Introgressive hybridization in a Spiny-Tailed Iguana, Ctenosaura pectinata, and its implications for taxonomy and conservation (#13787)

First submission

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Important notes

Editor and deadline

Tomas Hrbek / 6 Nov 2016

Files 5 Figure file(s)

5 Table file(s)

1 Raw data file(s)

1 Other file(s)

Please visit the overview page to $\underline{\mbox{download and review}}$ the files

not included in this review pdf.

Declarations One or more DNA sequences were reported.

Involves vertebrate animals.

Involves a field study on animals or plants.

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

Introgressive hybridization in a Spiny-Tailed Iguana, Ctenosaura pectinata, and its implications for taxonomy and conservation

Eugenia Zarza Corresp., 1, 2, Victor Hugo Reynoso 3, Christiana M.A. Faria 4, 5, Brent C Emerson 6

Corresponding Author: Eugenia Zarza Email address: eugenia.zarza@gmail.com

Introgression, the transmission of genetic material of one taxon into another through hybridization, can have various evolutionary outcomes. Previous studies have detected signs of introgression between western populations of the Mexican endemic and threatened spiny-tailed iguana, Ctenosaura pectinata. However, the extent of this phenomenon along the geographic distribution of the species is unknown. Here we use multilocus data together with detailed geographic sampling to (1) define genotypic clusters within C. pectinata; (2) evaluate geographic concordance between maternally and biparentally inherited markers; (3) examine levels of introgression between genotypic clusters, and (4) suggest taxonomic modifications in light of this information. Applying clustering methods to genotypes of 341 individuals from 49 localities of C. pectinata and the closely related *C. acanthura*, we inferred the existence of five genotypic clusters. Contact zones between genotypic clusters with signatures of interbreeding were detected, showing different levels of geographic discordance with mtDNA lineages. In northern localities, mtDNA and microsatellites exhibit concordant distributions, supporting the resurrection of *C. brachylopha*. Similar concordance is observed along the distribution of *C.* acanthura, confirming its unique taxonomic identity. Genetic and geographic concordance is also observed for populations within southwestern Mexico, where the recognition of a new species awaits in depth taxonomic revision. Contrarily, in western localities a striking pattern of discordance was detected where up to six mtDNA lineages co-occur with only two genotypic clusters. Given that the type specimen originated from this area, we suggest that individuals from western Mexico keep the name C. pectinata. Our results have profound implications for conservation, management, and forensics of Mexican

¹ Moore Laboratory of Zoology, Occidental College, Los Angeles, California, United States

² Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany

³ Departamento de Zoología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico

⁴ School of Biological Sciences, University of East Anglia, Norwich, United Kingdom

Department of Biology/School of Science, Federal University of Ceara, Fortaleza, Ceara, Brazil

 $^{^{6}}$ Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología, La Laguna, Spain

iguanas.

1 Introgressive Hybridization in a Spiny-Tailed Iguana,

Ctenosaura pectinata, and its Implications for

Taxonomy and Conservation.

4 Short title: Introgression in Ctenosaura pectinata

5

- 6 Eugenia Zarza^{1,2#a}, Víctor H. Reynoso³, Christiana M.A. Faria^{4#b} and Brent C. Emerson⁵
- 7 Moore Laboratory of Zoology, Occidental College, Los Angeles, USA
- 8 ² LOEWE-Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- 9 ³ Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México,
- 10 Distrito Federal, México
- ⁴ School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- 12 ⁵ Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología
- 13 (IPNA-CSIC), La Laguna, Spain
- 14 Corresponding author:
- 15 Eugenia Zarza
- 16 Email address: eugenia.zarza@gmail.com
- 17 ^{#a} Current Address: Laboratorio Nacional de Ciencias de la Sostenibilidad. Instituto de Ecología.
- 18 Universidad Nacional Autónoma de México. AP 70-275, Ciudad Universitaria, UNAM, 04510,
- 19 Ciudad de México, México
- 20 #b Current Address: Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici,
- 21 Bloco 906, Fortaleza, Ceará, CEP 60455-760, Brasil

Abstract

Introgression, the transmission of genetic material of one taxon into another through
hybridization, can have various evolutionary outcomes. Previous studies have detected signs of
introgression between western populations of the Mexican endemic and threatened spiny-tailed
iguana, Ctenosaura pectinata. However, the extent of this phenomenon along the geographic
distribution of the species is unknown. Here we use multilocus data together with detailed
geographic sampling to (1) define genotypic clusters within C. pectinata; (2) evaluate geographic
concordance between maternally and biparentally inherited markers; (3) examine levels of
introgression between genotypic clusters, and (4) suggest taxonomic modifications in light of
this information. Applying clustering methods to genotypes of 341 individuals from 49 localities
of <i>C. pectinata</i> and the closely related <i>C. acanthura</i> , we inferred the existence of five genotypic
clusters. Contact zones between genotypic clusters with signatures of interbreeding were
detected, showing different levels of geographic discordance with mtDNA lineages. In northern
localities, mtDNA and microsatellites exhibit concordant distributions, supporting the
resurrection of <i>C. brachylopha</i> . Similar concordance is observed along the distribution of <i>C.</i>
acanthura, confirming its unique taxonomic identity. Genetic and geographic concordance is
also observed for populations within southwestern Mexico, where the recognition of a new
species awaits in depth taxonomic revision. Contrarily, in western localities a striking pattern of
discordance was detected where up to six mtDNA lineages co-occur with only two genotypic
clusters. Given that the type specimen originated from this area, we suggest that individuals from
western Mexico keep the name C. pectinata. Our results have profound implications for
conservation, management, and forensics of Mexican iguanas.

46

Introduction

47	The role of introgression, the transmission of genetic material from one taxon into
48	another through hybridization, in shaping biodiversity is receiving increasing attention in
49	different taxa and geographic areas (e.g. Abbott et al., 2013; Haus, Roos & Zinner, 2013; Mallet,
50	Besansky & Hahn, 2016). There is evidence suggesting that introgression can increase the risk of
51	extinction in endangered species through genetic swamping, have deleterious effects in hybrids,
52	lead to adaptation by the emergence of novel genotypes or have no effect on the fate of a species
53	(Seehausen, 2004; Mallet, 2005; Frankham, 2006; Kronforst, 2012; Pardo-Diaz et al., 2012).
54	Given these various outcomes, it is particularly important to study the extent and impact of
55	introgression in biologically rich areas like Mesoamerica, where general patterns of genetic
56	diversity are just starting to be uncovered. This may have direct implications for species
57	delimitation and, ultimately, conservation and wildlife management (Gompert, 2012). The term
<mark>58</mark>	introgression has been primarily used to refer to gene flow between species, however more
<mark>59</mark>	recent works have applied the term to gene flow occurring between young divergent lineages
<mark>60</mark>	(Streicher et al., 2014). Here we used 'introgression' as in the latter instance.
61	The dry tropical forests of the western lowlands of Mexico are part of the Mesoamerica
62	Hot Spot (Myers et al., 2000). Although many phylogeographic studies have focused on this
63	area, only a few of them have employed a multilocus approach that can allow for the detection of
64	introgression (e.g. Daza et al., 2009; Greenbaum, Smith & de Sá, 2011; Pringle et al., 2012;
65	Arbeláez-Cortés, Milá & Navarro-Sigüenza, 2014; Arbeláez-Cortés, Roldán-Piña & Navarro-
66	Sigüenza, 2014). In the spiny-tailed iguana Ctenosaura pectinata, distributed in the lowlands of
67	the Pacific slope and the Balsas Depression in Mexico (Smith & Taylor, 1950; Köhler, Schroth

68	& Streit, 2000), initial phylogeographic studies uncovered eight mtDNA lineages: North A,
69	North B, North C, Colima, Balsas, Guerrero, Oaxaca and South (Fig. 1, Fig. S1; Zarza, Reynoso
70	& Emerson, 2008). <i>Ctenosaura acanthura</i> , found in the lowlands of the Gulf of Mexico,
<mark>71</mark>	appeared nested within the South lineage, whereas C. hemilopha and C. similis appeared as
72	elearly distinct lineages (Zarza, Reynoso & Emerson, 2008).
73	Genetic distances (Tamura & Nei, 1993) between <i>C. pectinata</i> mtDNA lineages range
74	from 4.11 to 11.57%, these distances are similar to those estimated among species of Iguanas of
75	the genus Cyclura (Malone et al., 2000). The largest distances measured among C. pectinata
76	lineages occur between the North and Colima lineages (Zarza, Reynoso & Emerson, 2008). This
77	phylogeographic break occurs in the vicinity of the Trans-Mexican Volcanic Belt (TMVB; Fig.)
<mark>78</mark>	1), on the central western coast of Mexico and probably occurred between 1.1 and 3.1 million
79	years ago (Zarza, Reynoso & Emerson, 2008). This geological feature has attracted many
80	biogeographers because several highland and lowland taxa find their distribution limits here (e.g.
81	(Mastretta-Yanes et al., 2015; Zaldivar-Riverón, Leon-Regagnon & de Oca, 2004; Devitt, 2006;
82	Mulcahy, Morrill & Mendelson, 2006; Bryson, García-Vázquez & Riddle, 2012; Blair et al.,
83	2015)). Further multilocus research and detailed geographic sampling of C. pectinata in this area
84	revealed a ninth mtDNA lineage occurring between North C and Colima lineages: North D
85	(Zarza, Reynoso & Emerson, 2011; Fig. 1). Interestingly, the North C, North D, Colima and
86	Balsas mtDNA lineages show geographically discordant patterns with two clusters defined with
87	microsatellite nuclear markers (Zarza, Reynoso & Emerson, 2011). The discordance possibly
88	resulted from contemporary and/or past introgression among lineages coupled with male sex
89	biased dispersal (Zarza, Reynoso & Emerson, 2011). It is unknown if geographic discordance

