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Abstract Microbial community assembly is influenced by a continuum between deterministic and 25 

stochastic processes. An understanding of this ecological continuum is of great significance for 26 

drawing inferences about the effects of community assembly processes on microbial community 27 

structure and function. Here, we investigated the forces driving soil microbial community 28 

assembly along an environmental gradient in subalpine coniferous forests of the Loess Plateau in 29 

Shanxi, China. The variation in null deviations and phylogenetic analysis showed that a 30 

continuum (actually a trade-off) existed between deterministic and stochastic processes in shaping 31 

the microbial community structure, but, deterministic processes prevailed in driving the microbial 32 

community assembly processes. By integrating the results of redundancy analysis (RDA), multiple 33 

regression tree (MRT) analysis and correlation analysis, we found that soil organic carbon (SOC) 34 

was the main driver of the community structure and diversity patterns. In addition, we also found 35 

that SOC had a great influence on the community assembly processes. Across sites, there were 36 

significant difference in interspecific relationships of microbial communities. In conclusion, our 37 

results show that deterministic processes always dominated stochastic processes for shaping 38 

bacterial community structure along the studied environmental gradient, in particular in relation 39 

with SOC. 40 

 41 

Introduction 42 

Understanding the fundamental ecological mechanisms that drive the assembly processes 43 

of microbial communities is a major challenge in community ecology (Shen et al. 2013), 44 

particularly microbial ecology. The assembly processes of the microbial community in a local 45 

community are generally influenced by two types of ecological processes, including deterministic 46 
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and stochastic processes. First, deterministic factors, such as organism traits, interspecies 69 

relationships (e.g., competition, predation, mutualisms, and trade-offs), and environmental factors 70 

(e.g., pH, temperature, salt, and moisture) govern the community structure (Chase & Myers 2011; 71 

Dumbrell et al. 2010; Ofiţeru et al. 2010). Ecologists have traditionally appreciated that the 72 

environmental context determines the assembly processes of microbial communities: “Everything 73 

is everywhere, but the environment selects” (Baas-Becking 1934). For example, environmental 74 

factors such as pH (Tripathi et al. 2018), temperature (Anderson & Laurel 2013), or nitrogen 75 

levels (Xiong et al. 2016) may be major determinants of microbial community structure. 76 

Additionally, there is little doubt that interspecies relationships may also be an important force 77 

influencing the community structure and dynamic (Mayfield & Levine 2010).  78 

 For the other type of community assembly processes (i.e., stochastic processes), it is 79 

assumed that community structures are independent of organism traits and are governed by birth, 80 

death, colonization, extinction, drift, and speciation (Hubbell & BordadeAgua 2004). And it is 81 

hypothesized that species are all ecologically equivalent (Woodcock et al. 2007). Recently, it has 82 

been accepted that the two ecological processes exist in a continuum (Gravel et al. 2006).    83 

Deterministic and stochastic processes can represent two complementary parts along a 84 

continuum of ecological forces shaping community structure (Gravel et al. 2006). Deterministic 85 

processes are at one end of the continuum, whereas stochastic processes are at the other end. 86 

Variation in ecological selection strength and the rates of dispersal can influence the ecological 87 

continuum across temporal and spatial scales, in addition to within entire ecosystems (Chisholm & 88 

Pacala 2011). Previous studies have confirmed that the ecological continuum varies based on 89 

environmental conditions or the characteristics of the organisms inhabiting the environments 90 
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(Diniandreote et al. 2016; Diniandreote et al. 2015; Jurburg et al. 2017; Zhou & Ning 2017). 93 

