1	Title: Variation in ant-mediated seed dispersal along elevation gradients.
2	
3	Authors: Israel Del Toro ^{1*} , Relena Ribbons ¹
4	
5	Affiliations: ¹ Lawrence University, Biology Department, 711 E. Boldt Way, Appleton
6	WI, 54911, USA.
7	
8	*corresponding author: Israel Del Toro Israel.deltoro@lawrence.edu
9	Israel Del Toro: ORCID: 0000-0002-3901-8713
10	Relena Ribbons ORCID: 0000-0002-9566-3813
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	Author Contributions: IDT and RRR designed the study, completed fieldwork, data
21	analyses and wrote the manuscript.
22	
23	

Abstract

Ant-mediated seed dispersal, also known as myrmecochory, is a widespread and important mutualism that structures both plant and ant communities. However, -the extent to which ant functional types gradients (e.g granivorous generalists vs myrmecochorous ants) across environment affect seed removal rates is not fully understood. We used a replicated, standardized seed removal experiment along elevation gradients in four mountain ranges in the southwestern United States to test predictions that: (1) seed removal rates would be greater at lower elevations, and (2) seed species identity influences seed removal rates, (i.e. seeds from their native elevation range would be removed at higher rates than seeds outside of their range). Both predictions were supported. Seed removal rates were ~25% higher at lower elevation sites than at higher elevation sites. The low elevation *Datura* and high elevation *Iris* were removed at higher rates in their respective native ranges. We attribute observed differences in dispersal rates to changes in ant community composition, functional diversity, and abundance. We, and also suggest that temperature variation along the elevation gradient may explain these differences.

Keywords: mountain, biodiversity, myrmecochory, community ecology

1	7
T	/

Introduction

The geographic variation in ant plant mutualistic relationships can shed light on
plant and arthropod community structure and how they may respond to changing
environmental conditions. In the temperate deciduous forests of North America, ants
disperse up to 50% of all herbaceous species (Zelikova et al. 2008(Zelikova, Sanders &
Dunn, 2011)). Myrmecochory– ant-mediated seed dispersal – is an ecologically important
and ubiquitous mutualistic interaction that exists between ants and plants (Ness and
Bressmer 2005), occurring in over 11,000 species, and across 70 plant families (Lengyel
et al. 2010). Seeds of myrmecochorous plants contain lipid-rich appendages called
elaiosomes, which serve as nutritional rewards for ants (Warren and Giladi 2014; Gomez
and Espadaler 2013, Ness 2005). Myrmecochory is an important and widespread
ecological phenomenon, and variation Variation in seed removal rates can be explained
by ant morphological traits (Fokuhl et al. 2012) and seed traits like eliaosome and plant
size (Leal et al. 2015; Peters et al. 2003). Ants also influence the dispersal capacity of a
seed by making seeds unavailable to other potential seed predators (Leal et al. 2015) and
also disperse non-elaiosome bearing seeds through seed harvesting or granivory
(Christianini et al. 2007; Taber 1999). In both cases, ant-mediated seed dispersal plays a
key role as an ecosystem service process by shaping vegetation community structure (Del
Toro et al. 2012; Ghobadi et al. 2015).

Seed dispersal distance has been studied on a global scale (Lengyel et al. 2010;

Gomez and Espadaler 2013), but the variation in seed dispersal rates along environmental gradients on a landscape scale remains to be studied and can clarify the mechanisms

Commented [JZ1]: spelling

Formatted: Highlight
Formatted: Highlight

Commented [JZ2]: So are ants dispersers or seed predators – this needs to be made really clear here. Ants that disperse non-elaiosome seeds can also be eating those seeds and if they are not eating them, they are caching them (which may remove seeds from predation by others but may also create unfavorable germination conditions)

Formatted: Highlight

Commented [JZ3]: No, ant seed dispersal is not considered a key ecosystem process.

