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ABSTRACT
Mass spectrometry-based proteomics facilitate disease understanding by providing
protein abundance information about disease progression. For the same type of
disease studies, multiple mass spectrometry datasets may be generated. Integrating
multiple mass spectrometry datasets can provide valuable information that a single
dataset analysis cannot provide. In this article, we introduce a meta-analysis software,
MetaMSD (Meta Analysis for Mass Spectrometry Data) that is specifically designed
for mass spectrometry data. Using Stouffer’s or Pearson’s test, MetaMSD detects
significantly more differential proteins than the analysis based on the single best
experiment. We demonstrate the performance of MetaMSD using simulated data,
urinary proteomic data of kidney transplant patients, and breast cancer proteomic
data. Noting the common practice of performing a pilot study prior to a main study,
this software will help proteomics researchers fully utilize the benefit of multiple
studies (or datasets), thus optimizing biomarker discovery. MetaMSD is a command
line tool that automatically outputs various graphs and differential proteins with
confidence scores. It is implemented in R and is freely available for public use at
https://github.com/soyoungryu/MetaMSD. The user manual and data are available at
the site. The user manual is written in such a way that scientists who are not familiar
with R software can use MetaMSD.

Subjects Bioinformatics, Genomics
Keywords Mass Spectrometry, Differential Proteins, Proteomics, Meta-Analysis

INTRODUCTION
Mass spectrometry can identify and quantify thousands of proteins simultaneously in
complex biological samples (e.g., urine, serum). In particular, detecting changes in protein
expression due to genetic or environmental perturbations of an organism is an important
topic in biology and medicine. To estimate changes in protein expression, various methods
such as stable isotope-labeling methods (e.g., ICAT (Gygi et al., 1999), iTRAQ (Hardt et
al., 2005), SILAC (Ong et al., 2002)) and label-free methods (Radulovic et al., 2004; Ryu
et al., 2008; Ryu et al., 2014; Liu, Sadygov & Yates, 2004) have been developed. Normally,
researchers are interested in identifying as many differential proteins as possible between
two groups (e.g., normal vs. cancer) while controlling the number of false positives. In
clinical and biological studies, researchers often conduct multiple proteomic studies by
design (e.g., a pilot study prior to a main study). There is also a growing movement for
researchers to share their mass spectrometry data, thus more datasets for the same type
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of studies will become available in public repositories (e.g., proteomeXchange, PRIDE).
These experiments may be generated from various instruments in different laboratories
using either labeling or label-free approaches. Thus, it is often more adequate to analyze
each dataset with appropriate bioinformatic tools (i.e., MaxQuant (Cox & Mann, 2008),
ASAPRatio (Li et al., 2003), QSpec (Choi, Fermin & Nesvizhskii, 2008), MSstats (Choi et al.,
2014; Clough et al., 2012)) and combine them using a meta-analysis technique.

Meta-analysis techniques that integrate data or results from multiple studies have been
widely used in health policy, medicine, and genomics (Hedges & Olkin, 1985; Stangl &
Berry, 2000). Here, we introduce MetaMSD that analyzes multiple proteomics datasets
that may be generated by different labeling techniques and/or different types of mass
spectrometry instruments. MetaMSD uses statistical summary combination approaches
rather than normalizing expression profiles across different experiments since peptide
expression profiles can be very different across multiple studies (or datasets) (Ryu et al.,
2014). Noting that currently, many proteomics researchers do not utilize datasets generated
for their pilot studies, we anticipate that this software can benefit proteomics researchers
who want to use a meta-analysis technique to maximize their biomarker discovery. In
this paper, we introduce meta-analysis techniques of MetaMSD and demonstrate the
performance of the MetaMSD using both simulated and real mass spectrometry datasets.
We then discuss limitations and potentials of MetaMSD.

MATERIALS AND METHODS
MetaMSD
Meta-analysis methods
MetaMSD combined differential protein results of multiple datasets (e.g., datasets from
pilot and main studies) using Pearson’s test or Stouffer’s test (Fig. 1). Both tests were
well-known meta-analysis tests that considered the directionality of hypotheses. Thus,
it objectively resolved contradicting results between datasets. For example, a protein
abundance of interest may be significantly larger in Group 1 than 2 for one dataset,
but significantly smaller in Group 1 than 2 for another dataset. Based on one-sided
p-value information, Pearson’s and Stouffer’s tests determined whether a protein of
interest was more abundant in Group 1 or 2. Moreover, the resulting p-values/q-values
reflected uncertainty of this decision. It was previously known that Pearson’s method
was more sensitive to large p-values than Stouffer’s method, while Stouffer’s method was
more sensitive to small p-values than Pearson’s method (Heard & Rubin-Delanchy, 2018).
Researchers may choose one of these two meta-analyses approaches for their experiments
depending on their study goals. Here, we elaborated both methods in terms of proteins
and datasets. We let pLi,j be a p-value of the one-sided (left) hypothesis test for jth protein
using the ith dataset (study) where i= 1,...,K and j = 1,...,N . The number of hypothesis
tests (or proteins) was denoted as N and the number of datasets (or studies) was denoted
as K · pLi,j was a probability of falsely concluding that the jth protein in the ith dataset
was less abundant in Group 1 than Group 2. Thus, as pLi,j became smaller, we were more
confident that the jth protein in the ith dataset was less abundant in Group 1 than Group
2. Similarly, if a right-sided p-value, pRi,j , was less than 0.05, then we concluded that the
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Figure 1 A workflow of MetaMSD.MetaMSD takes multiple quantitative proteomics results as input
and generates various outputs such as meta-analysis p-values & q-values. It also generates graphs and ta-
bles that describe various aspects of differential proteins (e.g., q-plot, meta-analysis diagnosis).

