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ABSTRACT
The phenology of major seasonal events is an important indicator of climate. We
analyzed multiple datasets of in situ chlorophyll measurements from the Gulf of
Maine dating back to the early 20th century in order to detect climate-scale changes in
phenology. The seasonal cycle was consistently characterized by a two-bloom pattern,
with spring and autumn blooms. The timing of both spring and autumn blooms
has shifted later in the year at rates ranging from ∼1 to 9 days per decade since
1960, depending on the phenology metric, and trends only emerged at time scales of
>40 years. Bloom phenology had only weak correlations with major climate indices.
There were stronger associations between bloom timing and physical and chemical
variables. Autumn bloom initiation correlated strongly with surface temperature and
salinity, and spring bloom with nutrients. A later spring bloom also correlated with an
increased cohort of Calanus finmarchicus, suggesting broader ecosystem implications
of phytoplankton phenology.
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INTRODUCTION
One of the earliest studied and most striking oceanographic phenomena is the spring
phytoplankton bloom. A prominent feature of satellite images, the bloom initiates as
‘‘flowerings of diatoms, resulting in local swarms so dense as to be the most spectacular event
in the yearly planktonic cycle’’ (Bigelow, 1924a). Efforts to predict the timing of the spring
bloom in the Gulf of Maine helped to coalesce the interdisciplinary and quantitative
approaches that underlie modern oceanography (Riley, 1949). Despite over 100 years of
study and a corpus of theory, predicting the dynamics of phytoplankton blooms remains
an important but elusive goal (Sverdrup, 1953; Taylor & Ferrari, 2011; Mahadevan et al.,
2012; Behrenfeld & Boss, 2014; Zarubin, Lindemann & Genin, 2017).

Phytoplankton blooms are indeed spectacular events, and their timing is particularly
important to marine ecosystems in strongly seasonal climes. Because they constitute
the primary source of carbon fixation for the pelagic food web, animals across trophic
levels have life history strategies tuned to the seasonal cycle of production. Productive
systems depend on seasonal timing matches between trophic levels because mismatches
in timing can mean that a grazer or predator misses its feeding window (i.e., match-
mismatch hypothesis, (Cushing, 1969; Edwards & Richardson, 2004). The Gulf of Maine
is a quintessential example of this phenomenon. The zooplankton community is largely
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copepods of the genusCalanus (Bigelow, 1924a), which time their emergence from diapause
to exploit the spring phytoplankton bloom. The pulse of Calanus production is then
succeeded by fish (Golet et al., 2015), mammal (Pershing et al., 2009), and other migrations.

There is growing attention to changing phenology as both an indicator and a consequence
of climate change. Understanding phenology in a climate context requires time series that
span many decades. Such datasets in the pelagic ocean are limited. In the Gulf of Maine,
there have been noted phenological shifts in recent times, particularly regarding physical
properties such as temperature (Thomas et al., 2017), stratification, and hydrology (Smith
et al., 2012), related to climate change. To understand the associated phenological changes
in the pelagic ecosystem in a climate context, we need biological time series that span
many decades—in seasonal oceans a minimum of 40 years (Henson et al., 2010). To
examine changes in phytoplankton phenology in the Gulf of Maine at the climate scale, we
aggregated multiple datasets of in situ chlorophyll measurements over the past century. We
used these data to address the following questions: (1) Has the timing of phytoplankton
blooms changed over the past century? (2) What are the drivers of these changes? And (3)
What are the ecological consequences of these changes?

DATA AND METHODS
Phytoplankton dataset
We aggregated datasets of in situ phytoplankton measurements from multiple public
sources. We used chlorophyll (generally chlorophyll-a) as an estimate of phytoplankton
biomass and used previously published datasets. Chlorophyll time series in the interior
Gulf of Maine vary together based on empirical orthogonal function analysis, separately
from the coastal Gulf of Maine (Thomas, Townsend & Weatherbee, 2003). This analysis
thus focused on the inner Gulf of Maine, including all samples deeper than the 100 m
isobath (106,257 samples, Fig. 1). For some data, measurements were in standard units
(mg chl m−3). For others, a conversion was necessary. For phytoplankton colour index
(PCI) measured by the continuous plankton recorder (CPR) and for Forel-Ule (FU)
scale, we used established relationships for conversions, which for PCI was categorical
(Raitsos et al., 2005) and for FU was exponential (Wernand, Van der Woerd & Gieskes,
2013). These conversion relationships are from global datasets, contain uncertainty, and
possibly unknown variability in space and time. The fact that our analysis focuses on the
timing of events and is less reliant strictly on magnitude should minimize potential biases.
The data were all from calibrated, quality-controlled, public databases: Aggregated database
of (Boyce, Lewis & Worm, 2012, 1934–2010, mg chl m−3 and FU), Continuous Plankton
Recorder (1961–2013, PCI), Gulf of Maine North Atlantic Time Series (1998–2015, mg
chl m−3 and FU (Balch et al., 2016), including measurements from (Bigelow, 1924b), and
the World Ocean Database (Boyer et al., 2013) (1934–2010, mg chl m−3 and FU). In the
post-1960 period, most datasets were largely gap-free during the indicated sampling years,
with the exception of FU measurements, which were sporadic throughout the time series
(< 1% of measurements). We averaged these data into a monthly time series, removing
duplicates, spanning the time period 1912–2015.
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Figure 1 Sample locations for the compiled phytoplankton dataset in the inner Gulf of Maine. Points
are back-colored by original measurement type: FU (grey), PCI (green), chlorophyll (blue). Background
map adapted from (Bigelow, 1924a). The grey line is updated 100 m isobath.

