
Identification of rare alternative splicing events in MS/MS
data reveals a significant fraction of alternative translation
initiation sites

Integration of transcriptome data is a crucial step for the identification of rare protein

variants in mass-spectrometry (MS) data with important consequences for all branches of

biotechnology research. Here, we used Splooce, a database of splicing variants recently

developed by us, to search MS data derived from a variety of human tumor cell lines. More

than 800 new protein variants were identified whose corresponding MS spectra were

specific to protein entries from Splooce. Although the types of splicing variants (exon

skipping, alternative splice sites and intron retention) were found at the same frequency

as in the transcriptome, we observed a large variety of modifications at the protein level

induced by alternative splicing events. Surprisingly, we found that 40% of all protein

modifications induced by alternative splicing led to the use of alternative translation

initiation sites. Other modifications include frameshifts in the open reading frame and

inclusion or deletion of peptide sequences. To make the dataset generated here available

to the community in a more effective form, the Splooce portal (http://www.bioinformatics-

brazil.org/splooce) was modified to report the alternative splicing events supported by MS

data.
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ASE – Alternative splicing events

TIS – Translational initiation site

FDR – False discovery rate

GTI-Seq – Global translational initiation sequencing

INTRODUCTION

The development of large-scale technologies, including genomics, has revolutionized life 
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sciences. For example, the sequencing of the human genome in 2001 was a milestone in the 

characterization of our genetic framework (Lander et al., 2001; Venter et al., 2001). The 

advancement of sequencing technologies in the last few years has allowed the genome 

sequencing of more than a thousand human individuals (1000 Genomes Project) (Consortium 

2012). Likewise, the characterization of the transcriptome was also facilitated by these new 

sequencing technologies. RNA-Seq techniques have allowed the identification of transcripts with 

low copy numbers. Thus, the complete characterization of the transcriptome of different cell 

types is already a reality today (Au et al., 2013; Peng et al., 2012; Xue et al., 2014). We know for 

example about the large variability found in the transcriptomes of eukaryotes due to alternative 

splicing and alternative polyadenylation. As a consequence of the emergence of these 

technologies, an explosion of this type of data in public databanks and data repositories is already

occurring and exponential growth is expected for the next years. Improving bioinformatics 

capabilities is crucial for the processing, storage and interpretation of results from large-scale 

technologies.

While the technologies for sequencing of nucleic acids developed at an impressive speed, 

the same did not happen with technologies for sequencing amino acids and proteins. Recently, 

mass spectrometry-based proteomics achieved enough comprehensiveness and throughput to 

allow in-depth characterization of “complete proteomes” (Beck et al., 2011; Nagaraj et al., 2011).

However, proteomic data acquisition is still restricted to few groups, even though public 

availability of high depth proteomic data is increasing (Desiere et al., 2006; Vizcaino et al., 2013; 

Vizcaino et al., 2014). 

Alternative splicing is defined, basically, as a process in which identical pre-mRNA 

molecules are processed in different ways in terms of usage of splice sites. It is a fundamental 

process in all multi-cellular organisms being responsible for the creation of a large diversity of 

proteins from a relatively small number of genes (Cork et al., 2012). Alternative splicing events 
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(ASE) have been extensively characterized using transcriptome data. On the other hand, only 

recently proteome data have been used for global discovery of ASEs (Brosch et al., 2011; 

Severing et al., 2011; Tress et al., 2008). The reason lies on the following: protein identification 

by mass spectrometry is still routinely performed through the use of protein databases cataloged 

and curated by public repositories such as nrNCBI and Uniprot. Most of these databanks contain 

only a limited number of protein sequence isoforms, and single nucleotide polymorphisms and 

ASEs are normally under-represented. This is generally so because peptide identification 

approaches in proteomics mostly use probabilistic-based algorithms, and excessively large 

databases would result in spurious spectral matches and, therefore, reduced number of positive 

identifications (Wang et al., 2012). Thus, new approaches should be developed where ASEs can 

be investigated without compromising database size and protein identification rates. Several 

researchers have created strategies that use MS data repositories such as Peptide Atlas and in 

silico protein database design using nucleotide sequence repositories or merging protein sequence

databases (Blakeley et al., 2010; Brosch et al., 2011). However, very few had applied RNA-Seq 

data to offer isoform information at the transcriptome level, which then could be validated at the 

protein level. For example, Sheynkman and colleagues (Sheynkman et al., 2013) developed a 

strategy where RNA-Seq and MS data collected from the same samples had been applied for the 

identification of splice junction peptides. However, applying such different expertise in any 

project might not be a reality for a majority of laboratories. Therefore, creating strategies that rely

on heavy bioinformatics analysis of nucleotide de novo sequence and validation through MS is 

relevant.

