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ABSTRACT
Seabirds are integral components of marine ecosystems and, with many populations
globally threatened, there is a critical need for effective and scalable seabird monitoring
strategies.Many seabird species nest in burrows, which canmake traditionalmonitoring
methods costly, infeasible, or damaging to nesting habitats. Traditional burrow
occupancy surveys, where possible, can occur infrequently and therefore lead to an
incomplete understanding of population trends. For example, in Oregon, during
the last three decades there have been large changes in the abundance of Leach’s
storm-petrels (Hydrobates leucorhoa), which included drastic declines at some colonies.
Unfortunately, traditional monitoring failed to capture the timing and magnitude of
change, limiting managers’ ability to determine causes of the decline and curtailing
management options.New, easily repeatablemethods of quantifying relative abundance
are needed. For this study, we tested three methods of remote monitoring: passive
acoustic monitoring, time-lapse cameras, and radar. Abundance indices derived from
acoustics and imagery: call rates, acoustic energy, and counts were significantly related
to traditional estimates of burrow occupancy of Leach’s storm-petrels. Due to sampling
limitations, we were unable to compare radar to burrow occupancy. Image counts were
significantly correlated with all other indices, including radar, while indices derived
from acoustics and radar were not correlated. Acoustic data likely reflect different
aspects of the population and hold the potential for the further development of indices
to disentangle phenology, attendance of breeding birds, and reproductive success.
We found that image counts are comparable with standard methods (e.g., radar)
in producing annual abundance indices. We recommend that managers consider a
sampling scheme that incorporates both acoustics and imaging, but for sites inaccessible
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to humans, radar remains the sole option. Implementation of acoustic and camera based
monitoring programs will provide much needed information for a vulnerable group of
seabirds.

Subjects Animal Behavior, Ecology, Marine Biology, Population Biology
Keywords Aeroecology, Burrow-nesting, Deep-neural networks, Passive acoustic monitoring,
Radar ornithology, Population monitoring, Machine learning, Seabird, Colonial breeder, Photo
counts

INTRODUCTION
Globally seabird populations are declining; however this conclusion is largely driven by
data on well monitored populations, the majority of which are surface nesting seabird
species (Paleczny et al., 2015). Surface nesting seabirds are relatively easy to monitor at
their breeding colonies because active nests can be identified and counted (e.g., Gaston,
2003). In contrast, much less is known about population trends of burrow nesting seabirds.
Although species with this nesting behavior make up ∼50% of threatened seabird species
(Spatz et al., 2014), these seabirds are much more cryptic at breeding sites, making surveys
difficult (e.g., Piatt, Roberts & Hatch, 1990; Renner et al., 2006). Even in large colonies,
studies are restricted to locations where nest cavities can be repeatedly accessed or where
mark-recapture studies are feasible (e.g., Sheffield et al., 2006). In some cases, the mere
presence of humans can damage nesting habitat or assist predators in locating nests
(Rodway, Montevecchi & Chardine, 1996; Blackmer, Ackerman & Nevitt, 2004; Pollard,
2008). Additionally, there are often safety, logistic, and financial limitations to accessing
remote seabird colonies. Therefore, alternative monitoring methods are needed. Most
seabirds have k-selected life-history strategies (i.e., long-lived, few offspring per breeding
attempt), and will skip breeding when conditions are poor, which means population
monitoring programs need to be sustainable over decades to be viable. Thus, monitoring
methods should be easily repeatable, statistically rigorous, and low cost. Additionally,
methods need to be sufficiently robust to detect short-term changes in order to inform
managers of population fluctuations prior to substantial declines. This need is desperate, as
limited evidence suggests that burrow nesting seabird populations are declining globally,
in part due to threats accrued on land (e.g., introduced predators, habitat degradation)
(Croxall et al., 2012; Spatz et al., 2014). A lack of monitoring of this suite of species inhibits
conservation prioritization and adaptive management to address global seabird declines.

Traditionally, burrow occupancy during the breeding period is used to measure
reproductive effort. Burrow occupancy is determined using a ‘grubbing’ technique: visual
or tactile inspection of burrows (sometimes with a burrow scope) in a given area. Though
widely considered a reliable method (Parker & Rexer-Huber, 2016), potential for error
remains, especially when investigators visit sites infrequently (e.g., once per season or less).
Surveys are conducted during targeted periods of the breeding cycle (e.g., chick hatch),
however annual variation in the timing of breeding can compound errors; for instance,
if breeding failures occur prior to surveys this leads to underestimates of occupancy.
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Most colonies are large, requiring sub-sampling of burrows within standardized quadrats
along a transect; this can lead to error if habitat is heterogeneous and not adequately
sampled. Burrows can be convoluted networks with multiple entrances or unreachable
nest chambers, leading to a high proportion of burrows with unknown status. Finally,
despite efforts to standardize methods between surveys, observer biases have the potential
to influence results through subtle differences in interpretation of protocols, and site-
specific knowledge (e.g., Anker-Nilssen & Rostad, 1993). In spite of these caveats, burrow
occupancy remains the simplest and most widely used metric of reproductive effort against
which to assess the efficacy of newer monitoring methods.

In-situ environmental sensors have transformed ecological studies at all scales from
individuals to populations (Burger & Shaffer, 2008; Marques et al., 2012). For population
abundance monitoring, the use of acoustic recorders and remote cameras is rapidly
growing, particularly for cryptic species (Blumstein et al., 2011; Trolliet, 2014; Gasc et al.,
2016). These instruments can be deployed in the field and left to sample for long durations
without costly human assistance. The number of species-specific vocalizations or images
detected per unit of time can be used as an index of activity within the reception range
of the recorder. Likewise, mobile marine radar can be used to monitor the activity of
flying animals (Cooper et al., 1991). Advances in image capture and analytical programs
have improved data acquisition from radar units (e.g., Assali, Bez & Tremblay, 2017).
Improvements in current recording equipment and development of additional sensors
will undoubtedly continue. Acoustic recordings, automated cameras, and radar have great
potential for monitoring seabirds, but their relative efficacy has not been previously fully
evaluated.

The high temporal and spatial resolution data recorded by electronic monitoring
equipment makes manual review to identify species detections impractical. The lack of
easily implemented automated methods to process these datasets currently limits the
ability of ecologists to capitalize on the amount of data stored in image, video, acoustic,
or radar files (Weinstein, 2017). However, data processing methods are rapidly improving.
Machine learning and other automated detection algorithms can be applied to image and
acoustic data sets to extract meaningful metrics (Deng, Hinton & Kingsbury, 2013; Cires̨an
& Meier, 2015; Krizhevsky, Sutskever & Hinton, 2017). For instance, Deep Neural Networks
(DNNs) can be used to detect sounds from recordings with spectro-temporal properties
that are similar to signals produced by target species. Currently, some level of manual
review is necessary to label data patterns corresponding to detections that are then used
by classification algorithms to count all such patterns in a dataset. As new tools emerge,
there is great promise in reanalyzing archived images and recordings. This, in itself, is an
improvement on monitoring programs reliant solely on human collected data, as no visual
or audio archive exists and time-series from these efforts are often constrained by evolving
data collection methods.