Full-size DOI: 10.7717/peerj.6735/fig-1

We tested the accuracy and limitations of a temporal cubic spline interpolation for
missing data. We validated the interpolation by removing each data point, interpolating,
comparing the interpolated value to the measured value, and comparing the phenology
metric (described below) calculated from the interpolation to that calculated from the
measured value. For an interpolation that only included points not surrounded by missing
data, the interpolated values compared well to measured values (r = 0.37,p� 0.0001 over
all points, and r > 0.99,p� 0.0001 for phenology metrics). When the interpolation was
tested for points surrounded by missing data, there was no significant correlation between
interpolated and measured values, so we did not interpolate beyond one point.
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Oceanographic datasets
We assembled oceanographic time series to compare to chlorophyll phenology. We used
previously published data for water column physics (Fisheries and Oceans Canada, climate
database, http://www.bio.gc.ca/science/data-donnees/base/run-courir-en.php, (Gregory,
2004) and nutrients (Rebuck & Townsend, 2014). We used measurements that fell within
the spatial domain matching the chlorophyll dataset and averaged to monthly values.
Physical data included temperature (T) and salinity (S) averaged over the upper 50 m. We
also included a stratification index (1), estimated as the difference of mean density (σT )
between the surface (0–50 m) and deep (50 m - bottom) layers (Drinkwater & Gilbert,
2004). Chemical data included surface NO3+NO2, Si(OH)4, and PO4 measurements, using
only those measurements that passed all quality control criteria (Rebuck & Townsend,
2014). We also used annual climate indices: the Atlantic Multidecadal Oscillation (AMO),
North Atlantic Oscillation (NAO), Gulf Stream Index (GSI), the Arctic Ocean Oscillation
(AOO), and the Arctic Oscillation (AO) (cf NOAA Climate Prediction Center).

Grazer dataset
We used copepod count data from the CPR. The dominant seasonal copepod in the central
Gulf of Maine is Calanus finmarchicus (Runge et al., 2014), which has a seasonal peak in
surface waters following the spring bloom. Adults emerge from diapause and exploit the
spring bloom for egg production. This cohort reaches adulthood in the late spring and
summer.We calculated a mean log anomaly for late-stage (copepodite 5–6)C. finmarchicus
for May–July, as an index of how well this species fares following the spring bloom. We
did not compute an analogous autumn time series because C. finmarchicus has entered
diapause at depth by that time, and the CPR makes surface measurements.

Analysis
We used a clustering analysis to examine the shape(s) of the bloom cycle across years.
This helped to confirm that our phenology metrics were applicable, and also to detect
changes in the bloom pattern across time. We clustered years based on the shape of the
seasonal cycle of chlorophyll following the methodology of Foukal & Thomas (2014):
briefly, we used k-means multivariate clustering, with the squared Euclidean distance as
the similarity metric and randomly selected starting centroids. Other similarity metrics
yielded qualitatively similar results. To account for the randomness in the algorithm, we
computed an ensemble of 100 runs, sorted clusters by frequency, and analyzed the modal
clusters for each year.

We produced time series of phenology metrics for spring and autumn blooms. There
are many metrics for quantifying the timing of phytoplankton blooms, with most metrics
targeting the timing of either bloom initiation or bloom peak (Ji et al., 2010; Brody, Lozier
& Dunne, 2013). Bloom shape can vary from year to year and by location, so no single
metric has emerged as the preferred choice. Because of the coarse temporal resolution (1
month), some phenology metrics were not appropriate for this dataset. We computed five
phenology metrics for the spring and autumn blooms:
1. µm - Timing of maximum. Because the dataset is binned monthly, this is a coarse time

series; values are midpoints of months.
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2. µc - Center of mass. This metric computes the center of mass within the February-May
time period (spring index) and of the August-November time period (autumn index),
and provides a smooth metric.