For example, stochastic processes may dominate microbial community assembly within 94 

successional stages, while deterministic processes may prevail during the transition periods 95 

between successional stages (Ferrenberg et al. 2013). Given this, we hypothesize that the 96 

relative importance of deterministic and stochastic processes would differ among sites 97 

selected along an environmental gradient due to XXX. However, studies focused on the 98 

mechanisms of community assembly are generally limited to specific spatial and temporal scales 99 

or sampling scales, the conclusions of these studies may be contradictory in different scales. Thus, 100 

this study can provide theoretical supports for the understanding the mechanism of community 101 

assembly. 102 

In this study, soil was sampled from 23 soil plots in subalpine coniferous forests located 103 

along an environmental gradient on the Loess Plateau in Shanxi province, China. The 16S 104 

ribosomal RNA genes of bacteria were analyzed using high-throughput sequencing. Our aims 105 

were as follows: (i) to quantify the relative roles of deterministic and stochastic processes in 106 

bacterial community dynamics along an environmental gradient; and more precisely (ii) to 107 

evaluate the effects of environmental factors on microbial community assembly along this 108 

gradient.  109 

 110 

Materials and methods 111 

2.1 Site and sampling 112 

A total of 23 typical soil plots were sampled (Table S1, Figure S1) in August 2016 and 113 

August 2017. The sites were selected because their vegetation was subalpine mountain coniferous 114 
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forests and they were located between 1900 m and 3055 m above mean sea level (amsl). The study 118 

area has a warm temperate continental monsoon climate, and mostly cinnamon soil. 119 

This study focused on response patterns along environmental gradients rather than exploring 120 

differences among treatment groups. Previous studies have shown that for continuous 121 

environmental drivers, gradient designs further allow for better extrapolation, characterization of 122 

(nonlinear) response functions, and, consequently, quantitative outputs better suited for ecological 123 

models than replicated designs (Cottingham et al. 2005). 124 

The study areas were set at the upper and lower distribution limit of Larix 125 

principis-rupprechtii along the altitudinal gradient. This can minimize environmental 126 

heterogeneity and avoid the interference of unknown factors. Eight plots were sampled from the 127 

Wutai Mountain site (WT), which ranges between 1,900 m and 3,055 m amsl. Ten plots were 128 

sampled from the Pangquangou Natural Reserve site (PQG), ranging from 1,950 m and 2,650 m 129 

amsl. The last, five plots were sampled from the Luya Mountain site (LY), which ranges between 130 

2,000 m and 2,400 m amsl. The subalpine environments possess pronounced climatic gradients 131 

and climosequences within short distances, with a high level of environmental heterogeneity (Siles 132 

& Margesin 2017). At each sampling site, a 1 m × 1 m sampling plot was established in situ along 133 

an elevation gradient. Five soil cores at a depth of 15 cm were taken at each sampling plot, and 134 

then combined to form a single independent soil sample. Then, the soil samples were sealed in 135 

plastic bags and refrigerated, immediately transported to the laboratory and sieved using a 2 mm 136 

mesh. The soil samples were then stored at -80 °C until further analysis. 137 

The soil samples were subsampled for molecular analysis and the DNA from of 1 g of soil 138 

was extracted using an E.Z.N.A.@ Soil DNA Kit (OMEGA, USA). The quality and quantity of 139 
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the DNA extracts were measured using an Infinite 200 PRO plate reader (TECAN, Switzerland). 148 

The DNA purity was assessed based on the A260/A280 absorbance ratios, and only DNA extracts 149 

with absorbance ratios of 1.8~2.0 were used for further analyses. Three DNA samples were 150 

extracted, from each soil sample, which were then combined and sequenced at Shanghai Personal 151 

Biotechnology Co., Ltd. on an Illumina MiSeq sequencing platform based on the bacterial v3−v4 152 

hypervariable region using bacterial 16S universal primers (341F 5′-ACTCCTACGAGGAGCA-3′ 153 

and 805R 5′-TTACCGCGGCTGCTGGCAC -3′) (Tripathi et al. 2018). 154 

2.2 Bioinformatics analysis 155 

The sequencing data were analyzed using QIIME pipeline (v1.8.0, http://qiime.org/) 156 

(Caporaso JG 2010). The filtered sequence alignments were denoised by DeNoiser (J & R 2010) 157 

and then screened for chimeras using UCHIME (Edgar et al. 2011). The Archaea and unknown 158 

sequences were removed. The sequences were clustered into operational taxonomic units (OTUs) 159 

at a 97% similarity level using the average neighbor method and taxonomy was blast to SILVA 160 

database by k-mer searching using MOTHUR (Pruesse et al. 2007). The OTU table was rarefied 161 

to 4020 sequences per sample. Ten independent maximum-likelihood phylogenetic trees based on 162 