It is important to compare the results of monitoring methods as each method has its
own strengths and limitations. To date, there are few examples that compare abundance
metrics for seabirds. Using visual counts of birds to infer population abundance is not a new
approach (Bednarz et al., 1990; Clarke et al., 2003), but is context dependent. At the colony,
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counts can be used to document attendance patterns (e.g., Harding et al., 2005; Huffeldt
& Merkel, 2013), however, doing so for species that arrive and depart from their colonies
at night adds an additional challenge. Trials with infra-red video recording equipment at
a European storm-petrel (Hydrobates pelagicus) colony found that flying birds were poor
predictors of occupancy estimates derived from play-backs, likely because not all flying
birds were related to the sample plots (Perkins, Bingham & Bolton, 2017). Acoustic call
rates have rarely been compared to visual counts at seabird colonies. Acoustic call rates of
surface nesting Forster’s terns (Sterna forsteri) yielded significant correlations with colony
counts, however colony sizes were small, ranging from 15-111 breeding pairs (Borker et
al., 2014). Finally, radar surveys have been used to measure changes in relative abundance
of seabird populations for decades (Day et al., 2003; Cooper, Raphael & Peery, 2006; Raine
et al., 2017), yet validation or comparative studies exist for a limited number of species
(Bertram, Cowen & Burger, 1999; Cragg, Burger & Piatt, 2016).

The Leach’s storm-petrel, Hydrobates leucorhoa, (LESP) is a small burrow nesting
seabird that lives 20 years or more (Morse & Buchheister, 1977). It breeds in dense colonies,
typically located on off-shore rocks or islands across the Northern Hemisphere, with
small numbers breeding in the Southern Hemisphere (Huntington, Butler & Mauck,
1996). Leach’s storm-petrels are highly vocal and nocturnally active at their breeding
colonies, making them an ideal candidate species for comparing acoustic, image, and radar
monitoring methods (Watanuki, 1986; Buxton & Jones, 2012). Additionally, conservation
needs are pressing. Mark-recapture studies and play-back surveys in the North Atlantic
have highlighted declines (Newson & Mitchell, 2008), but little is known about populations
in the North Pacific. Infrequent surveys along the Oregon coast (1978, 1988, 2008) indicate
that populations on some islands have dramatically declined while others have increased
(Kocourek et al., 2009). However, the magnitude of the changes in population estimates,
spatial inconsistencies, under-sampling of available habitat, and variability in survey timing
have led to uncertainty about population status along the Oregon coast (Kocourek et al.,
2009). As a result, researchers and managers are left with insufficient data to assess the
conservation status and develop management plans. Therefore, there is a pressing need for
monitoring methods that can be applied more frequently at multiple breeding colonies
where effective conservation actions can be taken.

Here we compared four data collection methods to monitor abundance of Leach’s
storm-petrels at their breeding colonies:monitoring bymanual nest inspections (grubbing),
infra-red cameras, acoustic recorders, and radar. We compared rates of burrow occupancy,
to plot level abundance metrics (detection rates) from images and acoustics. We did not
make a similar comparison with radar data because the radar collected information at a
different spatial scale (i.e., colony-wide versus plot level). Then we compared the remote
methods to each other. These monitoring methods provided data on different aspects of
the population and at different spatial and temporal scales. Thus, we expected the strongest
correlations among metrics that represent breeding performance (e.g., burrow occupancy
and acoustic ground calls) or among metrics that represent population size (image and
radar counts of flying birds and acoustic aerial calls), and poor correlation between these
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Table 1 Sampling periods for the methods used to measure abundance of Leach’s storm-petrels,Hy-
drobates leucorhoa, at two colonies in Oregon, U.S.A.

2014 2015
Goat Island Goat Island Saddle Rock

Camera Deployment April 9–Aug 20 May 5–Oct 7 June 19–Aug 27
Camera Sub-samplinga B: July 11–17, 20–22 A & B: July 9–18 N & S: July 16–24
Radar no survey May 14, 17, 18, 21, 22

July 11, 13, 14
May 13, 15, 16, 19, 20
July 12b, 15, 16, 18, 19

Grubbing July 16 July 16 July 15
Acoustics A: April 9-Sept 11c

B: April 8-Sept 8
C: April 8-Aug 24

A: July 16–Oct 6
B & C: May 5–Oct 6

N: June 19–Aug 27
S: June 19–Aug 14

Notes.
aCameras deployed on plot GIC were Moultries and these data were discarded from the study due to inferior image quality. In
2014, cameras on GIA had IR flash malfunctions and therefore did not record usable data.

bThe radar data was contaminated by unknown interference on the night of July 12th and therefore excluded from analysis.
cIn 2014, the GIA Song Meter was deployed with an incorrect clock (+3 h), the time associated with the recordings was ad-
justed, but recordings stopped∼3 h prior to sunrise.

two groups. Finally, we discuss recommendations for future monitoring efforts of burrow
nesting seabirds.

METHODS
Study area
We established study plots in Leach’s storm-petrel (LESP) colonies on two offshore islands
within the Oregon Islands National Wildlife Refuge on the Southern Oregon coast: Goat
Island (42◦4′1′′N, 124◦19′18′′W, Oregon Colony Catalog #270-123; Naughton et al. 2007),
a large colony with a dense breeding population (2012 breeding population estimate:
184,530; S Stephensen, pers. comm., 2018) and Saddle Rock (42◦15′1′′N, 124◦24′53′′W,
Oregon Colony Catalog #270-079), a once large colony that experienced dramatic declines
(2012 breeding population estimate: 2,504). Between 1988 and 2008, the colony at Saddle
Rock declined from ∼87,000 to very few birds, however breeding birds still remained
(Pollard, 2008; Kocourek et al., 2009). Goat Island was selected since it was currently the
largest colony on the Oregon Coast. Studies were conducted on Goat Island in 2014 and
2015. In 2015, we added Saddle Rock to establish study plots at a site with a lower density
LESP population (Table 1).