Here, we investigated whether ASEs could be satisfactorily identified using size-limited 

FASTA database, built from repositories of expressed sequences, which was then challenged by 

MS data. Our group had recently developed Splooce, a database that integrates information from 

transcriptome analysis, including RNA-Seq, to identify splicing variants (Kroll et al., 2012). 
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Protein entries created from Splooce were evaluated using MS/MS analysis, and a large number 

of novel proteins isoforms were identified. Surprisingly we found that around 40% of all 

modifications at the protein level were related to the use of alternative translation initiation sites 

(TIS). 

MATERIALS & METHODS

Protein variants identification using mass spectrometry and MaxQuant 

Predicted proteins (in FASTA format) were collected from the full Splooce database and 

filtered for entries showing alternative splicing events supported only by ESTs and/or RNASeq 

expressed sequences. Those events were tagged as rare since they were not found in the set of 

full-insert cDNA sequences (RefSeq, mRNA), which usually have well characterized coding 

sequences. Any pattern of combined alternative splicing event was allowed. As default parameter,

Splooce only reports events that are supported by at least two expressed sequences. For the 

prediction of protein sequences, Splooce uses a simple ab-initio strategy. Briefly, human entries 

from the Reference Sequence database (Pruitt et al., 2014) were modified by introducing 

alternative splicing patterns observed from the transcriptome data. Thus, full-length alternative 

cDNA sequences were created from expressed sequence fragments that often cover only a small 

fraction of coding sequences. As a final step, prior to the translation process, new open reading 

frames are predicted based on their length. Our final set of predicted proteins, containing 120,299

entries, can be downloaded from http://www.bioinformatics-brazil.org/~jkroll/sploocemm. 

Human entries from Uniprot (from December 2013) (Magrane & Consortium 2011) were added 

to the Splooce dataset to facilitate the visualization of identified peptides that are not unique to 

the Splooce set. The final dataset contained 209,927 entries.

 We submitted the collection of entries from Splooce plus Uniprot to a dataset of MS/MS 

peptide information collected from 11 tumor cell lines that were publicly available at the Tranche 
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Network (currently discontinued). The whole collection of MS data was derived from the 

laboratory of Dr. Mathias Mann (Geiger et al., 2012). Four RAW files from this dataset were not 

used because they were apparently corrupted in the depository. We submitted the remaining files 

to a MaxQuant (version 1.4.1.2) (Cox & Mann 2008) search using the following parameters: 

initial search with a precursor mass tolerance of 20 ppm that were used for mass recalibration; 

main search precursor mass and fragment mass were searched with mass tolerance of 6 ppm. The 

search included variable modifications such as Met oxidation, N-terminal acetylation (protein), 

and Pyro-Glu (Q)(E). Carbamidomethyl cysteine was added as a fixed modification. Minimal 

peptide length was set to 7 amino acids and a maximum of two miscleavages were allowed. The 

false discovery rate (FDR) was set to 0.01 for peptide and protein identifications. In the case of 

identified peptides that are shared between two proteins, these are combined and reported as one 

protein group. Protein table output was filtered to eliminate the identifications from the reverse 

database, and common contaminants.

