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ABSTRACT
Global warming is predicted to increase the frequency and or severity of many
disturbances including cyclones, storms, and prolonged heatwaves. The coral reef
at Lizard Island, part of the Great Barrier Reef, has been recently exposed to a
sequence of severe tropical cyclones (i.e., Ita in 2014 and Nathan in 2015) and a coral
bleaching in the year 2016. Reef fishes are an essential part of the coral reef
ecosystem, and their abundance is thus a good marker to estimate the magnitude of
such disturbances. Here, we examined whether the recent disturbances at Lizard
Island had an impact on the coral reef fish communities. To do this, we examined fish
survey data collected before and after the disturbances for potential changes in
total fish density post-disturbance. Also, by sorting fish species into 11 functional
groups based on their trophic level (i.e., diet), we further explored the density
changes within each functional group. Our findings showed an overall decline of 68%
in fish density post-disturbance, with a significant density decrease in nine of
11 trophic groups. These nine groups were: browsers, corallivores, detritivores,
excavator/scrapers, grazers, macro-invertivores, pisci-invertivores, planktivores, and
spongivores. The piscivores, on the other hand, were the only “winners,” wherein
their density showed an increase post-disturbance. These changes within functional
groups might have a further impact on the trophodynamics of the food web.
In summary, our findings provide evidence that the fish assemblage on the reefs
around Lizard Island was considerably affected by extreme weather events, leading to
changes in the functional composition of the reef fish assemblage.
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Keywords Fish population density, Cyclones, Functional groups, Great Barrier Reef,
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INTRODUCTION
The recently observed increase in frequency and magnitude of extreme weather events is
attributed to anthropogenic global warming (Cai et al., 2014; Cheal et al., 2017; Hughes
et al., 2018). Such extreme events are a great threat to coral reefs worldwide (Hughes
et al., 2017). Coral reefs are one of the world’s most diverse ecosystems, with fish as an
essential component. Losing live corals can thus have severe impacts on the diversity
and stability of this ecosystem (Bellwood et al., 2006; Pratchett et al., 2008, 2011;
Munday et al., 2008). For instance, one of the threats of extreme weather events to
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coral reefs is the prolonged El Niño cycles and the resulting coral bleaching. El Niño is a
naturally occurring climatic event that brings warm water toward the Indo-Pacific.
A recent prolonged El Niño event led to an increase in seawater temperatures (Cai et al.,
2014; Hoegh-Guldberg & Ridgway, 2016). In these conditions, overstressed coral tissues
expel their intracellular symbionts “zooxanthella” (i.e., symbionts from which corals
gain their different pigmentations) which causes bleaching. The resulting bleached corals
may die if they do not re-establish the symbiotic relationship with the zooxanthella
within a range of 6 months post-bleaching (Diaz-Pulido & McCook, 2002). In addition to
the threat of coral bleaching, cyclones can also be destructive due to the formation of
strong waves that can damage exposed coral reef fields (Cheal et al., 2017). Both cyclones
and coral bleaching can thus result in environmental degradation and habitat loss
(Pizarro et al., 2017; Hughes et al., 2017).

Using fish assemblages, diversity, and abundance, researchers can evaluate the
biological integrity and quality of a given habitat (Karr, 1981; Ganasan & Hughes, 1998).
Several studies, for instance, showed that fish abundance could be negatively affected
by environmental disturbances due to climate change, either directly through abiotic
factors such as temperature and ocean acidification (Ferrari et al., 2011; Browman, 2016),
or indirectly through habitat loss (Munday et al., 2008). Thus, changes in fish abundance
should provide reliable information on habitat quality.

Habitat degradation is known to have a negative impact on overall fish density
(Munday, 2004; Wilson et al., 2008b, 2010). Bellwood et al. (2004) argue that further
insights can be gained from analyzing fish functional groups but only in addition to
knowing the cause and extent of the habitat degradation. Therefore, exploring
potential changes at the level of fish groups that share the same function (i.e., functional
group) might yield additional information about the mechanism and effect of the
impact. For instance, three main functional groups displaying herbivore dietary traits
(i.e., corallivores, excavator/scrapers, and grazers) can play an important role in coral reef
recovery. The functional role of these three herbivores is complementary, and together
their presence on the reef can play a role in its resistance to disturbances (Bellwood
et al., 2004). In addition to the densities of herbivorous fishes, other factors also play a
major role in coral reef resistance and recovery, such as the complexity of coral structure
and water depth (Graham et al., 2015).

