Short and intermediate-term consequences of environmental disturbances on coral reef fish abundance (#27764)

First submission

Editor guidance

Please submit by 6 Jun 2018 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the location described by the author.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

Custom checks

- 3 Figure file(s)
- 1 Table file(s)

Vertebrate animal usage checks

- Have you checked the authors ethical approval statement?
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Structure your review

The review form is divided into 5 sections.

Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

Standout reviewing tips

The best reviewers use these techniques

-	
	n
	M

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Short and intermediate-term consequences of environmental disturbances on coral reef fish abundance

Zegni Triki Corresp., 1, Redouan Bshary 1

 1 Institute of Biology, University of Neuchâtel, Neuchâtel, NE, Switzerland

Corresponding Author: Zegni Triki Email address: zegni.triki@unine.ch

Global warming induces an increase in frequency and intensity of extreme weather events such as cyclones, storms and prolonged heatwaves. For instance, the Great Barrier Reef around Lizard Island has suffered from severe tropical cyclones Ita (2014) and Nathan (2015) and a massive coral bleaching due to El Niño (2016). Here, we asked how ish communities evolved in response at two reef sites, both affected by bleaching but only one harbouring a heavily damaged reef structure since the cyclones. We quantified fish abundance and classified the species according to their functional tait (i.e., diet composition). We compared baseline data from before the disturbances to data collected after the disturbances in 2016 and 2017. Overall, we recorded up to 78% declines in fish densities after the environmental perturbations. The decrease in densities was more substantial in 2017 than in 2016, in particular at the site affected only by the 2016 bleaching. At the site damaged by cyclones and bleaching, the overall decline was due to significant reductions in fish densities in nine of eleven fish functional groups. Furthermore, at the site affected by bleaching and not by cyclones, we recorded two functional groups that showed significant declines in 2017, as well as increased piscivores densities. Altogether, environmental perturbations due to extreme climate events appear to have detrimental consequences for reef fish populations that may accumulate over several years.

1	little: Short and intermediate-term consequences of environmental disturbances on coral
2	reef fish abundance
3	
4	Authors: Zegni Triki* & Redouan Bshary
5	Affiliations:
6	Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
7	*Correspondence to: Zegni Triki, email: <u>zegni.triki@unine.ch</u>
8	
9	Keywords: coral bleaching, cyclones, fish population density, functional groups, Great Barrier
10	Reef
11	
12	

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Abstract

Global warming induces an increase in frequency and intensity of extreme weather events such as cyclones, storms and prolonged heatwaves. For instance, the Great Barrier Reef around Lizard Island has suffered from severe tropical cyclones Ita (2014) and Nathan (2015) and a massive coral bleaching due to El Niño (2016). Here, we asked how fish communities evolved in response at two reef sites, both affected by bleaching but only one harbouring a heavily damaged reef structure since the cyclones. We quantified fish abundance and classified the species according to their functional trait (i.e., diet composition). We compared baseline data from before the disturbances to data collected after the disturbances in 2016 and 2017. Overall, we recorded up to 78% declines in fish densities after the environmental perturbations. The decrease in densities was more substantial in 2017 than in 2016, in particular at the site affected only by the 2016 bleaching. At the site damaged by cyclones and bleaching, the overall decline was due to significant reductions in fish densities in nine of eleven fish functional groups. Furthermore, at the site affected by bleaching and not by cyclones, we recorded two functional groups that showed significant declines in 2017, as well as increased piscivores densities. Altogether, environmental perturbations due to extreme climate events appear to have detrimental consequences for reef fish populations that may accumulate over several years.

30

Introduction:

32

33

34

35

31

The recently observed increase in frequency and magnitude of extreme weather events are attributed to the anthropogenic global warming (Cai et al., 2014; Photinen et al., 2016; Cheal et al., 2017; Hughes et al., 2018). A naturally occurring climate event is the El Niño cycle; it brings

warm water towards the indo-pacific plovoking hence a cascade of planges in the weather conditions. A prolonged El Niño event would lead to a remarkable increase in seawater temperatures (Cai et al., 2014; Hoegh-Guldberg & Ridgway, 2016). Overstressed coral tissues, would, therefore, expulse their intracellular symbionts "zooxanthella", from where corals gain their different pigmentations. Henceforth, bleached corals face death fate if they do not reestablish the symbiotic relationship with the zooxanthella within a range of six months postbleaching (DiazPulido & McCook, 2002). In addition to the threat of coral bleaching, cyclones can be extremely devastating due to the formation of strong waves that can page exposed coral reef fields, including organisms living there (Cheal et al., 2017). The recovery might be compromised if the reef is repeatedly exposed to tropical cyclones over short-time intervals (De'ath et al., 2012; Puotinen et al., 2016).