Full-size DOI: 10.7717/peerj.6699/fig-1

mean abundance of the jth protein in the ith study was significantly higher in Group 1
compared to Group 2 at the 95% confidence level. In mathematical notation, pRi,j = 1−pLi,j .
Thus, as pLi,j became larger, pRi,j became smaller.

Pearson’s test was a one-sided Fisher’s test. It took a minimum p-value of left- and
right-sided Fisher’s tests with a Bonferroni correction. Different from Fisher’s method, it
considered the directionality of the hypotheses. Specifically, Pearson’s test was based on
the following procedures:

QT
j =max(QL

j ,Q
R
j ), (1)

where QL
j =−2log (

∏K
i=1p

L
i,j) and QR

j =−2log (
∏K

i=1(1−p
L
i,j)). And a p-value based for the

jth protein was pj =min(1,2Pr(χ2
2K ≥QT )). Stouffer’s test used the sum of inverse normal

transformation of p-values. Stouffer’s statistics was:

Zj =

∑K
i=1Zi,j
√
K

(2)

where Zi,j was converted from a p-value from the ith dataset (or study) and the jth protein.
Then, its left-sided p-value for the jth protein, pLj , was calculated based on Zj which had
a standard normal distribution under the null hypothesis. Its right-sided p-value was
pRj = 1−pLj . The final p-value was calculated by taking a side with a smaller one-sided
p-value and applying a Bonferroni correction. For both Pearson’s and Stouffer’s tests, we
considered all the proteins that were quantified in at least one of the studies, thus K may
vary from one protein to another. If a protein was quantified in more than one study,
then the meta-analysis was employed. If a protein was quantified in only one study, then
the p-value from that one study was kept without employing the meta-analysis. Since
we usually performed many hypothesis tests (e.g., 6,000 to 10,000 tests), we employed a
false discovery procedure to correct multiple testing errors. MetaMSD reported q-values,

Ryu and Wendt (2019), PeerJ, DOI 10.7717/peerj.6699 3/16

https://peerj.com
https://doi.org/10.7717/peerj.6699/fig-1
http://dx.doi.org/10.7717/peerj.6699


0.00 0.01 0.02 0.03 0.04 0.05

0
20

40
60

80
10

0
12

0
q−value threshold

# 
of

 d
iff

er
en

tia
l p

ro
te

in
s

Meta Analysis
Single Analysis (Set1)
Single Analysis (Set2)

(a) Q-plot

# of detected proteins

120Meta Analysis

3Single Analysis 1

11Single Analysis 2

0Intersection among Single Analyses

14Union among Single Analyses

Meta−Analysis Evaluation

90.83 %Integration−driven Discovery Rate (IDR)

21.43 %Integration−driven Revision Rate (IRR)

(b) Result summary

Rank

 1

Protein

 2

Sign

 3

Pvalue

 4

Qvalue

 5

 6

 7

 8

 9

10

11

12

13

14

15

GPVI_HUMAN

PGRP1_HUMAN

EGF_HUMAN

GALNS_HUMAN

IGSF8_HUMAN

NEGR1_HUMAN

CLM9_HUMAN

ICOSL_HUMAN

PVRL4_HUMAN

SCTM1_HUMAN

SUSD2_HUMAN

K2C7_HUMAN

SPIT1_HUMAN

TRFM_HUMAN

ACTB_HUMAN

−

−

−

−

−

−

−

−

−

−

−

+

−

−

+

7.077188e−07

1.657390e−06

3.531460e−05

2.877374e−05

5.561822e−05

1.048996e−04

2.321992e−04

1.872730e−04

2.221740e−04

1.500986e−04

2.002626e−04

1.972104e−04

3.334734e−04

3.126880e−04

3.246189e−04

0.0003798744

0.0004448095

0.0047388564

0.0047388564

0.0059707148

0.0093843001

0.0103862504

0.0103862504

0.0103862504

0.0103862504

0.0103862504

0.0103862504

0.0119329867

0.0119329867

0.0119329867

(c) Top-ranked differential proteins

Figure 2

Data103

Simulated Datasets
For each simulation, multiple datasets (or studies) were generated and analyzed using MetaMSD. Each
dataset contained 2n samples with n samples per group. A total of 2,000 proteins were generated per
study. We varied the number of samples per group, n, where n =6, 9, or 12. Mass spectrometry was often
not able to quantify all proteins in complex mixtures, and a protein quantified in one dataset might not
be necessarily quantified in another dataset. Thus, we let the overlap percentage in quantified proteins
between datasets to be 75% (ρ = 0.75) for the most of simulations. However, different ρ values were
also explored and discussed. The data were simulated using the following schemes:

xi j ∼ N(γ j,λ 2
j ), (3)

log(γ j)∼ N(µ,σ2), (4)
log(λ j)∼ N(α +β log(γ j),η), (5)

where xi j was an abundance for protein j in dataset i, γ j was a mean abundance for protein j, and λ j was104

its standard deviation. In (5), we specified λ j such that there was a linear relationship between log(λ j)105

and log(γ j). In other words, more abundant proteins had higher variance. The parameters were set as the106

followings: µ = 2.42, σ = 0.30, α = 1.63, β =−0.90, and η = 0.50. These values were obtained from107

label-free plasma proteomic data of mice (Kuusela et al., 2017). The last three parameters were estimated108

by fitting a linear regression on log-transformed means of protein abundances and the corresponding109

log-transformed standard deviations. The simulated data and mouse data had similar protein abundance110

distributions including the mean-variance relationship. In our simulated dataset, 30% of proteins were111

differential proteins with 1.5, 2, or 4 fold changes in protein abundances between experiments. T-tests112