90	between midNA and microsatenne markers, and introgression are restricted to this part of C.
91	pectinata distribution or if it is prevalent between other neighboring lineages,
92	It is clear that molecular studies in C. pectinata have uncovered diversity that had been
93	overlooked or not detected by the latest morphological revisions of the species and closely
94	related taxa (Köhler, Schroth & Streit, 2000; Köhler, 2002). This is in contrast to the very early
95	studies of the genus. Bailey (1928), in a revision of the genus <i>Ctenosaura</i> recognized five
96	species (Exbrachylopha, C. pectinata, C. acanthura, C. brevirostris, C. parkeri) within the range
97	of what we currently know as C. pectinata. He stated that C. acanthura was the most widely
98	distributed in Mexico. Ctenosaura pectinata was restricted to Colima (Wiegmann, 1834) and
99	Jalisco together with C. brevisrostris. Ctenosaura brachylopha was described as inhabiting the
100	northern states of Nayarit and Sinaloa. Without giving any justification, Smith and Taylor (Smith
101	& Taylor, 1950) lumped C. brachylopha, C. brevirostris and C. parkeri with C. pectinata and
102	restricted the name C. acanthura for iguanas from the Gulf of Mexico area. More recent
103	morphological revisions have not recovered C. brachylopha, C. brevirostris or C. parkeri as
104	distinct entities (Köhler, Schroth & Streit, 2000; Köhler, 2002).
105	In light of recent molecular studies and previous morphological classifications, a revisit
106	of C. pectinata taxonomy is warranted. This species, threatened by hunting and habitat loss
107	(Aguirre-Hidalgo & Reynoso, 1998; Faria et al., 2010), may not receive proper protection
108	without a clear definition of its boundaries and genetic composition (Frankham, 2006).
109	Taxonomic modifications should rely on a multilocus approach and comprehensive geographic
110	sampling (Leaché & Fujita, 2010; Rittmeyer & Austin, 2012). This, in turn, can facilitate the
111	identification of genotypic clusters: groups of individuals that have few or no intermediates when
112	in contact (Mallet, 1995). Such groups may inter-grade freely at their boundaries, but be strongly

differentiated and relatively eonstant in morphology, genetics and ecology. This implies that species can be affected by gene flow, selection and history, but they are not necessarily defined by these processes (Mallet, 1995). Defining genotypic clusters is useful in cases where gene flow between otherwise differentiated clusters occurs, for example in contact zones, as might be the case of *C. pectinata*.

Here we use multilocus data from individuals sampled across the ranges of *C. pectinata* and the closely related *C. acanthura*. Our specific aims are to: (1) define genotypic clusters; (2) investigate the levels of geographic concordance between mtDNA lineages and genotypic clusters; (3) evaluate evidence for introgression between clusters, and; (4) re-define taxonomic entities based on maternally and biparentally inherited markers, and compare these to previous proposals (Bailey, 1928).

Materials and Methods

Sampling and Laboratory procedures

Spiny-tailed iguanas were collected between 2004 and 2006 using tomahawk traps, noosing or by hand within the distribution range of *C. pectinata* and *C. acanthura*. The narrow area of sympatry between *C. pectinata* and *C. hemilopha* in northern Mexico was excluded to avoid the inclusion of *C. hemilopha* alleles in the analyses (Zarza Franco, 2008; Fig. 1). All samples have been analyzed in previous studies (Zarza, Reynoso & Emerson, 2016, 2008, 2011; Faria, 2008; Zarza Franco, 2008; Faria et al., 2010) to obtain microsatellite and/or mtDNA data (see File S1 for details). Except for the mtDNA sequences and microsatellite genotypes produced by (Zarza Franco, 2008), data from previous studies had been deposited in GenBank (File S1) or

136	as supplementary material in (Zarza, Reynoso & Emerson, 2016). Here we make available two
137	previously unpublished mtDNA sequences (GenBank accession numbers KT003209-
138	KT003210) and microsatellite data (File S1) produced by (Zarza Franco, 2008) from three
139	localities in northern Mexico (Fig. 1).
140	We gathered all the data available to us to create microsatellite and mtDNA datasets that
141	are mostly overlapping regarding sample content. This study comprises samples from 53 of the
142	localities sampled in the above-mentioned studies; individuals from 49 of these localities were
143	included in the microsatellite dataset. In some instances, individuals failed to amplify for
144	mtDNA in earlier studies, but were successfully genotyped (24 out 341 samples; File S1). All
145	mtDNA lineages described in previous publications were represented in the mtDNA dataset
146	analyzed herein (File S1; Fig. 1).
147	A thorough description of the methods can be found in (Zarza, Reynoso & Emerson,
148	2016, 2008, 2011; Faria et al., 2010); however a summarized version follows. From each
149	individual, a 0.15 µl blood sample was taken from the caudal vein or a tail clip and preserved in
150	ethanol. DNA samples were purified using a modified salt precipitation protocol (Aljanabi &
151	Martinez, 1997). A 561 bp fragment of the mitochondrial ND4 gene was PCR amplified and
152	sequenced using primers ND4, ND4Rev (Arèvalo, Davis & Sites, 1994), ND4F1 (Zarza,
153	Reynoso & Emerson, 2008) and ND4R623 (Hasbún et al., 2005) with conditions described in
154	(Zarza, Reynoso & Emerson, 2008). Individuals were genotyped with nine microsatellite
155	markers. Loci Cthe12, Cthe37 (Blázquez, Rodríguez Estrella & Munguía Vega, 2006), Pec01,
156	Pec03, Pec16, Pec20, Pec25, Pec73, and Pec89 (Zarza et al., 2009), were PCR amplified using
157	conditions described in (2011) and run in two multiplexes that allow for loci separation by color

and size in an automated ABI prism 3730. Fragment size was visualized with the GeneMapper software version 4.0 (Applied Biosystems, Foster City, CA, USA).

The School of Biological Sciences Ethical Review Committee at the University of East Anglia approved this study as stated in an "Approval letter" to EZ. All efforts were made to minimize stress when taking blood samples, which were obtained under the permits SEMARNAT SGPA/DGVS/08239, SGPA/DGVS/02934/06, 03563/06 to VHR.

177

Data Analyses

Mitochondrial DNA data

A median joining haplotype network was calculated with Network (Bandelt, Forster & Rohl, 1999) to update previously proposed haplotype networks (Zarza, Reynoso & Emerson, 2008, 2011). SAMOVA 2.0 (Dupanloup, Schneider & Excoffier, 2002) was used to define groups of populations that are geographically homogeneous and maximally differentiated from each other and to estimate their hierarchical differentiation. One hundred initial independent processes were tested followed by 10,000 steps of the simulated annealing process, which maximizes the proportion of total genetic variance among groups. Analyses were run under scenarios of 2 to 15 groups (K) without geographic restrictions. The FCT index was used to select the best grouping, i.e. the most suitable K. This index reflects the among-group component of the overall genetic variance. We selected the number of groupings that maximizes such component, meaning that under that scenario the groups of populations are maximally differentiated from each other (Dupanloup, Schneider & Excoffier, 2002). To accomplish this, the most suitable K value was selected based on the observed changes of FCT among consecutive K values. We considered arbitrarily that the most suitable value of K is observed when there is a FCT change <1%

181	between two consecutive Ks. We refer to this as Δ FCT obtained as FCT _{K+1} – FCT _K , reflecting
182	changes in the percentage of variation explained by FCT. Bar plots were created with R 2.15 (R
183	Core Team, 2012) to show the mtDNA lineage of each individual as determined by the haplotype
184	network (Fig. S1) and to illustrate the results of SAMOVA.
185	
186	Microsatellite data
187	The software GENEPOP 4.1 (Rousset, 2008) was used to estimate allele and null allele
188	frequencies, to perform tests for linkage disequilibrium between pairs of loci and, to detect
189	deviations from Hardy-Weinberg equilibrium. FST values between localities were calculated
190	with Arlequin 3.5 with the pairwise differences distance method (Excoffier & Lischer, 2010).
191	The possible number of genotypic clusters under a scenario of admixture was inferred
192	with STRUCTURE 2.3.2 (Pritchard, Stephens & Donnelly, 2000). Simulations were run
193	assigning a uniform prior for the parameter Alpha (degree of admixture) and estimating the allele
194	frequency parameter (Lambda) assuming correlated allele frequencies. Ten iterations for each
195	value of K (from K=2 up to K=10) were performed with ten million MCMC replicates after a
196	burn-in period of 1,000,000. The most likely number of clusters was inferred with the method of
197	Evanno et al. (2005) implemented in Structure Harvester (Earl & vonHoldt, 2012).
198	In addition to the STUCTURE analyses, SAMOVA 2.0 (Dupanloup, Schneider &
199	Excoffier, 2002) was used to define groups of populations and to estimate their hierarchical
200	differentiation applying the same criteria and parameters used for the mtDNA data. Bar plots
201	were created with R to show STRUCTURE and SAMOVA results for each individual. Expected
202	and observed heterozygosity, number of alleles and FST values between the resulting groups
203	were calculated with Arlequin 3.5. Effective population size was estimated with the coalescent