Lizard Island, an island in the northern Great Barrier Reef (GBR), Australia, is within a marine reserve, a world-top destination for marine biologists. In April 2014, Cyclone Ita hit Lizard Island (Pizarro et al., 2017), reaching an intensity of the highest level in tropical cyclones categories (Puotinen et al., 2016). In April 2015, Lizard Island got hit by another severe tropical cyclone, Cyclone Nathan (Pizarro et al., 2017). Furthermore, the Australian 2016 summer (i.e., December to February) witnessed the worst massive coral bleaching event since the 1980's (Hughes et al., 2017), due to the warmest El Niño event recorded ever (Normile, 2016). The bleaching touched more than 60 % of the coral cover at the GBR (Hughes et al., 2017). Thus, for the third year in a row, Lizard Island suffered from extreme weather events, Taising concerns about potential consequences.

Here we plovide data on Lish abundance at two different time points (i.e., June 2016 and June 2017) after the perturbations at Lizard Island on two reef sites for which we had data before the perturbations. We compared fish total abundance as well as fish species categorised to functional group level before and after the perturbations. To sort fish species into functional groups, we opted for diet as the functional trait. Here, we expected to find a significant decline in fish species that rely either directly or indirectly on live corals for their diet (Wilson et al., 2006). In contrast, due to the colonisation of dead corals by microalgae (Cheal et al., 2010), we expected an increase in the abundance of herbivorous fish species specialised to feed on such algae (Randall, 1961). Finally, there was an important difference between our two study sites in that the cyclones destroyed the reef structure only at Site-1 while Site-2 had been sheltered from wave actions by the island itself. The destruction of reef structure implied the destruction of shelters, leading us to predict that predators should also belong to winners of the perturbations at Site-1 by gaining easy access to prey.

Methods:

75 Field sites:

Fish census data were collected on the fish around the Lizard Island Research Station (14.6682° S, 145.4604° E), Great Barrier Reef, Australia. The two study sites are mermaid Cove as "Site-1" and North Horseshoe as "Site-1" Site-1 forms a continuous fringing reef approximatively of a size of 35,000 m² depth 1 to 7 m) (i.e., estimated from maps: https://www.freemaptools.com/area-calculator.htm), located in a small bay on the northern side

82	of Lizard Island, this part of the island is an exposed area (Ceccarelli, Emslie & Richards, 2016;
83	Pizarro et al., 2017). Site-2 is also a continuous reef of a coral garden (depth 1 to 4 m) of a size
84	approximately 17,000 m ² located within a protected area on the western side of the island (see
85	Fig. 1) (Pizarro et al., 2017).
86	
87	Cyclone Ita and Nathan severely damaged the exposed Site-1, and the remained coral cover got
88	bleached through the coral bleaching event. However, Site-2, due to its protected location from
89	the two cyclones was touched by the bleaching only, in 2016. Data before the extreme weather
90	events were collected between June and August 2011 from Site-1 smer et al., 2014) and
91	between June and August 2014 from Site-2 (i et al., 2017), whereas data after the extreme
92	weather events were collected between June and August in 2016 and 2017 from both sites Site-1
93	and Site-2 (Fig. 1).
94	
95	Data collection followed a timeline concerning the extreme weather events: In 2011: fish census
96	data were collected by Wismer et al. (2014) at Site-1. In May 2014: Cyclone Ita hit Lizard
97	Island, only Site-1 got damaged by the cyclone. In June 2014: fish census data were collected

Dafa collection followed a timeline concerning the extreme weather events: In 2011: fish census data were collected by Wismer et al. (2014) at Site-1. In May 2014: Cyclone Ita hit Lizard Island, only Site-1 got damaged by the cyclone. In June 2014: fish census data were collected Site-2 (Triki et al., 2017). In May 2015: Cyclone Nathan hit Lizard Island, and again only Site-1 got hit. In February/March 2016: El Niño event bring warm water causing coral bleaching, here both sites are touched by the bleaching. In June 2016: we collected fish census data from both sites. In June 2017: we went back to both sites and collected fish census data. All fish census data collection were conducted in the Australian winter, excluding variation in seasons as a confounding variable.

105 sh census data collection:

Scuba divers collected fish censuses data to estimate coral reef fish abundance. Therefore, we swam (n=10) replicate of 30m transects at each site/year. We placed the transects haphazardly either parallel the shoreline or to the reef crest. We first recorded all large visible fish with a body total length TL > 10cm on a 5m wide area, followed by small fish with a body $TL \le 10$ cm on a 1m wide area along the 30 m transect. We recorded only adult coral reef fish Each of the ten replicate transects, on each site/period, were sampled at least 10 meters apart from each other. Overall, we covered an area of 1500 m² on each site/period. All fish were identified to species level, and census protocols followed (Wismer et al., 2014; Triki et al., 2017). We calculated the fish abundance by scaling densities per 100 m².

