	or sampling scales, the conclusions of these studies may be contradictory in different scales. Thus,
101	this study can provide theoretical supports for the understanding the mechanism of community
102	assembly.
103	In this study, soil was sampled from 23 soil plots in subalpine coniferous forests located
104	along an environmental gradient on the Loess Plateau in Shanxi province, China. The 16S
105	ribosomal RNA genes of bacteria were analyzed using high-throughput sequencing. Our aims
106	were as follows: (i) to quantify the relative roles of deterministic and stochastic processes in
107	bacterial community dynamics along an environmental gradient; and more precisely (ii) to
108	evaluate the effects of environmental factors on microbial community assembly along this

Materials and methods

gradient.

109

110

111

112

113

2.1 Site and sampling

A total of 23 typical soil plots were sampled (Table S1, Figure S1) in August 2016 and August 2017. The sites were selected because their vegetation was subalpine mountain coniferous leroux 22/1/19 16:44

Supprimé: s

leroux 22/1/19 16:46

Supprimé: s

leroux 22/1/19 17:36

Commentaire [8]: Or across sites?

Or along 3 environmental gradients? (one per site)

→ this should be made clear

leroux 22/1/19 17:06

Commentaire [9]: due to changes in environmental parameters influencing community assembly processes?

Be clearer about what is your main hypothesis (sse reviewer's comment) Then check that the presentation of the ms. Makes clear that you actually address this question

leroux 22/1/19 17:36

Commentaire [10]:

Or along 3 environmental gradients? (one per site)

→ this should be made clear

leroux 22/1/19 16:56

Commentaire [11]: forests located along an environmental gradient?

forests representative of different successional stages?

leroux 22/1/19 17:37

Commentaire [12]: Or across sites?

Or along 3 environmental gradients? (one per site)

→ this should be made clear

leroux 22/1/19 16:57

Supprimé: they were located on

forests and they were located between 1900 m and 3055 m above mean sea level (amsl). The study area has a warm temperate continental monsoon climate, and mostly cinnamon soil.

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

This study focused on response patterns along environmental gradients rather than exploring differences among treatment groups. Previous studies have shown that for continuous environmental drivers, gradient designs further allow for better extrapolation, characterization of (nonlinear) response functions, and, consequently, quantitative outputs better suited for ecological models than replicated designs (Cottingham et al. 2005).

The study areas were set at the upper and lower distribution limit of *Larix principis-rupprechtii* along the altitudinal gradient. This can minimize environmental heterogeneity and avoid the interference of unknown factors. Eight plots were sampled from the Wutai Mountain site (WT), which ranges between 1,900 m and 3,055 m amsl. Ten plots were sampled from the Pangquangou Natural Reserve site (PQG), ranging from 1,950 m and 2,650 m amsl. The last, five plots were sampled from the Luya Mountain site (LY), which ranges between 2,000 m and 2,400 m amsl. The subalpine environments possess pronounced climatic gradients and climosequences within short distances, with a high level of environmental heterogeneity (Siles & Margesin 2017). At each sampling site, a 1 m × 1 m sampling plot was established *in situ* along an elevation gradient. Five soil cores at a depth of 15 cm were taken at each sampling plot, and then combined to form a single independent soil sample. Then, the soil samples were sealed in plastic bags and refrigerated, immediately transported to the laboratory and sieved using a 2 mm mesh. The soil samples were then stored at -80 °C until further analysis.

The soil samples were subsampled for molecular analysis and the DNA from of 1 g of soil

was extracted using an E.Z.N.A.@ Soil DNA Kit (OMEGA, USA). The quality and quantity of

leroux 22/1/19 16:58

Supprimé: The microbial communities have a high level of taxonomic and metabolic diversity (Prosser et al. 2007; Schloss & Handelsman 2007), and perform important ecological functions (Falkowski et al. 2008).

leroux 22/1/19 17:01

Commentaire [13]: provide the category of soils in your area according to, e.g. FAO categories

leroux 22/1/19 16:59

Supprimé: possess the characteristic of

leroux 22/1/19 17:0⁻

Supprimé: driver

leroux 22/1/19 17·14

Commentaire [14]: do you consider you have sampled along 3 gradients? Or along one gradient, replicated 3 times (=3 sites)?