204	method implemented in NeEstimator v2 (Do et al., 2014). Allelic richness and private allelic
205	richness were calculated applying the rarefaction method implemented in ADZE 1.0 (Szpiech,
206	Jakobsson & Rosenberg, 2008). The standardized sample size for the calculation was set to be
207	equal to the smallest sample size across populations. The largest allowed fraction of missing data
208	at any given group for a locus was 50%.
209	The software NewHybrids (Anderson & Thompson, 2002; Anderson, 2008) was used to
210	calculate hybrid indices between the SAMOVA defined genotypic clusters. This method
211	employs a Bayesian model in which parental and various classes of hybrids form a mixture from
212	which the sample is drawn. Throughout the manuscript we apply the terminology used by
213	NewHybrids when referring to 'hybrid' categories and indices calculated with this software.
214	However, the individuals involved are not necessarily 'hybrids' in strict sense (i.e offspring
215	resulting from inter-species mating).
216	We estimated the posterior probability $P(z)$ that each individual in a pair of clusters (X
217	and Y) falls into each of six hybrid classes: pure cluster X , pure cluster Y , F_1 , F_2 , cluster X
218	backcross, cluster Y backcross. Five independent Markov chain Monte Carlo (MCMC) analyses
219	were run for each pair of neighboring clusters with at least 300,000 sweeps after 10,000 burnin
220	sweeps. Convergence of the MCMC was assessed visually with the variable plots generated by
221	NewHybrids. P(z) values were averaged among the five independent runs. An individual was
222	considered as belonging to a pure or hybrid class if it had been assigned with $P(z) > 0.8$
223	(Anderson & Thompson, 2002).
224	
225	

Results

227	Mitochondrial data
228	Out of the 368 individuals included in this study, 344 were sequenced for a fragment of the ND4
229	mtDNA locus. An updated haplotype network is shown in Fig. S1, which includes the previously
230	unpublished haplotypes KT003209- KT003210. In the SAMOVA analyses, a change of less than
231	1% in FCT was observed at K=10 (Table A and Fig. A in File S2). Under this K, 79% of the
232	variation can be explained by variation among groups (Table 1). These groups (mt1-mt10 from
233	now onwards) coincide almost entirely with the haplotype groups previously recovered by the
234	mtDNA locus, and that were defined based on a haplotype network and nested clade analysis
235	(Zarza, Reynoso & Emerson, 2008; Fig. 1, Fig. 2, Fig. 4 A-B). SAMOVA detected a subdivision
236	(mt4, mt5) within the Colima mtDNA lineage, whereas individuals forming the North B mtDNA
237	lineage were assigned to two different groups (mt1 and mt2). The Oaxaca mtDNA lineage was
238	not identified.
239	
240	Microsatellite data
241	Genotypes of a total of 341 individuals from 49 localities were used. Number of samples per
242	locality ranged from 1-15 (File S1; Fig. 2). Locus Pec25 suffered from null alleles at a frequency
243	higher than 20% in twelve localities, thus it was not included in further analyses. Other loci are
244	possibly affected by null alleles but in less than 10% of the localities, which may reflect local
245	phenomena leading to homozygous excess, or null alleles. The remaining loci exhibited from 9
246	to 27 alleles among the sampled localities. The null hypothesis of random union of gametes was
247	rejected in twelve localities, but only in one location (La Fortuna, see File S1) was deviation
248	from Hardy-Weinberg equilibrium detected in more than one locus (Pec01, Pec03). After Šidák
249	correction (p<0.00007), the null hypothesis of independence of genotypes at one locus from

250 genotypes at another locus could not be rejected. Pairwise FST values showed a wide range of 251 genetic differentiation among localities, from non-differentiation (FST =0) to great 252 differentiation (Maximum significant FST =0.66; Table S1). SAMOVA analyses—ith microsatellite data showed a FCT change <1% under K=5 253 254 (from now onwards *Nuc1-*Nuc5; Table A₁ in File S2; Fig. B-in File S2). Under this scenario, 255 around 22% of the variation is explained by variation among groups, whereas 71% of the 256 variation was explained by variation within individuals (Table 1). These clusters differ from the 257 mtDNA grouping schemes obtained with SAMOVA, but coincide with the clustering resulting 258 from the STRUCTURE analysis as explained below. Allele number, observed heterozygosity, expected heterozygosity, inbreeding coefficient, effective population size for *Nuc1-*Nuc5 are 259 260 shown in Table 2. The standardized sample size for the allelic and private allelic richness was 14. 261 Locus Cthe 12 was removed from these calculations because it had at least one grouping (i.e. 262 groupings 4 and 5) with more than 50% missing data. Allelic and private richness mean and 263 variance values are shown in Table 2. Genetic differentiation (FST values) between the 264 SAMOVA groups is shown in Table 3. 265 STRUCTURE analyses suggest that the most likely number of genotypic clusters is 266 seven, based on the Delta-K (Δ K) value. However we suspect that Δ K under K=7 is an artifact 267 resulting from the large variation in likelihood values obtained with the previous K, K=6 (SD = 268 1231.92; Fig. C in File S2). After removing two runs that seemed to be outliers due to lower 269 likelihood values, the SD under K=6 was greatly reduced (90.45). We then recalculated K. This 270 time K=4 showed the highest ΔK (Fig. D in File S2; Fig. 3 D). Individuals were consistently 271 assigned among runs. However these results differ from the clustering obtained with SAMOVA 272 where further substructure in the southern part of the distribution was detected resulting in K=5.

Thus to establish the most likely number of K in the southern part of the distribution, further
analyses were performed on a subset of individuals that included only iguanas collected south of
Manzanillo (M in Fig. 2) and along the Gulf of Mexico. We refer to these analyses as South-SS
from now onwards. Simulations for 10 million generations were run with $K=2-K=6$, with 10
replicates each. K=4 showed the highest ΔK with consistent results among runs (Fig. E in File
S2). When analyzing the entire dataset, only one cluster was detected between Manzanillo and
Las Negras (between M and N in Fig. 2; Nuc 3 in Fig. 3 D), whereas two clusters were
recognized in the South-SS analyses (Nuc 3a and Nuc 3b in Fig. 3 E). However, several
individuals of Nuc 3a and 3b showed admixed ancestry, indicating weak geographic structure
(Fig. 3 E). The division between Nuc 3a and 3b was not detected with SAMOVA. Two other
clusters were identified with the South-SS analyses, one equivalent to *Nuc4 and the other
comprising individuals identified as C. acanthura and equivalent to *Nuc5 (Fig. 2 and Fig. 3 C-
E). Individuals forming these two clusters were consistently assigned among runs and in
accordance with the assignment observed when analyzing the entire dataset.
Given the weak geographic structure observed between Nuc 3a and Nuc 3b and the lack
of support for such subdivision with SAMOVA, we take a conservative approach and consider
these as forming only one genotypic cluster (equivalent to *Nuc3 and Nuc 3). Both SAMOVA
and STRUCTURE support the distinction between *Nuc 4 (Nuc 4) and Nuc *5 (Nuc 5, in the
South-SS analyses). Taking into account the results of SAMOVA and STRUCTURE we
recognize a total of five microsatellite genotypic clusters within the entire distribution of C .
pectinata + C. acanthura (Fig. 2).
The microsatellite genotypic clusters detected with STRUCTURE (Nuc 1-Nuc 5) and
SAMOVA (*Nuc1-*Nuc5) are geographically localized (Fig. 2). The limits of the clusters

296 defined with SAMOVA appear sharp, as this algorithm does not take admixture into account. 297 However, the presence of introgression is supported by the hybrid indices calculated with 298 NewHybrids between SAMOVA genotype clusters (Table 4). Sharp limits of clusters are not 299 observed in the genotypic clusters defined with STRUCTURE but admixed individuals and 300 zones of overlap are clearly observed (Fig. 2 and Fig. 3). 301 There are different levels of geographic concordance between the distribution of mtDNA 302 lineages North A, North B, North C, North D, Colima, Balsas, Guerrero, Oaxaca, and South as 303 described by (Zarza, Reynoso & Emerson, 2008, 2011; Fig. 1) and genotypic clusters (Fig. 2 and 304 Fig. 3). In northern Mexico, the distributions of genotypic cluster Nuc 1 (and *Nuc1) and the 305 North A mtDNA lineage are almost entirely concordant. Further south, in Central Mexico, Nuc 1 306 overlaps with Nuc 2. Most of the samples in the SAMOVA equivalent genotypic clusters (*Nuc1 307 and *Nuc2) were assigned to a 'pure' category with NewHybrids (Table 4). Only one F2 was 308 detected and 13 individuals could not be assigned to any category. However four of these 309 individuals had a posterior probability <0.2 of being a 'pure' individual. Thus, given the data and 310 the assumptions of the model, those four individuals have a posterior probability >0.8 of being 311 hybrids of some sort. Indeed, STRUCTURE plots show signs of interbreeding in the contact 312 zone (Fig. 3 D). 313 Individuals forming Nuc 2 have mtDNA haplotypes belonging to North A, North B, 314 North C, North D and Colima mtDNA lineages. Genotypic cluster Nuc 2 forms a contact zone 315 with Nuc 3. Individuals in this last cluster carry mtDNA haplotypes of Colima, Balsas and 316 Guerrero lineages. The geographically discordant patterns between mtDNA (North C-D, Colima, 317 Balsas) and microsatellite markers in this area (Nuc 2 and Nuc 3) have been previously detected 318 and described (Zarza, Reynoso & Emerson, 2011). In the equivalent SAMOVA clusters, 83

individuals were assigned to *Nuc2 pure class. Pure individuals of *Nuc3 were not found,
however 37 and 4 individuals were assigned to the F2 and *Nuc3 backcross hybrid classes
respectively (Table 4). Almost 50% of the individuals forming these clusters could not be
assigned to any category. Among these, 83 individuals showed a posterior probability <0.2 of
belonging to any of the pure classes, thus they might be hybrids of some sort. FST values
between these genotypic clusters are the lowest observed in the pairwise comparisons (Table 3).
Genotypic cluster Nuc 3 overlaps with Nuc 4, which is formed by individuals collected in
southeast Mexico with mtDNA haplotypes belonging to the Guerrero, Oaxaca and South mtDNA
lineages. Most of the individuals were assigned to one of the pure categories in the SAMOVA
equivalents *Nuc3 and *Nuc4 (Table 4). Only one F2 individual was found and 27 were not
assigned to any category. None of them had posterior probability <0.2 of belonging to any pure
class.
Nuc 4 and Nuc 5 do not seem to overlap. All individuals in the SAMOVA equivalents
*Nuc4 and *Nuc5 were assigned to a pure category with a posterior probability >0.8. Nuc 5
includes individuals described as C. acanthura, collected in eastern Mexico. It is geographically
concordant with the distribution of a mtDNA lineage closely related to the Southern mtDNA
lineage (2008). Admixture between C. acanthura and C. pectinata is only evident in Zapotitlán
de las Salinas (Fig. 2), with individuals carrying C. acanthura mtDNA haplotypes but with
nuclear ancestry of Nuc 3 and Nuc 5. The NewHybrids analysis between *Nuc3 and *Nuc5
detected two F2 individuals. One was collected in Zapotitlán de las Salinas, and the other in
Apatzingán (Fig. 2). The latter locality is not geographically close to the distribution limits of
Nuc 5 (or *Nuc5). Thus the potential of long distance dispersal, perhaps human mediated, should

be investigated. The remaining of the individuals was assigned to one of the pure categories and only four were not assigned to any hybrid or pure category.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