Fish species categorisation:

Fish species were categorised into functional groups based on diet (i.e., all species that share similar trait value (Butterfield & Suding, 2013; Brandl et al., 2016). Verall, we had 11 groups (Frédérich et al., 2009; MacNeil et al., 2015; Froese & Pauly, 2016; Brandl et al., 2016): (1) browsers, fish that mainly feed on macroalgae, for example: bluespine unicornfish, *Naso unicornis*; (2) corallivores, fish that feed on corals, for example: golden butterflyfish, *Chaetodon aureofasciatus*; (3) detritivores, fish that mainly feed on dead organic material "detritus", for example: striated surgeonfish, *Ctenochaetus striatus*; (4) scrapers/excavators, fish that would remove reef substrate while looking for living material, for example: daisy parrotfish, *Scarus sordidus*; (5) grazers, fish that feed on the fast growing turf algae, for example: barred

rabbitfish, *Siganus doliatus*; (6) macro-invertivores, predators that feed on large invertebrates, for example: orange-lined triggerfish, *Balistapus undulatus*; (7) micro-invertivores, fish that feed on small invertebrates, for example: batu coris, *Coris batuensis*; (8) pisci-invertivores, predators that feed on fish and invertebrates, for example: longface emperor, *Lethrinus olivaceus*; (9) piscivores, predators that feed on fish, for example: Honeycomb grouper, *Ephinephelus merra*; (10) planktivores, fish that feed on plankton, for example: scissortail sergeant, *Abudefduf sexfasciatus*; (11) spongivores, fish that feed on the sea sponges, for example: sixbar angelfish, *Pomacanthus sexstriatus*. Categorisation into functional groups followed methods of Wernberg et al. (2013) and MacNeil et al. (2015), respectively. Furthermore, we completed missed information for fish species that do not figure in the two studies with data from a web-based FishBase (Froese & Pauly, 2016).

Statistical analyses:

All data analyses and figures were generated by using the Software Rstudio[®] (version darwin.10.08.0). Due to data violating assumptions regarding normality and homogeneity of variances, we opted for non-parametric statistics. We considered data collected from the same site but in different years as independent samples due to the time lapse between the three periods of data collection. We ran Kruskal-Wallis from the package (agricolae) in R language where we tested for changes in fish densities in each affiliation group in each year of data collection within each study site. To correct for multiple hypotheses tests on data from each site separately, we opted for the sequential Holm-Bonferroni method to adjust the threshold of probability significance α . Significant Kruskal-Wallis p-values were tested for post hoc analyses to detect

eventual differences occurred between the time periods within each site. Also, for the post hoc analyses, we corrected for multiple tests between years by employing Holm's method in the *agricolae* package in R language.

154

155

156

151

152

153

Ethical note

- The Animal Ethics Committee of the Queensland government (DAFF) approved the project (CA
- 157 2016/05/970 and CA 2017/05/1063).

158

159

Data availability:

The data is available in the repository figshare (Data DOI: 10.6084/m9.figshare.4990919).

161

Results:

163

162

Fish census data showed that fish abundance significantly changed after the extreme weather 164 events. Fish population size at Site-1 changed dramatically after the disturbances (n = 30, $X^{2}_{(3)}$ = 165 22.43, p < 0.0001, Fig. 2). It dropped from, mean \pm SD; 193.46 \pm 28.13 individuals per 100 m², 166 167 in 2011 before disturbances, to only 48.93 ± 22.84 in 2016 and 23.66 ± 15.69 in 2017 after cyclones and bleaching events. That is, fish population, dropped by 75 % in 2016, and kept 168 declining to reach a loss of up to 88 % in 2017. At Site-2, we also found significant differences 169 in fish abundances between the years (n = 30, $X^2_{(3)}$ = 19.04, p < 0.0001, Fig. 2). First, we 170 recorded only a marginal decrease of 26% from, mean \pm SD; before: 174.33 \pm 130.2 fish 171 individuals per 100 m² in 2014, to 129 \pm 51.61 in 2016 (i.e., four months after the bleaching 172 173 event). However, in 2017, a year after the bleaching, we recorded a severe decrease in the overall

PeerJ

174	fish densities at Site-2, where we counted 37.8 ± 9.26 individuals per 100 m^2 , the equivalent of
175	78 % loss.

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

By sorting fish communities to the level of a common functional trait value affiliation (i.e., diet composition), we found that the changes in fish densities after the perturbations were not symmetric between Site-1 and Site-2 (Fig. 3). All the statistical outcomes for this section are reported in Table 1. Nine out of 11 functional groups at Site-1 recorded a significant decrease in fish abundance in 2016 and 2017 compared to 2011 fish census data. The nine functional groups that declined in densities at Site-1 were: the browsers, corallivores, detritivores, macro-invertivores, micro-invertivores, excavators/scrapers, grazers, planktivores spongivores. At Site-2, we only found significant declines in two functional groups: excavators/scrapers already with a decreased abundance in 2016, while spongivores' decrease appeared only in 2017. Planktivores also showed a major decline (Table 1), but the results were statistically not significant. On the other hand, micro-invertivores showed a transient increase in 2016 but declined significantly in 2017, below the densities recorded in 2014. The only functional group that increased in counts at Site-2 in both 2016 and 2017 was the piscivores. Piscivores counts also increased at Site-1 in 2016 and 2017 compared to 2011, but these increases were not statistically significant (see Fig. 3 and Table 1).