Plot design
On Goat Island, we deployed cameras and acoustic recorders and sampled burrow
occupancy in three adjacent rectangular plots (10 m × 25 m) on the north vegetated
slope (GIA, GIB, GIC, Fig. 1, Table 1). Each plot had three near-infrared cameras with
self-contained covert illuminators (No-Glow) capable of taking single frame time-lapse or
near video images (2 frames/sec). All cameras faced upslope to the south, away from the
prevailing winds to minimize lens fouling; posts with reflectors marked the edge of the IR
camera range (10.48 m) and are visible in the images. The cameras used were: Reconyx
PC900 HyperFire (3.1 megapixels) and Moultrie M-990i (4 megapixels). Photos from
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the Moultrie cameras were of insufficient quality, potentially due to the IR flash, so were
not used in the analysis. Cameras were powered by deep cycle 12V marine batteries, but
recording was limited by 32GB SD cards. Cameras were attached 1.5 m above the ground
to metal fence posts, padded with foam pipe insulation to minimize collision injury risk
to birds. A single acoustic recorder (Song Meter SM3 with built-in microphones, Wildlife
Acoustics, Concord, MA, U.S.A.) was positioned at the center of each plot at 0.3 m above
the ground. Song Meters were powered with internal batteries or external battery packs
depending on desired recording duration and contained 4 SD cards (128 GB each). At
Saddle Rock, two circular plots (SRN and SRS) were set up with an acoustic recorder
and three cameras mounted on a single post in the center (Fig. 1). Circular plots, with a
radius of 7 m, were chosen at Saddle Rock because this generally matches the survey shape
sampled by the acoustic recorders’ omnidirectional microphones. The area surveyed by
an acoustic sensor is dependent on many factors including: ambient noise (wind, rain,
surf), presence of target and non-target species, amplitude of target calls, relative humidity,
and equipment and settings on the equipment. The sensor records a sphere. In a quiet
location, that sphere might have a 100+ m radius, in contrast to a small 10 or 15 m radius
in a loud location. The proximity of the plots (∼25 m) means they are not independent
replicates in representing the entire island for comparison with radar, but they are mostly
independent replicates for comparisons of cameras and acoustic recorders. Both islands
were visited periodically throughout the summer to exchange SD cards and batteries and
ensure equipment was operating correctly.

Burrow surveys
Grubbing (manual inspection of nests) was conducted on both islands during early chick
rearing following protocols from Kocourek et al. (2009) (Table 1). We randomly located
three 1 m2 quadrats within each plot to determine burrow occupancy. Each quadrat
was thoroughly searched by two individuals, and only burrow entrances with a clearly
identifiable nesting chamber were included. All nest entrances within the quadrat were
included even if the nest cavity was beyond the quadrat boundary. Due to low burrow
densities, quadrat sampling at Saddle Rock yielded no burrows; therefore, entire plots were
searched. No birds were removed from the nests, rather each nest was deemed ‘occupied’,
‘unoccupied’, or ‘unknown’; occupied nests was defined as having an adult, egg, or chick.
Unknownnests were excluded from analyses. In 2015, we used a 1-inch diameter Pukamanu
1.0 burrow camera scope (Abyssal Hawaii, LLC) that allowed us to the assess occupancy
status for all burrows during the second year of the study.

Radar
In 2015, radar surveys were conducted from approximately sunset to sunrise for 3–5 nights
during both late-May andmid-July at each colony associated with the newmoon (Table 1).
Surveys of Saddle Rock were conducted from Crook Point (42.250910◦, −124.408100◦),
500 m from Saddle Rock. The area surveyed included both Saddle Rock and North Crook
Point Rock (Oregon Colony Catalog #270-076; Naughton et al. 2007). Surveys of Goat
Island were also conducted from the mainland (42.072822◦, −124.318605◦), 600 m from
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Figure 1 Plot design on Saddle Rock and Goat Island. A circular plot design was used on Saddle Rock;
whereas, rectangular plots were used on Goat Island. The red lines indicate the approximate field of view
for each camera.

Full-size DOI: 10.7717/peerj.6721/fig-1

the island. The radar laboratory consisted of two standard marine surveillance radar
(Furuno Model FCR-1510; Furuno Electric Company, Nishinomiya, Japan) mounted on
the roof of a truck (Cooper et al., 1991). The radar transmits at 9,410 MHz (i.e., X-band)
through a 2 m long slotted wave guide, with a peak power output of 12 kW. We operated
the radars concurrently with one oriented in horizontal mode (i.e., surveillance mode)
and the other in the vertical mode. The surveillance radar antenna was tilted upward at
∼10◦ so that the bottom edge of the main radar beam was just below horizontal. Radars
were operated at a range of 1.5 km with a pulse length at 0.07 µsec as these radar systems
can detect Leach’s storm-petrels and similar-sized birds out to approximately 1.5 km
(Sanzenbacher et al., 2010). We used automated image frame grabbers (model VGA2USB,
Epiphan Systems Inc.) to record a high-quality, lossless image of the radar screen during
each sweep of the radar (i.e., every 2.4 s).

Instrument programming and data processing
Cameras
Reconyx cameras were programmed to take a 49.5 s burst of 99 frames every 10 min in
2014, and every 15 min in 2015, from 0100–0300 PDT. For comparisons with burrow
occupancy we identified 10 clear nights closest to the grubbing date in each year (Table 1).
We selected a subsample of 3 photo bursts within each night for density counts (GI 2014
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n= 8910, 2015 n= 17,820; SR n= 13,365). Nights were only counted if >75% of photos
in at least three bursts were clear enough to detect LESP. To assess the impact of frames
lacking total clarity we classified LESP using four detection categories: (1) whether the bird
was clear/easily recognizable, (2) only eye glare was present, (3) there was a distinguishable
wing or body shape, or (4) only a blur was present. We counted detections per photo in
each burst and then calculated mean bird detections per minute.

Acoustic sampling and processing
Acoustic recorders were programed to record continuously from local sunset to sunrise at a
sample rate of 16,000 Hz (16 bit, stereo, .wav files). We developed automated classification
models for two calls in the LESP vocal repertoire that are used in different behavioral
contexts: the chatter and purr calls (Huntington, Butler & Mauck, 1996; Fig. S1). The
chatter call is an accelerating bounding chatter producing a harmonic signal with a base
frequency between 1,000 Hz and 2,000 Hz. The purr call is a repeated staccato buzz
(800–1,000 Hz) ending with a convex ascending sweep between 750 Hz and 1,600 Hz.
Males and females make both calls (Taoka et al., 1989). Birds in flight only vocalize with
the chatter call, however birds on the ground or in burrows may also use this call; hereafter
this call is termed the aerial call. The purr call is typically vocalized by birds in burrows
and vocalization bouts can last more than 15 min (Taoka et al., 1988); hereafter this call is
termed the ground call. Due to the differences in where birds make these vocalizations the
aerial call likely propagates further, and has a greater detection range.

We automated the detection and quantification of aerial calls and ground calls on
field recordings using custom software (implemented in Matlab 8.3). We split the field
recordings into 2-second sound clips and measured the intensity of 10 spectro-temporal
features in 187 separate frequency bins (43 Hz) within each 2-second clip at five different
spectral resolutions. A spectral resolution is defined as a set of half-overlapping frequency
bands. The five resolutions used in Hz were 312.5, 687.5, 1,437.5, 2,937.5, plus one
band over the entire frequency range. These resulted in 10 feature types in each of 61
multiresolution frequency bands, for a full set of 610 candidate features. Each feature score
is a combination of (1) spectral bin center, (2) spectral bin width (resolution), and (3)
feature type (e.g., tone, transient, click).