342

341

Discussion

Introgression and geographic discordance between mtDNA and

nuclear markers

Different degrees of discordance are observed in the geographic distribution of mtDNA lineages and microsatellite genotypic clusters across the range of C. pectinata. At one end of the spectrum, mtDNA North A lineage is almost entirely concordant with Nuc 1 cluster. At the opposite end of the spectrum, mtDNA lineages distributed along the central western coast of Mexico exhibit a striking discordant pattern where up to six geographically distinct mtDNA lineages (North A, North B, North C, North D, Colima, Balsas) co-occur with only two nuclear clusters (Nuc 2 and Nuc 3). This discordance between maternally and biparentally inherited markers in C. pectinata might be the result of several processes acting alone, in concert or at different points in time. For example under a scenario of short term refugia where populations decline throughout the range, resulting in isolation, followed by recent range expansion and male biased dispersal (Dubey et al., 2008; Johansson, Surget-Groba & Thorpe, 2008; Ujvari, Dowton & Madsen, 2008; Zarza, Reynoso & Emerson, 2011; Toews & Brelsford, 2012). The discordant pattern can also be the result of coalescence stochasticity (Irwin, 2002; Hickerson et al., 2010), selection of mtDNA (Dowling, Friberg & Lindell, 2008), differences in effective population size between mtDNA and nuclear markers.

Introgression, along current and past contact zones, probably also contributed to the
patterns of geographic discordance in conjunction with other demographic phenomena. For
example, it has been suggested that, in contact zones, selection and genetic drift can lead to
mtDNA introgressing further and faster than nDNA. This is because mitochondrial genomes are
less likely to hitchhike with a region under selection that prevents introgression (Ballard &
Whitlock, 2004; Petit & Excoffier, 2009; Milá et al., 2013). Additionally, in small populations,
genetic drift can allow the fixation of slightly deleterious alleles in the mtDNA of one population
resulting in lower fitness than a related species in the same area. Selection could then drive
introgression of mtDNA from the more fit population into the less fit population (Ballard &
Whitlock, 2004). Furthermore, it is possible that some contact zones have changed location
(Barton & Hewitt, 1985; Buggs, 2007), or that others have disappeared entirely as a result of
complex climate mediated cycles of range expansion and contraction, or due to other
phenomena. It is difficult to disentangle the effect of these processes with the currently available
data. Sampling more finely along contact zones, and sequencing additional nuclear markers may
permit coalescence analyses (Singhal & Moritz, 2012). Behavioral studies may also be
informative to evaluate the effects of ecological, demographic, historical, and stochastic factors
shaping the discordant patterns.
Interestingly, pairs of inter-breeding nuclear clusters with different levels of divergence
occur throughout the distribution of <i>C. pectinata</i> . For example, allele frequency divergence
between *Nuc1 and *Nuc2 is 0.18952, whereas it is 0.14815 between *Nuc2 and *Nuc3 (Table
3). Assignment of individuals to pure and hybrid classes also shows that contact zones have
different hybrid compositions. A higher proportion of individuals were assigned to a pure class
when analyzing *Nuc1 and *Nuc2 (89%) than when analyzing *Nuc2 and *Nuc3 (36%). This is

also observed in the STRUCTURE plots which reveal Nuc 2 and Nuc 3 admixed individuals more frequently than admixed Nuc 1 and Nuc 2.

Thus *C. pectinata* constitutes an excellent system to better understand the process of speciation by studying the effects of introgression between genotypic clusters at different stages of divergence. Furthermore, this system potentially allows for the comparison of evolutionary patterns and processes with contact zones in temperate and other tropical regions of the world (Leaché & McGuire, 2006; McGuire et al., 2007; Singhal & Moritz, 2012; Miraldo et al., 2013; Milá et al., 2013).

Implications for Ctenosaura pectinata taxonomy and conservation

Our results suggest that there are five nuclear genotypic clusters forming what is currently considered *C. pectinata*. Individuals forming the Nuc 1 cluster belong to the North A mtDNA lineage. Thus Nuc 1 and North A mtDNA lineages are geographically concordant. The distribution of this genotypic cluster coincides with the distribution of *C. brachylopha* as revised by Bailey (1928) using morphological data (i.e. states of Sinaloa, Nayarit, North of Jalisco and Isla Isabel).

The observed concordance in the geographic distribution of nuclear and mtDNA might be the result of stochastic coalescent processes, which is particularly true in taxa with low dispersal rates, as is the case for iguanas (Irwin, 2002). Other phenomena such as natural selection could be shaping the observed pattern, however this cannot be evaluated with the currently available data. Another possibility is that the formation of a biogeographic barrier affected the distribution of Nuc 1 and North A. Their southern distribution limit coincides approximately with the TMVB. This geographic feature has been proposed as a geographic barrier for several lowland

408 taxa (Devitt, 2006; Mulcahy, Morrill & Mendelson, 2006; De-Nova et al., 2012; Arbeláez-409 Cortés, Milá & Navarro-Sigüenza, 2014; Arbeláez-Cortés, Roldán-Piña & Navarro-Sigüenza, 410 2014; Suárez-Atilano, Burbrink & Vázquez-Domínguez, 2014; Blair et al., 2015). However, 411 given the complex geological history of the area, the TMVB barrier might not have affected all taxa equally (Mastretta-Yanes et al., 2015). Indeed, despite this barrier, gene flow has occurred 412 413 in the recent past between Nuc 1 and the neighboring Nuc 2 at the limits of their distribution in 414 the vicinity of the TMVB. 415 Gene flow has also been observed in a contact zone between Nuc 1 and C. hemilopha in 416 the northern edge of Nuc 1 distribution (Zarza, Reynoso & Emerson, 2008). In both, northern 417 and southern edges, gene flow seems to be limited to a narrow area. According to hybrid zone theory, several factors affect the extent, maintenance and shifting of hybrid zones: dispersal, 418 419 selection, recombination rates and time since secondary contact (Barton & Hewitt, 1985). 420 The paradigm that lack of gene flow is a prerequisite to maintain species integrity is 421 shifting (Abbott et al., 2013). In recent years evidence has accumulated suggesting that gene 422 flow is an integral part of the process of speciation and that divergence can occur in the presence 423 of gene flow (Mallet, 1995; Pinho & Hey, 2010; Leaché et al., 2014; Zarza, et al 2016). Indeed, 424 if reproductive barriers have emerged in secondary contact zones, it is uncertain whether barriers 425 to gene flow will be strengthened or broken down due to recombination and admixture (Barton 426 & Hewitt, 1985; Abbott et al., 2013). 427 Despite the levels of gene flow detected and given the geographic concordance in the distribution of mtDNA and nuclear markers, the geographic limits that coincide with the 428 429 geographic limits of other species, and the morphological signal detected by Bailey (Bailey,

1928), we suggest the resurrection of the name Ctenosaura brachylopha for populations 431 inhabiting northwestern Mexico. 432 The distribution of Nuc 2 and Nuc 3 genetic clusters are geographically discordant with 433 the distribution of mtDNA lineages in central Mexico (North A-D, Colima, Balsas). Maternal 434 lineages seem to be more deeply structured than the genotypic clusters. The distribution of the 435 maternally and paternally inherited markers and the high number of sampled admixed 436 individuals suggest that, although there is some substructure in the area, gene flow among 437 populations has been on going. Given that the holotype locality is labeled as "Colima" 438 (Wiegmann, 1834) we suggest that these genotypic clusters keep the historical name *Ctenosaura* 439 pectinata. 440 Iguanas described as C. acanthura also form a coherent nuclear cluster (Nuc 5) that is 441 concordant with a mtDNA lineage closely related to the South lineage (Zarza, Reynoso & 442 Emerson, 2008). Thus the name Ctenosaura acanthura should continue to be applied to 443 populations of spiny-tailed iguanas in the coast of the Gulf of Mexico. Introgression seemed to 444 have occurred in the area of Zapotitlán de las Salinas (Fig. 2), where individuals carry mtDNA 445 haplotypes typical of C. acanthura and some alleles of Nuc 3 and Nuc 5. 446 Nuc 4 is almost entirely geographically concordant with the South mtDNA lineage, with 447 some signs of mitochondrial introgression with the Oaxaca and Guerrero lineages. Thus Nuc 4 448 probably deserves taxonomic recognition at the species level, and awaits full description until 449 morphological data is gathered and analyzed. In the meantime, we propose that these populations 450 are recognized as an independent Evolutionary Significant Unit (Moritz, 1994) within C. 451 pectinata.