192

193

191

Discussion:

194

195

196

We had asked in how far recent extreme weather perturbations such as cyclones 2014/2015 and El Niño 2016, which are predicted to increase as a consequence of climate change, affect coral

reef fish communities at two sites at Lizard Island. Altogether, our findings showed that environmental disturbances correlated with a massive overall loss in fish densities at these sites. Furthermore, the time lag between the perturbation and data collection appeared to be of major importance. In the discussion, we first address the consequences on fish densities at each study site separately, then we discuss general aspects of the present study.

203 Site-1

Following the 2014 and 2015 cyclones, corals at Site-1 were heavily damaged (Pizzaro et al. 2017). Cyclones usually destroy the reef structure, which would refrain corals from possible rapid recovery (Cheal et al., 2002). The slow recovery of corals might explain fish census in 2016, where we documented substantial declines in fish abundance. Also, almost all fish functional groups at the site suffered severe losses in numbers. The recorded losses support previous findings concluding that habitat structure is essential for fish assemblage (Pratchett et al., 2011). Furthermore, the fish census was even lower in 2017. Currently, we cannot confirm whether habitat degradation due to cyclones kept influencing negatively fish assemblage or whether the 2016 coral bleaching was the driving cause for the declines from 2016 to 2017.

Site-2

Site-2 had been protected from the cyclones by the island. However, it was exposed to coral bleaching in 2016. During the El Niño cycle, in February-April 2016, the Australian Institute of Marine Science reported an increase in seawater temperature by ~2°C above the normal around

Lizard Island, reaching thus a maximum of ~31 °C. The same difference was recorded later in June 2016, when the water temperature had dropped down to ~26°C during our fish surveys. The resulting coral bleaching in 2016 was more intense than in previous years, touching up to 60 % of the coral cover at the GBR (Hughes et al., 2017). Such prolonged and strong bleaching would result inevitably in a massive corals death (DiazPulido & McCook, 2002). Losses larger than 10 % of the coral cover could be already detrimental to fish populations (Wilson et al., 2006). While our analyses regarding overall fish densities and functional groups yielded statistically non-significant differences between 2014 and 2016 fish censuses, the overall tendency was a decline in fish numbers. Indeed, in a parallel study that explored the effects of the perturbations on the marine cleaning mutualism involving the cleaner wrasse *Labroides dimidiatus* and its 'client' reef fishes, Triki et *al.* (2017) found that the populations of cleaners and client species larger than 10 cm were significantly reduced (by 80% and 40%, respectively).

Importantly, fish census in 2017 showed a severe decrease in fish densities. This delayed decrease in fish densities might be due to lack of food, habitat loss, or both. A potential explanation is that fish surveys in 2016, conducted four months after the onset of El Niño, probably fell in the range of the dying process of the corals due to the bleaching (DiazPulido & McCook, 2002), with their surface not yet over colonised by algae. In contrast to Site-1, major number losses were only recorded in three functional groups: spongivores, excavators and planktivores. Also, two functional groups – microinvertivores and piscivores – showed an initial increase in densities that persisted only in the piscivores group. Probably the bleached corals offered neither suitable shelter for coral-dwelling species (Coker, Pratchett & Munday, 2009; Pratchett et al., 2011) nor a camouflage background, facilitating thus visual recognition of prey

(Phillips et al., 2017). Further monitoring will be needed to test whether two to three years after the perturbation a similar picture will emerge as at Site-1, or whether severe coral bleaching has more variable effects on fish functional groups.

General aspects

The losses in the abundance of some functional groups are detrimental to the reef because most of these functional groups are known for their beneficial role in promoting healthy corals (Green & Bellwood, 2009; Rasher, Hoey & Hay, 2013). In particular, browsers, detritivores, and excavators/scrapers have a diet that is beneficial for coral resilience, coral settlement, and growth, as these groups prevent microalgae from taking over on corals (Green & Bellwood, 2009; Cheal et al., 2010; Rasher, Hoey & Hay, 2013). Equally important are the planktivores and spongivores groups. They reconstitute a large proportion of the overall fish counts on the two studied reef sites (Table 1). The planktivores are an essential functional group for maintaining the ecosystem well equilibrated. In food chains, the planktivores belong to the lower trophic levels in the web. Their role consists of capturing rich nutrients, and transfer them to the bottom-up food chain (Pace et al., 1999; Fisher et al., 2015). Spongivores, on the other hand, have a significant role in protecting corals by feeding on overgrowing sponges, thereby reducing corals vs sponge competition (Hill, 1998). Thus, the recorded loss in spongivores may slow down the speed of coral cover recovery (Hill, 1998).