(with unequal variances) were performed for each dataset, then meta-analysis techniques were applied113

to combine resulting p-values. For each simulation set, 1,000 simulations were generated and average114

performance measures of meta-analysis methods were reported.115

116

Kidney Transplant Proteomic Datasets117

Two urinary proteomic datasets of renal transplant patients were obtained from ProteomeXchange (Viz-118

caino et al., 2014) (PXD 002761). The details about mass spectrometry experiments can be found in119

Sigdel et al. (2014, 2016). In brief, these datasets contained four phenotypes of kidney transplant patients.120

However, in this paper, the focus was on a two-group comparison by comparing acute allograft rejection121

(AR) and stable allograft (STA) of kidney transplant patients. The first dataset was from an iTRAQ (Hardt122

et al., 2005) mass spectrometry study. Each pooled sample generated from either five patients with acute123

rejection (AR) or five patients with stable graft function (STA). The data were analyzed by DeconMSn124

(Mayampurath et al., 2008) and Sequest (Eng et al., 1994). The p-values were obtained by comparing six125

4/9

Figure 2 MetaMSD sample outputs. (A) The q-value threshold vs. # of differential proteins detected
by meta-analysis (Stouffer’s test) and single dataset analyses. (B) The numbers of detected proteins and
meta-analysis evaluation measures. The top table contains results for a meta-analysis (Stouffer’s test), sin-
gle analyses using Dataset 1 and 2, the number of commonly detected proteins between single analyses
(intersection among Single Analyses), and the number of any proteins detected by single analyses (union
among Single Analyses). The bottom table shows the performance measures of the meta-analysis using
IDD (Integration-driven Discovery Rate) and IDR (Integration-driven Revision Rate). (C) Top-N differ-
ential proteins list ranked by their p-values. MetaMSD displays top-ranked protein names, their signs of
log-transformed difference between comparison groups, p-values and q-values.

Full-size DOI: 10.7717/peerj.6699/fig-2

which were the minimum false discovery rates that could be attained when calling that the
abundances of proteins were significantly different between groups (Storey, 2002).

MetaMSD also measured a meta-analysis performance using the Integration-driven
Discovery Rate (IDR) and the Integration-driven Revision Rate (IRR). Average IDR and
IRR were reported for the simulation study. IDR represented a proportion of proteins
detected by the meta-analysis that were not discovered in any of the individual studies.
IRR represented a proportion of proteins detected in at least one individual study, but not
by the meta-analysis. Thus, we wanted our meta-analysis method to give a higher IDR
without unnecessarily increasing IRR at a given false discovery rate threshold.

MetaMSD software
MetaMSD took signs of test statistics and the corresponding p-values as input and generated
meta-analysis p-values, the directionality of hypothesis tests, and the corresponding q-values
as outputs (Fig. 1). Noting that major proteomic quantification software can generate test
statistics and p-values, MetaMSD can be used to integrate protein quantification results
generated from various proteomic software.

MetaMSD generated a tab-delimited file that contained both single dataset analyses
results and a meta-analysis result. The file contained protein name, the directionalities of
hypothesis tests, p-values and q-values for single analyses and meta-analysis results. It also
generated several graphs/tables that described various aspects of differential proteins: (1)
a plot that described numbers of detected differential proteins given q-value thresholds
(Fig. 2A); (2) Summary statistics about the numbers of detected proteins and a meta-
analysis diagnosis (Fig. 2B); and (3) Top-N differential proteins list detected by meta-
analysis (Fig. 2C). The following command line generated a result file and graphs/tables:
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MetaMSD.Rscript [options]

Available options were:
–metaanalysis=Stouffer
Specify a meta-analysis test. User can choose
either Stouffer or Pearson (default=Stouffer).
–cutoff=0.05
Specify a q-value cut off (default=0.05).
–top=15
Specify the number of proteins in Top-N
differential protein list (default=15).
–input=input
Specify the input folder name (default=input).
–output=output
Specify the output folder (default=output).
–help
Show help message and exit.

The software MetaMSD, its manual, and example datasets are available at https:
//github.com/soyoungryu/MetaMSD under the terms of the MIT license, which allows
further community driven meta-analysis development.

Data
Simulated datasets
MetaMSDwas tested using ten different simulation scenarios. For each simulation scenario,
we generated one thousand simulations and calculated average performance measures of
meta-analysis methods. For each simulation, multiple datasets (or studies) were generated
and analyzed using MetaMSD. Each dataset contained 2n samples with n samples per
group. A total of 2,000 proteins were generated per study. We varied the number of
samples per group, n, where n=6, 9, or 12. Mass spectrometry was often not able to
quantify all proteins in complex mixtures, and a protein quantified in one dataset might
not be necessarily quantified in another dataset. Thus, we let the overlap percentage in
quantified proteins between datasets to be 75% (ρ = 0.75) for the most of simulations.
However, different ρ values were also explored and discussed. The data were simulated
using the following schemes:

xij ∼N (γj,λ2j ), (3)

log(γj)∼N (µ,σ 2), (4)

log(λj)∼N (α+βlog (γj),η), (5)