452	We are aware that the modifications in taxonomy proposed in this paper are based
453	entirely on molecular and geographic evidence. Morphological data have not revealed the
454	existence of divisions within C. pectinata, at least with the approaches applied so far (Köhler,
455	Schroth & Streit, 2000), except for the work of Bailey (Bailey, 1928). He realized that C.
456	brachylopha resembles C. pectinata but may be distinguished from it by having a median dorsal
457	crest that does not extend over the sacral region and that it is formed by 65 to 75 scales. He also
458	noticed that the first seven whorls of spinous caudal scales are separated from each other by three
459	rows of small flat scales. In C. pectinata the first five whorls of spinous scales are separated from
460	each other by three rows of small flat scales, but subsequent whorls of spinous scales are
461	separated by two rows of flat scales up the middle of the length of the tail (Bailey, 1928). These
462	and other morphological characters need to be studied in depth, with a large sample and with
463	more modern statistical methods to validate their utility to distinguish C. brachylopha from C.
464	pectinata, and between groups within C. pectinata based on morphology. Color may be an
465	important character too. We have noticed that individuals from northern Mexico have yellow
466	coloration (Fig. S2), those in central Mexico show blue and orange patterns whereas individuals
467	from the south are black and white. Bailey studied stuffed or alcoholic specimens that most
468	likely lost their original color, so he did not address this character.
469	Our molecular approach has uncovered several genotypic clusters. However this may
470	present challenges for the field biologist working in areas with high levels of admixture (i.e.
471	central western Mexico) and with only morphological data at hand. Further research is needed to
472	determine if coloration patterns or morphological characters of individuals outside the contact
473	zones provide information for their assignment to a specific genotypic cluster.

This work provides important knowledge with profound implications in conservation, wildlife management and forensics. *Ctenosaura pectinata sensu lato* is a threatened species under the Mexican law (SEMARNAT, 2002). Measurements have been taken to protect its populations, however there are still gaps regarding re-introduction of confiscated individuals and/or their offspring. Ideally, the genetic origin of iguanas should be recognized before re-introduction to avoid admixture in populations that may lead to loss of diversity through hybridization, reduced viability or fertility in the case of genetic incompatibilities, reduced population fitness due to selective disadvantage of intermediate genotypes or loss of advantageous parental traits (Lynch, 1991; Burke & Arnold, 2001). Furthermore, our results suggest that *C. pectinata*, a species already recognized as threatened, is actually composed of multiple genotypic clusters that might be at a higher risk than previously thought, given their reduced geographical distributions and effective population sizes (Bickford et al., 2007).

Acknowledgements

EZ thanks the Mexican Council for Science and Technology (CONACyT) for funding this research during her PhD studies at the University of East Anglia where the data was generated. EZ and VHR would like to dedicate this work to the memory of Wendoli Medina Mantecón, a close collaborator and friend who will be remembered, among other things, for her efforts and dedication to the conservation of iguanas and other endangered species. Analyses and manuscript drafting by EZ were carried out during a postdoctoral position at the Biodiversity and Climate Research Centre funded by the 'LOEWE-Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz' of Hesse's Ministry of Higher Education, Research, and the Arts.

498

References

499	
500	Abbott R., Albach D., Ansell S., Arntzen JW., Baird SJE., Bierne N., Boughman J., Brelsford A
501	Buerkle CA., Buggs R., Butlin RK., Dieckmann U., Eroukhmanoff F., Grill A., Cahan
502	SH., Hermansen JS., Hewitt G., Hudson AG., Jiggins C., Jones J., Keller B., Marczewsk
503	T., Mallet J., Martinez-Rodriguez P., Möst M., Mullen S., Nichols R., Nolte AW.,
504	Parisod C., Pfennig K., Rice AM., Ritchie MG., Seifert B., Smadja CM., Stelkens R.,
505	Szymura JM., Väinölä R., Wolf JBW., Zinner D. 2013. Hybridization and speciation.
506	Journal of Evolutionary Biology 26:229–246. DOI: 10.1111/j.1420-9101.2012.02599.x.
507	Aguirre-Hidalgo V., Reynoso VH. 1998. Aspectos reproductivos de la iguana negra (Ctenosaura
508	pectinata), en una población sujeta a alta incidencia de caza en el Istmo de Tehuantepec
509	Aljanabi SM., Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic
510	DNA for PCR-based techniques. Nucleic Acids Research 25:4692–4693. DOI:
511	10.1093/nar/25.22.4692.
512	Anderson EC. 2008. Bayesian inference of species hybrids using multilocus dominant genetic
513	markers. Philosophical Transactions of the Royal Society of London B: Biological
514	Sciences 363:2841–2850. DOI: 10.1098/rstb.2008.0043.
515	Anderson EC., Thompson EA. 2002. A Model-Based Method for Identifying Species Hybrids
516	Using Multilocus Genetic Data. Genetics 160:1217–1229.
517	Arbeláez-Cortés E., Milá B., Navarro-Sigüenza AG. 2014. Multilocus analysis of intraspecific
518	differentiation in three endemic bird species from the northern Neotropical dry forest.

19	Molecular Phylogenetics and Evolution 70:362–377. DOI:
20	10.1016/j.ympev.2013.10.006.
21	Arbeláez-Cortés E., Roldán-Piña D., Navarro-Sigüenza AG. 2014. Multilocus phylogeography
22	and morphology give insights into the recent evolution of a Mexican endemic songbird:
23	Vireo hypochryseus. Journal of Avian Biology 45:253–263. DOI: 10.1111/j.1600-
24	048X.2013.00335.x.
25	Arèvalo E., Davis SK., Sites JW. 1994. Mitochondrial DNA Sequence Divergence and
26	Phylogenetic Relationships among Eight Chromosome Races of the Sceloporus
27	Grammicus Complex (Phrynosomatidae) in Central Mexico. Systematic Biology 43:387-
28	418. DOI: 10.1093/sysbio/43.3.387.
29	Bailey JW. 1928. A revision of the lizards of the genus Ctenosaura. Proceedings of the United
30	States National Museum 73:1–55.
31	Ballard JWO., Whitlock MC. 2004. The incomplete natural history of mitochondria. Molecular
32	Ecology 13:729–744. DOI: 10.1046/j.1365-294X.2003.02063.x.
33	Bandelt HJ., Forster P., Rohl A. 1999. Median-joining networks for inferring intraspecific
34	phylogenies. Molecular Biology and Evolution 16:37-48.
35	Barton NH., Hewitt GM. 1985. Analysis of hybrid zones. Annual review of Ecology and
36	Systematics 6:113–148.
37	Bickford D., Lohman DJ., Sodhi NS., Ng PKL., Meier R., Winker K., Ingram KK., Das I. 2007
38	Cryptic species as a window on diversity and conservation. Trends in ecology &
39	evolution 22:148–155. DOI: 10.1016/j.tree.2006.11.004.
40	Blair C., Méndez de la Cruz FR., Law C., Murphy RW. 2015. Molecular phylogenetics and
41	species delimitation of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) throughout

542	the Mexican tropical dry forest. Molecular Phylogenetics and Evolution 84:254–265.
543	DOI: 10.1016/j.ympev.2015.01.003.
544	Blázquez MC., Rodríguez Estrella R., Munguía Vega A. 2006. Characterization of 10
545	microsatellite loci in the spiny-tailed iguana Ctenosaura hemilopha. Molecular Ecology
546	Notes 6:753–755.
547	Bryson RW., García-Vázquez UO., Riddle BR. 2012. Relative roles of Neogene vicariance and
548	Quaternary climate change on the historical diversification of bunchgrass lizards
549	(Sceloporus scalaris group) in Mexico. Molecular Phylogenetics and Evolution 62:447-
550	457. DOI: 10.1016/j.ympev.2011.10.014.
551	Buggs RJA. 2007. Empirical study of hybrid zone movement. <i>Heredity</i> 99:301–312. DOI:
552	10.1038/sj.hdy.6800997.
553	Burke JM., Arnold ML. 2001. Genetics and the fitness of hybrids. Annual Review of Genetics
554	35:31–52. DOI: 10.1146/annurev.genet.35.102401.085719.
555	Daza JM., Smith EN., Páez VP., Parkinson CL. 2009. Complex evolution in the Neotropics: The
556	origin and diversification of the widespread genus Leptodeira (Serpentes: Colubridae).
557	Molecular Phylogenetics and Evolution 53:653–667. DOI:
558	10.1016/j.ympev.2009.07.022.
559	De-Nova JA., Medina R., Montero JC., Weeks A., Rosell JA., Olson ME., Eguiarte LE.,
560	Magallón S. 2012. Insights into the historical construction of species-rich Mesoamerican
561	seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales).
562	New Phytologist 193:276–287. DOI: 10.1111/j.1469-8137.2011.03909.x.

563	Devitt TJ. 2006. Phylogeography of the Western Lyre snake (Trimorphodon biscutatus): testing
564	arid land biogeographical hypotheses across the Nearctic-Neotropical transition.
565	Molecular Ecology 15:4387–4407.
566	Do C., Waples RS., Peel D., Macbeth GM., Tillett BJ., Ovenden JR. 2014. NeEstimator v2: re-
567	implementation of software for the estimation of contemporary effective population size
568	(Ne) from genetic data. Molecular Ecology Resources 14:209–214. DOI: 10.1111/1755-
569	0998.12157.
570	Dowling DK., Friberg U., Lindell J. 2008. Evolutionary implications of non-neutral
571	mitochondrial genetic variation. Trends in Ecology & Evolution 23:546-554.
572	Dubey S., Brown GP., Madsen T., Shine R. 2008. Male-biased dispersal in a tropical Australian
573	snake (Stegonotus cucullatus, Colubridae). <i>Molecular Ecology</i> 17:3506–3514. DOI:
574	10.1111/j.1365-294X.2008.03859.x.
575	Dupanloup I., Schneider S., Excoffier L. 2002. A simulated annealing approach to define the
576	genetic structure of populations. <i>Molecular Ecology</i> 11:2571–2581.
577	Earl DA., vonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for
578	visualizing STRUCTURE output and implementing the Evanno method. Conservation
579	Genetics Resources 4:359–361. DOI: 10.1007/s12686-011-9548-7.
580	Evanno G., Regnaut S., Goudet J. 2005. Detecting the number of clusters of individuals using the
581	software STRUCTURE: a simulation study. <i>Molecular Ecology</i> 14:2611–2620.
582	Excoffier L., Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform
583	population genetics analyses under Linux and Windows. Molecular Ecology Resources
584	10:564–567. DOI: 10.1111/j.1755-0998.2010.02847.x.