DNN classification models were trained iteratively by adding examples of positive
sounds (target calls) and representative non-target sounds from the soundscape at all
survey sites. The DNNs learn patterns of spectro-temporal features that best differentiate
target sounds from non-target sounds. The final model can then be applied to predict the
probability that a target call is present in novel 2-second sound clips. Our training process
uses a classification and regression tree (CART) algorithm to pre-select the best features for
classification. The number of features chosen is a parameter that is automatically optimized
in the training procedure. One limitation of this approach is that the presence of one LESP
call in a 2-second clip is equivalent to a 2-second clip with multiple overlapping calls.
Thus, in very busy soundscapes, this approach can become saturated when every 2-second
clip contains a call, leading to situations where the addition of subsequent calls cannot be
measured.

Orben et al. (2019), PeerJ, DOI 10.7717/peerj.6721 8/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.6721#supp-1
http://dx.doi.org/10.7717/peerj.6721


Table 2 Datasets used to for Deep Neural Network training, cross-validation and selection for detection of aerial calls and ground calls of
Leach’s storm-petrels,Hydrobates leucorhoa. Each dataset consists of 2-second clips that contain either a positive or negative detection.

Call type Positive
detections

Negative
detections

Accuracya (%) Sensitivityb (%) Probability
thresholdc (%)

Training dataset
Aerial 6,004 3,977 – – –
Ground 6,149 20,883 – – –

Model selection dataset
Aerial 4,002 4,051 99.7 85.33 99
Ground 4,095 15,617 85.96 52.62 50

Randomly sampled test dataset
Aerial 1,357 3,414 98.35 78.92 99
Ground 151 4,630 75 23.84 50

Notes.
aAccuracy is calculated as the number of positive detections/(number of positive detections+ number of negative detections) above a probability threshold.
bSensitivity is calculated as the number of positive detections (above a probability threshold)/number of true positive events in the dataset. The number of true positive events was
determined by manual review.

cThe probability threshold is the user selected cutoff above which events are assumed to have the signal of interest.

The performance of electret microphone elements in the SM3 internal microphones
can be negatively impacted when saturated with water from repeated exposure to rain or
water vapor. To detect potential microphone failures and remove poor quality recordings
from the survey data, we created a metric of recording quality (named flux-sensitivity)
that is a function of the average spectrum and the average fourth-power of the spectrum
in each 2-second clip, as well as the 2 clips before and after each clip. The resulting spectral
average falls somewhere between the average spectrum and the maximum spectrum in
each clip. Flux-sensitivity ranges between 0 and 120+, and three situations will cause the
value to be zero: (1) The microphone is dead and no signal is being registered, (2) The
microphone is defective and is only registering a broadband electrical noise (fuzz), or (3)
There is no bioacoustical activity present only wind noise, wave noise, or similar diffuse
noise sources. To only remove data when the mic was not working correctly over a long
period, all minutes with an average flux-sensitive value of 0 were removed from our analysis
(851 min, 0.2%).

Aerial call classification model performance
Training data for the aerial call was generated by randomly sampling the recordings and
manually reviewing and labeling 9,981, 2-second clips as containing LESP aerial calls or
not (Table 2). Model selection was performed using cross-validation on a second labeled
dataset (Table 2). Finally, a third and independent randomly sampled test dataset was
used to measure model accuracy (i.e., ratio of positives to total detections) and sensitivity
(Table 2). The accuracy of the aerial call model was also assessed through manual review
of a random subset of 3% (∼140,755) of the 2-second clips in the entire dataset flagged as
aerial calls by our model (accuracy: 98.7%). The aerial call model was then applied to the
entire dataset (total = 6,806.41 h of recordings, or 12,226,008 2-sec clips). Classification
model scores above the 99% probability threshold were accepted without manual review.
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Ground call classification model performance
Training data for the ground call model included 27,032-labeled 2-second clips (Table 2).
Model selection was performed using cross-validation on a second independent dataset
(Table 2). Because of low signal abundance in the data, we searched recordings from each
site for additional examples of the ground call for inclusion in the model training and
selection datasets, inflating the ratio of positive to negative examples (Table 2).

The randomly sampled test dataset only had 151 ground calls and the estimate of model
sensitivity likely was not representative of model performance on the full dataset. In an
attempt to correct for low signal abundance, 30-second clips centered on randomly selected
ground calls from each site/year were compiled (n= 602; SRN and SRS plots only had 0 and
2 positive events respectively). Since a ground call presence is likely temporally correlated
the 30-second window was chosen to increase the number of previously undetected
ground calls in the dataset to help train the model. This resulted in 3,946 positives and
5,056 negative events; the final ground call model achieved 54.33% sensitivity at a 50%
probability threshold. The ground call model was then applied to the entire dataset and
all detections (111,389 events >50% probability) were manually reviewed to remove false
positives. Real world accuracy on the entire dataset was 82.77% (92,197 positive detections).

Band limited energy analysis
Given the limitations of the call-based method in saturated soundscapes, we explored a
separate independent metric of acoustic activity—band-limited energy analysis. Similar
to a band limited energy detector (Mellinger et al., 2007), this approach can characterize
calling intensity and is sensitive to overlapping calls, making it a useful approach when
the signal of interest is the dominant signal in the soundscape, and overlapping calls
prevent enumeration of additional individual calls above the level of saturation. The main
limitation of this method is that band-limited energy analysis does not correct for the
presence of non-target sound energy in the same frequency band as the target sound (e.g.,
broad-band noise from surf, wind, other species). In our case, and based on the previously
reviewed acoustic clips, we assumed that the majority of the energy in this frequency range
comes from LESP. To characterize the relative amount of acoustic energy in the frequency
band where LESP aerial calls have the greatest amount of sound energy (1,376–1,462 Hz)
we used a fast Fourier transform (window size = 372 overlap = 0.875) to measure mean
relative energy in 187 separate 43-Hz frequency bins from 0–8,041 Hz for each 2-second
sound clip. We then calculated the mean relative energy per bin per hour and took a mean
of the bins from 1,376–1,462 Hz.