where xij was an abundance for protein j in dataset i, γj was a mean abundance for protein
j, and λj was its standard deviation. In Eq. (5), we specified λj such that there was a linear
relationship between log (λj) and log (γj). In other words, more abundant proteins had
higher variance. The parameters were set as the followings: µ= 2.42, σ = 0.30, α= 1.63,
β =−0.90, and η= 0.50. These values were obtained from label-free plasma proteomic data
of mice (Kuusela et al., 2017). Raw data are available via ProteomeXchange with identifier
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PXD005022. The last three parameters were estimated by fitting a linear regression on
log-transformed means of protein abundances and the corresponding log-transformed
standard deviations. The simulated data and mouse data had similar protein abundance
distributions including the mean–variance relationship. In our simulated dataset, 30% of
proteins were differential proteins with 1.5, 2, or 4 fold changes in protein abundances
between experiments. T -tests (with unequal variances) were performed for each dataset,
then meta-analysis techniques were applied to combine resulting p-values. The following
was a summary of 10 simulation scenarios:
Simulation Scenario 1: n= 6, ρ= 0.75, K = 2, α= 1.63
Simulation Scenario 2: n= 9, ρ= 0.75, K = 2, α= 1.63
Simulation Scenario 3: n= 12, ρ= 0.75, K = 2, α= 1.63
Simulation Scenario 4: n= 6, ρ= 0.75, K = 3, α= 1.63
Simulation Scenario 5: n= 6, ρ= 0.75, K = 4, α= 1.63
Simulation Scenario 6: n= 6, ρ= 0.75, K = 5, α= 1.63
Simulation Scenario 7: n= 6, ρ= 0.75, K = 2, α= 1.63×1.5
Simulation Scenario 8: n= 6, ρ= 0.75, K = 2, α= 1.63×2.0
Simulation Scenario 9: n= 6, ρ= 0.50, K = 2, α= 1.63
Simulation Scenario 10: n= 6, ρ= 0.25, K = 2, α= 1.63

Simulation Scenario 1 was used as a baseline scenario. Using Simulation Scenarios
1–3, we investigated MetaMSD performance for varying sample size (n= 6, 9, or 12).
Based on Simulation Scenarios 1 and 4–6, we investigated MetaMSD performance for
varying number of studies. Simulation Scenarios 1 and 7–8 were used to investigate the
effects of protein expression level variability and varying experiment qualities on the
meta-analysis results. Using Simulation Scenarios 1, 9 and 10, we observed how different
overlap percentages in quantified proteins between studies affected meta-analysis results.

Kidney transplant proteomic datasets
Two urinary proteomic datasets of renal transplant patients were obtained from
ProteomeXchange (Vizcaino et al., 2014) (PXD 002761). The details about mass
spectrometry experiments can be found in Sigdel et al. (2014); Sigdel et al. (2016). In
brief, these datasets contained four phenotypes of kidney transplant patients. However, in
this paper, the focus was on a two-group comparison by comparing acute allograft rejection
(AR) and stable allograft (STA) of kidney transplant patients. The first dataset was from an
iTRAQ (Hardt et al., 2005) mass spectrometry study. Each pooled sample generated from
either five patients with acute rejection (AR) or five patients with stable graft function
(STA). The data were analyzed by DeconMSn (Mayampurath et al., 2008) and Sequest
(Eng, McCormack & Yates, 1994). The p-values were obtained by comparing six pooled
AR samples and six pooled STA samples using t -tests with unequal variances. The second
dataset was from a label-free mass spectrometry study. There were 40 AR samples and 40
STA samples. However, to demonstrate the usefulness of the meta-analysis approaches in
combining small- to large-scale studies, we varied the sample size for AR patients and for
STA patients with nA=6, 9, 12, or 40. The label-free dataset was analyzed by MaxQuant
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(Cox & Mann, 2008) and MSstats (Choi et al., 2014; Clough et al., 2012). We combined the
p-values generated from the iTRAQ and label-free studies using MetaMSD.

Breast cancer proteomic datasets
Two proteomic datasets of estrogen receptor-positive (ER+) and triple-negative breast
cancer (TNBC) breast cancer tumor samples were obtained from the following publications:
Cancer Genome Atlas Network (2012) and Gámez-Pozo et al. (2015). To demonstrate the
usefulness of MetaMSD in integrating medium-size datasets, we did not utilize all the
patient data in these large-scale studies. Furthermore, in order to match patient’s clinical
characteristics between datasets, we used the proteomic data of patients who met the
following criteria: HER2-negative (Human Epidermal growth factor Receptor 2 negative)
breast cancer, and Lymph node-positive with lymph node status of either N1 or N2. The
first dataset (denoted as Dataset A) contained iTRAQ labeling proteomic data of 21 ER+
patients and six TNBC patients. The samples were analyzed using a nanoLC system coupled
to a Q Exactive MS (Thermo Scientific, Waltham, MA, USA). The second dataset (denoted
as Dataset B) contained label-free proteomic data of nine ER+ patients and nine TNBC
patients. These were analyzed by a LTQ-Orbitrap Velos hybrid mass spectrometer coupled
to NanoLC-Ultra system. These two clinical proteomic datasets were freely available with
some restrictions. For the first dataset, protein quantification information we used in
this paper, raw data, and the detailed description are freely available to the public at
https://cptac-data-portal.georgetown.edu/cptac/s/S015. However, users need to agree to
their data agreement policy. For the second dataset, the protein quantification information
we used in this paper and detailed description about data processing are available in
Gámez-Pozo et al. (2015) as Supplementary Materials. Raw mass spectrometry data are
also available at Cancer Research Online (http://cancerres.aacrjournals.org/) upon the
corresponding author’s approval. For both datasets, the p-values were calculated using
t -tests with unequal variances and combined using MetaMSD.