585	Faria C. 2008. Conservation genetics of the Black Iguana - testing for multiple paternity and
586	assessing the use of microsatellites for forensic genetics. Norwich: University of East
587	Anglia,.
588	Faria CMA., Zarza E., Reynoso VH., Emerson BC. 2010. Predominance of single paternity in
589	the black spiny-tailed iguana: conservation genetic concerns for female-biased hunting.
590	Conservation Genetics 11:1645–1652. DOI: 10.1007/s10592-010-0047-2.
591	Frankham R. 2006. Evolutionary conservation genetics. In: Fox CW, Wolf JB eds. Evolutionary
592	Genetics, Concepts and Case Studies. New York: Oxford University Press, 502-512.
593	Gompert Z. 2012. Population genomics as a new tool for wildlife management. <i>Molecular</i>
594	Ecology 21:1542–1544. DOI: 10.1111/j.1365-294X.2012.05471.x.
595	Greenbaum E., Smith EN., de Sá RO. 2011. Molecular systematics of the Middle American
596	genus Hypopachus (Anura: Microhylidae). Molecular Phylogenetics and Evolution
597	61:265–277. DOI: 10.1016/j.ympev.2011.07.002.
598	Hasbún CR., Gómez A., Köhler G., Lunt DH. 2005. Mitochondrial DNA phylogeography of the
599	Mesoamerican spiny tailed lizards (Ctenosaura quinquecarinata complex): historical
600	biogeography, species status and conservation. Molecular Ecology 14:3095-3107.
601	Haus T., Roos C., Zinner D. 2013. Discordance Between Spatial Distributions of Y-
602	Chromosomal and Mitochondrial Haplotypes in African Green Monkeys (Chlorocebus
603	spp.): A Result of Introgressive Hybridization or Cryptic Diversity? International
604	Journal of Primatology 34:986–999. DOI: 10.1007/s10764-013-9717-5.
605	Hickerson MJ., Carstens BC., Cavender-Bares J., Crandall KA., Graham CH., Johnson JB.,
606	Rissler L., Victoriano PF., Yoder AD. 2010. Phylogeography's past, present, and future:

607	10 years after Avise, 2000. Molecular Phylogenetics and Evolution 54:291–301. DOI:
608	10.1016/j.ympev.2009.09.016.
609	Irwin DE. 2002. Phylogeographic breaks without geographic barriers to gene flow. Evolution;
610	international journal of organic evolution 56:2383–2394.
611	Johansson H., Surget-Groba Y., Thorpe RS. 2008. Microsatellite data show evidence for male-
612	biased dispersal in the Caribbean lizard Anolis roquet. Molecular Ecology 17:4425-4432
613	Köhler G. 2002. Schwarzleguane - Lebensweise, Haltung, Zucht,. Offenbach: Herpeton.
614	Köhler G., Schroth W., Streit B. 2000. Systematics of the Ctenosaura group of lizards (Reptilia :
615	Sauria : Iguanidae). <i>Amphibia-Reptilia</i> 21:177–191.
616	Kronforst MR. 2012. Mimetic Butterflies Introgress to Impress. <i>PLoS Genet</i> 8:e1002802. DOI:
617	10.1371/journal.pgen.1002802.
618	Leaché AD., Harris RB., Rannala B., Yang Z. 2014. The Influence of Gene Flow on Species
619	Tree Estimation: A Simulation Study. Systematic Biology 63:17–30. DOI:
620	10.1093/sysbio/syt049.
621	Leaché AD., Fujita MK. 2010. Bayesian species delimitation in West African forest geckos
622	(Hemidactylus fasciatus). Proceedings of the Royal Society B: Biological Sciences
623	277:3071–3077. DOI: 10.1098/rspb.2010.0662.
624	Leaché AD., McGuire JA. 2006. Phylogenetic relationships of horned lizards (Phrynosoma)
625	based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene
626	tree. Molecular Phylogenetics and Evolution 39:628–644.
627	Lynch M. 1991. The Genetic Interpretation of Inbreeding Depression and Outbreeding
628	Depression. Evolution 45:622-629. DOI: 10.2307/2409915.

629	Mallet J. 1995. A species definition for the modern synthesis. <i>Trends in Ecology & Evolution</i>
630	10:294–299. DOI: 10.1016/0169-5347(95)90031-4.
631	Mallet J. 2005. Hybridization as an invasion of the genome. Trends in Ecology & Evolution
632	20:229–237.
633	Mallet J., Besansky N., Hahn MW. 2016. How reticulated are species? BioEssays: News and
634	Reviews in Molecular, Cellular and Developmental Biology 38:140–149. DOI:
635	10.1002/bies.201500149.
636	Malone CL., Wheeler T., Taylor JF., Davis SK. 2000. Phylogeography of the Caribbean rock
637	iguana (Cyclura): Implications for conservation and insights on the biogeographic history
638	of the West Indies. Molecular Phylogenetics and Evolution 17:269–279. DOI:
639	10.1006/mpev.2000.0836.
640	Mastretta-Yanes A., Moreno-Letelier A., Piñero D., Jorgensen TH., Emerson BC. 2015.
641	Biodiversity in the Mexican Highlands and the interaction of geology, geography and
642	climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography 42:1586-
643	1600.
644	McGuire JA., Linkem CW., Koo MS., Hutchison DW., Lappin AK., Orange DI., Lemos-Espinal
645	J., Riddle BR., Jaeger JR. 2007. Mitochondrial introgression and incomplete lineage
646	sorting through space and time: Phylogenetics of crotaphytid lizards. Evolution 61:2879-
647	2897. DOI: 10.1111/j.1558-5646.2007.00239.x.
648	Milá B., Surget-Groba Y., Heulin B., Gosá A., Fitze PS. 2013. Multilocus phylogeography of the
649	common lizard Zootoca vivipara at the Ibero-Pyrenean suture zone reveals lowland
650	barriers and high-elevation introgression. BMC Evolutionary Biology 13:192. DOI:
651	10.1186/1471-2148-13-192.

652	Miraldo A., Faria C., Hewitt GM., Paulo OS., Emerson BC. 2013. Genetic analysis of a contact
653	zone between two lineages of the ocellated lizard (Lacerta lepida Daudin 1802) in south-
654	eastern Iberia reveal a steep and narrow hybrid zone. Journal of Zoological Systematics
655	and Evolutionary Research 51:45–54. DOI: 10.1111/jzs.12005.
656	Moritz C. 1994. Defining "Evolutionarily Significant Units" for conservation. Trends in Ecology
657	& Evolution 9:373–375. DOI: 10.1016/0169-5347(94)90057-4.
658	Mulcahy DG., Morrill BH., Mendelson JR. 2006. Historical biogeography of lowland species of
659	toads (Bufo) across the Trans-Mexican Neovolcanic Belt and the Isthmus of
660	Tehuantepec. Journal of Biogeography 33:1889–1904.
661	Myers N., Mittermeier RA., Mittermeier CG., da Fonseca GAB., Kent J. 2000. Biodiversity
662	hotspots for conservation priorities. <i>Nature</i> 403:853–858. DOI: 10.1038/35002501.
663	Pardo-Diaz C., Salazar C., Baxter SW., Merot C., Figueiredo-Ready W., Joron M., McMillan
664	WO., Jiggins CD. 2012. Adaptive Introgression across Species Boundaries in Heliconius
665	Butterflies. <i>PLoS Genet</i> 8:e1002752. DOI: 10.1371/journal.pgen.1002752.
666	Petit RJ., Excoffier L. 2009. Gene flow and species delimitation. Trends in Ecology & Evolution
667	24:386–393. DOI: 10.1016/j.tree.2009.02.011.
668	Pinho C., Hey J. 2010. Divergence with Gene Flow: Models and Data. Annual Review of
669	Ecology, Evolution, and Systematics 41:215-230. DOI: 10.1146/annurev-ecolsys-
670	102209-144644.
671	Pringle EG., Ramírez SR., Bonebrake TC., Gordon DM., Dirzo R. 2012. Diversification and
672	phylogeographic structure in widespread Azteca plant-ants from the northern Neotropics.
673	Molecular Ecology 21:3576–3592. DOI: 10.1111/j.1365-294X.2012.05618.x.

674	Pritchard JK., Stephens M., Donnelly P. 2000. Inference of population structure using multilocus
675	genotype data. Genetics 155:945–959.
676	R Core Team 2012. A language and environment for statistical computing. Vienna, Austria: R
677	Foundation for Statistical Computing.
678	Rittmeyer EN., Austin CC. 2012. The effects of sampling on delimiting species from multi-locus
679	sequence data. Molecular Phylogenetics and Evolution 65:451–463. DOI:
680	10.1016/j.ympev.2012.06.031.
681	Rousset F. 2008. GENEPOP ' 007: a complete re-implementation of the GENEPOP software
682	for Windows and Linux. Molecular Ecology Resources 8:103–106.
683	Seehausen O. 2004. Hybridization and adaptive radiation. Trends in Ecology & Evolution
684	19:198–207. DOI: 10.1016/j.tree.2004.01.003.
685	SEMARNAT. 2002. NOM-059-ECOL-2001. Diario Oficial de la Federación (segunda sección),
686	Miércoles 6 de marzo.
687	Singhal S., Moritz C. 2012. Testing hypotheses for genealogical discordance in a rainforest
688	lizard. <i>Molecular ecology</i> 21:5059–5072. DOI: 10.1111/j.1365-294X.2012.05747.x.
689	Smith HM., Taylor EH. 1950. An annotated check list and key to the reptiles of Mexico
690	exclusive of snakes. United States National Museum Bulletin 199:vi, 253.
691	Streicher JW., Devitt TJ., Goldberg CS., Malone JH., Blackmon H., Fujita MK. 2014.
692	Diversification and asymmetrical gene flow across time and space: lineage sorting and
693	hybridization in polytypic barking frogs. <i>Molecular Ecology</i> 23:3273–3291. DOI:
694	10.1111/mec.12814.