Radar analysis
At Goat Island, marine radar set in the horizontal (surveillance) position acquired a large
amount of interference from ocean waves, therefore Goat Island survey results are from
the vertical radar. Survey results from Saddle Rock are from the horizontal radar because
this allowed for consistency with previous radar data from this site (Sanzenbacher et al.
2010). The sampling areas differ slightly between the two radar orientations but in the
absence of interference radar counts were correlated. Across the five sampling days both
radars collected data at Saddle Rock, R2 values ranged from 0.60–0.84 on four nights and
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was 0.24 on a single night, with the lower value likely influenced by weather and wave
conditions. The abundance of storm-petrels in the airspace around colonies, combined
with erratic flight patterns of these birds, made it difficult to discern individual flight
trajectories. Therefore we used a pixel-based analysis as a measure of storm-petrel activity
and abundance versus counting single radar targets (Bertram, Cowen & Burger, 1999).
Specific methods and code for processing of radar images can be found in Sanzenbacher
et al. (2010) and Sanzenbacher et al. (2017). Briefly, for each colony, a mask image was
constructed to omit all pixels representing land and waves. Subsequently, LESP pixels were
identified using a set of criteria describing the intensity of the radar signal (saturation
0-1, default 0.0; value 0-1, default 0.4) and size of contiguous pixels (diameter = 2). For
each radar image the pixel count was summarized across 1-hectare grids at two scales
surrounding each colony at 500 m and 50 m at 1-minute, and hourly periods. For the
purposes of method comparisons only the large-scale (500 m) results are used as the two
scales were highly correlated (nightly: F1,15= 512.1, R2

= 0.97, p < 0.001; hourly: F1,152 =
5511, R2

= 0.97, p< 0.001). Construction of mask images and all radar data processing
was automated using custom built scripts.

Method comparisons
For each method, we tested annual and island level differences. For annual differences in
camera counts, we limited the dataset to when the moon was below the horizon. Then
we used a linear-mixed model of the camera derived birds/photo/min in plot GIB, with
year and moon phase as predictors and nested random effects (camera/night) (Pinheiro
et al., 2018). To test for island differences, we used a similar model restricted to 2015
when both islands were sampled when the moon was above the horizon, with island and
% moon illuminated as predictors and nested random effects (plot/camera/night). The
timeframe of comparison during the moon cycle was different for the annual and island
comparisons because comparative camera counts were available on different days (Table 1).
For the acoustic data, we used a binomial GAM implemented in ‘mgcv’ to test for annual
differences by accounting for the influence of diel, lunar, and seasonal patterns on hourly
aerial call rates (0–30/hour) at Goat Island from May 7 to August 28 (Table 2) (Wood,
2011). We included night of year, hour of night, moon illumination, moon above and
below the horizon, flux sensitivity, and the presence or absence of ground calls as predictor
variables. We used a similar model for ground calls, but because ground call rates at Goat
Island were low (mean= 0.54 calls/hour), we used the presence or absence of ground calls
as the response variable. In this model we included aerial call rate as a predictor variable.
We included the other type of call as a response variable in each model because one type
of call could be obscuring the call of interest, or generally facilitating more vocal activity
(Buxton et al., 2013).

Call rates (mean calls/min), acoustic energy, and camera detections (birds/min) were
regressed against burrow occupancy to assess activity patterns relative to active nests for
each year, island, and plot combination. To compare call rates with burrow occupancy, we
calculated ground call rates for themajority of the night (440 to 120min before sunrise), and
aerial calls for two non-peak time periods of the night to try to avoid periods of saturated
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call rates: 120 to 240 min after sunset and 120 to 60 min before sunrise. Acoustic energy
was calculated for each night. Mean call rate and acoustic energy were then calculated for a
29-night period centered on the date of grubbing; this allowed coverage for one complete
lunar cycle.

We next assessed the strength of the correlations among radar, camera and acoustic
measures of bird activity using simple linear regressions. Data were summarized as nightly
rates and these were considered independent sampling events. The full extent of each
overlapping timeframe between instruments was used for each method comparison.
Comparisons among acoustic measurements (aerial call rates, ground call rates, acoustic
energy), radar detections (large pixel scale), and camera detections (individual birds) were
tested for the entire dataset at both colonies and for Goat Island alone to test for correlation
at the high-density site only.

Due to the apparent saturation of aerial calls during periods of peak call activity, we
tested the performance of a non-linear model to characterize the relationships between
aerial call rates and nightly acoustic energy (Pinheiro et al., 2018), following the formula:

aerial call rate ∼
asymptote

1+ exp(xmidpt−response variable)
scale

in which, xmidpt is equal to the half the saturation (15 call/min), asymptote indicates
the value at saturation (30 call/min), and scale is the amount of change in the response
variable needed to increase the aerial call rate from half to 3/4 (Bunnefeld et al., 2011). All
analyses were conducted in R 3.3.2 (R Core Team, 2016 ), except where noted. Significance
was set at p < 0.05.

RESULTS
Burrow density and occupancy surveys
At Goat Island, total and occupied burrow densities were, respectively 5.44 burrows/m2

(±0.73 SE) and 4.6 burrows/m2 (±0.44 SE) in 2014 and 4.66 burrows/m2 (±0.57 SE)
and 3.22 burrows/m2 (±0.29 SE) in 2015. In 2015, the burrow scope allowed for positive
determination of 17 burrows that were deemed unknown using the grubbing method.
Burrow occupancy was not significantly different between grubbing only and surveys
augmented with a scope in 2015 (paired t -test, t = 0.15, p = 0.890, df = 3). At Saddle
Rock, randomly placed quadrats yielded no burrows (n= 10 quadrats/plot). However, a
census of both plots yielded a burrow density of 0.045 burrows/m2 (n= 14 burrows) with
burrow camera assessed occupancy of 0.035 burrows/m2 (n= 11 occupied). These values
were used in method comparisons. In 2014, the majority of occupied burrows on Goat
Island contained small downy chicks without adults (75%). In 2015, 58% of occupied
burrows at Goat Island contained downy chicks, some with adults. Similarly, at Saddle
Rock 53% of occupied burrows contained downy chicks; whereas, the rest of the burrows
had eggs or adults with undetermined nest contents.

Camera surveys
In total, 24,966 storm-petrel detections from Goat Island and 126 from Saddle Rock were
counted from camera images. Counting took 10–30 min for each burst containing 99
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photos; counting time depended on bird density and image clarity. Of the detections on
both islands, 74.7% were clear birds, 8.5% were eye shine, 6.0% were wings, and 10.9%
were blurry (Fig. S2). However, detections on Saddle Rock were dominated by non-clear
detection types. Using square root transformations for normality, detections of eye shine,
wings, and blurry birds in each burst were positively correlated to clear bird detections (eye
shine R2

= 0.34, p < 0.001; wings R2
= 0.21, p < 0.001; blurry birds R2

= 0.38, p < 0.001),
but the low R2 values indicated loss of information when only clear birds were counted,
therefore all detection types were combined. We elected to use counts from the entire
49.5 s (nphotos = 99) burst in our analysis. However, photos within each burst, were highly
correlated with each other and subsampling of 11–50 photos/min led to R2 > 0.9, indicating
that images could be collected at a lower frequency (Fig. S3). Other species were identified
in the photos including western gulls (Larus occidentalis), night herons (Nycticorax), and
rhinoceros auklets (Cerorhica monocerata). At Goat Island, camera detections were higher
in 2015 (F1,22 = 18.62, p < 0.001). Camera detections were greater at Goat Island than
Saddle Rock (F1,2= 23.20, p = 0.041).