Make this clearer

leroux 22/1/19 17:13

Commentaire [15]: be clearer: do you mean, e.g., 4 plots at the upper districution limit and 4 plots at the lower distribution limit for WT? etc?

if yes, state this clearly; but then you do not sample ALONG the gradient

leroux 22/1/19 17:18

Commentaire [16]: Please provide a table, with one line per plot and the corresponding altitude

Accordingly, be clear if you consider you have sampled gradients or not; and if you have here 3 gradients (one per site) or one (from lower to upper limit) X 3 replicates

leroux 22/1/19 17:18

Supprimé: ecological

the DNA extracts were measured using an Infinite 200 PRO plate reader (TECAN, Switzerland). The DNA purity was assessed based on the A260/A280 absorbance ratios, and only DNA extracts with absorbance ratios of 1.8~2.0 were used for further analyses. Three DNA samples were extracted, from each soil sample, which were then combined and sequenced at Shanghai Personal Biotechnology Co., Ltd. on an Illumina MiSeq sequencing platform based on the bacterial v3–v4 hypervariable region using bacterial 16S universal primers (341F 5'-ACTCCTACGAGGAGCA-3' and 805R 5'-TTACCGCGGGCTGCTGGCAC -3') (Tripathi et al. 2018).

2.2 Bioinformatics analysis

The sequencing data were analyzed using QIIME pipeline (v1.8.0, http://qiime.org/) (Caporaso JG 2010). The filtered sequence alignments were denoised by DeNoiser (J & R 2010) and then screened for chimeras using UCHIME (Edgar et al. 2011). The Archaea and unknown sequences were removed. The sequences were clustered into operational taxonomic units (OTUs) at a 97% similarity level using the average neighbor method and taxonomy was blast to SILVA database by k-mer searching using MOTHUR (Pruesse et al. 2007). The OTU table was rarefied to 4020 sequences per sample. Ten independent maximum-likelihood phylogenetic trees based on Jukes–Cantor distance were then constructed using FastTree2 (Price et al. 2009) after the removal of gaps and hypervariable regions using a Lane mask supplied by QIIME to support phylogenetic diversity calculations.

2.3 Environmental variables

In the laboratory, soil total carbon (TC), total nitrogen (TN), and total sulfur (TS) were measured using an elemental analyzer (Vario EL/ MACRO cube, Elementar, Hanau, Germany); nitrate nitrogen (NO₃-N), ammonium nitrogen (NH₄+N), and nitrite nitrogen (NO₂-N) were measured by an Automated Discrete Analysis Instrument (CleverChem 380, Germany). After

shaking the soil: water suspension (1:2.5 mass/volume) for 30 mins, the soil pH was measured using a pH meter (Hl 3221, Italy). The soil organic carbon in each soil sample was measured using the potassium dichromate volumetric method (Nelson et al. 1982).

2.4 Null model analysis

A null model was constructed to account for changes in β -diversity while controlling for stochastic variation and associated changes in α -diversity (i.e., local species richness; 999 iterations) (Chase et al. 2011). We considered the null deviation as the relative difference between the observed β -diversity and the null-model β -diversity (Tucker et al. 2016). As such, null deviation values may represent communities that are more similar than expected by chance (a negative null deviation value), less similar than expected by chance (a positive null deviation value), or close to the chance expectation (values near zero). The details of the calculation process can found be in previous studies (available online as Appendix oik.02803 at https: www.oikosjournal.org/readers/appendix, Appendix 1–2) (Tucker et al. 2016).

2.5 Phylogenetic analysis

Our study used phylogenetic turnover between communities to infer ecological processes (Stegen et al. 2015). To quantify phylogenetic turnover between communities, we used the between community mean-nearest-taxon-distance (β MNTD) metric. β MNTD was calculated using the R function 'comdistnt' (abundance.weighted = TRUE; package "picante"). Then, we evaluated β -Nearest Taxon Index (β NTI), which expresses the difference between observed β MNTD and the mean of the null distribution in units of standard deviations (Stegen et al. 2013).