RESULTS
Simulation results
MetaMSD performed better than the individual analyses, detecting more differential
proteins (Table 1). At a q-value threshold of 5%, Stouffer’s and Pearson’s tests detected 66%
and 51% more differential proteins than the best individual data analysis in Simulation
Scenario 1. Stouffer’s test had a higher average true integration-driven discovery rate
(tIDR) than Pearson’s test. Nearly 15% of true differential proteins detected by Stouffer’s
test were never detected by any individual analysis. Both Pearson’s and Stouffer’s tests had
relatively low true integration-driven revision rate (tIRR), missing only less than 3% of true
differential proteins detected by the individual analyses. True FDRs for both meta- and
individual-analyses were less than 5%. This implied that our p-value/q-value estimations
were reasonable.

The superior performance of MetaMSD was observed when sample sizes were small
to moderate. When the sample size was nine (n= 9), Stouffer’s test detected 48% more
differential proteins than the individual analysis (Simulation Scenario 1 vs. 2). For a
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Table 1 The performance of MetaMSD using simulated datasets (Simulation Scenario 1). The sample
size for each group was 6 (n= 6) and the q-value threshold was 5%. The average numbers of detected dif-
ferential proteins, the average true false discovery rates (tFDR), the average true integration-driven discov-
ery rates (tIDR), and the average true integration-driven revision rates (tIRR) were reported. The results
were based on 1,000 simulations.

Meta analysis
(MetaMSD)

No. of
detected proteins

Average tFDR Average tIDR Average tIRR

Pearson’s test 322.10 3.45% 8.20% 2.63%
Stouffer’s test 355.05 4.70% 14.66% 1.55%

Individual analysis No. of detected proteins Average tFDR Average tIDR Average tIRR

Exp 1 213.32 4.66% . .
Exp 2 213.25 4.60% . .
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Figure 3. (a) MetaMSD performance for varying sample size (n =6, 9, or 12) where K =2. (b)
MetaMSD performance for varying numbers of studies (or datasets). (K =2, 3, 4, or 5). The dotted
horizontal line represents the number of detected proteins by an individual analysis. For both (a) & (b),
the results were based on 1,000 simulations (q < 0.05, ρ = 75%). The average numbers of detected
differential proteins were reported.

In mass spectrometry analysis, a protein quantified in one study might not be quantified in another159

study. Thus, the overlap in quantified proteins between two proteomic studies would be less than perfect.160

To investigate its effect, we varied ρ to be 0.75, 0.50 and 0.25. As the overlap of quantified proteins161

between studies decreased, true integration-driven discovery rates (tIDR) slightly decreased. The tIDRs162

for Stouffer’s test were 14.66%, 10.27%, and 5.39% when ρ =0.75, 0.50 and 0.25, respectively. The163

tIDRs for Pearson’s test were 8.20%, 5.26% and 2.88% when ρ =0.75, 0.50 and 0.25, respectively. True164

integration revision rates were relatively consistent with less than 3% for Pearson’s test and less than 2%165

for Stouffer’s test. Therefore, in order to take an advantage of the meta-analysis technique, it would be166

important to have relatively large proportions of common quantified proteins between studies (e.g. >50%167

overlap).168

Application in kidney transplant proteomic data169

When the sample size per group was six for both iTRAQ and label-free proteomic studies, Stouffer’s170

and Pearson’s test detected more differential proteins than individual analyses. Both had very high IDRs171

(integration-driven discovery rate). The IDR for Pearson’s test was over 80%. The IDR for Stouffer’s test172

was over 90%. These implied that both Stouffer’s and Pearson’s were able to detect many differential173

proteins that were not detected by any individual analyses. The IRR of Pearson’s test was 0%. Thus,174

Pearson’s test detected all differential proteins detected by either iTRAQ or label-free studies. Stouffer’s175

test had still low IRR, but was higher than Pearson’s test. The numbers of detected proteins were 86 and176

120 for Pearson’s and Stouffer’s test, respectively. MetaMSD detected 6.8 or 10.9 times more differential177

proteins than the individual label-free analysis. And this demonstrated that researcher could detect more178

differential proteins at the same false discovery rates by combining available study results.179

We further investigated the effect of various sample sizes on performance of MetaMSD (Pearson’s180

and Stouffer’s tests) (Fig 4). Specifically, we varied the sample size of the label-free study as nA =6,181

9, 12, or 40. We fixed the sample size of the iTRAQ study with nB = 6 because only six samples per182

group were available for the iTRAQ study. One may view the iTRAQ study as a pilot study and the183

label-free study as a main study. When the main (label-free) study had a moderate sample size, Stouffer’s184

and Pearson’s tests consistently performed better than using only main study result. As the sample size185

of the main study increased, the benefit of meta-analyses decreased. When the sample size of the main186

study reached 40, Stouffer’s test performed only slightly better than a main study analysis. Pearson’s test187
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Figure 3 (A) MetaMSD performance for varying sample size (n= 6, 9, or 12) whereK = 2 (Simulation
Scenario 1, 2, and 3) (B) MetaMSD performance for varying numbers of studies (or datasets) where
K =2, 3, 4, or 5 (Simulation Scenario 1, 4–6). The dotted horizontal line represents the number of de-
tected proteins by an individual analysis. For both (A) & (B), the results were based on 1,000 simulations
(q< 0.05, ρ= 75%). The average numbers of detected differential proteins were reported.

Full-size DOI: 10.7717/peerj.6699/fig-3

moderate sample size (n= 12), it detected 43% more differential proteins (Simulation
Scenario 1 vs. 3). A similar pattern was observed for Pearson’s test. As a sample size
increased, the number of differential proteins detected by individual analyses increased
and the benefit of using meta-analyses gradually decreased (Fig. 3A).

