Introgressive hybridization in a Spiny-Tailed Iguana,
Ctenosaura pectinata, and its implications for
taxonomy and conservation (#13787)

First submission

Please read the Important notes below, and the Review guidance on the next page.
When ready submit online. The manuscript starts on page 3.

Important notes

Editor and deadline
Tomas Hrbek / 6 Nov 2016

Files 5 Figure file(s)
5 Table file(s)
1 Raw data file(s)
1 Other file(s)
Please visit the overview page to download and review the files
not included in this review pdf.

Declarations One or more DNA sequences were reported.
Involves vertebrate animals.
Involves a field study on animals or plants.

For assistance email peer.review@peerj.com



https://peerj.com/submissions/13787/reviews/149329/
https://peerj.com/submissions/13787/
mailto:peer.review@peerj.com

Review 2
guidelines

Please in full read before you begin

How to review

When ready submit your review online. The review form is divided into 5 sections. Please consider
these when composing your review:
1. BASIC REPORTING

2. EXPERIMENTAL DESIGN

3. VALIDITY OF THE FINDINGS
4. General comments

5. Confidential notes to the editor

You can also annotate this pdf and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING EXPERIMENTAL DESIGN
Clear, unambiguous, professional English Original primary research within Scope of
language used throughout. the journal.
Intro & background to show context. Research question well defined, relevant
Literature well referenced & relevant. & meaningful. It is stated how research

fills an identified knowledge gap.

Structure conforms to Peer] standard,
discipline norm, or improved for clarity. Rigorous investigation performed to a

) i . high technical & ethical standard.
Figures are relevant, high quality, well
labelled & described. Methods described with sufficient detail &

, ) information to replicate.
Raw data supplied (See Peer] policy).

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Conclusion well stated, linked to original
Negative/inconclusive results accepted. research question & limited to supporting
Meaningful replication encouraged where results.

rationale & benefit to literature is clearly

stated. .Specgllat|on is welcome, but should be
identified as such.
Data is robust, statistically sound, &

controlled.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-
criteria/



https://peerj.com/submissions/13787/reviews/149329/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/editorial-criteria/
https://peerj.com/about/editorial-criteria/

Peer]

Introgressive hybridization in a Spiny-Tailed Iguana,
Ctenosaura pectinata, and its implications for taxonomy and
conservation

Eugenia Zarza “™*- ? | Victor Hugo Reynoso ° , Christiana M.A. Faria *° , Brent C Emerson °

Moore Laboratory of Zoology, Occidental College, Los Angeles, California, United States
Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
Departamento de Zoologia, Universidad Nacional Auténoma de México, Ciudad de México, Mexico
School of Biological Sciences, University of East Anglia, Norwich, United Kingdom

1
2
3
4
5 . . . . .
Department of Biology/School of Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
6

Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiologia, La Laguna, Spain

Corresponding Author: Eugenia Zarza
Email address: eugenia.zarza@gmail.com

Introgression, the transmission of genetic material of one taxon into another through
hybridization, can have various evolutionary outcomes. Previous studies have detected
signs of introgression between western populations of the Mexican endemic and
threatened spiny-tailed iguana, Ctenosaura pectinata. However, the extent of this
phenomenon along the geographic distribution of the species is unknown. Here we use
multilocus data together with detailed geographic sampling to (1) define genotypic
clusters within C. pectinata; (2) evaluate geographic concordance between maternally and
biparentally inherited markers; (3) examine levels of introgression between genotypic
clusters, and (4) suggest taxonomic modifications in light of this information. Applying
clustering methods to genotypes of 341 individuals from 49 localities of C. pectinata and
the closely related C. acanthura, we inferred the existence of five genotypic clusters.
Contact zones between genotypic clusters with signatures of interbreeding were detected,
showing different levels of geographic discordance with mtDNA lineages. In northern
localities, mtDNA and microsatellites exhibit concordant distributions, supporting the
resurrection of C. brachylopha. Similar concordance is observed along the distribution of C.
acanthura, confirming its unique taxonomic identity. Genetic and geographic concordance
is also observed for populations within southwestern Mexico, where the recognition of a
new species awaits in depth taxonomic revision. Contrarily, in western localities a striking
pattern of discordance was detected where up to six mtDNA lineages co-occur with only
two genotypic clusters. Given that the type specimen originated from this area, we
suggest that individuals from western Mexico keep the name C. pectinata. Our results
have profound implications for conservation, management, and forensics of Mexican
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Abstract

Introgression, the transmission of genetic material of one taxon into another through
hybridization, can have various evolutionary outcomes. Previous studies have detected signs of
introgression between western populations of the Mexican endemic and threatened spiny-tailed
iguana, Ctenosaura pectinata. However, the extent of this phenomenon along the geographic
distribution of the species is unknown. Here we use multilocus data together with detailed
geographic sampling to (1) define genotypic clusters within C. pectinata; (2) evaluate geographic
concordance between maternally and biparentally inherited markers; (3) examine levels of
introgression between genotypic clusters, and (4) suggest taxonomic modifications in light of
this information. Applying clustering methods to genotypes of 341 individuals from 49 localities
of C. pectinata and the closely related C. acanthura, we inferred the existence of five genotypic
clusters. Contact zones between genotypic clusters with signatures of interbreeding were
detected, showing different levels of geographic discordance with mtDNA lineages. In northern
localities, mtDNA and microsatellites exhibit concordant distributions, supporting the
resurrection of C. brachylopha. Similar concordance is observed along the distribution of C.
acanthura, confirming its unique taxonomic identity. Genetic and geographic concordance is
also observed for populations within southwestern Mexico, where the recognition of a new
species awaits in depth taxonomic revision. Contrarily, in western localities a striking pattern of
discordance was detected where up to six mtDNA lineages co-occur with only two genotypic
clusters. Given that the type specimen originated from this area, we suggest that individuals from
western Mexico keep the name C. pectinata. Our results have profound implications for

conservation, management, and forensics of Mexican iguanas.
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46 Introduction

47 The role of introgression, the transmission of genetic material from one taxon into

48  another through hybridization, in shaping biodiversity is receiving increasing attention in

49 different taxa and geographic areas (e.g. Abbott et al., 2013; Haus, Roos & Zinner, 2013; Mallet,
50 Besansky & Hahn, 2016). There is evidence suggesting that introgression can increase the risk of@
51 extinction in endangered species through genetic swamping, have deleterious effects in hybrids,
52 lead to adaptation by the emergence of novel genotypes or have no effect on the fate of a species
53  (Seehausen, 2004; Mallet, 2005; Frankham, 2006; Kronforst, 2012; Pardo-Diaz et al., 2012).