In addition, to distinguish more details in the assembly processes, we used the Raup-Crick metric (Chase et al. 2011), extended to incorporate species' relative abundances;

referred to as RC_{bray} . The R script of RC_{bray} can be found at https://github.com/stegen/Stegen et al ISME 2013.

In a given community, we estimated the relative influence of variable selection or

homogeneous selection as the fraction of their comparisons with $\beta NTI > +2$ or $\beta NTI < -2,$

respectively. We regard the fraction of the between community comparisons with $|\beta NTI| \le 2$ and

 $RC_{bray} > +0.95$ as dispersal limitation, while $|\beta NTI| < 2$ and $RC_{bray} < -0.95$ is considered

homogenizing dispersal (Diniandreote et al. 2015; Stegen et al. 2013; Stegen et al. 2015).

2.6 Network analysis

The co-occurrence network was constructed based on the Spearman correlation matrix offered in the 'psych' package in R. In this network, the nodes represent OTUs and the edges that connect these nodes represent correlations between OTUs. Only those connections with correlation coefficients > 0.6 and P < 0.05 were used in the network. Thus, positive correlations indicate co-occurring OTUs based on abundances, whereas negative correlations indicate that the OTUs are mutually exclusive (Barberán et al. 2012). P-values were false discovery rate (FDR) adjusted to control for the analysis (FDR < 0.05). The network analysis was completed using the 'igraph' package in R.

2.7 Statistical analysis

All statistical analyses were performed in the R environment using the 'vegan', 'ggplot2', 'ggpubr', and 'corrplot' packages. A Venn diagram was used to visualize the shared OTUs among the sites. A correlation matrix graph was used to demonstrate the correlation between soil physicochemical factors and was constructed using the 'corrplot' packages in R. Multivariate regression tree analysis (MRT) was used to explain the relationship between bacterial

 α -diversity estimates and environmental variables in a visualized tree, and diversity indices were normalized to the same mean before performing MRT analysis (Ge et al. 2008). Based on the longest gradient lengths from the results of detrended correspondence analysis (DCA), we selected redundancy analysis (RDA) to quantify the effects of environmental variables on microbial community composition (Mo et al. 2018). Forward selection of PCNM variables based on permutation tests was chosen to identify 2 of the 23 extracted PCNM variables that significantly (P < 0.05) explained the spatial structure. The PCNM eigenfunctions, which represent the 'spectral decomposition of the spatial relationship across sampling locations', can be considered as the spatial variables in the ordination-based analysis. The contributions of environmental filtering and the space variable (PCNM) to the variation in bacterial community composition were calculated by using variance partitioning analysis (VPA) (CANOCO for Windows Version 5.0). The mantel test was performed in the R environment using the 'vegan' packages.

Results

Physicochemical properties of the soils from the different sites

The soil physicochemical properties varied across the different sampling sites (Figure 1). Briefly, the contents of ammonium nitrogen and nitrite nitrogen were the highest at LY sites (36.91 and 0.16 mg·kg-1, respectively), and were lowest at WT sites (17.41 and 0.04 mg·kg⁻¹, respectively). The contents of nitrate nitrogen (6.45 mg·kg⁻¹), SOC (70.29 mg·g⁻¹), TC (6.4%), and TN (0.51%) were the highest at WT sites, and were the lowest at LY sites.

TN was significantly positively correlated with TC and SOC (P < 0.05) and significantly negatively correlated with pH value (P < 0.05; Figure 2). TC and pH showed a significant

negative correlation (P < 0.05). SOC was significantly positively correlated with nitrate nitrogen (P < 0.0.5) and significantly negatively correlated with nitrite nitrogen (P < 0.05). The above environmental factors formed an ecological gradient along the different sites studied.