A suitable location to explore potential changes in fish abundance and functional
groups after environmental disturbances is Lizard Island (Pizarro et al., 2017;
Emslie, Cheal & Logan, 2017; Triki et al., 2018). The island is located in the northern
Great Barrier Reef (GBR), Australia, within a marine reserve. The island was impacted
by a sequence of extreme weather events three years in a row: In April 2014,
Cyclone Ita hit Lizard Island (Pizarro et al., 2017), reaching an intensity of category 5
on the Australian scale (Puotinen et al., 2016). In April 2015, the island was again
exposed to another severe cyclone, Cyclone Nathan, a severe category 4 cyclone
(Pizarro et al., 2017). And finally, in February/March of 2016, the GBR was affected by a
massive coral bleaching event, resulting in more than 60% bleached coral cover
(Hughes et al., 2017).
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In this study, we asked to what extent fish communities would change as a function of
environmental disturbances at Lizard Island. To do so, we compared fish densities
before and after disturbances both overall and by functional group. We expected to find a
decline in fish species that rely directly or indirectly on live corals for their diet
(Wilson et al., 2006). In contrast, due to the colonization of dead corals by microalgae
(Cheal et al., 2010) we expected an increase in the abundance of various herbivorous fish
species specialized on such algae (Randall, 1961).

METHODS
Field site and fish census
The study was conducted on the reef around Lizard Island, GBR, Australia (14.6682�S,
145.4604�E). The study was carried out at two locations: Mermaid Cove and Northern
Horseshoe reefs. Mermaid Cove forms a continuous fringing reef of approximatively
35,000 m2 (i.e., estimated frommaps: https://www.freemaptools.com/area-calculator.htm),
with a depth range from one to seven m. The reef is located in a small bay on the
northern side of Lizard Island. The other location, Northern Horseshoe reef, is also a
continuous reef, consisting of a coral garden of approximately 17,000 m2, with a depth range
from one to four m. The reef is located on the western side of the island (see Fig. 1). After the
2014 and 2015 cyclones, the reef at Mermaid Cove was heavily damaged. Northern
Horseshoe reef, however, had been protected from these two cyclones due to its location
within the lagoon (Pizarro et al., 2017; Lizard Island Research Station Directors, Dr. Anne
Hoggett and Dr. Lyle Vail in 2018, personal communication). The coral bleaching event in
2016 affected all the reefs around Lizard Island including our two study sites.

We used underwater visual fish census methods based on earlier studies by Wismer
et al. (2014) and Triki et al. (2018). Within each location, the observer swam ten
replicates of a 30 m transect line on the reef flat. Due to the different shape of the reef at
the two locations, the transect line was placed parallel to the reef crest at Mermaid Cove,
whereas at Northern Horseshoe it was placed parallel to the shoreline (Following
methods inWismer et al., 2014). Along the 30 m transect line the observer first recorded
the number of all large visible fish (i.e., species with body total length TL >10 cm)
on a five m wide area, then the number of small visible fish (i.e., species with body
TL �10 cm) on a one m wide area. Each of the ten transect replicates, within each
location, were sampled at least 10 m apart from each other to minimize possible
resampling of the same individuals. Only adult fish were surveyed, and their species was
identified. Overall, there were 163 species identified in our survey (Table S1). All fish
counts (i.e., large and small fish) were scaled per 150 m2 to facilitate further
statistical analyses.

The fish surveys from the two study locations were collected at the same time of day in a
similar way between June and August within each year of data collection. Data were
collected at Mermaid Cove in 2011 (in Wismer et al., 2014), 2016 (in Triki et al., 2018),
and 2017. At Northern Horseshoe, the fish census was conducted in 2014, 2016 (in
Triki et al., 2018) and 2017. We labeled the data collected in 2011 (i.e., from Mermaid
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Cove) and 2014 (i.e., from Northern Horseshoe), as fish survey before disturbances.
Subsequently, the fish surveys in 2016 and 2017 were labeled as data after the disturbances
(as in Triki et al., 2018).