54  Given these various outcomes, it is particularly important to study the extent and impact of

55 introgression in biologically rich areas like Me@nerica, where general patterns of genetic

56 diversity are just starting to be uncovered. This may have direct implications for species

57  delimitation and, ultimately, conservation and wildlife management (Gompert, 2012). The term
58 introgression has been primarily used to refer to gene flow between species, however more @
59 recent works have applied the term to gene flow occurring between young divergent lineages

60 (Streicher et al., 2014). Here we used ‘introgression’ as in the latter instance.

61 The dry tropical forests of the western lowlands of Mexico are part of the Mesoamerica

62  Hot Spot (Myers et al., 2000). Adthough many phylogeographic studies have focused on this

63 area, pnly a few of them have employed a multilocus approach that can allewfor-the-deteetion-of
64 introgression (e.g. Daza et al., 2009; Greenbaum, Smith & de S4, 2011; Pringle et al., 2012;

65 Arbeldez-Cortés, Mild & Navarro-Sigiienza, 2014; Arbeldez-Cortés, Roldan-Pina & Navarro-

66 Siglienza, 2014). In the spiny-tailed iguana Ctenosaura pectinata, distributed in the lowlands of

67 the Pacific slope and the Balsas Depression in Mexico (Smith & Taylor, 1950; Kéhler, Schroth
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& Streit, 2000), initial phylogeographic studies uneovered eight mtDNA Lineages: North A,
North B, North C, Colima, Balsas, Guerrero, Oaxaca and South (Fig. 1, Fig. S1; Zarza, Reynoso
& Emerson, 2008). Ctenosaura acanthura, found in the lowlands of the Gulf of Mexico, @
appeared nested within the South lineage, whereas C. hemilopha and C. similis appeared as
elearly distinct lineages (Zarza, Reynoso & Emerson, 2008).

Genetic distances (Tamura & Nei, 1993) between C. pectinata mtDNA lineages range
from 4.11 to 11.57%, these-distanees-are similar to these estimated among species of Iguanas of
the genus Cyclura (Malone et al., 2000). The largest distances measured among C. pectinata
lineages occur between the North and Colima hneages (Zarza, Reynoso & Emerson, 2008). This
phylogeographic break occurs in the vicinity of the Trans-Mexican Volcanic Belt (TMVB; Fig.
1); on the central western coast of Mexico and prebably occurred between 1.1 and 3.1 million
years ago (Zarza, Reynoso & Emerson, 2008). This geological feature has attracted many

biogeographers because severa (e.g.

(Mastretta-Yanes et al., 2015; Zaldivar-Riveron, Leon-Regagnon & de Oca, 2004; Devitt, 2006;
Mulcahy, Morrill & Mendelson, 2006; Bryson, Garcia-Vazquez & Riddle, 2012; Blair et al.,
2015)). Further multilocus research and detailed geographic sampling of C. pectinata in this area
revealed a ninth mtDNA lineage occurring between North C and Colima lineages: North D
(Zarza, Reynoso & Emerson, 2011; Fig. 1). Interestingly, the North C, North D, Colima and
Balsas mtDNA lineages show geographically discordant patterns with two clusters defined with
microsatellite auelear markers (Zarza, Reynoso & Emerson, 2011). The discordance possibly,
resulted from contemporary and/or past introgression among lineages coupled with male sex

biased dispersal (Zarza, Reynoso & Emerson, 2011). It is unknown if geographic discordance
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between mtDNA and microsatellite markers, and introgression are restricted to this part of C.
pectinata distribution, or if it is prevalent between, other neighberingHineages;

It is clear that molecular studies in C. pectinata have uncovered diversity that had been
overlooked or not detected by the tates§ morphological revisions of the species and closely
related taxa (Kohler, Schroth & Streit, 2000; Kohler, 2002). This is in contrast to the-very-early,
studies of the genus. Bailey (1928), in-areviston-of the-genus-Ctenosaura recognized five @
species (& brachylopha, C. pectinata, C. acanthura, C. brevirostris, C. parkeri) within the range
of what we-eurrenthydnow, as C. pectinata. He stated that C. acanthura was the most widely
distributed in Mexico. Ctenosaura pectinata was restricted to Colima (Wiegmann, 1834) and
Jalisco together with C. brevisrostris. Ctenosaura brachylopha was described as inhabiting the
northern states of Nayarit and Sinaloa. Without giving any justification, Smith and Taylor (Smith
&Faylor; 1950) lumped C. brachylopha, C. brevirostris and C. parkeri with C. pectinata and
restricted the name C. acanthura for iguanas from the Gulf of Mexico area. More recent
morphological revisions have not recovered C. brachylopha, C. brevirostris or C. parkeri as
distinct entities (K6hler, Schroth & Streit, 2000; Kohler, 2002).

In light of recent molecular studies and previous morphological classifications, arevisit
of C. pectinata faxonomy is warranted. This species, threatened by hunting and habitat loss @
(Aguirre-Hidalgo & Reynoso, 1998; Faria et al., 2010), may-nof receive proper protection
without a clear definition of its boundaries and genetic composition (Frankham, 2006).
Taxonomic modifications should rely on a multilocus approach and comprehensive geographic @
sampling (Leaché & Fujita, 2010; Rittmeyer & Austin, 2012). This, in turn, can facilitate the
identification of genotypic clusters: groups of individuals that have few or no intermediates when

in contact (Mallet, 1995). Such groups may inter-grade freely at their boundaries, but be strongly
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differentiated and relatively eenstant in morphology, genetics and ecology. This implies that
species can be affected by gene flow, selection and history, but they are not necessarily defined
by these processes (Mallet, 1995). Defining genotypic clusters is useful in cases where gene flow
between otherwise differentiated clusters occurs, for example in contact zones, as might be the
case of C. pectinata.

Here we use multilocus data from individuals sampled across the ranges of C. pectinata
and the closely related C. acanthura. Our specific aims are to: (1) define genotypic clusters; (2)
investigate the levels of geographic concordance between mtDNA lineages and genotypic
clusters; (3) evaluate evidence for introgression between clusters, and; (4) re-define taxonomic

entities based on maternally and biparentally inherited markers, and compare these to previous

propesalg (Bailey, 1928). @

Materials and Methods

Sampling and Laboratory procedures

Spiny-tailed iguanas were collected between 2004 and 2006 using tomahawk traps,
noosing or by hand within the distribution range of C. pectinata and C. acanthura. The narrow
area of sympatry between C. pectinata and C. hemilopha in northern Mexico was excluded to
avoid the inclusion of C. hemilopha alleles in the analyses (Zarza Franco, 2008; Fig. 1). All
samples have been analyzed in previous studies (Zarza, Reynoso & Emerson, 2016, 2008, 2011;
Faria, 2008; Zarza Franco, 2008; Faria et al., 2010) to obtain microsatellite and/or mtDNA data
(see File S1 for details). Except for the mtDNA sequences and microsatellite genotypes produced

by €Zarza Franco; 2008), data from previous studies had been deposited # GenBank (File S1) or
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as supplementary material in (Zarza, Reynoso & Emerson; 2016). Here we make available two
previously unpublished mtDNA sequences (GenBank accession numbers KT003209-
KT003210) and microsatellite data (File S1) produced by (Zarza Franco, 2008) from three
localities in northern Mexico (Fig. 1).