Dynamics of bacterial community composition and diversity

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

A total of 4258 OTUs were identified from 1,062,241 high-quality sequences recovered from 23 soil samples. Good's coverage ranged from 95.19% to 99.75%, indicating that the identified sequences were representative of most of the bacterial sequences in the collected soil samples. Rarefaction curve analyses, which generally yielded asymptotic curves, indicated that the numbers of sampling plots were enough. Detailed information of the sequencing results is provided in Table S2. The soil microbial community composition varied across the different sampling sites (Figure 3). There were 15 bacterial phyla with relative abundances of more than 0.01% (Figure 3a). As shown in the Venn diagram, 869 bacterial shared OTUs were observed in all sampling sites. There were 46 bacterial phyla identified (Figure 3b). The abundance of Proteobacteria at all sites was the highest (mean relative abundance = 30.59%), and followed by Acidobacteria (19.63%), Actinobacteria (16.51%) and Chloroflexi (13.22%). Briefly, the mean relative abundance of Proteobacteria was the most at PQG (34.39%), and that of Actinobacteria was the highest at LY (26.29%). The mean relative abundances of Acidobacteria (28.68%) and Chloroflexi (16.09%) were the highest at WT. There were 31 bacterial families with relative abundances of more than 0.01% (Figure 3c). Based on the clustering graph, the sampling plots of each of the sites roughly clustered together (Figure 3d). The community α -diversity indices varied at the different sites

(Figure 4). Briefly, the phylogenetic diversity (pd) and the number of observed species (sobs)

260 were the highest at WT sites (P < 0.05). There was no significant difference in the ACE index, 261 Chao index, Shannon index and Simpson index at the different sites (P > 0.05). 262 Effects of environmental factors on microbiome dynamics 263 Based on the results of the DCA (axis length =1.02), we used RDA to identify the abiotic 264 environmental drivers that influenced bacterial community composition (Figure 5; permutation test, P < 0.01). The results demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria 265 266 were mainly driven by pH, while SOC, TC, and TN were the main abiotic drivers of 267 Parcubacteria and Planctomycetes. In the MRT analysis (Figure 6), we observed that the diversity indices (normalized) were 268 mainly split by SOC, explaining 36.75% in the first spilt. The correlation analysis showed similar 269 270 results: SOC was significantly correlated with bacterial communities at the phylum level (e.g., 271 Proteobacteria, Bacteroidetes, and Chloroflexi). Given its contribution to explaining community 272 distribution patterns, SOC was further used as a descriptor for the environmental gradients. 273 The variation partitioning analysis showed that environmental variables (20.3%) explained 274 more variation of microbial community structure than spatial variables (1.9%). This suggested that 275 both deterministic and stochastic processes were involved in the assembly of microbial 276 communities, and that deterministic processes were dominant. The unexplained variable was 277 78.6% (Figure 7). 278 Nonrandom co-occurrence patterns of the microbial community 279 Network analysis was applied to explore the interspecific relationship patterns in the 280 microbial communities (Figure 8). Compared with the LY- and WT- network, the PQG-network 281 exhibited more edges (87), more vertices (40), more modularity (0.691), higher average degree

(4.35) and average clustering coefficients (0.858), but less the numbers of modular (6) (Table S3). Strong positive correlations were observed at all sites, while negative correlations were rare. The size of the nodes corresponds to betweenness centralization values.

The bacterial community assembly processes

According to the null model analysis, our results demonstrated that the null deviation values varied at different sites (ranging from 0.29 to 0.57; Figure 9a). The bacterial communities at WT deviated significantly from the null expected value (relative null deviation = 0.45) and were greater than that at LY site and PQG site (relative null deviation = 0.32 and 0.34, respectively) (P<0.05).

Most importantly, we observed that the microbial community was more greatly shaped by variable selection (β NTI > +2) (Figure 9b). From LY to WT, we observed a gradual increase in the relative role of deterministic processes compared to stochastic processes (Figure 9c). Based on the regression analysis of the environmental variables with assembly process parameters, we found that SOC had a great influence on community assembly processes (Figure 9d). The mantel test between β NTI and SOC matrices indicated the similar conclusion (P < 0.05, R = 0.509).

Discussion

Microorganisms typically form diverse communities of interacting species, whose activities have tremendous impacts on the plants, animals, and humans they associate with (Friedman et al. 2017). Understanding the fundamental ecological mechanisms that drive the assembly processes of microbial communities is the hotspot in community ecology (Jurburg et al. 2017).