Formatted: Highlight

70 behind seed dispersal. "Sky islands" are individual mountains isolated from larger 71 continuous ranges by vastly different habitat types, in this case the Chihuahuan and 72 Sonoran deserts at the lower elevations. The sky islands of the southwestern United 73 States provide an excellent system for studying how myrmecochory varies along a 74 continuous elevation and habitat gradient. This gradient extends from desert scrub to 75 subalpine coniferous forest (Brusca and Moore 2013), which is an excellent natural 76 experiment as both plant and arthropod communities tend to change systematically along 77 gradients (Del Toro 2012). 78 Ant-mediated seed dispersal shapes vegetative communities (Zelikova et al. 2008) and 79 this important mutualism is potentially resilient to increased temperatures in temperate 80 forests in the eastern U.S. (Stuble et al. 2014). However, less is known about the potential 81 breakdown of ant-mediated seed dispersal in a desert to forest mountain gradient-gradient due to changes in climate. We suspect strong mutualisms within desert communities, due 82 83 to their extreme climates and rapidly changing environmental gradients (for example, 84 intense deluges of rain and dramatic shifts in temperatures in a single day). Thus, we 85 predict that myrmecochory may play a strong role in shaping vegetation communities in 86 desert environments and expect tightly coupled ant-plant mutualisms that are species-87 specific. 88 Adding to the threats to ant-mediated seed dispersal include shifts in ant 89 community composition, potentially either in response to a changing climate or being

displaced by invasive competitor species (Rodriguez-Cabal 2011). We documented seed

gradient. We predicted that: 1) rates of seed removal would be higher at lower elevations,

removal rates, and the effect of seed species identity on seed removal rates along this

90

91

92

Formatted: Highlight

Commented [JZ4]: By this rationale, all mountains are isolated from other ecosystems – if "sky islands" are truly unique for ant seed dispersal, need to make that case here. Them being different is not enough of a context to justify the framing for this study.

Commented [JZ5]: Citations?

Formatted: Line spacing: Double

Formatted: Font: (Default) Times New Roman, 12 pt, Highlight

Commented [JZ6]: This doesn't seem like enough of a reason – are there other studies that show that mutualisms are stronger or more frequent in desert ecosystems?

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

93 possibly associated with higher ant abundances and known different ant communities Commented [JZ7]: What does that mean? 94 (Andersen 1997), and 2) individual rates of seed removal for each seed species would be 95 highest at a seeds' native elevation range. Commented [JZ8]: What is a seed's native range? Why is that a factor in this study? Doesn't match the framing. 96 97 **Materials and Methods** 98 a) Study Site and Organisms 99 We conducted this study on four sky islands in the southwestern United States of 100 America in June and July 2015 (see supporting data file for site details; S1, Table 1). At Formatted: Highlight 101 each elevation band we deployed 10 seed depots, each containing 100 seeds, with 25 102 seeds from four different plant species (Table 1). To test whether seed removal rates were 103 dependent on species identity, we selected seeds from plants native to different habitats 104 along the elevation gradient. We built seed depots using laminated white index cards 105 covered with an overturned, reinforced, disposable plastic plate (Dixie Co. Atlanta GA, 106 USA) held in place with lawn staples (Easy Gardener Inc. Waco TX, USA) to prevent 107 seeds from being blown by wind or being removed by larger granivores. Ants were 108 allowed to enter and exit the depot through 1cm openings, cut out around the covering 109 plate. Each seed depot contained 25 seeds of the four study species (detailed below). We Commented [JZ9]: This is already stated above Formatted: Highlight 110 counted the remaining seeds every 12 hours over a 48-hour period. Each depot was 111 deployed and counted within hours of each other, within a single mountain site. 112 We selected seeds from four different plants (Datura, Iris, Oat, and Sumac) to test 113 our second objective prediction, that seeds would be removed at greater rates in their 114 native elvation range. Datura wrightii is the only species with an eliaosome-bearing seed Commented [JZ10]: Again misspelled 115 and is common in desert scrub habitat (typically found at elevations <1800 m.a.s.l.)

(Carter 1997)(Carter, 1997)(Carter, 1997)[1]. We collected seeds within one week of deploying the depots to account for phenological emergence. Based on our field observations, this seed was typically removed by Harvester ants (*Pogonomyrmex* spp). Little Leaf Sumac (Rhus microphylla) fruits were observed in the field being harvested by various ant genera (Pogonomyrmex, Aphaenogaster and Pheidole) at mid elevations from 1800 m.a.s.l to 2400 m.a.s.l. The Rocky Mountain Iris (Iris missouriensis) normally occurs only in habitat above 2400 m.a.s.l.(`Brusca & Moore, 2013), and ants in the genera Formica and Myrmica were observed actively removing seeds from the plants. Lastly, we used an oat seed (Avena sativa) that served as our control group, as it is not native to the study region nor does it contain an eliasome, but may be a source of nutrients for opportunistic and granivorous ants.