We gathered-all-the-data-available-to-us-te-ereatq microsatellite and mtDNA datasets that
are mostly overlappingarding sample content. This study comprises samples from 53 @he
localities sampled in the above-mentioned studies; individuals from 49 of these localities were
included in the microsatellite dataset. In some instances, individuals failed to amplify for
mtDNA in earlier studies, but were successfully genotyped (24 out 341 samples; File S1). All
mtDNA lineages described in pre%us publications were represented in the mtDNA dataset
analyzed herein (File S1; Fig. 1).

A thorough description of the methodgn be found in (Zarza, Reynoso & Emerson,
2016, 2008, 2011; Faria et al., 2010); however a summarized version follows. F each
individual, a 0.15 pl blood sample was taken from the caudal vein or a tail clip and preserved in
ethanol. DNA samples were purified using a modified salt precipitation protocol (Aljanabi &
Martinez, 1997). A 561 bp fragment of the mitochondrial ND4 gene was PCR amplified and
sequenced using primers ND4, ND4Rev (Arévalo, Davis & Sites, 1994), ND4F1 (Zarza,
Reynoso & Emerson, 2008) and ND4R623 (Hasbun et al., 2005) with conditions described in
(Zarza, Reynoso & Emerson, 2008). Individuals were genotyped with nine microsatellite
markers. Loci Cthel2, Cthe37 (Blazquez, Rodriguez Estrella & Munguia Vega, 2006), PecO1,
Pec03, Pecl6, Pec20, Pec25, Pec73, and Pec89 (Zarza et al., 2009), were PCR amplified using

conditions described in (2011) and run in two multiplexes that allow for loci separation by color
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and size in an automated ABI prism 3730. Fragment size was visualized with the GeneMapper
software version 4.0 (Applied Biosystems, Foster City, CA, USA).

The School of Biological Sciences Ethical Review Committee at the University of East
Anglia approved this study as stated in an “Approval letter” to EZ. All efforts were made to
minimize stress when taking blood samples, which were obtained under the permits

SEMARNAT SGPA/DGVS/08239, SGPA/DGVS/ 02934/06, 03563/06 to VHR.

Data Analyses

Mitochondrial DNA data

A median joining haplotype network was calculated with Network (Bandelt, Forster & Rohl,
1999) to update previously proposed haplotype networks (Zarza, Reynoso & Emerson, 2008,
2011). SAMOVA 2.0 (Dupanloup, Schneider & Excoffier, 2002) was used to define groups of
populations that are geographically homogeneous and maximally differentiated from each other
and to estimate their hierarchical differentiation. One hundred initial independent processes were

=

proportion of total genetic variance among groups. Analyses were run under scenarios of 2 to 15

tested followed by 10,000 steps of the simulated annealing process, which maximizes the

groups (K) without geographic restrictions. The FCT index was used to select the best grouping,
i.e. the most suitable K. This index reflects the among-group component of the overall genetic
variance. We selected the number of groupings that maximizes saeh component, meaning-that
under-thatseenarig the groups of populations are maximally differentiated from each other
(Dupanloup, Schneider & Excoffier, 2002). To accomplish this, the most suitable K value was
selected based on the observed changes of FCT among consecutive K values. We considered @

arbitrarily that the most suitable value of K is observed when there is a FCT change <1%
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between two consecutive Ks. We refer to this as A FCT obtained as FCTg.; — FCTy, reflecting
changes in the percentage of variation explained by FCT. Bar plots were created with R 2.15 (R
Core Team, 2012) to show the mtDNA lineage of each individual as determined by the haplotype

network (Fig. S1) and to illustrate the results of SAMOV@

Microsatellite data

The software GENEPOP 4.1 (Rousset, 2008) was used to estimate allele and null allele
frequencies, to perform tests for linkage disequilibrium between pairs of loci and; to detect
deviations from Hardy-Weinberg equilibrium. FST values between localities were calculated
with Arlequin 3.5 with the pairwise differences distance method (Excoffier & Lischer, 2010).

The possible number of genotypic clusters under a scenario of admixture was inferred
with STRUCTURE 2.3.2 (Pritchard, Stephens & Donnelly, 2000). Simulations were run
assigning a uniform prior for the parameter Alpha (degree of admixture) and estimating the allele
frequency parameter (Lambda) asTirng correlated allele frequencies. Ten iterations for each
value of K (from K=2 up to K=10) were performed with ten million MCMC replicates after a
burn-in period of 1,000,000. The most likely number of clusters was inferred with the method of
Evanno et al. (2005) implemented in Structure Harvester (Earl & vonHoldt, 2012).

In addition to the STUCTURE analyses, SAMOVA 2.0 (Dupanloup, Schneider &
Excoffier, 2002) was used to define groups of populations and to estimate their hierarchical @
differentiation applying the same criteria and parameters used for the mtDNA data. Bar plots
were created with R to show STRUCTURE and SAMOVA results for each individual. Expected
and observed heterozygosity, number of alleles and FST values between the resulting groups

were calculated with Arlequin 3.5. Effective population size was estimated with the coalescent
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method implemented in NeEstimator v2 (Do et al., 2014). Allelic richness and private allelic
richness were calculated applying the rarefaction method implemented in ADZE 1.0 (Szpiech,
Jakobsson & Rosenberg, 2008). The standardized sample size for the calculation was set to be

equal to the smallest sample size across populations. The largest allowed fraction of missing data@
at any given group for a locus was 50%.

The software NewHybrids (Anderson & Thompson, 2002; Anderson, 2008) was used to
calculate hybrid indices between the SAMOVA defined genotypic clusters. This method
employs a Bayesian model in which parental and various classes of hybrids form a mixture from
which the sample is drawn. Throughout the manuscript we apply the terminology used by
NewHybrids when referring to ‘hybrid’ categories and indices calculated wit}@s software.
However, the individuals involved are not necessarily ‘hybrids’ in strict sense (i.e offspring
resulting from inter-species mating).

We estimated the posterior probability P(z) that each individual in a pair of clusters (X
and Y) falls into each of six hybrid classes: pure cluster X, pure cluster Y, F;, F’,, cluster X
backcross, cluster Y backcross. Five independent Markov chain Monte Ca@(MCMC) analyses
were run for each pair of neighboring clusters with at least 300,000 sweeps after 10,000 burnin
sweeps. Convergence of the MCMC was assessed visually with the variable plots generated by
NewHybrids. P(z) values were averaged among the five independent runs. An individual was

considered as belonging to a pure-or-hybrid class if it had-been assigned with P(z) >0.8

(Anderson & Thompson, 2002).