3. µg - Midpoint of Gaussian fit. This metric fits a Gaussian curve to half of the year (for
spring and autumn indices) and uses the fitted mean (µ) parameter as the bloom peak
timing, providing a smooth metric.

4. τd - Timing of maximum increase. This is a coarse (monthly) index of the timing of
bloom initiation.

5. τt - Threshold timing. This metric computes the timing at which the total value crosses
a threshold that is some percentage of the year’s total (i.e., the cumulative summethod).
We computed this metric for multiple thresholds for both spring and autumn indices.
We used the phenology metrics in time series analysis. We examined the time series

for statistically significant trends. We then looked for long-term associations with physical
drivers and with upper trophic levels to determine the potential causes and consequences
of changing phenology. Analysis was performed using Pearson correlation and coherence
analysis. The coarse spatio-temporal resolution of the dataset means that there is additional
variance around time series and associated relationships, and correlation coefficients
reflect that. We took steps to avoid over-reliance on single p-value determinations
and dichotomous thinking (McShane & Gal, 2017). While we did use p< 0.05 as one
benchmark, we disregarded those correlations driven by an outlier. Furthermore, only
correlations that held up for multiple phenology metrics or with very strong relationships
were considered robust. For the analysis with the climate indices and the C. finmarchicus
time series, the time series were sufficiently long and gap-free to conduct a coherence
analysis. We used the minimum variance distortionless response approach (Benesty, Chen
& Huang, 2005). We also tested the climate indices at lags of 0–3 years, and for the C.
finmarchicus time series, because of the ontogenetic lag and east-to-west hydrographic
flow, we compared it to the phenology time series calculated for just the eastern Gulf of
Maine (east of > 68◦W).

RESULTS
Clustering
Excluding singletons, there were three main bloom types that emerged consistently over
the ensemble of cluster calculations (Fig. 2). The most common was the conventional
cycle, with a pronounced spring bloom peaking in April, a smaller autumn bloom peaking
in October, and a seasonal minimum in January. This cycle type dominated in most of
the 1980s and 1990s. The second most common was a two-bloom cycle where the spring
and autumn blooms were of closer magnitude to each other, again peaking in April and
October. The third cycle type had a pronounced but delayed spring bloom, peaking in
May, a diminished autumn bloom, and a higher winter minimum. The second and third
cycle patterns appeared sporadically over the later part of the time series. All of these cycle
patterns had a predominantly two-peak shape, conducive to the phenology metrics used.
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Figure 2 Aggregated chlorophyll dataset (A), showing monthly binned chlorophyll (log mgm−3), in-
cluding a 1-unit spline interpolation. Years clustered by cycle type, as computed in the k-means cluster-
ing algorithm. (B) Cycle type for each year for which there are sufficient data, showing the most common
three cycle types. Seasonal shapes for cycle types 1–3 (C–E) respectively, calculated as the climatology over
all years within each cluster.

Full-size DOI: 10.7717/peerj.6735/fig-2

Trends
For all phenology metrics, spring and autumn, the trend over the time series was positive–
i.e., shifting later in the year. The strongest trend was for µg , shifting later with mean rates
of 8.9 (p= 0.001) and 4.3 (p= 0.02) days per decade (spring and autumn, respectively).
Other metrics with noteworthy trends were spring µm (4.4 days per decade, p= 0.1),
spring µc (1.5 days per decade, p= 0.1), autumn µc (1.2 days per decade, p= 0.07),
and spring τt (4.1 days per decade, p= 0.09). Taking the average of metrics, trends were
significant for both spring (p= 0.03) and autumn (p= 0.01), with rates of 3.7 and 3.8 days
per decade, respectively. Over the past sixty-year period, where there are enough data to
consistently capture the phenology metrics, these shifts equate to a roughly 10–50 day shift
in timing. There is substantial inter-annual variance around these trends (Fig. 3A). To test
the robustness of these trends to sampling biases, we subdivided the Gulf ofMaine into east,
west, and coastal sections, divided at 68.5 ◦W and tested the same phenology metrics for
trends. Of the 30 significance tests, 10 were significant at the 0.05 level, 5 were significant at
the 0.01 level, and all significant trends were positive for both spring and autumn metrics.
We also tested for trends over smaller sliding windows and found that time series of at
least 40 years were necessary for significant trends to emerge. Oceanographic variables had
statistically significant trends as well, including increases in temperature and stratification
and decreases in nitrate+nitrite and phosphate through much of the year (Fig. 3B).