Acoustic monitoring
From the full dataset, the aerial call model identified 4,691,985 events above the 99%
probability threshold. In total, 92,200 ground call events were detected after manual
removal of false positives. Because each 2 s clip was determined to contain a detection, or
not, a maximum of 30 detections could occur in one minute. Of the minutes that contained
aerial calls, 56.1% had >20 detections, which indicated frequent signal saturation for aerial
call rates. For the ground calls, only 0.08% of minutes with calls had >20 detections.

The final model explaining aerial call rates included night of year (by year), hour
(22-4), moon illumination separated by whether the moon was above the horizon or
not, presence of ground calls, and median flux sensitivity (Table S1 and Fig. S5). This
model explained 76.1% of the variation in aerial calls (Fig. 2), but retained a complicated
structure of autocorrelation of fluctuating 2–3 day cycles (identified by visual inspection
of autocovariance plots). Aerial call rates were significantly higher in 2014 than in 2015
(p< 0.001); similarly, hourly aerial call rates were relatively saturated (≥20 calls/min) more
frequently in 2014 (61%), than in 2015 (23%) (X 2

= 871.43, p < 0.001). The final binomial
GAM model including night of year (by year), hour, moon illumination separated by
whether the moon was above the horizon or not, aerial call rate, and median flux sensitivity
explained 41% of the variation in ground call rates. At Goat Island, ground calls occurred
more often in 2015 than in 2014 (p < 0.001). Ground call rates during hours when ground
calls occurred were higher in 2015 (0.61 calls/min), than in 2014 (0.43 calls/min).

Binomial GAM models were run to test for differences in call rates between Goat Island
and Saddle Rock in 2015 from May 5 to August 14 (Table 2). Both aerial call rates and
ground call rates were significantly higher at Goat Island than at Saddle Rock (p < 0.001).
The final model for presence of ground calls explained 71% of the variation and included
island, night of year, hour (20-6), moon illumination separated by if the moon was above
the horizon or not, aerial call rate, and median flux sensitivity (Table S1 and Fig. S5). The
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Figure 2 Annual patterns in call rates of Leach’s storm-petrels,Hydrobates leucorhoa, at Goat Island,
Oregon. GAM estimates are shown for (A) hourly aerial call rates and (B) the presence (1) or absence (0)
of ground calls in each hour. Model estimates were predicted by holding other contributing variables in
the model constant at their mean value.

Full-size DOI: 10.7717/peerj.6721/fig-2

final model of aerial call rate explained 87% of the variation with same predictor variables
except ground call presence replaced aerial call rate as a predictor variable.

Radar Surveys
In total, over 209,000 radar images (average 11,000 images/night) were analyzed for LESP
activity and summarized in 10-minute intervals relative to sunset. The radar detected
storm-petrels during all 154 h of survey time. Nightly, the mean number of pixels/ha was
low, and frequently zero, during the first hour after sunset and slowly increased with counts
remaining high until the sixth or seventh hour after sunset and then decreasing until they
were low or zero by sunrise. Summaries of monthly activity levels found that detections
at Goat Island in May were 32.7 (±8.5 SE) pixels/ha and 33.7 (± 12.2 SE) pixels/ha in
July. Detections at Saddle Rock were 1.04 (± 0.54 SE) mean pixels/ha in May and 2.39
(±1.03 SE) mean pixels/ha in July. Detections were significantly higher at Goat Island
than Saddle Rock (p < 0.001, non-parametric two-sample Wilcoxon (Mann–Whitney)),
whereas, detections were not different between May and July at either Goat Island (p = 1)
or Saddle Rock (p = 0.063).
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Method comparisons
Annual estimates of camera detections and call rates of both aerial and ground calls were
significantly related to burrow occupancy for each plot (Fig. 3). Camera detections were
the most strongly correlated with burrow occupancy (F1,3= 44.78, p= 0.007, R2

= 0.916),
followed by aerial calls 120–240min past sunset (F1,6= 51.5, p= 0.0004, R2

= 0.878), aerial
calls 60 to 120 min prior to sunrise (F1,3= 18.21, p = 0.024, R2

= 0.811), and ground call
rates (F1,6= 13.56, p = 0.010, R2

= 0.642). Acoustic energy was not significantly related
to burrow occupancy (F1,6 = 5.936, p = 0.051, R2

= 0.414). Because aerial calls during
the post sunset time period neared call saturation, with >20 calls/min in 2014 (Fig. 3C),
the aerial call rates prior to sunrise were used for further method comparisons. Island and
year sample size was too limited to compare radar abundances with burrow occupancy,
however higher radar detection rates mirrored higher burrow occupancy at Goat Island.

Using data fromboth islands, radar detection, camera detections, acoustics (call rates and
energy) were significantly and positively correlated with the exception that radar detections
did not correlate with either aerial or ground call rates (Table 3). Camera detections were
significant and linearly correlated to all other metrics of abundance (Table 3). Acoustic
energy was significantly related to both camera and radar detections; however, these
correlations had relatively low R2 values. Aerial calls and camera detections were the
most strongly related abundance metrics, and this was the only significant relationship
between data collection methods using the high-density Goat Island data alone (Table 3).
Generally, ground and aerial call rates were not highly correlated (Table 3, Fig. S4). Finally,
to assess if acoustic energy was capturing additional information when acoustic call rates
were saturated we fit non-linear models to the relationship of nightly aerial call rates with
acoustic energy at Goat Island. Non-linear models improved AIC scores and provided a
better fit to the data than linear models (Fig. 4).

DISCUSSION
The metrics derived from acoustics, radar, and images each provided unique information
on the abundance patterns of Leach’s storm-petrels, as none of the metric comparisons
resulted in an R2 greater than 0.65. Counts of birds within the small field of view of the
IR trail cameras were significantly correlated with all other metrics. Acoustic recorders
were easily implemented throughout the season, and yielded three metrics of abundance:
ground call rates, aerial call rates, and acoustic energy. Acoustic energy and aerial call rates
were strongly related, but neither related strongly to ground calls. While nightly attendance
patterns were similar between call rates and radar, overall correlation was low, potentially
due to the scale of inference from each method or bird behavior (e.g., frequency of calls
vs. flight). Long-term deployments of all methods have the potential to be the foundation
of a robust monitoring program, if they can be implemented at the spatial and temporal
scale necessary to document the population of interest. Further investigation is warranted
to better understand the scale of change, or the sensitivity of each method to changes in
abundance.

Trail cameras provided a promising new method for quantifying colony abundance of
nocturnal seabirds. Counts from photos were strongly correlated with both the colony
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Figure 3 Comparison between abundance metrics of Leach’s storm-petrels,Hydrobates leucorhoa.
Comparison between burrow occupancy and (A) camera counts, (B) acoustic energy, (C) nightly ground
call detection rate, and (D) nightly aerial call detection rate for the period after sunset (120–240 min past
sunset, dashed line) and a period prior to sunrise (60–120 min prior to sunrise, solid line) to avoid hours
with high call saturation. Acoustic data was summarized for a 14-night buffer around the grubbing date to
encompass one lunar cycle (29 nights). Ground call detection rates were calculated from 440 to 120 min
prior to sunrise to encompass most of the night. In 2014, burrow occupancy was determined by manual
inspection of the burrows, while in 2015 manual inspection was augmented with a burrow scope.