Our results demonstrated that the β -diversity null deviation values varied among sites. As bacteria may possess greater metabolic functional plasticity, they are thus less influenced by

leroux 22/1/19 17:25

Commentaire [17]: Is your hypothesis this will vary among sites (i.e. you compare 3 sites)? Or along the environmental gradients (you analyse then the gradients and correlations considering individual plot values)

environmental filtering compared to fungal communities (Massana & Logares 2013). This may be the reason why the degree of deviation reported herein is lower than that previously reported for soil fungal communities along a well-established glacier forefront chronosequence (Tian et al. 2017).

Supprimé: that

Furthermore, compared to LY, the microbial community at WT was more greatly driven by deterministic processes. The driving effects of the deterministic processes gradually increased from LY to WT. Given this, we inferred that a continuum existed between deterministic and stochastic processes in the assembly of microbial communities in the study area (Chase et al. 2011; Tucker et al. 2016). This is consistent with previous studies. In terms of plants, aggregation in temperate forests reflect stronger environmental correlations, suggesting a key role for species-sorting processes (deterministic processes) (Myers et al. 2013). In terms of microorganisms, previous studies have noted that bacterial community assembly is largely governed by stochastic processes in early successional soils, with the relative roles of deterministic processes increasing progressively in later successional soils (Diniandreote et al. 2015; Ferrenberg et al. 2013; Hanson et al. 2012).

Previous research has confirmed this continuum could be dependent on varying environmental conditions and the characteristics of organisms (Zhou et al. 2013). Environmental factors, such as salinity (Lozupone & Knight 2007), pH (Fierer & Jackson 2006; Griffiths et al. 2011), C/N ratio (Bates et al. 2011), soil C (Drenovsky et al. 2004), nitrogen levels (Xiong et al. 2014), and the structure of the plant community (Lundberg et al. 2012) may be major determinants of microbial community structure. Our results demonstrated that pH, SOC, TC, and TN were the main abiotic drivers of microbial community compositions. More importantly, based

on the integrated results of the MRT analysis, RDA, and correlation analysis, we identified SOC as a general descriptor that encompassed the environmental gradients by which the communities responded to.

Our results demonstrated that SOC differed significantly at different sites, and was significantly correlated with nitrate nitrogen, nitrite nitrogen and TN (P < 0.05). This indicated that SOC was closely related to soil fertility and possessed the highest weighting. The relationships between SOC and bacterial community assembly have also been reported across a broad range of microbial ecosystems (Bastida et al. 2013). Most importantly, we also observed that SOC was closely associated with the community assembly process. Similar results reported that the relative roles of stochastic and deterministic processes can vary with the successional age of soils and can primarily be attributed to the covariance of soil pH with age (Tripathi et al. 2018). The unexplained variation in VPA (78.6%) could be due to stochastic influences [e.g. drift or speciation (Caruso et al. 2011)], unmeasured soil physicochemical properties [e.g. metal ion concentration (Gombeer et al. 2015)] or interactions between species [e.g. competition (Caruso et al. 2011)]. In fact, in other studies of microbial communities using VPA, the unexplained portions may also account for more than 50 % (Liao et al. 2016; Mo et al. 2018).

In deterministic processes, not only environmental filtering, but also interspecies interactions have a great influence on community assembly. Ecologists recently accepted that competition and environmental processes act simultaneously (Zhang et al. 2018). In the network analysis, the higher modularity indicates that the network became denser, suggesting that the microbial communities are highly complex (Olesen et al. 2007). Interestingly, the modularity was the highest at PQG (0.691). This may be related to the greater sampling scales and elevation gradients,

and thus greater environmental heterogeneity, at PQG. The average path distance represents the shortest path between two nodes (Wang et al. 2016), which demonstrated irregular variation at WT (Zheng et al. 2017). Strong positive correlations were observed among sites, while negative correlations were rare (Figure 8a-c). This implied that microbes might cooperate in order to adapt to similar niches. In the network, positive links could be attributed to niche overlap and cross-feeding, while negative relationships could be attributed to competition and amensalism (Faust & Raes 2012). From an ecological perspective, the peripherals may represent specialists, whereas module hubs and connectors may be more generalists and network hubs may be super-generalists (Figure 8d-f) (Deng et al. 2012). It is interesting to observe that the module hubs and connectors differed at the different sites.