Jukes−Cantor distance were then constructed using FastTree2 (Price et al. 2009) after the removal 163 

of gaps and hypervariable regions using a Lane mask supplied by QIIME to support phylogenetic 164 

diversity calculations.  165 

2.3 Environmental variables 166 

In the laboratory, soil total carbon (TC), total nitrogen (TN), and total sulfur (TS) were 167 

measured using an elemental analyzer (Vario EL/ MACRO cube, Elementar, Hanau, Germany); 168 

nitrate nitrogen (NO3
-_N), ammonium nitrogen (NH4

+_N), and nitrite nitrogen (NO2
-_N) were 169 

measured by an Automated Discrete Analysis Instrument (CleverChem 380, Germany). After 170 



shaking the soil: water suspension (1:2.5 mass/volume) for 30 mins, the soil pH was measured 171 

using a pH meter (Hl 3221, Italy). The soil organic carbon in each soil sample was measured using 172 

the potassium dichromate volumetric method (Nelson et al. 1982). 173 

2.4 Null model analysis 174 

A null model was constructed to account for changes in β-diversity while controlling for 175 

stochastic variation and associated changes in α-diversity (i.e., local species richness; 999 176 

iterations) (Chase et al. 2011). We considered the null deviation as the relative difference between 177 

the observed β-diversity and the null-model β-diversity (Tucker et al. 2016). As such, null 178 

deviation values may represent communities that are more similar than expected by chance (a 179 

negative null deviation value), less similar than expected by chance (a positive null deviation 180 

value), or close to the chance expectation (values near zero). The details of the calculation 181 

process can found be in previous studies (available online as Appendix oik.02803 at https: 182 

www.oikosjournal.org/readers/appendix, Appendix 1–2) (Tucker et al. 2016). 183 

2.5 Phylogenetic analysis 184 

Our study used phylogenetic turnover between communities to infer ecological processes 185 

(Stegen et al. 2015). To quantify phylogenetic turnover between communities, we used the 186 

between community mean-nearest-taxon-distance (βMNTD) metric. βMNTD was calculated 187 

using the R function ‘comdistnt’ (abundance.weighted = TRUE; package “picante”). Then, 188 

we evaluated β-Nearest Taxon Index (βNTI), which expresses the difference between 189 

observed βMNTD and the mean of the null distribution in units of standard deviations (Stegen 190 

et al. 2013). 191 

 In addition, to distinguish more details in the assembly processes, we used the 192 

Raup–Crick metric (Chase et al. 2011), extended to incorporate species’ relative abundances; 193 



referred to as RCbray. The R script of RCbray can be found at 194 

https://github.com/stegen/Stegen_etal_ISME_2013.  195 

In a given community, we estimated the relative influence of variable selection or 196 

homogeneous selection as the fraction of their comparisons with βNTI > +2 or βNTI < −2, 197 

respectively. We regard the fraction of the between community comparisons with |βNTI| < 2 and 198 

RCbray > +0.95 as dispersal limitation, while |βNTI| < 2 and RCbray < -0.95 is considered 199 

homogenizing dispersal (Diniandreote et al. 2015; Stegen et al. 2013; Stegen et al. 2015). 200 

2.6 Network analysis 201 

The co-occurrence network was constructed based on the Spearman correlation matrix 202 

offered in the ‘psych’ package in R. In this network, the nodes represent OTUs and the edges 203 

that connect these nodes represent correlations between OTUs. Only those connections with 204 

correlation coefficients > 0.6 and P < 0.05 were used in the network. Thus, positive 205 

correlations indicate co-occurring OTUs based on abundances, whereas negative correlations 206 

indicate that the OTUs are mutually exclusive (Barberán et al. 2012). P-values were false 207 

discovery rate (FDR) adjusted to control for the analysis (FDR < 0.05). The network analysis 208 

was completed using the ‘igraph’ package in R. 209 

2.7 Statistical analysis  210 

All statistical analyses were performed in the R environment using the ‘vegan’, ‘ggplot2’, 211 