Fish species were then categorized into functional groups based on the species’ trophic
level (Butterfield & Suding, 2013; Brandl et al., 2016). We sorted fish species into
11 trophic-functional groups (Table 1). The categorization into dietary functional groups
followed methods in studies by Wernberg et al. (2013) and MacNeil et al. (2015)
(see Table S1). For the few species for which trophic level was missing from these studies,
we completed information from the FishBase (Froese & Pauly, 2016).
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Figure 1 Lizard Island group map. The map is showing the two study sites: Mermaid Cove reef as Site 1
and Northern Horseshoe reef as Site 2. Modified from Triki et al. (2018), Global Change Biology (© 2017
John Wiley & Sons Ltd). Full-size DOI: 10.7717/peerj.6720/fig-1
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STATISTICAL ANALYSES
All data analyses and figures were generated by using the Software R version 3.5.1. All the
recorded fish species were included in the present analyses. Fish counts on each transect
represented fish abundance. Therefore, the transect line was the statistical unit in our
sample size. Overall, we ran two statistical models. We fit the first model to test for the
overall change in total fish abundance before and after the disturbances. It was a General
Linear Model, with a negative binomial distribution. The model had fish abundance
as the response variable, while the period before and after the perturbation was fitted as a
predictor with data collection site as a covariate. The model had the following structure:
fish abundance ∼ period of data collection + site. The model assumptions were
checked with visual plots with the function influencePlot() in R language.

The second model tested for potential changes in the abundance within the 11 trophic-
functional groups. Here, we fitted a zero-inflated negative binomial distribution due
to the presence of many zeros in the count data. The zeros refer to the absence of some
functional groups in the transects. The site identity was fitted as a covariate to control for
potential differences between the two sites (R. Slobodeanu, 2018, personal communication).
The model had the following function: fish abundance ∼ functional group � period of data
collection + site. As post hoc analyses for the second model, we ran least-squares means
analyses with the function emmeans() from the package (emmeans in R language).
The emmeans() function uses the Tukey method by default for multiple comparisons.
The reported pseudo R-squared in the results are the Nagelkerke (Cragg and Uhler) values
generated with the nagelkerke() from the package (rcompanion in R language) (see Liu, Zheng
& Shen, 2008). For further details about statistical tests, R packages and script, please
refer to our statistical script in the Figshare repository (DOI 10.6084/m9.figshare.4990919).

Ethical note
The Animal Ethics Committee of the Queensland government (DAFF) approved the
project (CA 2016/05/970 and CA 2017/05/1063).

Table 1 Dietary functional trait used in sorting fish species into trophic-functional groups.