Overall, most fish functional groups came out as losing because of the environmental perturbations in the long term. Only the piscivores group kept relatively benefiting at both study

266	sites. Nevertheless, the reduction in prey densities would eventually lead to fewer predators due
267	to the trophic cascade in the food chain.
268	
269	Conclusion
270	Our study highlighted the importance of continuous monitoring to assess immediate as well as
271	intermediate-term consequences of extreme weather events. Our findings fit the previously
272	documented negative impact of extreme weather events such as cyclones and El Niño on coral
273	reef ecosystems. It hence appears that such events might have long-lasting adverse effects on fish
274	communities, likely causally linked to the state of the corals that provide shelter to the many
275	small fish species that are at the bottom of the trophic cascade.
276	
277	
278	Acknowledgement
279	We kindly thank the staff of Lizard Island Research Station for their support and friendship, and
280	Oscar Pizzaro for his valuable contribution to the paper.
281	
282	References:
283	Brandl SJ., Emslie MJ., Ceccarelli DM., T. Richards Z. 2016. Habitat degradation increases
284	functional originality in highly diverse coral reef fish assemblages. <i>Ecosphere</i> 7:e01557.
285	DOI: 10.1002/ecs2.1557.
286	Butterfield BJ., Suding KN. 2013. Single-trait functional indices outperform multi-trait indices in
287	linking environmental gradients and ecosystem services in a complex landscape. Journal
288	of Ecology 101:9–17. DOI: 10.1111/1365-2745.12013.

289	Cai W., Borlace S., Lengaigne M., Rensch P van., Collins M., Vecchi G., Timmermann A.,
290	Santoso A., McPhaden MJ., Wu L., England MH., Wang G., Guilyardi E., Jin F-F. 2014.
291	Increasing frequency of extreme El Nino events due to greenhouse warming. Nature
292	Climate Change 4:111–116. DOI: 10.1038/nclimate2100.
293	Ceccarelli DM., Emslie MJ., Richards ZT. 2016. Post-Disturbance Stability of Fish Assemblages
294	Measured at Coarse Taxonomic Resolution Masks Change at Finer Scales. PLOS ONE
295	11:e0156232. DOI: 10.1371/journal.pone.0156232.
296	Cheal A., Coleman G., Delean S., Miller I., Osborne K., Sweatman H. 2002. Responses of coral
297	and fish assemblages to a severe but short-lived tropical cyclone on the Great Barrier
298	Reef, Australia. Coral Reefs 21:131–142. DOI: 10.1007/s00338-002-0227-8.
299	Cheal AJ., MacNeil MA., Cripps E., Emslie MJ., Jonker M., Schaffelke B., Sweatman H. 2010.
300	Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles
301	of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29:1005–1015. DOI:
302	10.1007/s00338-010-0661-y.
303	Cheal AJ., MacNeil MA., Emslie MJ., Sweatman H. 2017. The threat to coral reefs from more
304	intense cyclones under climate change. Global Change Biology 23:1511–1524. DOI:
305	10.1111/gcb.13593.
306	Coker DJ., Pratchett MS., Munday PL. 2009. Coral bleaching and habitat degradation increase
307	susceptibility to predation for coral-dwelling fishes. <i>Behavioral Ecology</i> 20:1204–1210.
308	DOI: 10.1093/beheco/arp113.
309	De'ath G., Fabricius KE., Sweatman H., Puotinen M. 2012. The 27-year decline of coral cover
310	on the Great Barrier Reef and its causes. Proceedings of the National Academy of
311	Sciences 109:17995–17999. DOI: 10.1073/pnas.1208909109.

312	DiazPulido., McCook G. 2002. The fate of bleached corals: patterns and dynamics of algal
313	recruitment. Marine Ecology Progress Series 232:115-128. DOI: 10.3354/meps232115.
314	Fisher J a. D., Casini M., Frank KT., Möllmann C., Leggett WC., Daskalov G. 2015. The
315	importance of within-system spatial variation in drivers of marine ecosystem regime
316	shifts. Philosophical Transactions of the Royal Society of London B: Biological Sciences
317	370:20130271. DOI: 10.1098/rstb.2013.0271.
318	Frédérich B., Fabri G., Lepoint G., Vandewalle P., Parmentier E. 2009. Trophic niches of
319	thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar.
320	Ichthyological Research 56:10–17. DOI: 10.1007/s10228-008-0053-2.
321	Froese R., Pauly D. 2016. Editors. 2016. FishBase.World Wide Web electronic publication.
322	www.fishbase.org, version (06/2016).
323	Green AL., Bellwood DR. 2009. Monitoring functional groups of herbivorous reef fishes as
324	indicators of coral reef resilience: a practical guide for coral reef managers in the Asia
325	Pacific region.
326	Hill MS. 1998. Spongivory on Caribbean reefs releases corals from competition with sponges.
327	Oecologia 117:143–150. DOI: 10.1007/s004420050642.
328	Hoegh-Guldberg O., Ridgway T. 2016. Coral bleaching hits great barrier reef as global
329	temperatures soar. Green Left Weekly:10.
330	Hughes TP., Anderson KD., Connolly SR., Heron SF., Kerry JT., Lough JM., Baird AH., Baum
331	JK., Berumen ML., Bridge TC., Claar DC., Eakin CM., Gilmour JP., Graham NAJ.,
332	Harrison H., Hobbs J-PA., Hoey AS., Hoogenboom M., Lowe RJ., McCulloch MT.,
333	Pandolfi JM., Pratchett M., Schoepf V., Torda G., Wilson SK. 2018. Spatial and temporal