‘ggpubr’, and ‘corrplot’ packages. A Venn diagram was used to visualize the shared OTUs among 212 

the sites. A correlation matrix graph was used to demonstrate the correlation between soil 213 

physicochemical factors and was constructed using the ‘corrplot’ packages in R. Multivariate 214 

regression tree analysis (MRT) was used to explain the relationship between bacterial 215 



α-diversity estimates and environmental variables in a visualized tree, and diversity indices 216 

were normalized to the same mean before performing MRT analysis (Ge et al. 2008). Based 217 

on the longest gradient lengths from the results of detrended correspondence analysis (DCA), 218 

we selected redundancy analysis (RDA) to quantify the effects of environmental variables on 219 

microbial community composition (Mo et al. 2018). Forward selection of PCNM variables 220 

based on permutation tests was chosen to identify 2 of the 23 extracted PCNM variables that 221 

significantly (P < 0.05) explained the spatial structure. The PCNM eigenfunctions, which 222 

represent the ‘spectral decomposition of the spatial relationship across sampling locations’, 223 

can be considered as the spatial variables in the ordination-based analysis. The contributions 224 

of environmental filtering and the space variable (PCNM) to the variation in bacterial 225 

community composition were calculated by using variance partitioning analysis (VPA) 226 

(CANOCO for Windows Version 5.0). The mantel test was performed in the R environment 227 

using the ‘vegan’ packages. 228 

Results  229 

Physicochemical properties of the soils from the different sites 230 

The soil physicochemical properties varied across the different sampling sites (Figure 1). 231 

Briefly, the contents of ammonium nitrogen and nitrite nitrogen were the highest at LY sites 232 

(36.91 and 0.16 mg·kg-1, respectively), and were lowest at WT sites (17.41 and 0.04 mg·kg-1, 233 

respectively). The contents of nitrate nitrogen (6.45 mg·kg-1), SOC (70.29 mg·g-1), TC (6.4%), 234 

and TN (0.51%) were the highest at WT sites, and were the lowest at LY sites.  235 

TN was significantly positively correlated with TC and SOC (P < 0.05) and significantly 236 

negatively correlated with pH value (P < 0.05; Figure 2). TC and pH showed a significant 237 



negative correlation (P < 0.05). SOC was significantly positively correlated with nitrate nitrogen 238 

(P < 0.0.5) and significantly negatively correlated with nitrite nitrogen (P < 0.05). The above 239 

environmental factors formed an ecological gradient along the different sites studied.  240 

Dynamics of bacterial community composition and diversity 241 

A total of 4258 OTUs were identified from 1,062,241 high-quality sequences recovered 242 

from 23 soil samples. Good’s coverage ranged from 95.19% to 99.75%, indicating that the 243 

identified sequences were representative of most of the bacterial sequences in the collected 244 

soil samples. Rarefaction curve analyses, which generally yielded asymptotic curves, 245 

indicated that the numbers of sampling plots were enough. Detailed information of the 246 

sequencing results is provided in Table S2. 247 

The soil microbial community composition varied across the different sampling sites (Figure 248 

3). There were 15 bacterial phyla with relative abundances of more than 0.01% (Figure 3a). As 249 

shown in the Venn diagram, 869 bacterial shared OTUs were observed in all sampling sites. There 250 

were 46 bacterial phyla identified (Figure 3b). The abundance of Proteobacteria at all sites was 251 

the highest (mean relative abundance = 30.59%), and followed by Acidobacteria (19.63%), 252 

Actinobacteria (16.51%) and Chloroflexi (13.22%). Briefly, the mean relative abundance of 253 

Proteobacteria was the most at PQG (34.39%), and that of Actinobacteria was the highest at LY 254 

(26.29%). The mean relative abundances of Acidobacteria (28.68%) and Chloroflexi (16.09%) 255 

were the highest at WT. There were 31 bacterial families with relative abundances of more than 256 

0.01% (Figure 3c). Based on the clustering graph, the sampling plots of each of the sites roughly 257 

clustered together (Figure 3d). The community α-diversity indices varied at the different sites 258 

(Figure 4). Briefly, the phylogenetic diversity (pd) and the number of observed species (sobs) 259 



were the highest at WT sites (P < 0.05). There was no significant difference in the ACE index, 260 