Conclusion

The most significant finding in this study is that a continuum exists between the deterministic and stochastic processes driving the bacterial community assembly in subalpine coniferous forests on the Loess Plateau, China. SOC was closely related to microbial community structure and greatly influenced the processes of community assembly. Across sites, there were significant differences in microbial interactions existed at the community level. The results of this study contribute to our understanding of the continuum between deterministic and stochastic processes in bacterial community assembly.

ACKNOWLEDGMENTS

We are grateful to all the scientists who contribute to the collection of data used in this study.

Reference

Anderson, and Laurel J. 2013. Aboveground-belowground linkages: biotic interactions, ecosystem

leroux 22/1/19 17:30

Commentaire [18]: Rather, is your main result that deterministic processes always dominate stochastic ones across an environmental gradients?

- processes, and global change. Eos Transactions American Geophysical Union 92:222-222.
- Barberán, Bates, Casamayor, and N F. 2012. Using network analysis to explore co-occurrence patterns
 in soil microbial communities. *Isme Journal* 6:343-351.
- 376 Baas-Becking L. Geobiologie of inleiding tot de milieukunde. WP Van Stockkum and Zoon, 1934
- Bastida F, Torres IF, Hernández T, Bombach P, Richnow HH, and García C. 2013. Can the labile carbon contribute to carbon immobilization in semiarid soils? Priming effects and microbial community dynamics. *Soil Biology & Biochemistry* 57:892-902.
- Bates ST, Berglyons D, Caporaso JG, Walters WA, Knight R, and Fierer N. 2011. Examining the
 global distribution of dominant archaeal populations in soil. *Isme Journal* 5:908-917.
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG,
 Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone
 CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters
 WA, Widmann J, Yatsunenko T, Zaneveld J, and Knight R. 2010. QIIME allows analysis of
 high-throughput community sequencing data. *Nature Methods*:335-336.
- Caruso T, Chan Y, Lacap DC, Lau MC, Mckay CP, and Pointing SB. 2011. Stochastic and
 deterministic processes interact in the assembly of desert microbial communities on a global
 scale. *Isme Journal* 5:1406.
- 390 Chase JM, Kraft NJB, Smith KG, Vellend M, and Inouye BD. 2011. Using null models to disentangle variation in community dissimilarity from variation in α□ diversity. *Ecosphere* 2:article 24.
- Chase JM, and Myers JA. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. *Philosophical Transactions of the Royal Society of London* 366:2351-2363
- Chisholm RA, and Pacala SW. 2011. Theory predicts a rapid transition from niche-structured to neutral
 biodiversity patterns across a speciation-rate gradient. *Theoretical Ecology* 4:195-200.
- Cottingham, K.L., Lennon, J.T. & Brown, B.L. (2005). Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Environ., 3, 145–152.
- Deng, Jiang YH, Yang Y, He Z, Feng L, and Zhou J. 2012. Molecular ecological network analyses.
 Bmc Bioinformatics 13:113.

401

402

403

404

405

406

407

- Diniandreote F, Pylro VS, Baldrian P, Elsas JDV, and Salles JF. 2016. Ecological succession reveals potential signatures of marine|[ndash]|terrestrial transition in salt marsh fungal communities. *Isme Journal* 10:1984-1997.
- Diniandreote F, Stegen JC, van Elsas JD, and Salles JF. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

 Proceedings of the National Academy of Sciences of the United States of America 112:1326-1332.
- Drenovsky RE, Vo D, Graham KJ, and Scow KM. 2004. Soil water content and organic carbon availability are major determinants of soil microbial community composition. *Microbial Ecology* 48:424-430.
- Dumbrell AJ, Nelson M, Helgason T, Dytham C, and Fitter AH. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. *Isme Journal* 4:337-345.
- Edgar RC, Haas BJ, Clemente JC, Quince C, and Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* 27:2194.
- Falkowski PG, Fenchel T, and Delong EF. 2008. The microbial engines that drive Earth's biogeochemical cycles. *Science* 320:1034-1039.