Results
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227 Mitochondrial data

228  Out of the 368 individuals included in this study, 344 were sequenced for a fragment of the ND4

229  mtDNA locus. An updated haplotype network is shown in Fig. S1, which includes the previously @
230 unpublished haplotypes KT003209- KT003210. In the SAMOVA analyses, a change of less than
231 1% in FCT was observed at K=10 (Table A and Fig. A in File S2). Under this K, 79% of @
232 variation can be explained by variation among groups (Table 1). These groups (mtl-mt10 from
233 now onwards) coincide almost entirely with the haplotype groups previously recovered by the@
234 mtDNA locus, and that were defined based on a haplotype network and nested clade analysis

235 (Zarza, Reynoso & Emerson, 2008; Fig. 1, Fig. 2, Fig. 4 A-B). SAMOVA detected a subdivision@
236 (mt4, mt5) within the Colima mtDNA lineage, whereas individuals forming the North B mtDNA
237 lineage were assigned to two different groups (mtl and mt2). The Oaxaca mtDNA lineage was

238 not identified,

239

240 Microsatellite data

=]

241  Genotypes of a total of 341 individuals from 49 localities were used. Number of samples per

242 locality ranged from 1-15 (File S1; Fig. 2). Locus Pec25 suffered from null alleles at a frequency
243 higher than 20% in twelve localities, thus it was not included in further analyses. Other loci are
244  possibly affected by null alleles but in less than 10% of the localities, which may reflect local @
245 phenomena leading to homozygous excess, ernut-aleles: The remaining loci exhibited frem 9
246  to 27 alleles among the sampled localities. The null hypothesis of random union of gametes was
247 rejected in twelve localities, but only in one location (La Fortuna, see File S1) was deviation

248  from Hardy-Weinberg equilibrium detected in more than one locus (Pec01, Pec03). After Sidak

249  correction (p<0.00007), the null hypothesis of independence of genotypes at one locus from
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genotypes at another locus could not be rejected. Pairwise FST values showed a wide range of
genetic differentiation among localities, from non-differentiation (FST =0) to great
differentiation (Maximum significant FST =0.66; Table S1).

SAMOVA analyse@'th microsatellite data showed a FCT change <1% under K=5
(from now onwards *Nucl-*Nuc5; Table A inFe-S2:Fig—B-in File S2). Under this scenario,
around 22% of the variation is explained by variation among groups, whereas 71% of the
variation was explained by variation within individuals (Table 1). These clusters differ from the
mtDNA grouping schemes obtained with SAMOVA, but coincide with the clustering resulting
from the STRUCTURE analysis as explained below. Allele number, observed hete@rgosity,
expected heterozygosity, inbreeding coefficient, effective population size for *Nucl-*Nuc5 are
shown in Table 2. The standardized sample size for the allelic and private allelic richness was 14.
Locus Cthel2 was removed from these calculations because it had at least one grouping (i.e.
groupings 4 and 5) with more than 50% missing data. Allelic and private richness mean and
variance values are shown in Table 2. Genetic differentiation (FST values) between the
SAMOVA groups is shown in Table 3.

STRUCTURE analyses suggest that the most likely number of genotypic clusters is
seven, based on the Delta-K (AK) value. However we suspect that AK under K=7 is an artifact
resulting from the large variation in likelihood values obtained with the previous K, K=6 (SD =
1231.92; Fig. C in File S2). After removing two runs that seemed to be outliers due to lower
likelihood values, the SD under K=6 was greatly reduced (90.45). We then recalculated K. This
time K=4 showed the highest AK (Fig. D in File S2; Fig. 3 D). Individuals were consistently
assigned among runs. However these results differ from the clustering obtained with SAMOVA

where further substructure in the southern part of the distribution was detected resulting in K=5.
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Thus to establish the most likely number of K in the southern part of the distribution, further
analyses were performed on a subset of individuals that included only iguanas collected south of
Manzanillo (M in Fig. 2) and along the Gulf of Mexico. We refer to these analyses as South-SS
from now onwards. Simulations for 10 million generations were run with K=2 — K=6, with 10
replicates each. K=4 showed the highest AK with consistent results among runs (Fig. E in File
S2). When analyzing the entire dataset, only one cluster was detected between Manzanillo and
Las Negras (between M and N in Fig. 2; Nuc 3 in Fig. 3 D), whereas two clusters were
recognized in the South-SS analyses (Nuc 3a and Nuc 3b in Fig. 3 E). However, several
individuals of Nuc 3a and 3b showed admixed ancestry, indicating weak geographic structure
(Fig. 3 E). The division between Nuc 3a and 3b was not detected with SAMOVA. Two other
clusters were identified with the South-SS analyses, one equivalent to *Nuc4 and the other
comprising individuals identified as C. acanthura and equivalent to *Nuc5 (Fig. 2 and Fig. 3 C-
E). Individuals forming these two clusters were consistently assigned among runs and in
accordance with the assignment observed when analyzing the entire dataset.

Given the weak geographic structure observed between Nuc 3a and Nuc 3b and the lack
of support for such subdivision with SAMOVA, we take a conservative approach and consider
these as forming only one genotypic cluster (equivalent to *Nuc3 and Nuc 3). Both SAMOVA
and STRUCTURE support the distinction between *Nuc 4 (Nuc 4) and Nuc *5 (Nuc 5, in the
South-SS analyses). Taking into account the results of SAMOVA and STRUCTURE we
recognize a total of five microsatellite genotypic clusters within the entire distribution of C.
pectinata + C. acanthura (Fig. 2).

The microsatellite genotypic clusters detected with STRUCTURE (Nuc 1-Nuc 5) and

SAMOVA (*Nucl-*Nuc)) are geographically localized (Fig. 2). The limits of the clusters
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defined with SAMOVA appear sharp, as this algorithm does not take admixture into account.
However, the presence of introgression is supported by the hybrid indices calculated with
NewHybrids between SAMOVA genotype clusters (Table 4). Sharp limits of clusters are not
observed in the genotypic clusters defined with STRUCTURE but admixed individuals and
zones of overlap are clearly observed (Fig. 2 and Fig. 3).