Protein variants identification using a de novo strategy

We also decided to test the ability to identify peptides characterizing ASEs using a de 

novo approach rather than a probabilistic one using a database. MS raw files were submitted to 

de novo sequence identification using the PEAKS software (Ma et al., 2003). Parameters were set

as: i) trypsin with no proline restriction as enzyme, ii) two miscleavages allowed and iii) 

precursor ion and fragment ion error of 10 ppm. Furthermore, carbamydomethyl (Cys) as fixed 

modification, while protein N-term acetylation, Met oxidation and pyro-Glu (Q / E) were also 

allowed as variable modifications. Only peptide sequences with more than 80% average coverage

certainty were selected for further analysis. Coverage certainty is calculated on an amino acid per

amino acid basis, i.e., only in cases where the software was able to precisely detect mass of the 

amino acid removed from two neighboring daughter ions. 
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Identification of peptides supporting alternative splicing events 

The output file of identified peptides obtained from MaxQuant and PEAKS were filtered 

for peptides observed specifically on Splooce entries. As described above, all MaxQuant peptides

showing reversed and contaminant tags were removed from the data set. The resulting peptides 

were then compared against an unmodified set of RefSeq sequences, which Splooce uses as 

template for predicting new proteins. Any peptide observed for a Splooce entry, but not observed 

for its respective unmodified RefSeq, was classified as an ASE supporting peptide since it aligns 

uniquely to the alternative protein sequence. Additionally, any ASE supporting peptides matching

the beginning of proteins were classified as alternative translation start sites.

A clear limitation in a “database-based” approach is a reduction in peptide/protein 

identification due to an increase in the search space by creating an excessively large database. 

Therefore we restricted our database to a size approximately twice as big as Uniprot. Protein 

identification using our database obtained approximately 500 proteins less than the original 

publication, a variation of less than 5%. Since the original publication used a version of the 

discontinued International Protein Index database, we also submitted the dataset to Uniprot 

database without our in house Splooce sequences (data not shown), since Uniprot and IPI would 

have closer number of entries and therefore, similar search space. The Uniprot result identified 

approximately 200 proteins less than the original publication. Such differences are probably due 

to: i) different identified unique entries in Uniprot or IPI, ii) small differences in the parameters 

between our MaxQuant search and the original publication, and/or iii) differences in MaxQuant 

performance since we used an updated version compared to the one used the original publication.

Regardless, we concluded that even doubling the database size with Splooce entries, protein 

identification penalty was irrelevant for the approach efficiency.
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RESULTS AND DISCUSSION

Identification of splicing variants in the MS/MS data

Splooce was used as a source to create a database of predicted protein isoforms in FASTA 

format, which was then searched against MS/MS spectra. A data set of 120,299 non-redundant 

protein sequences was created based on rare ASEs that were not observed for full-insert cDNA 

sequences (see Experimental Procedures for more details). That data set was merged to 89,602 

Uniprot entries from the December 2013 release. A public collection of MS RAW files was then 

selected for protein identification. Only files from a publication that reported good level of 

instrument sensitivity and proteomic depth (Geiger et al., 2012) were used and such MS dataset 

was challenged against the Splooce-derived protein sequences using two peptide identification 

approaches, one based in probabilistic method and another one based on de novo sequencing 

(Figure 1). Both methods offer unique advantages and limitations. De novo sequencing provides 

unbiased peptide identification, not limited to its theoretical existence in a database. On the other 

hand, sequence information can only be obtained from good to high quality MS/MS data, and 

partial sequence information is generally discarded. Algorithms using a protein database overall 

offer a higher identification rate, since partial sequence information, together with accurate mass 

measurement of the precursor peptide ion, can still provide positive identification. De novo data 

also offer additional possibilities since once a given sequence information is obtained it can be 

aligned against sequence repositories to provide protein identification.
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Figure 1. Experimental design flowchart. Briefly, public MS data from 11 cell lines (Geiger et 

al., 2012) were submitted to peptide identification using a Splooce database either by a 

probabilistic approach (MaxQuant) or a de novo approach (PEAKS). Identified peptides were 

sorted and those characterizing alternative splicing events not present in Uniprot were compared.

Initial analysis using the probabilistic approach (MaxQuant) allowed us to identify a total 

of 142,926 unique peptides representing 11,237 protein groups. Supplementary files S1 reports 

the MaxQuant peptide output containing the identification features for both the total peptides 

identified and the ones identified only in the Splooce database. As expected, the vast majority 

(142,008) of these peptides are already present in Uniprot. However, 911 peptides, representing 

808 ASE, were only observed for Splooce entries. 
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Figure 2. Peptide signal intensity (A) and scoring (B) distribution for all peptides (ALL) and 

sorted alternative splicing events (ASE) in the probabilistic approach. ASE peptides were on 

average an order of magnitude less abundant than the whole peptide population, consequently 

with lower average scoring. 