Associations
Correlations between phenologymetrics and climate indices were generally weak, with only
a few correlations at p< 0.05. Spring and autumn τt correlated positively with the AMO,
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Figure 3 (A) Time series of spring and autumnµg and least squares line showing statistically signif-
icant increase since 1960. Shaded area shows the range of all phenology metrics. (B) Significant sec-
ular trends for the measured physical and chemical variables during different months and seasons.
Color scale is the strength of the trend as measured by a correlation coefficient (r). Numbers are p values
rounded up to the nearest hundredth. Trends with p< 0.05 are colored.

Full-size DOI: 10.7717/peerj.6735/fig-3
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Table 1 Correlation coefficients between the phenology metrics and the monthly temperature (T), salinity (S), and stratification (1) values,
and the seasonal anomalies of nitrate+nitrite (N), silicate (Si), and phosphate (P). Each column represents the month or season over which the
physical variable or nutrient anomaly was averaged. Numbers in parentheses indicate correlation coefficients (r,p). Only correlations with p< 0.05
shown.

SPRINGMETRICS

J F M A M J

Physical variables
1,τt (−0.93,< 0.01) T, µg (−0.41,0.03)

Chemical variables
N, µm(0.61,0.05) N, µg (−0.53,0.04)
N, µc (0.66,0.03) Si, µg (−0.55,0.03)

AUTUMNMETRICS
J A S O N D

Physical variables
T, τd(−0.61,0.02) T, τd(−0.68,< 0.01) T, τd(−0.49,< 0.01) T, τd(−0.40,< 0.01) T, τd(−0.50,< 0.01) S, τt (−0.84,0.03)
T, τt ,(−0.55,0.01) S, τd(−0.66,< 0.01) S, τd(−0.71,0.03) S, τd(−0.64,0.05) S, τd(−0.70,0.01) S, τd(−0.64,0.01)
1,τd(−0.48,< 0.01) S, µg (−0.45,0.02)
1,τt (−0.55,0.03)

Chemical variables
N, µg (−0.51,0.04) Si, µg (−0.98,0.04)

Si, µm(−0.96,0.02)
Si, τd(−1.00,< 0.01)

and autumn τt correlated negatively with the NAO (r2 = 0.17,0.16,0.17, respectively).
These AMO correlations were also significant at lags of up to three years, with correlations
peaking for spring τt at a three year lag (r2= 0.19), and for autumn τt at a two year lag
(r2= 0.24). Coherence analysis (File S2) also showed weak associations, with r2 typically
below 0.2. The notable exceptions were spring phenology metrics and the AO, at ∼ 3
year periods, and various metrics and the NAO, at both short and long periods, where r2

increases to 0.3–0.4.
Correlations between phenology metrics and ocean physics and chemistry showed a

moderate signal with some consistent patterns (Table 1). For spring metrics, the strongest
signal was a correlation between stratification and earlier bloom timing. Additionally, high
February nutrients correlated with a later bloom, and high June nutrients correlated with
an earlier bloom. For autumn metrics there was a consistent pattern across all months of
high temperature and salinity correlating with earlier bloom initiation. There was a very
strong correlation between October silicate and earlier bloom timing, but these correlations
consisted of only four data points.

Grazer analysis
The C. finmarchicus index correlated significantly with µg (r2 = 0.17, p= 0 .01). The
western Gulf of Maine C. finmarchicus population is supplied by coastal waters, so we
compared the phenology metrics to the C. finmarchicus in the eastern Gulf of Maine
(>−68◦) and found stronger and more consistent correlations: µm (r2= 0.17, p= 0 .01),
µc (r2= 0.24, p= 0 .003), µg (r2= 0.26, p= 0 .001). Coherence analysis (Fig. 4) showed
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Figure 4 Coherence analysis of three spring phenology metric time series against the time series of
late-stage C. finmarchicus abundance.

Full-size DOI: 10.7717/peerj.6735/fig-4

that these correlations were largely driven by the long-term secular trend. There was a
dip in coherence for periods of approximately 10–40 years. There was also an increase in
coherence for periods of < 10 years to r2≈ 0.2, depending on the metric.

DISCUSSION
This extended time series of in situ chlorophyll measurements in the Gulf of Maine gives a
climate-scale perspective on changing phenology that is not available in the comparatively
recent satellite records. Climate-scale changes in the timings of blooms are clear, as
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Figure 5 Comparison of mean seasonal cycle of chlorophyll between the most recent decade and an
earlier period. Shaded area shows the variance.