There are different levels of geographic concordance between the distribution of mtDNA
lineages North A, North B, North C, North D, Colima, Balsas, Guerrero, Oaxaca, and South as
described by (Zarza, Reynoso & Emerson, 2008, 2011; Fig. 1) and genotypic clusters (Fig. 2 and
Fig. 3). In northern Mexico, the distributions of genotypic cluster Nuc 1 (and *Nucl) and the
North A mtDNA lineage are almost entirely concordant. Further south, in Central Mexico, Nuc 1
overlaps with Nuc 2. Most of the samples in the SAMOVA equivalent genotypic clusters (*Nucl
and *Nuc2) were assigned to a ‘pure’ category with NewHybrids (Table 4). Only one F2 was
detected and 13 individuals could not be assigned to any category. However four of these
individuals had a posterior probability <0.2 of being a ‘pure’ individual. Thus, given the data and
the assumptions of the model, those four individuals have a posterior probability >0.8 of being
hybrids of some sort. Indeed, STRUCTURE plots show signs of interbreeding in the contact
zone (Fig. 3 D).

Individuals forming Nuc 2 have mtDNA haplotypes belonging to North A, North B,
North C, North D and Colima mtDNA lineages. Genotypic cluster Nuc 2 forms a contact zone
with Nuc 3. Individuals in this last cluster carry mtDNA haplotypes of Colima, Balsas and
Guerrero lineages. The geographically discordant patterns between mtDNA (North C-D, Colima,
Balsas) and microsatellite markers in this area (Nuc 2 and Nuc 3) have been previously detected

and described (Zarza, Reynoso & Emerson, 2011). In the equivalent SAMOVA clusters, 83
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individuals were assigned to *Nuc2 pure class. Pure individuals of *Nuc3 were not found,
however 37 and 4 individuals were assigned to the F2 and *Nuc3 backcross hybrid classes
respectively (Table 4). Almost 50% of the individuals forming these clusters could not be
assigned to any category. Among these, 83 individuals showed a posterior probability <0.2 of
belonging to any of the pure classes, thus they might be hybrids of some sort. FST values
between these genotypic clusters are the lowest observed in the pairwise comparisons (Table 3).

Genotypic cluster Nuc 3 overlaps with Nuc 4, which is formed by individuals collected in
southeast Mexico with mtDNA haplotypes belonging to the Guerrero, Oaxaca and South mtDNA
lineages. Most of the individuals were assigned to one of the pure categories in the SAMOVA
equivalents *Nuc3 and *Nuc4 (Table 4). Only one F2 individual was found and 27 were not
assigned to any category. None of them had posterior probability <0.2 of belonging to any pure
class.

Nuc 4 and Nuc 5 do not seem to overlap. All individuals in the SAMOVA equivalents
*Nuc4 and *Nuc5 were assigned to a pure category with a posterior probability >0.8. Nuc 5
includes individuals described as C. acanthura, collected in eastern Mexico. It is geographically
concordant with the distribution of a mtDNA lineage closely related to the Southern mtDNA
lineage (2008). Admixture between C. acanthura and C. pectinata is only evident in Zapotitlan
de las Salinas (Fig. 2), with individuals carrying C. acanthura mtDNA haplotypes but with
nuclear ancestry of Nuc 3 and Nuc 5. The NewHybrids analysis between *@3 and *Nuc5
detected two F2 individuals. One was collected in Zapotitlan de las Salinas, and the other in
Apatzingan (Fig. 2). The latter locality is not geographically close to the distribution limits of

Nuc 5 (or *Nuc5). Thus the potential of long distance dispersal, perhaps human mediated, should
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be investigated. The remaining of the individuals was assigned to one of the pure categories and

only four were not assigned to any hybrid or pure category.

Discussion

Introgression and geographic discordance between mtDNA and

nuclear markers

Different degrees of discordance are observed in the geographic distribution of mtDNA
lineages and microsatellite genotypic clusters across the range of C. pectinata. At one end of the
spectrum, mtDNA North A lineage is almost entirely concordant with Nuc 1 cluster. At the
opposite end of the spectrum, mtDNA lineages distributed along the central western coast of
Mexico exhibit a striking discordant pattern where up to six geographically distinct mtDNA
lineages (North A, North B, North C, North D, Colima, Balsas) co-occur with only two nuclear
clusters (Nuc 2 and Nuc 3). This discordance between maternally and biparentally inherited
markers in C. pectinata might be the result of several processes acting alone, in concert or at
different points in time. For example under a scenario of short term refugia where populations
decline throughout the range, resulting in isolation, followed by recent range expansion and male
biased dispersal (Dubey et al., 2008; Johansson, Surget-Groba & Thorpe, 2008; Ujvari, Dowton
& Madsen, 2008; Zarza, Reynoso & Emerson, 2011; Toews & Brelsford, 2012). The discordant
pattern can also be the result of coalescence stochasticity (Irwin, 2002; Hickerson et al., 2010),
selection of mtDNA (Dowling, Friberg & Lindell, 2008), differences in effective population size

between mtDNA and nuclear markers.
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Introgression, along current and past contact zones, probably, also contributed to the
patterns of geographic discordance in conjunction with other demographic phenomena. For
example, it has been suggested that, in contact zones, selection and genetic drift can lead to
mtDNA introgressing further and faster than nDNA. This is because mitochondrial genomes are
less likely to hitchhike with a region under selection that prevents introgression (Ballard &
Whitlock, 2004; Petit & Excoffier, 2009; Mila et al., 2013). Additionally, in small populations,
genetic drift can allow the fixation of slightly deleterious alleles in the mtDNA of one population
resulting in lower fitness than a related species in the same area. Selection could then drive
introgression of mtDNA from the more fit population into the less fit population (Ballard &
Whitlock, 2004). Furthermore, it is possible that some contact zones have changed location
(Barton & Hewitt, 1985; Buggs, 2007), or that others have disappeared entirely as a result of
complex climate mediated cycles of range expansion and contraction, or due to other
phenomena. It is difficult to disentangle the effect of these processes with the currently available
data. Sampling more finely along contact zones, and sequencing additional nuclear markers may
permit coalescence analyses (Singhal & Moritz, 2012). Behavioral studies may also be
informative to evaluate the effects of ecological, demographic, historical, and stochastic factors
shaping the discordant patterns.

Interestingly, pairs of inter-breeding nuclear clusters with different levels of divergence
occur throughout the distribution of C. pectinata. For example, allele frequency divergence
between *Nucl and *Nuc2 is 0.18952, whereas it is 0.14815 between *Nuc2 and *Nuc3 (Table
3). Assignment of individuals to pure and hybrid classes also shows that contact zones have
different hybrid compositions. A higher proportion of individuals were assigned to a pure class

when analyzing *Nucl and *Nuc2 (89%) than when analyzing *Nuc2 and *Nuc3 (36%). This is
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385 also observed in the STRUCTURE plots which reveal Nuc 2 and Nuc 3 admixed individuals
386 more frequently than admixed Nuc 1 and Nuc 2.