95	Suárez-Atılano M., Burbrink F., Vázquez-Domínguez E. 2014. Phylogeographical structure
96	within Boa constrictor imperator across the lowlands and mountains of Central America
97	and Mexico. Journal of Biogeography 41:2371–2384. DOI: 10.1111/jbi.12372.
98	Szpiech ZA., Jakobsson M., Rosenberg NA. 2008. ADZE: a rarefaction approach for counting
99	alleles private to combinations of populations. Bioinformatics (Oxford, England)
00	24:2498–2504. DOI: 10.1093/bioinformatics/btn478.
01	Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control
02	region of mitochondrial DNA in humans and chimpanzees. Molecular biology and
03	evolution 10:512–526.
'04	Toews DPL., Brelsford A. 2012. The biogeography of mitochondrial and nuclear discordance in
'05	animals. <i>Molecular ecology</i> 21:3907–3930. DOI: 10.1111/j.1365-294X.2012.05664.x.
'06	Ujvari B., Dowton M., Madsen T. 2008. Population genetic structure, gene flow and sex-biased
07	dispersal in frillneck lizards (Chlamydosaurus kingii). Molecular Ecology 17:3557–3564.
'08	DOI: 10.1111/j.1365-294X.2008.03849.x.
'09	Wiegmann AF. 1834. Herp. Mex. Berlin.
10	Zaldivar-Riverón A., Leon-Regagnon V., de Oca ANM. 2004. Phylogeny of the Mexican coastal
11	leopard frogs of the Rana berlandieri group based on mtDNA sequences. Molecular
12	Phylogenetics and Evolution 30:38–49.
13	Zarza E., Pereyra RT., Reynoso VH., Emerson BC. 2009. Isolation and characterisation of
14	polymorphic microsatellite markers in the black spiny tailed iguana (Ctenosaura
15	pectinata) and their cross-utility in other Ctenosaura. Molecular Ecology Resources
16	9:117–119.

717	Zarza Franco GE. 2008. Phylogeography and genetic analysis of secondary contact zones of
718	Ctenosaura pectinata and related species. Ph.D. dissertation Thesis. Norwich, UK:
719	Univeristy of East Anglia.
720	
721	Zarza E., Reynoso VH., Emerson BC. 2008. Diversification in the northern neotropics:
722	mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and
723	related species. Molecular Ecology 17:3259–3275. DOI: 10.1111/j.1365-
724	294X.2008.03826.x.
725	Zarza E., Reynoso VH., Emerson BC. 2011. Discordant patterns of geographic variation between
726	mitochondrial and microsatellite markers in the Mexican black iguana (Ctenosaura
727	pectinata) in a contact zone. Journal of Biogeography 38:1394–1405. DOI:
728	10.1111/j.1365-2699.2011.02485.x.
729	Zarza E., Reynoso VH., Emerson BC. 2016. Genetic tools for assisting sustainable management
730	and conservation of the spiny-tailed iguana, Ctenosaura pectinata. Herpetology
731	Conservation and Biology 11 (Monograph 6): 255-264.
732	Zarza, E., Faircloth, BC., Tsai, WLE., Bryson, RW., Klicka, J, McCormack, JE. 2016. Hidden
733	histories of gene flow in highland birds revealed with genomic markers. Molecular
734	Ecology, 25: 5144–5157. Doi: 10.1111/mec.13813

736

Figures

37	Figure 1. Geographic distribution of mtDNA lineages within <i>Ctenosaura pectinata</i> and <i>C</i> .
'38	acanthura. Localities are color-coded according to the SAMOVA group they form (mt1-mt10).
'39	Haplotype groups defined by Zarza et al (Zarza, Reynoso & Emerson, 2008) are delimited with
40	lines. H: Area of overlap between C. pectinata and C. hemilopha, which was not included in the
41	analyses. Data produced by (Zarza Franco, 2008) from three localities (numbered consecutively
42	north to south 1-3) is made publicly available in this study for the first time (see File S1). Map
43	generated using 'World Imagery' base map from ESRI ArcMap 10.1. World Imagery source:
44	Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP,
45	swisstopo, and the GIS User Community. Modified from (Zarza, Reynoso & Emerson, 2008,
46	2011).
47	Figure 2. Geographic distribution of genotypic clusters in Mexico as estimated with
48	SAMOVA (*Nuc1-*Nuc5) and STRUCTURE (Nuc 1 – Nuc 5). A: Apatzingán, M:
49	Manzanillo, N: Las Negras, Z: Zapotitlán de las Salinas. Map created as in Fig. 1.
50	Figure 3. Bar plots showing population assignment and ancestry for individuals according
51	to different methods. (A) MtDNA lineage of each individual as inferred from haplotype
52	networks (Zarza, Reynoso & Emerson, 2008, 2011); (B) SAMOVA mtDNA groups detected
53	under K=10; (C) microsatellite genotypic cluster defined with SAMOVA under K=5 and (D)
'54	STRUCTURE under K=4; (E) substructure estimated with STRUCTURE in a reduced data set
'55	(South-SS analyses). In STRUCTURE plots, the Y-axis represents proportion of ancestry. As
'56	this cannot be calculated with SAMOVA, values are always shown as 1. Each bar represents an
57	individual. White bars are missing data.

758 Tables

- 759 Table 1. Sources of variation for mtDNA and microsatellite data calculated with SAMOVA
- 760 under K=10 and K=5 respectively. Bold font indicates statistically significant values (p<0.05).
- 761 Table 2. Summary statistics per locus for genotypic clusters (*Nuc1-*Nuc5) defined with
- 762 SAMOVA.
- 763 Table 3. Differentiation between SAMOVA clusters (FST values) as estimated with
- 764 **Arlequin 3.5.** All values are statistically significant (p<0.05).
- 765 Table 4. Number of individuals assigned to each hybrid class according to NewHybrids. In
- all cases, SAMOVA defined clusters were compared.

767

768

Supplemental information

- 769 **Figure S1. MtDNA haplotype network.** Modified from (Zarza, Reynoso & Emerson, 2008,
- 770 2011); Haplotypes produced by (Zarza Franco, 2008) were added to the North A lineage and are
- 771 highlighted with a red circle.
- 772 File S1. Sampling localities, geographic coordinates, haplotype accession numbers and
- genotype data of individuals included in this study, and summary of previous research
- 774 outcomes.
- 775 File S2. SAMOVA K associated FCT values, Δ FCT plots; STRUCTURE K likelihoods and
- 776 Δ K plots.
- 777 Table S1. FST values between pairs of localities estimated with Arlequin 3.5.

PeerJ

778	Figure S2. A male spiny-tailed iguana from Sinaloa, northern Mexico, with the
779	characteristic yellow coloration. Here we propose that populations from northern Mexico
780	are referred as Ctenosaura brachylopha. Photo Credit: Eugenia Zarza.

Table 1(on next page)

Sources of variation for mtDNA and microsatellite data calculated with SAMOVA under K=10 and K=5 respectively.

Bold font indicates statistically significant values (p<0.05).

1 Table 1. Sources of variation for mtDNA and microsatellite data calculated with SAMOVA

2 under K=10 and K=5 respectively. Bold font indicates statistically significant values (p<0.05).

Marker Source of variation		d.f.	Sum of squares	Variance components	% variation	Fixation indices
	Among groups	9	3061.309	9.779	79.28	FCT=0.793
mtDNA	Among populations within groups	43	332.944	1.002	8.12	FSC=0.392
	Within populations	291	452.013	1.553	12.59	FST=0.874
	Total	343	3846.266	12.334		
	Among groups	4	268.732	0.517	21.66	FCT=0.217
	Among populations within groups	44	164.372	0.145	6.08	FSC=0.078
microsate llites	Among individuals within populations	292	513.913	0.034	1.42	FIS=0.02
	Within individuals	341	577	1.692	70.84	FIT=0.292
	Total	681	1524.018	2.389		

Table 2(on next page)

Summary statistics per locus for genotypic clusters (*Nuc1-*Nuc5) defined with SAMOVA.

Table 2. Summary statistics per locus for genotypic clusters (*Nuc1-*Nuc5) defined with SAMOVA.