We next plotted individual peptide intensities and scores from both the complete peptide 

dataset and peptides uniquely identified in Splooce. Data overview of the complete dataset 

showed, as previously reported, an intensity spam of 7 orders of magnitude. The peptides 

characterizing the rare ASEs were observed mostly at the bottom half of the intensity 

distributions, with an average distribution approximately one order of magnitude lower than the 

complete Uniprot set (Figure 2A). While the score distribution seemed similar, ASE-derived 

peptides, on average, had a lower distribution (Figure 2B), which could be a consequence of 
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poorer MS/MS from lower intensity ions. 

In addition, the same RAW files collection was submitted to PEAKS, a software capable 

of determining a MS/MS sequence without the support of a database. Since no FDR can be 

estimated without the support of reversed sequences artificially created from a database, this 

analysis was restricted to spectra where fragment ion mass sequences could be measure with an 

average confidence of at least 80%. Using this approach, approximately 50,000 peptides were 

identified in Uniprot and Splooce (data not shown), and from those only 236 peptides, confirming

218 splicing events, could be identified in the same Splooce-derived database as used in the 

probabilistic approach.  From those, 134 ASE were already observed in the probabilistic 

approach. By merging the results of the two strategies, we characterized a total of 892 ASE 

(Supplementary File S2 and S3). 

As expected, the de novo method identified a smaller proportion of proteins and peptides 

than the probabilistic method when submitted to a BLAST-like alignment versus the same 

Splooce database. In fact, a smaller number of splicing events were detected in the de novo 

method when compared to the probabilistic one. An explanation for this could be that since most 

ASE events characterized by the probabilistic method are seen in the bottom part of signal 

intensity, they most probably generated partial MS/MS information that did not fulfilled the 

criteria required by us for reporting good quality de novo sequences. With this observation we 

therefore conclude that performing a probabilistic method using an in house database generates 

more information than de novo sequencing.  

The frequency of each type of alternative splicing was next calculated for all events 

identified in our strategy. Simple events like exon skipping, alternative splice borders and intron 

retention showed proportional frequencies when compared to general Splooce statistics (Table 1).

Moreover, no ASEs resulting from dual-specificity splice sites were identified, since these events 

are very uncommon and usually found within UTR sequences (Zhang et al., 2007). Splooce is 
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also a database that focus on the analysis of combined ASEs (CASEs), and it was previously 

shown that approximately half of all alternative expressed sequences may have more than one 

ASE along their sequences (Kroll et al., 2012). The analysis presented here confirms the same 

finding at the proteome level. The most frequent combined event was the skipping of several 

adjacent exons (up to 11 exons), followed by adjacent alternative splice sites.

Alternative Splicing Event Total Events from 

Splooce

Events identified by the MS/MS 

analysis

Exon skipping 38060 (35%) 182 (39%)

Alternative 3' splice site 30172 (29%) 130 (28%)

Alternative 5' splice site 27585 (25%) 90 (20%)

Intron retention 12632 (11%) 61 (13%)

Dual-specific splice site 112 (0%) 0 (0%)

Table 1. Amount of alternative splicing events identified by the MS/MS analysis compared to the

total number of events available from the Splooce database.

Alternative TIS represents the majority of events at the proteome level

We further explored what types of events were observed in the identified peptides. 