Full-size DOI: 10.7717/peerj.6721/fig-3

scale radar abundance index and the plot level burrow occupancy. Adding cameras to a
monitoring program is low cost and requires minimal additional effort. With maturing
automated image analysis, this tool will only improve. Likewise, implementing IR cameras
as a stand-alone option seems viable as a low budget option, however there is significant
species variation in flight patterns around colonies and which would likely influence
the efficacy of this metric for other species (e.g., Perkins, Bingham & Bolton, 2017). Leach’s
storm-petrels are small, agile fliers and appear to repeatedly take flight during the nightwhen
attending the colony. In contrast, heavier wing-loaded species such as sooty shearwaters
(Ardenna grisea), or tufted puffins (Fratercula cirrhata) circle a colony, potentially relative
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Table 3 Summary of instrument comparisons for measuring nightly abundance of Leachs storm-
petrels,Hydrobates leucorhoa, on Goat Island and Saddle Rock, Oregon. Linear models were run with
both islands combined and then on Goat Island separately to test method comparisons at a high-density
site only. Model estimates are sorted by R2 values; significant p-values are in bold. Radar models were re-
stricted to 2015, while other models include data from both years.

Comparison R2 R2 (adj.) F p df

Both Islands
Aerial calls∼ Camera 0.649 0.639 66.58 <0.001 36
Radar∼ Camera 0.572 0.529 13.35 0.004 10
Aerial calls∼ Acoustic Energy 0.512 0.511 991 <0.001 946
Ground calls∼ Camera 0.312 0.297 20.86 <0.001 46
Camera∼ Acoustic Energy 0.270 0.255 17.05 0.0006 46
Radar∼ Acoustic Energy 0.207 0.175 6.526 0.0171 25
Aerial calls∼ Radar 0.166 0.114 3.18 0.093 16
Ground calls∼ Acoustic Energy 0.106 0.105 112.6 <0.001 946
Ground calls∼ Aerial calls 0.102 0.101 107.8 <0.001 946
Ground calls∼ Radar 0.048 −0.012 0.801 0.384 16

Goat Island only
Aerial calls∼ Acoustic Energy 0.559 0.558 1048 <0.001 827
Aerial calls∼ Camera 0.457 0.427 15.14 0.0011 18
Radar∼ Camera 0.188 −0.015 0.925 0.391 4
Camera∼ Acoustic Energy 0.125 0.093 3.983 0.0558 28
Aerial calls∼ Radar 0.119 0.039 1.48 0.249 11
Ground calls∼ Aerial calls 0.092 0.091 83.94 <0.001 827
Ground calls∼ Radar 0.094 0.012 1.141 0.308 11
Ground calls∼ Acoustic Energy 0.084 0.082 75.44 <0.001 827
Ground calls∼ Camera 0.075 0.042 2.258 0.1441 28
Radar∼ Acoustic Energy <0.001 −0.059 0.002 0.968 17

to wind directions, and then land, exhibiting little localized flight behavior. These species-
level differences in flight behavior are presumably also relevant considerations for both
radar and acoustic metrics. An added benefit of IR cameras is that this method allows for
detection of unexpected species and behaviors. In our case, we identified additional species
including potential avian predators. This could also be done with acoustic recordings by
running a suite of detectors for other vocally active species.

Overall, our findings suggest that among the current technology tested, acoustic
monitoring has the greatest potential to monitor abundance of LESP at fine temporal
resolution with multiple indices over long survey periods. While time-lapse photography
and radar both could be scaled to deliver seasonal data, they provide a metric of aerial
activity, albeit on different spatial scales per sensor (with one caveat, occasionally birds
in images were counted on the ground). The information-dense acoustic recordings
could yield a greater variety of indices beyond what we calculated. For instance, Leach’s
storm-petrels exhibit sexual dimorphism in the frequency of their chatter calls that could
provide insights into sex attendance patterns (Taoka et al., 1989), and detection of chick
calls, heard during spot checks of the recordings, could provide an index of breeding
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Figure 4 Acoustic energy at a Leach’s storm-petrel colony.Non-linear model fits between nightly
acoustic energy from 1,376–1,462 Hz and nightly aerial call rates for the three plots on Goat Island, OR in
both 2015 and 2016.

Full-size DOI: 10.7717/peerj.6721/fig-4

success and a reference for breeding phenology. Additionally, unaccounted for short-term
daily correlation remained in the binomial GAM analysis of acoustic call rates (e.g., 2–3
day cycles). This pattern may be related to foraging trip durations or social facilitation of
colony attendance and further investigation is warranted (e.g., Granadeiro et al., 2009).

In this study, marine radar provided data at the colony scale, yet was most correlated
to counts from cameras with a small spatial area of inference, potentially because both
are metrics of flight activity. This, and the lack of correlation between radar and ground
calls suggests that flight behavior measured at the colony scale may not be tightly linked
with reproductive effort. This is perhaps not surprising as individual flight-paths may
be convoluted and at the colony-scale includes non-breeding birds. However, further
investigation is needed to disentangle this. Additionally, at the colony scale, breeding
seabirds continue to attend even when reproductive success is low and non-breeding
seabirds may visit colonies throughout the breeding cycle, often with a seasonal peak
in the return of failed breeders and prospecting immatures (Boulinier et al., 1996). Little
specific information is available for colony attendance of non-breeding birds for Leach’s
storm-petrels and this complicates interpretation of any abundance metric tested in
our study. As implemented, radar created the least disturbance, since colonies were not
physically visited and remains the sole option for inaccessible sites. With the advances in
technology that have occurred since we conducted our study the maintenance visits for
cameras and acoustic recorders would not be necessary; regardless, colonies need to be
accessible for deployment and retrieval of recording devices. Given the varying results of
the method comparisons, coupled with the costs of purchasing and maintaining radars
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and the greater complexity of radar operations relative to camera and acoustic units, we
do not recommend additional radar studies for LESP along the Oregon coast at this time.

A reliable long-term monitoring method must be robust to shifts in breeding
phenology. For burrow nesting seabirds, surveys are traditionally timed to coincide
with assumed periods of high colony attendance (Ratcliffe et al., 2010), yet seabird breeding
phenology is known to shift due to changing environmental conditions (Gjerdrum et al.,
2003; Frederiksen et al., 2004). This consideration is certainly pertinent for the Oregon
coast, as recent oceanographic conditions—a marine heatwave (Bond et al., 2015), are
unprecedented (Frölicher & Laufkötter, 2018). Very little is known about how these changes
inmarine conditions could impact storm-petrel breeding phenology in Oregon, but seabird
breeding phenology is often variable (Byrd et al., 2008; Youngflesh et al., 2018). Using a
monitoring method that captures the full extent of the breeding season, prevents missed
information and misinterpretation. As implemented here, both camera and acoustic
monitoring provide the temporal data stream necessary to address this, but further analysis
is needed. Stationary radar systems could be set-up to record a similar seasonal record,
but this effort is much more logistically complex than deploying acoustic recorders and
trail-cameras.