Full-size DOI: 10.7717/peerj.6735/fig-5

are associations between bloom phenology and changing physical conditions as well as
changing C. finmarchicus abundance. The most surprising result is that spring bloom
timing, primarily using measures of the bloom center, have gotten later at a rate of ∼1–9
days per decade. This shift is apparent when comparing the recent seasonal cycle to that of a
few decades ago (Fig. 5). Typically, as the climate warms, summer lengthens, shifting spring
events earlier and autumn events later. The shift toward later autumn blooms is consistent
with this expectation, but the shift toward later spring blooms is unexpected in this context.
Climate indices have been cited to explain recent temperature and ecosystem changes in the
Gulf of Maine (Pershing et al., 2015). However, our analysis did not reveal any compelling
relationship with the NAO, AMO, GSI, AOO, or AO–the climate oscillations known to
be important in the Gulf of Maine—either via direct correlation, lagged correlation, or
coherence analysis.

Relationships between bloom phenology and water properties were somewhat more
promising. A later spring bloom was associated with lower stratification, higher nutrients
near the beginning of the bloom, and lower nutrients near the end of the bloom. Causality
is difficult to assign regarding nutrients. Because an earlier spring bloom correlates with
decreased February nutrients, and a later spring bloom with decreased June nutrients, it is
likely that the bloom is driving the nutrient dynamics through drawdown (or lack thereof),
rather than the reverse. The autumn bloom was more tightly associated with changes
in physics. Low temperature and salinity are both associated with increased transport
of Arctic-origin water via the Labrador Current, which altered autumn bloom patterns
during the 1990s (MERCINA Working Group, 2012). The pattern seen here suggests similar
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physical forcing might have a more consistent long-term effect specifically on the timing
of autumn bloom initiation.

It is worth noting the secular trends in conditions, as well as correlations, focus on
high-frequency variability and can overlook climate-scale changes. Spring conditions have
shifted towards higher stratification and lower nutrients. The timing shift of the spring
bloom is consistent with short-term shifts in the three Gulf of Maine zones described by
(Ji et al., 2007); they hypothesize that higher stratification causes earlier blooms upstream
on the Scotian Shelf, leading to depleted nutrients and later blooms by the time the water
mass reaches the central Gulf of Maine. This hypothesis is consistent with our long-term
observations and may provide a better explanation for the shift toward later spring blooms.

The positive association between spring bloom timing and late spring C. finmarchicus
abundance is notable. If later timing of the center of the bloom is an indication of
an extended bloom, then C. finmarchicus emerging from diapause could have a longer
window for reproduction, and the first generation cohort would be more abundant than in
a typical year. This offers one possible explanation for why the species has persisted in the
western Gulf of Maine despite rapid warming and temperatures that should be detrimental
to the population (Runge et al., 2014), but would require a consistent upstream supply
of late-stage individuals. This shift also runs counter to the expectation of a phenology
‘‘mismatch’’ as conditions change (Edwards & Richardson, 2004).

While this chlorophyll data set gives us new insights into climate-scale phenology
changes, there are some caveats to bear in mind. First, chlorophyll is a proxy for
phytoplankton. When the oceanography changes, adaptation or replacement of species can
occur, and chlorophyll measurements might not capture this. As a means for detecting the
major phenological events (i.e., blooms), chlorophyll is probably effective, but this caveat
should be kept in mind. Second, the dataset includes measurements that use different
methodologies. Measuring chlorophyll ‘‘is endlessly complicated by diverse methods of
collection and analysis, each with its own virtues but only imperfectly comparable with other
methods’’ (Riley, 1949). Again, the fact that we use relative changes to compute phenology
metrics should hedge this caveat, but it should be considered as the data are used in the
future.

CONCLUSION
The shift of both spring and autumn bloom timing toward later dates is surprising.
The high range in rate estimates is indicative of the difficulty of quantifying bloom
phenology, so the emphasis should be on the consistent directionality across metrics rather
than any specific rate. Finally, while the analysis here is suggestive of possible drivers
of the shift in bloom timing, a mechanistic explanation for bloom initiation has been
an elusive goal in oceanography. As Evans & Parslow (1985) wrote: ‘‘Although it seems
intuitively reasonable that a sudden effect should have a sudden cause, ecological systems need
not behave intuitively. ...[S]pring blooms can occur without any sudden changes in driving
variables.’’ The Gulf of Maine, with its unprecedented rapid changes (Pershing et al., 2015)
is often seen as a potential bellwether for other marine systems. The apparent climate-scale
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shift toward later spring blooms underscores the point that ecosystems do not always
change as expected.
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