Interestingly, 355 ASEs, out of the 892 (40%), showed a pattern consistent with the use of an 

alternative TIS due to an ASE (Figure3, Supplementary File S2). The remaining 537 proteins 

showed different types of variations along their protein sequences (Supplementary file S3). Files 

S2 and S3 not only contain a resumed version of the results described in this section, but also 

report protein sequence alignments for Uniprot and Splooce sequences of all proteins identified 

with a rare ASE. Peptides shared between both databases, in addition to the Splooce-specific 

peptide(s), are highlighted in the alignment. Most importantly, each alignment contains a link to 

the Splooce website where information and statistics for that rare ASE can be collected. 
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The high proportion of alternative TIS was further explored. All new protein isoforms 

showing an alternative TIS were searched against the TISdb database (Wan & Qian 2014), a 

collection of TIS obtained from a genome-wide method (GTI-Seq) developed by the same 

authors (Lee et al., 2012). We found that only one TIS present in our list was present in the TISdb

providing therefore a proteome validation for that respective TISdb entry. Several reasons could 

explain the small overlap between the two datasets such as: i) the different nature of the samples 

used in both studies, ii) the fact that most of the TIS present in TISdb are non-canonical and start 

with others codons than ATG (we restricted our analysis to ATG-associated TIS) and iii) the lack 

of proteome validation in most of the studies that populated TISdb. 
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Figure 3. Alignments between normal (Uniprot/RefSeq) and alternative (Splooce) proteins, 

showing different categories of alternative TIS observed for our data. Sequences highlighted in 

orange represent MS peptides found for the Uniprot/RefSeq proteins, and sequences highlighted 

in yellow represent peptides found exclusively in the alternative sequences from Splooce. 

Peptides that align specifically to a sequence from Splooce are supposed to characterize ASEs. A:

Alternative TIS is downstream the original one; B: Same as A, although the beginning of the 
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protein sequence is directly affected by the ASE. C: Alternative TIS is upstream the original one.

Wilson and colleagues have suggested that the association between ASE and TIS are restricted to 

the amino-terminus of proteins where both events are used to produce isoforms that differ at their

amino end. Almost 2,000 events like that were identified at the transcriptome level but few (17 

instances) were confirmed in a limited search against MS/MS data (Wilson et al., 2014). We 

wondered whether this type of event would be frequent in our dataset of 355 TIS. Visual 

inspection of all 355 cases identified only 29 instances (8%) that would fit the model from 

Wilson et al., (2013) (for more details, see Supplementary file S2). The low level of validation of 

such cases at the proteome level, also seen by the authors in their original report, raises doubts 

about their widespread occurrence. All remaining 326 cases of TIS in our dataset were analyzed 

to identify the effect of the ASE in the protein sequence originally present in the reference 

sequence. In only three cases, the alternative TIS was upstream of the original ATG codon. In all 

remaining cases, the ASE occurred upstream of the alternative TIS and disrupted the respective 

ORF. An alternative ATG codon, always located downstream of the ASE, is then used as a new 

TIS. Interestingly, only in 15% of these cases (48 out of 323) the ATG codon used in the TIS is 

the first one downstream of the ASE. 

CONCLUSIONS

A limitation one is facing in this type of analysis the definition of a proper false discovery 

rate when adding entries in a database ad infinitum. Any observed MS/MS information in such 

approaches will be tagged to the “best-fit” theoretical peptide present in the database, regardless 

if that is the correct one. Even though identification engines such as Mascot and MaxQuant have 

proof-check algorithms to quantify FDR rate, incorrect MS/MS information might still be 

reported as true. Therefore there will be always the risk that peptides that are present in the 
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sample but not represented in the database are incorrectly assigned. In addition, there will be a 

size limit where adding more protein entries created by RNAseq information will be detrimental 

to the analysis, rather than beneficial. For a good isoform discovery phase study to reliably work, 

a compromise between database size and validation rounds using complementary databases must 

be created. A desirable strategy would be to create a collection of public, high quality datasets 

such as the one used in this work and use them for database-based splicing discovery using 

different versions of the Splooce database. Recently, similar approaches have been successfully 

implemented for mapping expressed genes, pseudogenes and characterization of new open 

reading frames (Kim et al., 2014; Wilhelm et al., 2014), but little was shown regarding splicing 

isoforms. Therefore, such approach using Splooce databases with public MS data for ASE 

discovery is feasible and promising for further characterization of the human proteome draft.    

In summary, a new strategy for the identification of splicing variants in MS/MS data is 

provided here allowing us to confirm at the proteome level more than 800 new variants. We 

extended previous observations linking ASE and TIS and provided validation for hundreds of 

new TIS events. We have upgraded the Splooce portal to take into account the integration of 

MS/MS data in the validation of splicing variants.
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