For larger variance of protein abundances, the superior performance of MetaMSD was
observed (Simulation Scenario 1, 7, and 8) as shown in Table S1. For instance, when we
increased our initial α, thus increasing variance by 50%, 330% more differential proteins
were detected by Stouffer’s tests (compared to the individual analysis). Similar results
were observed for Pearson’s test with 251% improvement compared to the individual
analysis. Since the simulation parameters (including the protein abundance variances)
were obtained from the mouse study, we anticipated larger protein abundance variances
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for human disease studies. The advantages of using MetaMSD may be more pronounced
for human disease studies.

Figure 3B showed that as the number of studies (or datasets) increased, meta-analyses
detectedmore differential proteins (Simulation Scenario 1, 4–6). Stouffer’s test consistently
performed better than Pearson’s test in our simulation studies in terms of the number of
detected proteins.

In mass spectrometry analysis, a protein quantified in one study might not be quantified
in another study. Thus, the overlap in quantified proteins between two proteomic studies
would be less than perfect. To investigate its effect, we varied ρ to be 0.75, 0.50 and 0.25
(Simulation Scenario 1, 9–10). As the overlap of quantified proteins between studies
decreased, true integration-driven discovery rates (tIDR) slightly decreased. The tIDRs for
Stouffer’s test were 14.66%, 10.27%, and 5.39% when ρ= 0.75, 0.50 and 0.25, respectively.
The average tIDRs for Pearson’s test were 8.20%, 5.26% and 2.88%when ρ= 0.75, 0.50 and
0.25, respectively. The average true integration revision rates were relatively consistent with
less than 3% for Pearson’s test and less than 2% for Stouffer’s test (Table S2). Therefore,
in order to take advantage of the meta-analysis technique, it would be important to have
relatively large proportions of common quantified proteins between studies (e.g., >50%
overlap).

Application in kidney transplant proteomic data
When the sample size per group was six for both iTRAQ and label-free proteomic studies,
Stouffer’s and Pearson’s test detected more differential proteins than individual analyses
(Table 2). Both had very high IDRs (integration-driven discovery rate). The IDR for
Pearson’s test was over 80%. The IDR for Stouffer’s test was over 90%. These implied that
both Stouffer’s and Pearson’s were able to detect many differential proteins that were not
detected by any individual analyses. The IRR of Pearson’s test was 0%. Thus, Pearson’s test
detected all differential proteins detected by either iTRAQ or label-free studies (Fig. 4A).
The IRR of Stouffer’s test was low, but higher than Pearson’s test. Stouffer’s test detected 11
out of 14 differential proteins that were detected by either iTRAQ or label-free studies. The
numbers of detected proteins were 86 and 120 for Pearson’s and Stouffer’s test, respectively.
MetaMSDdetected 6.8 or 10.9 timesmore differential proteins than the individual label-free
analysis. This demonstrated that researchers could detect more differential proteins at the
same false discovery rates by combining available study results. Figure 4B displayed the
distribution of log10 transformed q-values of differential proteins detected in at least one
individual analysis with same consistent relative abundances in both label-free and iTRAQ
analyses. These q-values were smaller in meta-analyses compared to individual analyses.
In the renal transplant patients’ experiments, true false discovery rates were not known,
thus not reported, However, q-values, which were minimum false discovery rates, were
displayed in Fig. 5A.

We further investigated the effect of various sample sizes on performance of MetaMSD
(Pearson’s and Stouffer’s tests) (Fig. 5). Specifically, we varied the sample size of the
label-free study as nA= 6, 9, 12, or 40. We fixed the sample size of the iTRAQ study with
nB= 6 because only six samples per group were available for the iTRAQ study. One may
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Table 2 The number of detected proteins (compared to the best individual analysis), IDR, and IRR
(FDR threshold 5%) for Renal Transplant Proteomics Data when the sample size was six per group for
both iTRAQ and label-free studies.

Meta analysis No. of detected proteins IDR IRR

Pearson’s test 86 83.72% 0.00%
Stouffer’s test 120 90.83% 21.43%

Individual analysis No. of detected proteins IDR IRR

Label-free 3 . .
iTRAQ 11 . .
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Figure 5. Renal transplant proteomic results. (a) A Venn Diagram for the number of differential proteins
detected by individual analyses and meta-analyses using renal transplant proteomic data. (b)
log10q− value comparison between individual analyses and meta analyses using renal transplant
proteomic data.

the information from their studies at full capacity and prevent unnecessary repetition of experiments.223

MetaMSD can also aid researchers to explore publicly available mass spectrometry datasets to discover224

interest protein biomarkers. Its usage is not limited to proteomics, but also to any quantitative mass225

spectrometry datasets including mass spectrometry-based metabolomics datasets.226

For the meta-analysis methods introduced in this paper, two assumptions were made. First, it was227

assumed that p-values from individual analyses were properly estimated in order to accurately control the228

number of false positives. Thus, if the individual analyses underestimated p-values, then the meta-analysis229

approaches that combined these p-values would underestimate p-values. In our data analysis, we made230

sure that we used the software/statistical approach (e.g. MSstats) that properly estimated p-values. The231

second assumption was independence of studies. In other words, we assumed that different studies232

did not contain measurements from the same patients (even though technical replicates were allowed233

within a study). For example, if Datasets A and B contained mass spectrometry runs from the same234

patients, p-values from Dataset A and B would be correlated. In this study, the meta-analysis methods235

may yield underestimated p-values. In our datasets, none of the patients’ urine samples were analyzed by236

both iTRAQ and label-free approaches to the best of our knowledge, thus p-values were not correlated.237