Understanding annual differences in abundance is highly dependent on an
understanding of within season variation in attendance patterns. Throughout the season,
individual Leach’s storm-petrels visit the colony for different reasons and at different
frequencies. For example, during incubation, whenmate switchesmight occur infrequently,
aerial calls, photo counts, and radar surveys might underestimate population size, but
provide a better understanding of the number of breeders. Conversely, during a colony
re-occupation period a higher number of non-breeders might visit for nest prospecting
and pair bonding and result in higher population estimates and greater variability among
monitoring metrics. For instance, the cross-method comparison revealed low R2 values
between ground calls and all other metrics, yet correlation with burrow occupancy,
suggesting this metric is related to breeding effort rather than colony attendance.
Additionally, annual or colony level differences in foraging trip durations (Pollet et al.,
2014; Hedd et al., 2018), could lead to differences in abundances of birds attending a
colony on a given night. We found a relationship with moonlight for both ground and
aerial call rates, this was not completely surprising as avoidance of colonies on full moon
nights has been previously documented (Watanuki, 1986; Buxton et al., 2013). Our hourly
analysis of acoustic and radar data highlight the night pattern in colony attendance by
Leach’s storm-petrels: an increase, plateau, and drop-off by dawn. When testing for
annual differences it is important to obtain a season-long record of attendance to avoid
mismatches in phenology between years. Other explanatory factors such as weather
conditions influence colony attendance patterns of seabirds and detection rates of acoustic
recorders and cameras, and inclusion would likely increase the explanatory power of our
models.

Analytical methods are rapidly evolving, and could be adapted to overcome two of the
analytical challenges we found in this study: overlapping aerial calls and manual counting
of photos. We found an annual differences in aerial call rates, however this difference was
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largely driven by the lower percentage of saturated hours in 2015. Saturation of aerial call
rates was the result of how the acoustic data were processed, and in future studies this could
be overcome by reducing the 2-second call detection window, applying a sliding window,
and/or building detectors that are able to count overlapping calls. Acoustic energy appeared
to overcome some of the challenges in aerial call saturation, but provides a less precisemetric
as ambient sounds, especially wave noise, also contributed to and complicated the record
at Saddle Rock. Similar to advances in acoustic signal recognition, methods to automate
the recognition and subsequent counting of objects in photos are rapidly evolving. During
our study, camera counts were limited in scope due to the extensive amount of time that
manual counting required. Ideally, detection algorithms for automated counting of target
images that are currently under development will substantially reduce this processing time
(Weinstein, 2017).

RECOMMENDATIONS
The success of a long-term monitoring hinges on a robust sampling design and the
availability of reliable resources to sustain the monitoring effort. We did not include
a comprehensive analysis of the cost of each of the methods since they are continually
changing and survey effort impacts costs, but equipment costs (cameras < acoustic
recorders < radar), field costs (cameras ≈ acoustic recorders < radar), data processing
(radar < automated acoustic call rates < manual camera counts), and data interpretation
(radar≈ camera counts < acoustic data) all contribute to method feasibility and how easily
a given monitoring method could be implemented on a scale representative of seabird
populations.

Whereas acoustic recorders are currently more commonly used in remote monitoring of
seabird colonies, we recommend a new emphasis on deployment of cameras for a number
of reasons. First, camera derived counts were correlated with acoustic metrics, radar
surveys and burrow occupancy estimates (more data is needed to better understand these
relationships). Thus, camera derived counts could be particularly helpful for monitoring
less vocal species such as tufted puffins (Fratercula cirrhata). Second, photos have the ability
to detect rare events or species (e.g., predators) that could be informative for management
in unanticipated ways (Anderson et al., 2017). The same is true for acoustic datasets since
the sampling sphere is larger; however, particular sounds need to be filtered through
detection algorithms or spectrograms need to be visually reviewed. In contrast, photos
may be more easily scanned for the unexpected. We found camera counts were highly
correlated over the duration of a burst. It seems likely that photographs taken at 1–10 min
intervals throughout the night would yield as much or more information on abundances
than the targeted counts of this study. A more evenly spaced recording scheme throughout
nighttime hours would allow trail cameras to record for a longer duration. Finally, since
we purchased trail cameras, improvements on image capacity and battery life make this
application more feasible without maintenance visits, and increased demand may foster
purpose-built camera systems.

However, we do not imply validation and interpretation of detection rates from acoustics
and images are complete. Additional validation studies should be done concurrently with
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monitoring over the longer-term because datasets can be re-analyzed as methods progress.
Our method comparisons appeared to be related at large effect sizes (i.e., when data
from both colonies was included). Likewise, our sample sizes were small and additional
calibration at intermediate densities is needed, along with a plot design that better reflects
instrument sampling range. Our analysis identified significant differences between years.
These differences may be reflective of variation in attendance patterns related to colony
success. Our analysis was limited to 2–3 paired camera and acoustic recorders per-colony,
per-year. This appears adequate to capture large-scale differences in abundance, but
spatial placement and the number of recorders relative to the size of the colony are key
considerations. The number of recorders that are needed per unit area still needs validation
and is beyond the scope of this study, but likely is dependent on species characteristics
and colony topography (e.g., Oppel et al., 2014). Placement of recorders at colony edges
versus colony centers could lead to different conclusions depending on how population
changes occur (colony expansion/contraction versus more uniform changes in density).
Additionally, placement of acoustic recorders must consider other sources of ambient
noise that could interfere with recording quality such as wind and waves (Buxton & Jones,
2012). Likewise, placement of cameras needs to consider prevailing winds and weather to
maximize collection of usable photos. In our study, we coupled the two to make direct
comparisons, but deploying instruments in an alternating grid could capture more spatial
variation.

Our results indicate that IR camera and acoustic monitoring have potential for low cost
monitoring of dense colonies of burrow or crevice nesting species. Additionally, results of
our acoustic monitoring suggest that with additional analysis and advances in technology
acoustics could provide an efficient monitoring tool in these scenarios. Considering the
lack of information on population trends and the need to identify declines before they are
catastrophic, we urge managers to employ both methods while working towards refining
detection and data analysis methods. Indeed, the USFWS Inventory and Monitoring
Programs of the US West Coast regions are currently developing seabird monitoring
protocols under the new Pacific Seabird Program and are considering these methods as
they reach the full implementation stage for each species. Remote methods analyzed in
this study have the potential to provide low impact, repeatable, and low cost monitoring
techniques for annual monitoring and, thereby, provide an early warning indicator and
the opportunity to discover and mitigate the root causes of population changes.
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