334	patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83. DOI:
335	10.1126/science.aan8048.
336	Hughes TP., Kerry JT., Álvarez-Noriega M., Álvarez-Romero JG., Anderson KD., Baird AH.,
337	Babcock RC., Beger M., Bellwood DR., Berkelmans R., Bridge TC., Butler IR., Byrne
338	M., Cantin NE., Comeau S., Connolly SR., Cumming GS., Dalton SJ., Diaz-Pulido G.,
339	Eakin CM., Figueira WF., Gilmour JP., Harrison HB., Heron SF., Hoey AS., Hobbs J-
340	PA., Hoogenboom MO., Kennedy EV., Kuo C., Lough JM., Lowe RJ., Liu G.,
341	McCulloch MT., Malcolm HA., McWilliam MJ., Pandolfi JM., Pears RJ., Pratchett MS.
342	Schoepf V., Simpson T., Skirving WJ., Sommer B., Torda G., Wachenfeld DR., Willis
343	BL., Wilson SK. 2017. Global warming and recurrent mass bleaching of corals. <i>Nature</i>
344	543:373–377. DOI: 10.1038/nature21707.
345	MacNeil MA., Graham NAJ., Cinner JE., Wilson SK., Williams ID., Maina J., Newman S.,
346	Friedlander AM., Jupiter S., Polunin NVC., McClanahan TR. 2015. Recovery potential
347	of the world's coral reef fishes. Nature 520:341–344. DOI: 10.1038/nature14358.
348	Normile D. 2016. El Niño's warmth devastating reefs worldwide. <i>Science</i> 352:15–16. DOI:
349	10.1126/science.352.6281.15.
350	Pace ML., Cole JJ., Carpenter SR., Kitchell JF. 1999. Trophic cascades revealed in diverse
351	ecosystems. Trends in Ecology & Evolution 14:483–488. DOI: 10.1016/S0169-
352	5347(99)01723-1.
353	Phillips GAC., How MJ., Lange JE., Marshall NJ., Cheney KL. 2017. Disruptive colouration in
354	reef fish: does matching the background reduce predation risk? Journal of Experimental
355	Biology 220:1962–1974. DOI: 10.1242/jeb.151480.

356	Pizarro O., Friedman A., Bryson M., Williams SB., Madin J. 2017. A simple, fast, and repeatable
357	survey method for underwater visual 3D benthic mapping and monitoring. Ecology and
358	Evolution 7:1770–1782. DOI: 10.1002/ece3.2701.
359	Pratchett MS., Hoey AS., Wilson SK., Messmer V., Graham NAJ. 2011. Changes in Biodiversit
360	and Functioning of Reef Fish Assemblages following Coral Bleaching and Coral Loss.
361	Diversity 3:424–452. DOI: 10.3390/d3030424.
362	Puotinen M., Maynard JA., Beeden R., Radford B., Williams GJ. 2016. A robust operational
363	model for predicting where tropical cyclone waves damage coral reefs. Scientific Reports
364	6. DOI: 10.1038/srep26009.
365	Randall JE. 1961. Overgrazing of Algae by Herbivorous Marine Fishes. <i>Ecology</i> 42:812–812.
366	DOI: 10.2307/1933510.
367	Rasher DB., Hoey AS., Hay ME. 2013. Consumer diversity interacts with prey defenses to drive
368	ecosystem function. <i>Ecology</i> 94:1347–1358. DOI: 10.1890/12-0389.1.
369	Triki Z., Wismer S., Levorato E., Bshary R. 2017. A decrease in the abundance and strategic
370	sophistication of cleaner fish after environmental perturbations. Global Change
371	Biology:n/a-n/a. DOI: 10.1111/gcb.13943.
372	Wernberg T., Smale DA., Tuya F., Thomsen MS., Langlois TJ., de Bettignies T., Bennett S.,
373	Rousseaux CS. 2013. An extreme climatic event alters marine ecosystem structure in a
374	global biodiversity hotspot. Nature Climate Change 3:78–82. DOI:
375	10.1038/nclimate1627.
376	Wilson SK., Graham N a. J., Pratchett MS., Jones GP., Polunin NVC. 2006. Multiple
377	disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient?
378	Global Change Biology 12:2220–2234. DOI: 10.1111/j.1365-2486.2006.01252.x.