However, when samples between studies are completely or partially overlapped, correlated p-values must238

be properly handled. One possible solution to handle the correlation is using a permutation approach to239

compute p-values for integrative approaches.240

In this paper, we demonstrated the usefulness of MetaMSD in discovering more differential proteins.241

We note that MetaMSD differs from the approaches that combine untargeted and targeted proteomics242

experiments described in Li et al. (2016) and MacLean et al. (2010). In the latter approach, potential243

protein markers are selected in a pilot study, then re-analyzed and evaluated in a main study. Thus, in244

this strategy, quantification in the pilot study was not directly utilized in the final p-value calculation.245

However, MetaMSD utilizes hypothesis test results from both pilot and main studies. In addition, it is not246

limited to combine pilot and main studies.247

Integrating more datasets does not always guarantee the detection of additional differential proteins.248

For example, if all true differential proteins were already detected at a given significance level, integrating249

an additional dataset will not help us detect more differential proteins except increasing our confidence250

about the findings. Also, the meta-analysis will not help researchers detect extremely low abundant251

differential proteins that were never quantified in any of studies. However, when there exist true differential252
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Figure 4 Renal transplant proteomic results. (A) A Venn Diagram for the number of differential pro-
teins detected by individual analyses and meta-analyses. (B) The log-transformed q-value comparison be-
tween individual analyses and meta analyses.

Full-size DOI: 10.7717/peerj.6699/fig-4

view the iTRAQ study as a pilot study and the label-free study as a main study. When
the main (label-free) study had a moderate sample size, Stouffer’s and Pearson’s tests
consistently performed better than using only the main study result. As the sample size of
the main study increased, the benefit of meta-analyses decreased. When the sample size
of the main study reached 40, Stouffer’s test performed only slightly better than a main
study analysis. Pearson’s test performed similarly to the main study results. This implied
that when one experiment could maximize the number of differential proteins, adding an
additional study did not add much value. We note that the sample size displayed in this
section cannot be applicable to other studies. It may depend on the variability of samples.
Our analysis was based on renal patients’ urine samples which may have relatively large
biological variance.

Application in breast cancer proteomic data
MetaMSD performed well in integrating two medium-size datasets from different
laboratories (Table 3). Using Stouffer’s test, MetaMSD detected nearly 70% more
differential proteins than the best individual analysis. Pearson’s test detected about 55%
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Table 2. The number of detected proteins (compared to the best individual analysis), IDR, and IRR
(FDR threshold 5%) for Renal Transplant Proteomics Data when the sample size was six per group for
both iTRAQ and label-free studies.

Meta Analysis no. of detected proteins IDR IRR
Pearson’s test 86 83.72% 0.00%
Stouffer’s test 120 90.83% 21.43%

Individual Analysis no. of detected proteins IDR IRR
Label-free 3 . .

iTRAQ 11 . .
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Figure 4. Renal Transplant Proteomic Results. The q-value threshold vs. the number of differential
proteins. The number of iTRAQ samples was six pooled samples per patient group. The number of
label-free samples was varied. (a) 6 AR vs. 6 STA Label-free Samples. (b) 9 AR vs. 9 STA Label-free
Samples. (c) 12 AR vs. 12 STA Label-free Samples. (d) 40 AR vs. 40 STA Label-free Samples.
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Figure 5 The q-value threshold vs. the number of differential proteins for renal transplant proteomic
experiments The number of iTRAQ samples was six pooled samples per patient group. The number of
label-free samples was varied. (A) Six AR vs. six STA label-free samples. (B) Nine AR vs. nine STA label-
free samples. (C) 12 AR vs. 12 STA label-free samples. (D) Forty AR vs. 40 STA label-free samples.

Full-size DOI: 10.7717/peerj.6699/fig-5

more differential proteins. Both meta-analysis tests had moderate IDRs with 28% for
Pearson’s test and 33% for Stouffer’s test. Stouffer’s test detected 93 differential proteins
that were not detected by any of individual analyses (Fig. 6A). Pearson’s test detected 73
such proteins. More than 250 differential proteins were detected by both Pearson’s and
Stouffer’s tests.

However, the IRRs weremore than 30% for both Pearsons’ and Stouffer’s tests, not being
able to detect some proteins detected by individual analyses (Table 3 and Fig. 6A). This
could be due to slightly different clinical characteristics of patients between two studies.
When selecting ER+ and TNBC patients, we tried to match patients’ clinical characteristics
between two datasets, however, there was a limitation in this approach because some
clinical variables (e.g., hormonal therapy) were not available. However, some proteins had
very small q-values after applying meta-analyses as shown in Fig. 6B. These proteins were
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Table 3 The number of detected proteins (compared to the best individual analysis), IDR, and IRR
(FDR threshold 5%) for Breast Cancer Proteomics Data.

Meta analysis No. of detected proteins IDR IRR

Pearson’s test 260 28.08% 35.52%
Stouffer’s test 285 32.63% 33.79%

Individual analysis No. of detected proteins IDR IRR

Dataset A 133 . .
Dataset B 168 . .
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approaches that combined these p-values would underestimate p-values. In our data analysis, we made270

sure that we used the software/statistical approach (e.g. MSstats) that properly estimated p-values. The271

second assumption was independence of studies. In other words, we assumed that different studies272

did not contain measurements from the same patients (even though technical replicates were allowed273

within a study). For example, if Datasets A and B contained mass spectrometry runs from the same274

patients, p-values from Dataset A and B would be correlated. In this study, the meta-analysis methods275

may yield underestimated p-values. In our datasets, none of the patients’ urine samples were analyzed by276

both iTRAQ and label-free approaches to the best of our knowledge, thus p-values were not correlated.277