387 Thus C. pectinata constitutes an excellent system to better understand the process of
388 speciation by studying the effects of introgression between genotypic clusters at different stages
389 of divergence. Furthermore, this system potentially allows for the comparison of evolutionary
390 patterns and processes with contact zones in temperate and other tropical regions of the world
391 (Leaché & McGuire, 2006; McGuire et al., 2007; Singhal & Moritz, 2012; Miraldo et al., 2013;
392 Milaetal., 2013).

393

394 Implications for Ctenosaura pectinata taxonomy and conservation

395 Our results suggest that there are five nuclear genotypic clusters forming what is

396 currently considered C. pectinata. Individuals forming the Nuc 1 cluster belong to the North A
397 mtDNA lineage. Thus Nuc 1 and North A mtDNA lineages are geographically concordant. The
398 distribution of this genotypic cluster coincides with the distribution of C. brachylopha as revised
399 by Bailey (1928) using morphological data (i.e. states of Sinaloa, Nayarit, North of Jalisco and
400 Isla Isabel).

401 The observed concordance in the geographic distribution of nuclear and mtDNA might be
402  the result of stochastic coalescent processes, which is particularly true in taxa with low dispersal
403 rates, as is the case for iguanas (Irwin, 2002). Other phenomena such as natural selection could
404  be shaping the observed pattern, however this cannot be evaluated with the currently available
405 data. Another possibility is that the formation of a biogeographic barrier affected the distribution
406 of Nuc 1 and North A. Their southern distribution limit coincides approximately with the

407 TMYVB. This geographic feature has been proposed as a geographic barrier for several lowland
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408 taxa (Devitt, 2006; Mulcahy, Morrill & Mendelson, 2006; De-Nova et al., 2012; Arbelaez-

409  Cortés, Milad & Navarro-Sigiienza, 2014; Arbeldez-Cortés, Roldan-Pifia & Navarro-Sigiienza,
410 2014; Suarez-Atilano, Burbrink & Vazquez-Dominguez, 2014; Blair et al., 2015). However,

411 given the complex geological history of the area, the TMVB barrier might not have affected all
412 taxa equally (Ma@ta—Yanes et al., 2015). Indeed, despite this barrier, gene flow has occurred
413 in the recent past between Nuc 1 and the neighboring Nuc 2 at the limits of their distribution in
414  the vicinity of the TMVB.

415 Gene flow has also been observed in a contact zone between Nuc 1 and C. hemilopha in
416  the northern edge of Nuc 1 distribution (Zarza, Reynoso & Emerson, 2008). fa-bethy northern
417 and southern edges, gene flow seems to be limited to a narrow area. According to hybrid zone
418 theory, several factors affect the extent, maintenance and shifting of hybrid zones: dispersal, @
419 selection, recombination rates and time since secondary contact (Barton & Hewitt, 1985).

420 The paradigm that lack of gene flow is a prerequisite to maintain species integrity is

421 shifting (Abbott et al., 2013). In recent years evidence has accumulated suggesting that gene

422  flow is an integral part of the process of speciation and that divergence can occur in the presence
423  of gene flow (Mallet, 1995; Pinho & Hey, 2010; Leaché et al., 2014; Zarza, et al 2016). Indeed,
424  if reproductive barriers have emerged in secondary contact zones, it is uncertain whether barriers
425 to gene flow will be strengthened or broken down due to recombination and admixture (Barton
426 & Hewitt, 1985; Abbott et al., 2013).

427 Despite the levels of gene flow detected and given the geographic concordance in the
428  distribution of mtDNA and nuclear markers, the geographic limits that coincide with the

429 geographic limits of other species, and the morphological signal detected by Bailey (Bailey,
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430 1928), we suggest the resurrection of the name Ctenosaura brachylopha for populations

431 inhabiting northwestern Mexico.

432 The distribution of Nuc 2 and Nuc 3 genetic clusters are geographically discordant with
433 the distribution of mtDNA lineages in central Mexico (North A-D, Colima, Balsas). Maternal
434 lineages seem to be more deeply structured than the genotypic clusters. The distribution of the
435 maternally and paternally inherited markers and the high number of sampled admixed

436 individuals suggest that, although there is some substructure in the area, gene flow among

437 populations has been on going. Given that the holotype locality is labeled as “Colima”

438 (Wiegmann, 1834) we suggest that these genotypic clusters keep the historical name Ctenosaura
439  pectinata.

440 Iguanas described as C. acanthura also form a coherent nuclear cluster (Nuc 5) that is
441 concordant with a mtDNA lineage closely related to the South lineage (Zarza, Reynoso &

442 Emerson, 2008). Thus the name Ctenosaura acanthura should continue to be applied to

443  populations of spiny-tailed iguanas in the coast of the Gulf of Mexico. Introgression seemed to
444  have occurred in the area of Zapotitlan de las Salinas (Fig. 2), where individuals carry mtDNA
445  haplotypes typical of C. acanthura and some alleles of Nuc 3 and Nuc 5.

446 Nuc 4 is almost entirely geographically concordant with the South mtDNA lineage, with
447  some signs of mitochondrial introgression with the Oaxaca and Guerrero lineages. Thus Nuc 4
448 probably deserves taxonomic recognition at the species level, and awaits full description until
449  morphological data is gathered and analyzed. In the meantime, we propose that these populations
450 are recognized as an independent Evolutionary Significant Unit (Moritz, 1994) within C.

451 pectinata.
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We are aware that the modifications in@onomy proposed in this paper are based
entirely on molecular and geographic evidence. Morphological data have not revealed the
existence of divisions within C. pectinata, at least with the approaches applied so far (Kohler,
Schroth & Streit, 2000), except for the work of Bailey (Bailey, 1928). He realized that C.
brachylopha resembles C. pectinata but may be distinguished from it by ha a median dorsal
crest that does not extend over the sacral region and that it is formed by 65 to 75 scales. He also
noticed that the first seven whorls of spinous caudal scales are separated from each other by three
rows of small flat scales. In C. pectinata the first five whorls of spinous scales are separated from
each other by three rows of small flat scales, but subsequent whorls of spinous scales are
separated by two rows of flat scales up the middle of the length of the tail (Bailey, 1928). These
and other morphological characters need to be studied in depth, with a large sample and with
more modern statistical methods to validate their utility to distinguish C. brachylopha from C.
pectinata, and between groups within C. pectinata based on morphology. Color may be an
important character too. We-have-noticed-thatindividualg from northern Mexico have yellow
coloration (Fig. S2), those in central Mexico show blue and orange patterns whereas individuals
from the south are black and white. Bailey studied stuffed or aleeholig specimens that most
likely lost their original color, so he did not address this character.