Trophic-functional group Diet Example

Browsers Macro-algae Naso unicornis

Corallivores Corals Chaetodon aureofasciatus

Detritivores Dead organic material “detritus” Ctenochaetus striatus

Excavators/scrapers Remove reef substrate while looking
for living material

Chlorurus spilurus

Grazers Fast-growing macro-algae “turf algae” Siganus doliatus

Macro-invertivores Large invertebrates Balistapus undulatus

Micro-invertivores Small invertebrates Coris batuensis

Pisci-invertivores Fish and invertebrates Lethrinus olivaceus

Piscivores Fish Epinephelus merra

Planktivores Plankton Abudefduf sexfasciatus

Spongivores Sea sponges Pomacanthus sexstriatus
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RESULTS
Fish census data showed that total fish abundance significantly declined after the
environmental disturbances (ANOVA: N¼ 60, estimate¼ -1.239, X2 ¼ 52.885, p < 0.001,
pseudo R-squared ¼ 0.49, Fig. 2), despite differences between the two study sites
(ANOVA: N ¼ 60, estimate ¼ 0.519, X2 ¼ 9.583, p ¼ 0.002). On the other hand, fish
functional groups provided more details on where the decline in fish density occurred,
with a significant interaction of the trophic-functional group and the period of data
collection (ANOVA: N ¼ 660, X2 ¼ 68.899, pseudo R-squared ¼ 0.66, p < 0.001, Fig. 3).
Post hoc tests showed that 10 out of the 11 functional groups went through a significant
change in fish abundance after the disturbances, of which nine showed a decline
(the contrast before–after): browsers (estimate ¼ 1.534, z ¼ 3.427, p < 0.001); corallivores
(estimate ¼ 2.099, z ¼ 2.418, p ¼ 0.015); detrivores (estimate ¼ 15.784, z ¼ 3.610,
p < 0.001); excavator/scrapers (estimate¼ 8.904, z¼ 4.308, p < 0.001); grazers (estimate¼
11.836, z¼ 2.617, p¼ 0.009); macro-invertivores (estimate¼ 3.580, z¼ 2.195, p¼ 0.030);
pisci-invertivores (estimate ¼ 1.133, z ¼ 2.337, p ¼ 0.020); planktivores (estimate ¼
102.06, z ¼ 4.340, p < 0.001); and spongivores (estimate ¼ 39.951, z ¼ 3.479, p < 0.001).
Only piscivores showed a significant increase in abundance (estimate ¼ -0.662, z ¼ -2.277,
p ¼ 0.022), while micro-invertivores were the only functional group that did not show
any significant changes (estimate ¼ 6.956, z ¼ 1.152, p ¼ 0.249).

DISCUSSION
We identified a substantial decline in the density of reef fishes at Lizard Island following a
sequence of severe tropical cyclones and coral bleaching. We documented a 68%
decline in fish densities; a percentage close to what Wilson et al. (2006) found in their
meta-analysis of 17 independent studies on fish density after environmental disturbances,
in which an average decline of 62% was observed in fish density within 3 years after
disturbances including cyclones and coral bleaching. These findings are in line with
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Figure 2 Total fish abundance. Boxplots are displaying median and interquartile of total fish abundance
before (n ¼ 20) and after (n ¼ 40) the environmental disturbances (i.e., cyclones and coral bleaching).
Negative binomial Generalized Linear Model: ���p < 0.001. Full-size DOI: 10.7717/peerj.6720/fig-2
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previous studies suggesting that the loss of coral cover would lead to a reduction in fish
density (Jones et al., 2004; Russ & Leahy, 2017; Pratchett et al., 2018). It suggests that the
recorded decline in the present study might be due to the loss of coral cover. Cyclones
usually destroy the reef structure, which would impede corals from possible rapid recovery
(Cheal et al., 2002). Also, coral recovery might be compromised if the reef is repeatedly
exposed to tropical cyclones over short-time intervals (De’ath et al., 2012; Puotinen
et al., 2016). In addition to damage from cyclones, bleaching can reduce coral cover
(Diaz-Pulido & McCook, 2002). Recently, Stuart-Smith et al. (2018) documented a
51% coral cover loss at the GBR after the 2016 bleaching event. Subsequently, it is expected
that habitat loss would lead to a decline in fish abundance (Pratchett et al., 2011;
Brandl et al., 2016). We acknowledge an important caveat in the present study: we were
unable to incorporate information about the benthic habitat structure and benthic
communities. This information would provide more insight into the fluctuations in
reef-dependent fish communities (Goren & Spanier, 1985; Holbrook, Schmitt & Stephens,
1997; Russ & McCook, 1999; Wismer, Hoey & Bellwood, 2009; Pizarro et al., 2017;
Prazeres, Roberts & Pandolfi, 2017; Renfro & Chadwick, 2017). Also, due to the absence
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Figure 3 Fish abundance per trophic-functional groups. A to K are boxplots displaying median and
interquartile of fish abundance within trophic-functional groups showing eventual changes from before
(n ¼ 20) to after (n ¼ 40) the environmental disturbances (i.e., cyclones and coral bleaching). Note that
due to the high variation in fish counts per functional group, the y-axes do not have the same scale. Post
hoc analyses of a zero-inflated negative binomial model showing differences between before and after the
perturbations within each functional group: �p < 0.05; ��p < 0.01; ���p < 0.001.