However, when samples between studies are completely or partially overlapped, correlated p-values must278

be properly handled. One possible solution to handle the correlation is using a permutation approach to279

compute p-values for integrative approaches.280

In this paper, we demonstrated the usefulness of MetaMSD in discovering more differential proteins.281

We note that MetaMSD differs from the approaches that combine untargeted and targeted proteomics282

experiments described in Li et al. (2016) and MacLean et al. (2010). In the latter approach, potential283

protein markers are selected in a pilot study, then re-analyzed and evaluated in a main study. Thus, in284

this strategy, quantification in the pilot study was not directly utilized in the final p-value calculation.285

However, MetaMSD utilizes hypothesis test results from both pilot and main studies. In addition, it is not286

limited to combine pilot and main studies.287

Integrating more datasets does not always guarantee the detection of additional differential proteins.288

For example, if all true differential proteins were already detected at a given significance level, integrating289

an additional dataset will not help us detect more differential proteins except increasing our confidence290

about the findings. Also, the meta-analysis will not help researchers detect extremely low abundant291

differential proteins that were never quantified in any of studies. However, when there exist true differential292

proteins that were not detected yet and such proteins were quantified by the instrument, the meta-analysis293

can increase a chance to detect such differential proteins by integrating more datasets. The development294

of a power analysis that estimates the minimum number of datasets and their sample size for the additional295

differential proteins will help researchers plan their future experiments. In the future, we plan to develop296

a simulation-based power analysis for MetaMSD.297

In conclusion, MetaMSD is an user-friendly software that integrates multiple proteomics datasets298

using Stouffer’s or Pearson’s test. We believe that this software will be beneficial to scientists who cannot299

perform mass spectrometry analysis on a large-scale, but want to maximize their protein biomarker protein300

list by combining the results from their pilot and primary studies.301
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Figure 6 Breast cancer proteomic results. (A) A Venn Diagram for the number of differential proteins
detected by individual analyses and meta-analyses. (B) The log-transformed q-value comparison between
individual analyses and meta-analyses.

Full-size DOI: 10.7717/peerj.6699/fig-6

the proteins that had small p-values for both studies (Dataset A and B) with the consistent
relative abundances. They may be robust protein candidates for differentiating ER+ and
TNBC patients.

DISCUSSION
Stouffer’s and Pearson’s tests were successful in identifying more differential proteins
than an individual analysis at a given false discovery rate. We believe that our software,
MetaMSD, will help scientists utilize the information from their studies at full capacity
and prevent unnecessary repetition of experiments. The usage of MetaMSD is not limited
to proteomics, but also to any quantitative mass spectrometry datasets including mass
spectrometry-based metabolomic datasets. Thus, MetaMSD can help researchers explore
publicly available mass spectrometry datasets and discover interesting biomarkers.

For the meta-analysis methods introduced in this paper, three assumptions were made.
First, it was assumed that p-values from individual analyses were properly estimated in
order to accurately control the number of false positives. Thus, if the individual analyses
underestimated p-values, then the meta-analysis approaches that combined these p-values
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would underestimate p-values. In our data analysis, we made sure that we used the
software/statistical approach (e.g., MSstats) that properly estimated p-values. The second
assumption was independence of studies. In other words, we assumed that different studies
did not contain measurements from the same patients (even though technical replicates
were allowedwithin a study). For example, if Datasets X and Y containedmass spectrometry
runs from the same patients, p-values from Dataset X and Y would be correlated. In this
study, the meta-analysis methods may yield underestimated p-values. In our datasets, none
of the patients’ urine samples were analyzed by both iTRAQ and label-free approaches to the
best of our knowledge, thus p-values were not correlated. For breast cancer studies, patients
were in different countries. However, when samples between studies are completely or
partially overlapped, correlated p-valuesmust be properly handled. One possible solution to
handle the correlation is using a permutation approach to compute p-values for integrative
approaches. Third, it was assumed that individual analyses were comparable to each other.
As shown in breast cancer studies, more caution was needed when combining studies that
were designed for different goals.

In this paper, we demonstrated the usefulness of MetaMSD in discovering more
differential proteins. We note thatMetaMSD is different from the approaches that combine
untargeted and targeted proteomics experiments described in Li et al. (2016) andMacLean
et al. (2010). In the latter approach, potential protein markers are selected in a pilot study,
then re-analyzed and evaluated in a main study. Thus, in this strategy, quantification in
the pilot study is not directly utilized in the final p-value calculation. However, MetaMSD
utilizes hypothesis test results from both pilot and main studies. In addition, it is not
limited to integrating pilot and main studies.

However, integratingmore datasets does not always guarantee the detection of additional
differential proteins. For example, if all true differential proteins were already detected
at a given significance level, integrating an additional dataset will not help us detect
more differential proteins except increasing our confidence about the findings. Also, the
meta-analysis cannot help researchers detect extremely low abundance differential proteins
that were never quantified in any of studies. However, if true differential proteins were
quantified by instruments, the meta-analysis can increase our chances to detect such
differential proteins by integrating more datasets. The development of a power analysis
that estimates the minimum number of datasets and their sample size for the additional
differential proteins detection will help researchers plan their future experiments. In the
future, we plan to develop a simulation-based power analysis for MetaMSD.

In conclusion, MetaMSD is a user-friendly software that integrates multiple proteomics
datasets using Stouffer’s or Pearson’s test. We believe that this software will be beneficial
to scientists who cannot perform mass spectrometry analysis on a large-scale, but want to
maximize their protein biomarker protein list by combining the results from their pilot
and primary studies.
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