Our molecular approach has uncovered several genotypic clusters. However this may
present challenges for the field biologist working in areas with high levels of admixture (i.e.
central western Mexico) and with only morphological data at hand. Further research is needed to
determine if coloration patterns or morphological characters of individuals outside the contact

zones provide information for their assignment to a specific genotypic cluster.
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This work provides important knowledge with profound implications in conservation
=
wildlife management and forensics. Ctenosaura pectinata sensu lato is a threatened species
under the Mexican law (SEMARNAT, 2002). Measurements have been taken to protect its
populations, however there are still gaps regarding re-introduction of confiscated individuals
and/or their offspring. Ideally, the genetic origin of iguanas should be recognized before re-
introduction to avoid admixture in populations that may lead to loss of diversity through
hybridization, reduced viability or fertility in the case of genetic incompatibilities, reduced
population fitness due to selective disadvantage of intermediate genotypes or loss of
advantageous parental traits (Lynch, 1991; Burke & Arnold, 2001). Furthermore, our results
suggest that C. pectinata, a species already recognized as threatened, is actually composed of

multiple genotypic clusters that might be at a higher risk than previously thought, given their

reduced geographical distributions and effective population sizes (Bickford et al., 2007).
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Figures

Figure 1. Geographic distribution of mtDNA lineages within Ctenosaura pectinata and C.
acanthura. Localities are color-coded according to the SAMOVA group they form (mtl1-mt10).
Haplotype groups defined by Zarza et al (Zarza, Reynoso & Emerson, 2008) are delimited with
lines. H: Area of overlap between C. pectinata and C. hemilopha, which was not included in the
analyses. Data produced by (Zarza Franco, 2008) from three localities (numbered consecutively
north to south 1-3) is made publicly available in this study for the first time (see File S1). Map
generated using ‘World Imagery’ base map from ESRI ArcMap 10.1. World Imagery source:
Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP,
swisstopo, and the GIS User Community. Modified from (Zarza, Reynoso & Emerson, 2008,
2011).

Figure 2. Geographic distribution of genotypic clusters in Mexico as estimated with
SAMOVA (*Nucl-*Nuc5) and STRUCTURE (Nuc 1 — Nuc 5). A: Apatzingan, M:
Manzanillo, N: Las Negras, Z: Zapotitlan de las Salinas. Map created as in Fig. 1.

Figure 3. Bar plots showing population assignment and ancestry for individuals according
to different methods. (A) MtDNA lineage of each individual as inferred from haplotype
networks (Zarza, Reynoso & Emerson, 2008, 2011); (B) SAMOVA mtDNA groups detected
under K=10; (C) microsatellite genotypic cluster defined with SAMOVA under K=5 and (D)
STRUCTURE under K=4; (E) substructure estimated with STRUCTURE in a reduced data set
(South-SS analyses). In STRUCTURE plots, the Y-axis represents proportion of ancestry. As
this cannot be calculated with SAMOVA, values are always shown as 1. Each bar represents an

individual. White bars are missing data.
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Tables

Table 1. Sources of variation for mtDNA and microsatellite data calculated with SAMOVA
under K=10 and K=5 respectively. Bold font indicates statistically significant values (p<0.05).
Table 2. Summary statistics per locus for genotypic clusters (*Nucl-*Nuc5) defined with
SAMOVA.

Table 3. Differentiation between SAMOVA clusters (FST values) as estimated with
Arlequin 3.5. All values are statistically significant (p<0.05).

Table 4. Number of individuals assigned to each hybrid class according to NewHybrids. In

all cases, SAMOVA defined clusters were compared.

Supplemental information

Figure S1. MtDNA haplotype network. Modified from (Zarza, Reynoso & Emerson, 2008,
2011); Haplotypes produced by (Zarza Franco, 2008) were added to the North A lineage and are
highlighted with a red circle.

File S1. Sampling localities, geographic coordinates, haplotype accession numbers and
genotype data of individuals included in this study, and summary of previous research
outcomes.

File S2. SAMOVA K associated FCT values, A FCT plots; STRUCTURE K likelihoods and
A K plots.

Table S1. FST values between pairs of localities estimated with Arlequin 3.5.
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778  Figure S2. A male spiny-tailed iguana from Sinaloa, northern Mexico, with the
779 characteristic yellow coloration. Here we propose that populations from northern Mexico
780 are referred as Ctenosaura brachylopha. Photo Credit: Eugenia Zarza.
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Table 1(on next page)

Sources of variation for mtDNA and microsatellite data calculated with SAMOVA under
K=10 and K=5 respectively.

Bold font indicates statistically significant values (p<0.05).
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1 Table 1. Sources of variation for mtDNA and microsatellite data calculated with SAMOVA

2 under K=10 and K=5 respectively. Bold font indicates statistically significant values (p<0.05).

Source of Sum of Variance % Fixation
Marker - d.f. . o 1
variation squares | components | variation indices
Among -
9 |3061.309 9.779 79.28 FCT=0.793
groups
Among
mtDNA pop}llatlons 43 | 332.944 1.002 8.12 FSC=0.392
within groups
Within _
. 291 | 452.013 1.553 12.59 FST=0.874
populations
Total 343 | 3846.266 12.334
Among 4 | 268.732 0.517 21.66 | FCT=0.217
groups
Among
populations 44 164.372 0.145 6.08 FSC=0.078
within groups
microsate Among
llites | individuals | ,o) | 513913 | 0034 142 | FIS=0.02
within
populations
Within 50y | 597 1.692 70.84 | FIT=0.292
individuals
Total 681 | 1524.018 2.389
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Table 2(on next page)

Summary statistics per locus for genotypic clusters (*Nucl-*Nuc5) defined with
SAMOVA.
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1 Table 2. Summary statistics per locus for genotypic clusters (*Nucl-*Nuc5) defined with
2 SAMOVA.
3
4
*Nucl *Nuc2 *Nuc3
L A | Ho | Hg FIS A Ho | Hg | FIS| A | Ho | Hg | FIS
1 4 1048 | 049 | 0.01 13 | 086 | 0.86 | 0.00 | 12 | 0.79 | 0.82 | 0.05
2 2 1041|050 | 0.19 6 033 1 035 ] 005 | 7 | 044 | 045 | 0.01
3 8 | 085080 -0.06 | 15 | 0.78 | 0.85 | 0.08 | 25 | 0.83 | 0.91 | 0.09
4 2 10521050 -0.03 7 045|045 (0.00 | 8 | 0.74] 0.80 | 0.07
5 3 1078 | 0.68 | -0.15 7 0.51 | 0.5510.06 | 6 | 025 0.28 | 0.10
6 3 1015 0.14 | -0.05 11 | 077 | 0.84 | 0.09 | 10 | 0.50 | 0.66 | 0.25
7 6 | 059 | 0.62 | NA. 10 | 063 | 0.74 | N.A. | 14 | 0.55 | 0.74 | N.A.
8 8 | 0.67 | 0.82 | 0.19 13 [ 077 | 0.80 | 0.04 | 13 | 0.83 | 0.86 | 0.03
M | 45056 | 057 103 | 0.64 | 0.68 '] 062 | 0.69
sd. | 25022 | 0.22 33 | 0.19 | 0.20 6.0 | 0.21 | 0.22
n 27 105 131
AR 3.29(2.64) 5.14(3.98) 5.54(4.65)
PA 0.29(0.07) 0.62(0.18) 0.96(0.60)
Ne 35.1 (0-176) 8.5 (1.8-20.5) 15.8 (5.8-30.8)
5
6 L= Locus; A = Allele number; Ho= Observed heterozygosity; Hg = Expected heterozygosity;
7  FIS = inbreeding coefficient; N.A. = missing data; m = monomorphic locus; n = number of
8 individuals; M = Mean; s.d. = standard deviation; AR = Allele richness; PA = Private alleles
9 mean (variance); Ne = Effective population size (Jackknife CI)
10
11
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12 Table 2 continued.