Chao index, Shannon index and Simpson index at the different sites (P > 0.05).  261 

Effects of environmental factors on microbiome dynamics 262 

Based on the results of the DCA (axis length =1.02), we used RDA to identify the abiotic 263 

environmental drivers that influenced bacterial community composition (Figure 5; permutation 264 

test, P < 0.01). The results demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria 265 

were mainly driven by pH, while SOC, TC, and TN were the main abiotic drivers of 266 

Parcubacteria and Planctomycetes.  267 

In the MRT analysis (Figure 6), we observed that the diversity indices (normalized) were 268 

mainly split by SOC, explaining 36.75% in the first spilt. The correlation analysis showed similar 269 

results: SOC was significantly correlated with bacterial communities at the phylum level (e.g., 270 

Proteobacteria, Bacteroidetes, and Chloroflexi). Given its contribution to explaining community 271 

distribution patterns, SOC was further used as a descriptor for the environmental gradients. 272 

The variation partitioning analysis showed that environmental variables (20.3%) explained 273 

more variation of microbial community structure than spatial variables (1.9%). This suggested that 274 

both deterministic and stochastic processes were involved in the assembly of microbial 275 

communities, and that deterministic processes were dominant. The unexplained variable was 276 

78.6% (Figure 7). 277 

Nonrandom co-occurrence patterns of the microbial community 278 

Network analysis was applied to explore the interspecific relationship patterns in the 279 

microbial communities (Figure 8). Compared with the LY- and WT- network, the PQG-network 280 

exhibited more edges (87), more vertices (40), more modularity (0.691), higher average degree 281 



(4.35) and average clustering coefficients (0.858), but less the numbers of modular (6) (Table S3). 282 

Strong positive correlations were observed at all sites, while negative correlations were rare. The 283 

size of the nodes corresponds to betweenness centralization values.  284 

The bacterial community assembly processes 285 

According to the null model analysis, our results demonstrated that the null deviation values 286 

varied at different sites (ranging from 0.29 to 0.57; Figure 9a). The bacterial communities at WT 287 

deviated significantly from the null expected value (relative null deviation = 0.45) and were 288 

greater than that at LY site and PQG site (relative null deviation = 0.32 and 0.34, respectively) 289 

(P<0.05).  290 

Most importantly, we observed that the microbial community was more greatly shaped by 291 

variable selection (βNTI > +2) (Figure 9b). From LY to WT, we observed a gradual increase in 292 

the relative role of deterministic processes compared to stochastic processes (Figure 9c). Based on 293 

the regression analysis of the environmental variables with assembly process parameters, we 294 

found that SOC had a great influence on community assembly processes (Figure 9d). The mantel 295 

test between βNTI and SOC matrices indicated the similar conclusion (P < 0.05, R = 0.509). 296 

Discussion 297 

Microorganisms typically form diverse communities of interacting species, whose activities 298 

have tremendous impacts on the plants, animals, and humans they associate with (Friedman et al. 299 

2017). Understanding the fundamental ecological mechanisms that drive the assembly processes 300 

of microbial communities is the hotspot in community ecology (Jurburg et al. 2017). 301 

Our results demonstrated that the β-diversity null deviation values varied among sites. As 302 

bacteria may possess greater metabolic functional plasticity, they are thus less influenced by 303 
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environmental filtering compared to fungal communities (Massana & Logares 2013). This may be 304 

the reason why the degree of deviation reported herein is lower than that previously reported for 305 

soil fungal communities along a well-established glacier forefront chronosequence (Tian et al. 306 

2017). 307 

Furthermore, compared to LY, the microbial community at WT was more greatly driven by 308 

deterministic processes. The driving effects of the deterministic processes gradually increased 309 

from LY to WT. Given this, we inferred that a continuum existed between deterministic and 310 

stochastic processes in the assembly of microbial communities in the study area (Chase et al. 2011; 311 