- Faust K, and Raes J. 2012. Microbial interactions: from networks to models. *Nature Reviews*Microbiology 10:538.
- 419 Ferrenberg S, O'Neill SP, Knelman JE, Todd B, Duggan S, Bradley D, Robinson T, Schmidt SK, 420 Townsend AR, and Williams MW. 2013. Changes in assembly processes in soil bacterial 421 communities following a wildfire disturbance. *Isme Journal* 7:1102-1111.
- Fierer N, and Jackson RB. 2006. The diversity and biogeography of soil bacterial communities.

 Proceedings of the National Academy of Sciences of the United States of America

 103:626-631.
- Friedman J, Higgins LM, and Gore J. 2017. Community structure follows simple assembly rules in microbial microcosms. *Nat Ecol Evol* 1:109.

427

428

429

- Ge Y, He JZ, Zhu YG, Zhang JB, Xu Z, Zhang LM, and Zheng YM. 2008. Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? *Isme Journal* 2:254-264.
- Gombeer S, Ramond JB, Eckardt FD, Seely M, and Cowan DA. 2015. The influence of surface soil
 physicochemistry on the edaphic bacterial communities in contrasting terrain types of the
 Central Namib Desert. *Geobiology* 13:494-505.
- Gravel D, Canham CD, Beaudet M, and Messier C. 2006. Reconciling niche and neutrality: the continuum hypothesis. *Ecology Letters* 9:399-409.
- Griffiths RI, Thomson BC, James P, Bell T, Bailey M, and Whiteley AS. 2011. The bacterial biogeography of British soils. *Environmental Microbiology* 13:1642.
- Hanson CA, Fuhrman JA, Hornerdevine MC, and Martiny JBH. 2012. Beyond biogeographic patterns:
 processes shaping the microbial landscape. *Nature Reviews Microbiology* 10:497-506.
- Hubbell SP, and BordadeAgua L. 2004. *Unified Neutral Theory of Biodiversity and Biography: reply*:
 Princeton University Press.
- Jurburg S D, Nunes I, Stegen J C, Roux X L, Priemé A, Salles J F. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities, Scientific Reports, 2017, 7:45691.
- J R, and R K. 2010. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. *Nature Methods* 7:668-669.
- 446 Liao J, Cao X, Zhao L, Wang J, Gao Z, Caiwang M, and YiHuang. 2016. The importance of neutral
 447 and niche processes for bacterial community assembly differs between habitat generalists and
 448 specialists. FEMS Microbiology Ecology 92:fiw174.
- Lozupone CA, and Knight R. 2007. Global patterns in bacterial diversity. Proceedings of the National
 Academy of Sciences of the United States of America 104:11436.
- 451 Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson
 452 A, Kunin V, and Rio TGD. 2012. Defining the core Arabidopsis thaliana root microbiome.
 453 Nature 488:86.
- Massana R, and Logares R. 2013. Eukaryotic versus prokaryotic marine picoplankton ecology.
 Environmental Microbiology 15:1254-1261.
- Mayfield MM, and Levine JM. 2010. Opposing effects of competitive exclusion on the phylogenetic
 structure of communities. *Ecology Letters* 13:1085-1093.
- Mo Y, Zhang W, Yang J, Lin Y, Yu Z, and Lin S. 2018. Biogeographic patterns of abundant and rare
 bacterioplankton in three subtropical bays resulting from selective and neutral processes. *Isme* Journal 12:2198-2210.

leroux 22/1/19 16:4

Supprimé: [J].

- Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujomurakami A, Paniaguazambrana N, and Seidel
 R. 2013. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of
 community assembly. *Ecology Letters* 16:151-157.
- Nelson, D.W., Sommers, L.E., Dry combustion method using medium temperature resistance furnace.
 In: Page, A.L. (Ed.), Methods of Soil Analysis. Part 2: Chemical and Microbial Properties,
 2nd edn. American Society of Agronomy, Soil Science Society of America Madison, WI,
 USA, pp. 1982.539–579.
- Ofiţeru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, and Sloan WT. 2010. Combined
 niche and neutral effects in a microbial wastewater treatment community. Proceedings of the
 National Academy of Sciences of the United States of America 107:15345-15350.
- Olesen JM, Bascompte J, Dupont YL, and Jordano P. 2007. The modularity of pollination networks.
 Proc Natl Acad Sci U S A 104:19891-19896.
- Price MN, Dehal PS, and Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. *Molecular Biology & Evolution* 26:1641-1650.
- 476 Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE,
 477 Killham K, and Lennon JJ. 2007. The role of ecological theory in microbial ecology. *Nature* 478 *Reviews Microbiology* 5:384-392.
- 479 Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, and Glöckner FO. 2007. SILVA: a
 480 comprehensive online resource for quality checked and aligned ribosomal RNA sequence data
 481 compatible with ARB. *Nucleic Acids Research* 35:7188-7196.
- 482 Schloss PD, and Handelsman J. 2007. The Last Word: Books as a Statistical Metaphor for Microbial 483 Communities. *Annual Review of Microbiology* 61:23-34.
- Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, and Chu H. 2013. Soil pH drives the spatial
 distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology &
 Biochemistry 57:204-211.
- 487 Siles JA, and Margesin R. 2017. Seasonal soil microbial responses are limited to changes in 488 functionality at two Alpine forest sites differing in altitude and vegetation. *Scientific Reports* 489 7:2204.
- Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, and Konopka A.
 2013. Quantifying community assembly processes and identifying features that impose them.
 Isme Journal 7:2069-2079.
- Stegen JC, Lin X, Fredrickson JK, and Konopka AE. 2015. Estimating and mapping ecological processes influencing microbial community assembly. *Frontiers in Microbiology* 6:370.
- Tian J, Qiao Y, Wu B, Chen H, Li W, Jiang N, Zhang X, and Liu X. 2017. Ecological Succession
 Pattern of Fungal Community in Soil along a Retreating Glacier. Frontiers in Microbiology
 8:1028.
- Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, and Lee YK. 2018. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. *Isme Journal* 12.
- Tucker CM, Shoemaker LG, Davies KF, Nemergut DR, and Melbourne BA. 2016. Differentiating
 between niche and neutral assembly in metacommunities using null models of β□diversity.
 Oikos 125:778-789.
- Wang Y, Zhang R, Zheng Q, Deng Y, Van Nostrand JD, Zhou J, and Jiao N. 2016. Bacterioplankton
 community resilience to ocean acidification: evidence from microbial network analysis. *Ices Journal of Marine Science* 73:865-875.

- Woodcock S, Van DG, Christopher J, Bell T, Lunn M, Curtis TP, Head IM, and Sloan WT. 2007.
 Neutral assembly of bacterial communities. FEMS Microbiology Ecology 62:171-180.
- Xiong J, Sun H, Peng F, Zhang H, Xue X, Gibbons SM, Gilbert JA, and Chu H. 2014. Characterizing
 changes in soil bacterial community structure in response to short-term warming. FEMS
 Microbiology Ecology 89:281.
- Xiong Q, Pan K, Zhang L, Wang Y, Li W, He X, and Luo H. 2016. Warming and nitrogen deposition
 are interactive in shaping surface soil microbial communities near the alpine timberline zone
 on the eastern QinghaiâTibet Plateau, southwestern China. *Applied Soil Ecology* 101:72-83.
 - Zhang Q, Goberna M, Liu Y, Cui M, Yang H, Sun Q, Insam H, and Zhou J. 2018. Competition and habitat filtering jointly explain phylogenetic structure of soil bacterial communities across elevational gradients. *Environmental Microbiology*.

514

515

516

525

- Zheng W, Xue D, Li X, Deng Y, Rui J, Feng K, and Wang ZL. 2017. The responses and adaptations of
 microbial communities to salinity in farmland soils: A molecular ecological network analysis.
 Applied Soil Ecology 120:239-246.
- Zhou J, Liu W, Deng Y, Jiang YH, Xue K, He Z, Van Nostrand JD, Wu L, Yang Y, and Wang A. 2013.
 Stochastic assembly leads to alternative communities with distinct functions in a bioreactor
 microbial community. *Mbio* 4:49-52.
- Zhou J, and Ning D. 2017. Stochastic Community Assembly: Does It Matter in Microbial Ecology?
 Microbiology & Molecular Biology Reviews Mmbr 81:e00002-00017.