13
*Nuc4 *Nucs

L A | Ho | Hg | FIS | A | Hyo | Hg FIS
1 14. | 0.68 | 0.84 | 0.19 | 3 | 0.14 | 0.52 | 0.73
2 6 | 036|049 | 027 | 4 | 0.14 | 0.51 | 0.72
3 13 10541079 1032| 5 | 064|075 0.15
4 51014 | 016 | 0.14 | 3 | 0.64 | 0.63 | -0.02
5 5 1063|071 013 2 | 0.07 | 0.07 | 0.00
6 11 {072 | 084 | 0.14 | 2 | 0.29 | 048 | 0.41
7 4 1007 058010 | m m m N.A.
8 8 | 0.67 | 0.74 m m m N.A.
M |83 ] 048 | 0.65 3210321049
s.d. [ 39026 | 0.23 1.2 ] 026 | 0.23
n 64 14
AR 4.7(3.19) 2.56(1.38)
PA 0.76(0.40) 0.53(0.29)
Ne 22.5(0-112.8) 1.9 (1.3-2.7)

14

15 L= Locus; A = Allele number; Ho= Observed heterozygosity; Hg = Expected heterozygosity;
16  FIS = inbreeding coefficient; N.A. = missing data; m = monomorphic locus; n = number of
17 individuals; M = Mean; s.d. = standard deviation; AR = Allele richness; PA = Private alleles
18 mean (variance); Ne = Effective population size (Jackknife CI)
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Table 3(on next page)

Differentiation between SAMOVA clusters (FST values) estimated with Arlequin 3.5. All
values are statistically significant (p<0.05).
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1 Table 3. Differentiation between SAMOVA clusters (FST values) as estimated with
2 Arlequin 3.5. All values are statistically significant (p<0.05).
*Nucl *Nuc2 *Nuc 3 *Nuc 4

*Nucl 0

*Nuc2 0.18952 0

*Nuc3 0.26536 0.14815 0

*Nuc4 0.28768 0.18468 0.15797 0

*NucS 0.44634 0.36999 0.32849 0.34052
3
4
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Table 4(on next page)

Number of individuals assigned to each hybrid class according to NewHybrids. In all
cases, SAMOVA defined clusters were compared.
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2

Table 4. Number of individuals assigned to each hybrid class according to NewHybrids. In

all cases, SAMOVA defined clusters were compared.

Manuscript to be reviewed

XY | Xuex | ey | PP B | b | assigned | 06
*Nucl,*Nuc2 26 92 0 1 0 0 13 132
*Nuc2,*Nuc3 83 0 0 | 37 0 4 112 236
*Nuc3,*Nuc4 110 56 0 0 2 0 27 195
*Nuc3,*NucS 125 14 0 2 0 0 4 145
*Nuc4,*NucS 14 64 0 0 0 0 0 78

3 XY = SAMOVA-defined Genotypic cluster compared. As in the main text, tables and figures,

4

5
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the *Nuc prefix denotes SAMOVA defined genotypic cluster. Bc = backcross
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Figure 1

Geographic distribution of mtDNA lineages within Ctenosaura pectinata and C.
acanthura.

Localities are color-coded according to the SAMOVA group they form (mt1-mt10). Haplotype
groups defined by Zarza et al (2008) are delimited with lines. H: Area of overlap between C.
pectinata and C. hemilopha, which was not included in the analyses. Data produced by
(Zarza Franco, 2008) from three localities (numbered consecutively north to south 1-3) is
made publicly available in this study for the first time (see File S1). Map generated using
‘World Imagery’ base map from ESRI ArcMap 10.1. World Imagery source: Esri, DigitalGlobe,
GeokEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS
User Community. Modified from (Zarza, Reynoso & Emerson, 2008, 2011)

Gulf of Mexico

. acanthura

Pacific Ocean
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Figure 2

Geographic distribution of genotypic clusters in Mexico as estimated with SAMOVA
(*Nucl-*Nuc5) and STRUCTURE (Nuc 1 - Nuc 5)

A: Apatzingan, M: Manzanillo, N: Las Negras, Z: Zapotitlan de las Salinas. Map created as in

Fig. 1.

SAMOVA
® *Nuc1
*Nuc2
O *Nuc3
© *Nuc4
® *Nucb

STRUCTURE
= Nuc 1

Nuc 2
Nuc 3
Nuc 4
- Nuc 5
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Figure 3

Bar plots showing population assignment and ancestry for individuals according to
different methods.

(A) MtDNA lineage of each individual as inferred from haplotype networks (Zarza, Reynoso &
Emerson, 2008, 2011); (B) SAMOVA mtDNA groups detected under K=10; (C) microsatellite
genotypic cluster defined with SAMOVA under K=5 and (D) STRUCTURE under K=4; (E)
substructure estimated with STRUCTURE in a reduced data set (South-SS analyses). In
STRUCTURE plots, the Y-axis represents proportion of ancestry. As this cannot be calculated
with SAMOVA, values are always shown as 1. Each bar represents an individual. White bars

are missing data.

< m O =) % T
L E = €= = = @
5 535 3 . S 3
> > > = Colima Balsas ® O South  C.acanthura
‘|_ 3
e [ [l I
07
1— mt1 mt2 mt3 mt4 mt5 mt6 mt7 mt8 mt9 mt10
s - Ml
0_
B *Nuc1 *Nuc2 *Nuc3 *Nuc4 *Nuch
c
0_
: Nu_c 1 Nuc 2 Nuc 3 Nuc 4-Nuc 5
D

Nuc 3a Nuc 3b Nuc 4 Nuc 5

1_
E BN
O_

Peer] reviewing PDF | (2016:10:13787:0:1:NEW 20 Oct 2016)