PeerJ

379	Wismer S., Pinto AI., Vail AL., Grutter AS., Bshary R. 2014. Variation in Cleaner Wrasse
880	Cooperation and Cognition: Influence of the Developmental Environment? Ethology
881	120:519–531. DOI: 10.1111/eth.12223.
882	

Table 1(on next page)

Summary of the findings in changes of coral reef fish abundance classified into functional groups according to their common shared functional trait.

Bold values indicate statistically significant differences. All statistical analyses are conducted with the non-parametrical Kruskal-Wallis test with *post hoc* analyses ran for significant results only. A sequential Holm-Bonferroni correction was conducted to correct for multiple tests. Based on this correction, the significant threshold α was $\alpha \leq 0.025$ for tests on Site-1 data, and $\alpha \leq 0.007$ for tests on Site-2. Different letter codes indicate significant differences between years within each site in the post hoc analyses.

	Site 1 (cyclones 2014/2015 and coral bleaching 2016 damages)					Site 2 (coral bleaching 2016 damages)					
Functional group	χ ²	P- Value	Year 2011 (Mea n± SD; rank)	Year 2016 (Mea n± SD; rank)	Year 2017 (Mea n± SD; rank)	χ ²	P- Value	Year 2014 (Mea n± SD; rank)	Year 2016 (Mea n± SD; rank)	Year 2017 (Mea n ± SD; rank)	
Browser	17. 4	<0.001	1.93 ± 1.67; a	0.13 ± 0.42; b	0 ± 0; b	1.0	0.60	0.06 ± 0.21	0 ± 0	0.06 ± 0.21	
Corallivore	11. 9	0.002	2.6 ± 1.67; a	1.06 ± 0.78; ab	0.33 ± 0.72; b	2.3	0.31	2.13 ± 1.68	1.26 ± 0.73	1.33 ± 1.75	
Detritivore	19. 7	<0.000 1	23.06 ± 10.02 ; a	3.33 ± 2.95; b	2.4 ± 2.98; b	0.8	0.66	4.6 ± 4.8	4.06; 4.34	5 ± 3.62	
Excavator/scrap er	19. 6	<0.000	8.33 ± 4.10; a	0.53 ± 0.52; b	0.8 ± 1.16; b	14. 0	<0.00	6 ± 4.53; a	1 ± 1; b	1.46 ± 1.62; b	
Grazer	18. 6	<0.000	22.6 ± 18.97 ; a	9.33 ± 4.81; b	3.13 ± 1.83; c	6.4	0.040	7.53 ± 5.08	11.26 ± 6.50	5.06 ± 3.16	
Macro- invertivore	11. 1	0.003	6.93 ± 4.04; a	4.2 ± 5.99; b	1.66 ± 1.67; b	2.4	0.297	2.86 ± 2.33	2.6 ± 1.67	1.53 ± 1.33	
Micro- invertivore	9.8	0.007	18.06 ± 6.56; a	10.8 ± 6.60; b	7.86 ± 6.68; b	16. 6	<0.00	21.46 ± 27.53 ; b	34.86 ± 18.23 ; a	7.06 ± 2.16; c	
Pisci-invertivore	1.2	0.540	1 ± 1.51	0.33 ± 0.65	0.53 ± 0.75	4.2	0.118	1.33 ± 1.44	0.4 ± 0.56	0.4 ± 0.64	
Piscivore	0.4	0.828	0.6 ± 0.85	0.93 ± 1.26	0.73 ± 0.73	10. 1	0.006	0 ± 0; b	0.86 ± 0.89; a	0.46 ± 0.55; a	