1
4
_
4
4

		*1	Nuc1			*Nuc2				*Nuc3			
L	A	H_{0}	$\mathbf{H}_{\mathbf{E}}$	FIS	A	Ho	$\mathbf{H}_{\mathbf{E}}$	FIS	A	Ho	$\mathbf{H}_{\mathbf{E}}$	FIS	
1	4	0.48	0.49	0.01	13	0.86	0.86	0.00	12	0.79	0.82	0.05	
2	2	0.41	0.50	0.19	6	0.33	0.35	0.05	7	0.44	0.45	0.01	
3	8	0.85	0.80	-0.06	15	0.78	0.85	0.08	25	0.83	0.91	0.09	
4	2	0.52	0.50	-0.03	7	0.45	0.45	0.00	8	0.74	0.80	0.07	
5	3	0.78	0.68	-0.15	7	0.51	0.55	0.06	6	0.25	0.28	0.10	
6	3	0.15	0.14	-0.05	11	0.77	0.84	0.09	10	0.50	0.66	0.25	
7	6	0.59	0.62	N.A.	10	0.63	0.74	N.A.	14	0.55	0.74	N.A.	
8	8	0.67	0.82	0.19	13	0.77	0.80	0.04	13	0.83	0.86	0.03	
M	4.5	0.56	0.57		10.3	0.64	0.68		11. 9	0.62	0.69		
s.d.	2.5	0.22	0.22		3.3	0.19	0.20		6.0	0.21	0.22		
n	27				105			131					
AR	3.29(2.64)				5.14(3.98)			5.54(4.65)					
PA	0.29(0.07)			0.62(0.18)			0.96(0.60)						
Ne		35.1	(0-176))		8.5 (1.8	8-20.5)			15.8 (5	5.8-30.8)	

5 6

L= Locus; A = Allele number; H_O = Observed heterozygosity; H_E = Expected heterozygosity; FIS = inbreeding coefficient; N.A. = missing data; m = monomorphic locus; n = number of individuals; M = Mean; s.d. = standard deviation; AR = Allele richness; PA = Private alleles mean (variance); PA = Effective population size (Jackknife CI)

Table 2 continued.

12 13

		*N	luc4		*Nuc5				
L	A	$H_{\mathbf{O}}$	$\mathbf{H}_{\mathbf{E}}$	FIS	A	Ho	$\mathbf{H}_{\mathbf{E}}$	FIS	
1	14.	0.68	0.84	0.19	3	0.14	0.52	0.73	
2	6	0.36	0.49	0.27	4	0.14	0.51	0.72	
3	13	0.54	0.79	0.32	5	0.64	0.75	0.15	
4	5	0.14	0.16	0.14	3	0.64	0.63	-0.02	
5	5	0.63	0.71	0.13	2	0.07	0.07	0.00	
6	11	0.72	0.84	0.14	2	0.29	0.48	0.41	
7	4	0.07	0.58	0.10	m	m	m	N.A.	
8	8	0.67	0.74		m	m	m	N.A.	
M	8.3	0.48	0.65		3.2	0.32	0.49		
s.d.	3.9	0.26	0.23		1.2	0.26	0.23		
n		(54		14				
AR		4.7(3.19)		2.56(1.38)				
PA		0.76	(0.40)		0.53(0.29)				
Ne		22.5 (0)-112.8)		1.9 (1.3-2.7))	

- 15 L= Locus; A = Allele number; H_0 = Observed heterozygosity; H_E = Expected heterozygosity;
- 16 FIS = inbreeding coefficient; N.A. = missing data; m = monomorphic locus; n = number of
- individuals; M = Mean; s.d. = standard deviation; AR = Allele richness; PA = Private alleles
- mean (variance); Ne = Effective population size (Jackknife CI)

Table 3(on next page)

Differentiation between SAMOVA clusters (FST values) estimated with Arlequin 3.5. All values are statistically significant (p<0.05).

1 Table 3. Differentiation between SAMOVA clusters (FST values) as estimated with

2 **Arlequin 3.5.** All values are statistically significant (p<0.05).

	*Nuc1	*Nuc2	*Nuc 3	*Nuc 4
*Nuc1	0			
*Nuc2	0.18952	0		
*Nuc3	0.26536	0.14815	0	
*Nuc4	0.28768	0.18468	0.15797	0
*Nuc5	0.44634	0.36999	0.32849	0.34052

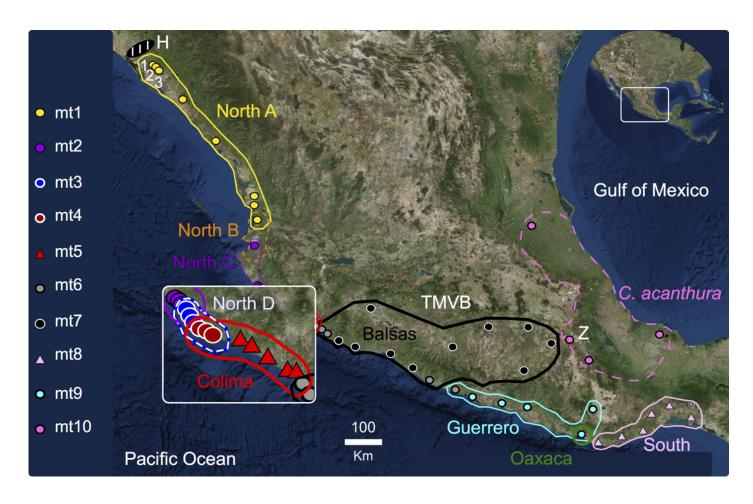
3

Table 4(on next page)

Number of individuals assigned to each hybrid class according to NewHybrids. In all cases, SAMOVA defined clusters were compared.

- 1 Table 4. Number of individuals assigned to each hybrid class according to NewHybrids. In
- 2 all cases, SAMOVA defined clusters were compared.

X,Y	Pure *NucX	Pure *NucY	F1	F2	*NucX Bc.	*NucY Bc.	Un- assigned	n (X+Y)
*Nuc1,*Nuc2	26	92	0	1	0	0	13	132
*Nuc2,*Nuc3	83	0	0	37	0	4	112	236
*Nuc3,*Nuc4	110	56	0	0	2	0	27	195
*Nuc3,*Nuc5	125	14	0	2	0	0	4	145
*Nuc4,*Nuc5	14	64	0	0	0	0	0	78


³ X,Y = SAMOVA-defined Genotypic cluster compared. As in the main text, tables and figures,

⁴ the *Nuc prefix denotes SAMOVA defined genotypic cluster. Bc = backcross

Figure 1

Geographic distribution of mtDNA lineages within *Ctenosaura pectinata* and *C. acanthura*.

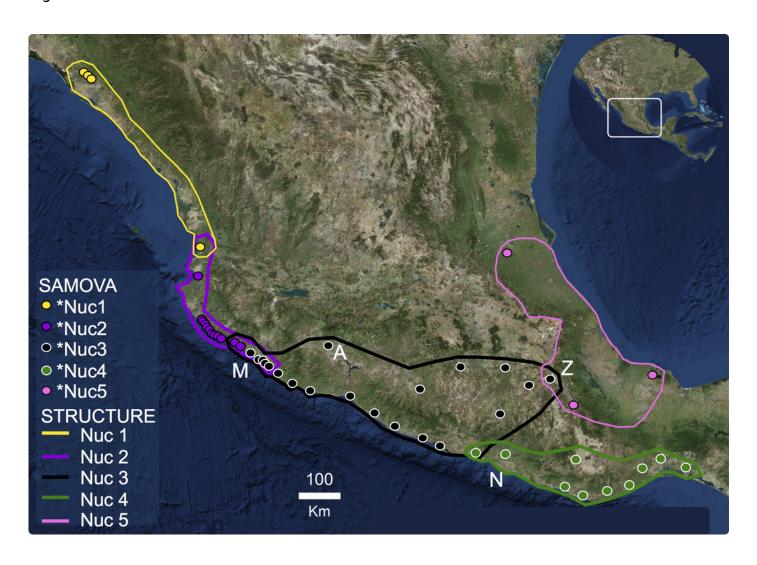

Localities are color-coded according to the SAMOVA group they form (mt1-mt10). Haplotype groups defined by Zarza et al (2008) are delimited with lines. H: Area of overlap between *C. pectinata* and *C. hemilopha*, which was not included in the analyses. Data produced by (Zarza Franco, 2008) from three localities (numbered consecutively north to south 1-3) is made publicly available in this study for the first time (see File S1). Map generated using 'World Imagery' base map from ESRI ArcMap 10.1. World Imagery source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Modified from (Zarza, Reynoso & Emerson, 2008, 2011)

Figure 2

Geographic distribution of genotypic clusters in Mexico as estimated with SAMOVA (*Nuc1-*Nuc5) and STRUCTURE (Nuc 1 – Nuc 5)

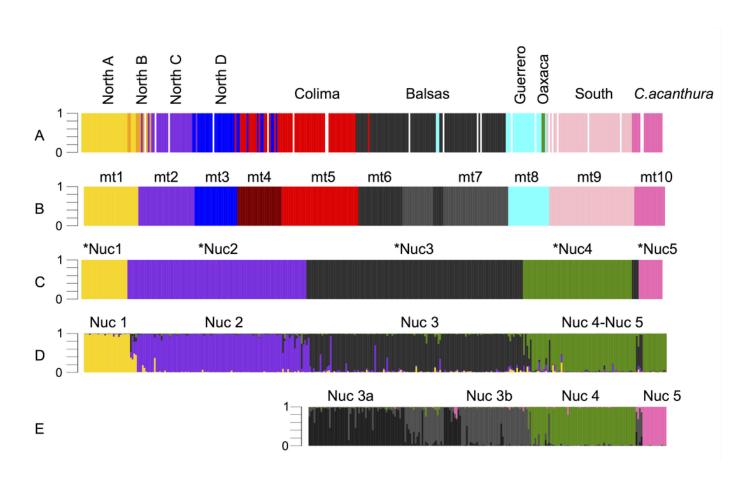

A: Apatzingán, M: Manzanillo, N: Las Negras, Z: Zapotitlán de las Salinas. Map created as in Fig. 1.

Figure 3

Bar plots showing population assignment and ancestry for individuals according to different methods.

(A) MtDNA lineage of each individual as inferred from haplotype networks (Zarza, Reynoso & Emerson, 2008, 2011); (B) SAMOVA mtDNA groups detected under K=10; (C) microsatellite genotypic cluster defined with SAMOVA under K=5 and (D) STRUCTURE under K=4; (E) substructure estimated with STRUCTURE in a reduced data set (South-SS analyses). In STRUCTURE plots, the Y-axis represents proportion of ancestry. As this cannot be calculated with SAMOVA, values are always shown as 1. Each bar represents an individual. White bars are missing data.