Tucker et al. 2016). This is consistent with previous studies. In terms of plants, aggregation in 312 

temperate forests reflect stronger environmental correlations, suggesting a key role for 313 

species-sorting processes (deterministic processes) (Myers et al. 2013). In terms of 314 

microorganisms, previous studies have noted that bacterial community assembly is largely 315 

governed by stochastic processes in early successional soils, with the relative roles of 316 

deterministic processes increasing progressively in later successional soils (Diniandreote et al. 317 

2015; Ferrenberg et al. 2013; Hanson et al. 2012).  318 

Previous research has confirmed this continuum could be dependent on varying 319 

environmental conditions and the characteristics of organisms (Zhou et al. 2013). 320 

Environmental factors, such as salinity (Lozupone & Knight 2007), pH (Fierer & Jackson 2006; 321 

Griffiths et al. 2011), C/N ratio (Bates et al. 2011), soil C (Drenovsky et al. 2004), nitrogen levels 322 

(Xiong et al. 2014), and the structure of the plant community (Lundberg et al. 2012) may be major 323 

determinants of microbial community structure. Our results demonstrated that pH, SOC, TC, and 324 

TN were the main abiotic drivers of microbial community compositions. More importantly, based 325 
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on the integrated results of the MRT analysis, RDA, and correlation analysis, we identified SOC 327 

as a general descriptor that encompassed the environmental gradients by which the communities 328 

responded to.  329 

Our results demonstrated that SOC differed significantly at different sites, and was 330 

significantly correlated with nitrate nitrogen, nitrite nitrogen and TN (P < 0.05). This indicated 331 

that SOC was closely related to soil fertility and possessed the highest weighting. The 332 

relationships between SOC and bacterial community assembly have also been reported across a 333 

broad range of microbial ecosystems (Bastida et al. 2013). Most importantly, we also observed 334 

that SOC was closely associated with the community assembly process. Similar results reported 335 

that the relative roles of stochastic and deterministic processes can vary with the successional age 336 

of soils and can primarily be attributed to the covariance of soil pH with age (Tripathi et al. 2018). 337 

The unexplained variation in VPA (78.6%) could be due to stochastic influences [e.g. drift or 338 

speciation (Caruso et al. 2011)], unmeasured soil physicochemical properties [e.g. metal ion 339 

concentration (Gombeer et al. 2015)] or interactions between species [e.g. competition (Caruso et 340 

al. 2011)]. In fact, in other studies of microbial communities using VPA, the unexplained portions 341 

may also account for more than 50 % (Liao et al. 2016; Mo et al. 2018).  342 

In deterministic processes, not only environmental filtering, but also interspecies interactions 343 

have a great influence on community assembly. Ecologists recently accepted that competition 344 

and environmental processes act simultaneously (Zhang et al. 2018). In the network analysis, 345 

the higher modularity indicates that the network became denser, suggesting that the microbial 346 

communities are highly complex (Olesen et al. 2007). Interestingly, the modularity was the 347 

highest at PQG (0.691). This may be related to the greater sampling scales and elevation gradients, 348 



and thus greater environmental heterogeneity, at PQG. The average path distance represents the 349 

shortest path between two nodes (Wang et al. 2016), which demonstrated irregular variation at 350 

WT (Zheng et al. 2017). Strong positive correlations were observed among sites, while negative 351 

correlations were rare (Figure 8a−c). This implied that microbes might cooperate in order to adapt 352 

to similar niches. In the network, positive links could be attributed to niche overlap and 353 

cross-feeding, while negative relationships could be attributed to competition and amensalism 354 

(Faust & Raes 2012). From an ecological perspective, the peripherals may represent specialists, 355 

whereas module hubs and connectors may be more generalists and network hubs may be 356 

super-generalists (Figure 8d−f) (Deng et al. 2012). It is interesting to observe that the module hubs 357 

and connectors differed at the different sites. 358 

Conclusion 359 

The most significant finding in this study is that a continuum exists between the 360 

deterministic and stochastic processes driving the bacterial community assembly in subalpine 361 

coniferous forests on the Loess Plateau, China. SOC was closely related to microbial community 362 

structure and greatly influenced the processes of community assembly. Across sites, there were 363 

significant differences in microbial interactions existed at the community level. The results of this 364 

study contribute to our understanding of the continuum between deterministic and stochastic 365 

processes in bacterial community assembly. 366 
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