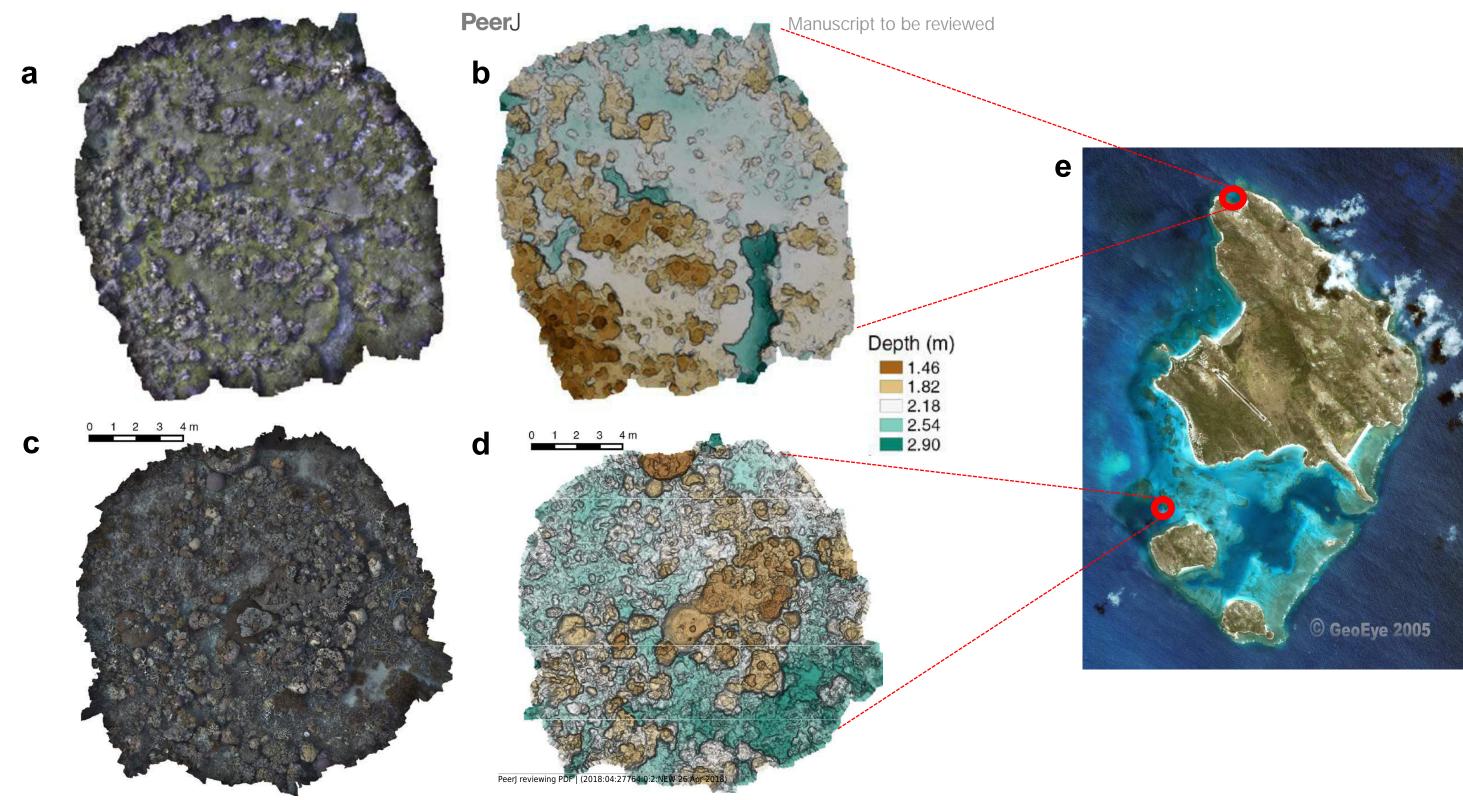

			64.2	2.46	0.06			86.99	27.6	7.46
Planktivore	23.	<0.000	±	±	±	7.9	0.019	<u>±</u>	27.0	+
Tianktivoic	7	1	26.11	3.22;	0.21;	7.5	0.015	107.2	26.32	5.76
			; a	b	c			0		3.70
			39.73	11.06	2.73			37.66	28.73	7.8 ±
Spongivores	19.	<0.000	±	±	±	14.	<0.00	±	±	3.08;
Spongryores	5	1	18.58	10.49	2.92;	1	1	22.07	16.91	.
			; a	; b	c			; a	; a	b

Figure 1(on next page)

Study sites with images of their coral cover in May 2015.

(a) Section image from the study of Pizzaro et al. (2017) of Site-1, which is an exposed reef that lost a significant proportion of its coral cover due to the destructive Cyclones Ita in April 2014 and Nathan in March 2015. (b) An orthographic image of (a). (c) Section image from the study of Pizzaro et al. (2017) of "Horseshoe reef" nearby Site-2 (35 m apart). The reef is inside a protected area from the cyclones. (d) An orthographic image (c). (e) Lizard Island map is indicating the precise localities of the study sites.

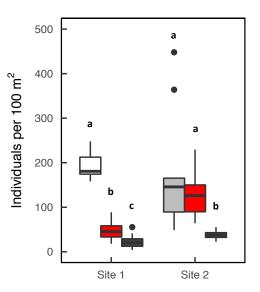


Figure 2(on next page)

Fish abundance.

Boxplots are displaying median and interquartile of fish abundance. Different letter codes indicate significant differences between years within each site.

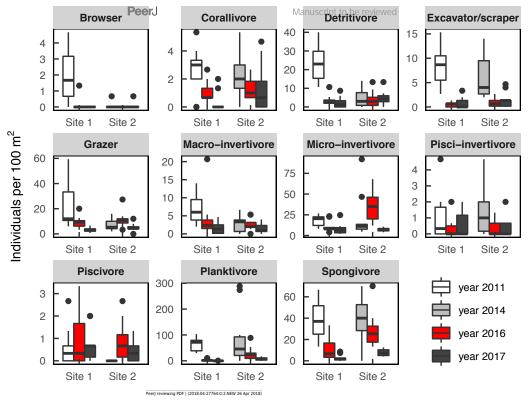


Figure 3(on next page)

Fish abundance in functional groups.

Boxplots are displaying median and interquartile of fish abundance. Note that due to the high variation in fish abundance per functional groups, the y-axes are not similar. See Table 1 for the statistically significant differences in functional groups within reef sites and between years.