Full-size DOI: 10.7717/peerj.6720/fig-3
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of data on the benthos, the significant effect of “site” in our model is virtually impossible to
interpret (see Figs. S1 and S2). Nevertheless, the significant decline in fish densities
recorded here can still inform us about the effect of extreme weather events on fish
assemblages (Wilson et al., 2006).

Assessing fish density according to their trophic-functional groups showed a substantial
decline in nine out of 11 functional groups. This suggests that most fish, regardless of their
trophic affiliation, were susceptible to the disturbances. Nevertheless, the piscivore
group was the only group to benefit from such disturbances. It is possible that due to the
damage of reef structure and the resulting destruction of shelters, piscivores (i.e., reef-
associated predators) would gain easy access to prey, from which they could benefit and
thereby increase their numbers. Also, it is possible that bleached corals might no longer
be suitable shelters for coral-dwelling species (Coker, Pratchett & Munday, 2009;
Pratchett et al., 2011), nor appropriate camouflage background for small-bodied prey.
As a consequence, predators would easily recognize their prey (Phillips et al., 2017),
which would eventually change the assemblage structure of these predatory fishes
(Emslie, Cheal & Logan, 2017). Nevertheless, such an increase might be transient in time
and eventually be followed by a decline due to decreased numbers of prey. Also, the erosion
of corals skeleton over time might result in a reduction of shelter and hunting options
for ambush predators (Kerry & Bellwood, 2012).

Graham et al. (2011) predicted that micro-invertivores are one of the trophic-
functional groups most vulnerable and macro-invertivores the least vulnerable to climate
disturbances. Here, the micro-invertivores were the only group without apparent
changes from pre- to post-disturbance. A potential explanation for this divergence is
that micro-invertivores may show high functional redundancy, where losses in particular
species can be replaced by population increases in other species that share a similar
function (Micheli & Halpern, 2005; Brandl et al., 2016). Furthermore, we note that the
decline in browsers, corallivores, and pisci-invertivores, as well as the increase in piscivores
documented in this study, differ from previous results also collected around Lizard Island
(Ceccarelli, Emslie & Richards, 2016; Brandl et al., 2016). One potential explanation is
that those previous studies used post-disturbance data collected in early 2015, that is, only
a few months after hurricane Ita hit the island, while we collected data 2–3 years after
another cyclone and the El Niño event took place. A potential additional factor could be
that the previous studies collected data in three and nine m depth, while our data include
shallow areas of one to two m depth.

The trophic-functional groups that were most abundant pre-disturbance, the
planktivores and spongivores, also showed a decline in numbers post-disturbances (Fig. 3).
For instance, planktivores are mainly damselfish that are often highly coral-associated
species (Feary et al., 2007; Wilson et al., 2008a), wherein habitat loss might explain
the decline in their numbers. Such losses can be detrimental to the ecosystem balance,
mainly because the planktivores play an important role in transferring nutrients from the
pelagic environment onto the reef (Pace et al., 1999; Fisher et al., 2015). Spongivores
also have a significant role in protecting corals by feeding on overgrowing sponges, thereby
reducing coral-sponge competition (Hill, 1998). The decrease in fish density in the other
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functional groups: browsers, detritivores, grazers, and excavators/scrapers, can also
have severe consequences on the health and resilience of corals after disturbances.
These trophic-functional groups feed on macro-algae, which prevent the latter from
over-colonising the corals. Their functional role is hence beneficial for coral resilience,
coral settlement, and growth (Green & Bellwood, 2009; Cheal et al., 2010; Rasher, Hoey &
Hay, 2013).

CONCLUSION
Environmental disturbances are expected to increase in frequency and magnitude due to
global warming. Here, we found that such environmental events were followed by
reductions in fish densities across multiple trophic-functional groups around Lizard
Island. These findings add to the data that shows that future coral reef fish communities
are susceptible to significant changes on this island. Supported by the larger scale fish
assemblage changes across the GBR shown by Hughes et al. (2018). It suggests that
such losses can impact the functionality and stability of these communities (Green &
Bellwood, 2009; Rasher, Hoey & Hay, 2013).
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