To assess ant community composition and abundances, we used a16 pitfall quadrant array at each sampling location. Pitfall traps were deployed for the same 48 hours when seed removal rates were observed. We report ant incidence (i.e. number of pitfalls that captured an individual genus) as a conservative measure of ant abundance.

b) Statistical analyses

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

We used a generalized linear mixed model (GLMM) to test for an additive interaction effect between elevation and seed species, and to test our first prediction that seed removal would vary across elevation and site. We treated time, elevation, and seed identity as fixed effects, and specified a Poisson distribution for the count data. The total number of seeds removed over time was compared between seed species and elevation bands using repeated-measures analysis of variance (RMANOVA). To test our second prediction (that seed identity influences seed removal across elevations) we used a

Commented [JZ11]: Be more specific

Commented [JZ12]: Which seed?

Formatted: Highlight

Formatted: Highlight

Commented [JZ13]: Again spelling

Formatted: Highlight

Formatted: Highlight

Commented [JZ14]: Then this is not an appropriate experimental control

Formatted: Highlight

Commented [JZ15]: Not presented in the results section

Commented [JZ16]: Its actually not at all a measure of abundance, it is its own metric and usually referred to as "occurrence" which has its own suite of analyses associated with it (as well as assessment of whether this method misses rare species or species that do not respond to pitfall traps)

Formatted: Highlight

Formatted: Indent: First line: 0.5", Line spacing: Double

Formatted: Highlight

Commented [JZ17]: What does "additive effect" mean?

Commented [JZ18]: As far as I understand, these are one in the same

Formatted: Highlight

Commented [JZ19]: Count of what?

Formatted: Highlight

Commented [JZ20]: Among since you have more than 2

Formatted: Highlight

GLMM and Chi square tests for each species separately, and included site as a random factor.

We conducted an overdispersion test, modified from Ben Bolker (overdisp fun; see Supplementary material lines 24-32). This function was applied to all glmer models and results are reported in the supplementary materials. Overdispersion was not detected in the global model M1, but was present in the individual models of Iris and Sumac. For Iris and Sumac, overdispersed models were fitted using a quasi-Poisson distribution, which allowed us to estimate which sites and elevations are driving the primary detected patterns. For Iris- the significant difference in high elevations is driven by site MOG. For Sumac-variable responses at high elevation sites (2800 m) may be dampening any possible trends.

See the supporting information file (S1) for the detailed code and dataset used in the analyses. All analyses including GLMMs were implemented in R statistical program version 3.2.3 (R Development Core Team 2014) using the "Ime4" package (Bates et al. 2015)(Douglas Bates et al., 2014)(Douglas Bates et al., 2014)(Douglas Bates et al., 2014)[3] and Chi square tests in the "car" package (Fox and Weisberg 2011)(Fox & Weisberg, 2011)(Fox & Weisberg, 2011)[4]. To identify differences in ant community composition we used Principal Component Analysis (PCA) implemented in the "FactoMineR" package and visually inspected PCA biplots.

158

159

160

161

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

Results

Total seed removal rates were similar among sites at 1600 m and those at 2200 m, but seed removal rates were 23.8% lower at 2800 m than at the lower elevations (Figure

Commented [JZ21]: Give a reason why

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Commented [JZ22]: Global model? This was followed by individual species modeled singularly? Need to give those kinds of details

Formatted: Font: (Default) Times New Roman, 12 pt

Commented [JZ23]: What does a result like this mean if anything? This tells me there is no pattern.

Formatted: Font: (Default) Times New Roman, 12 pt,

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Highlight

Highlight

Commented [JZ24]: Also have no idea what this means.

Formatted: Highlight

Formatted: Font: (Default) Times New Roman, 12 pt,

Highlight

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font:
Formatted: Highlight

Commented [JZ25]: This is a weird way to present the elevation gradient results – if there is no elevation gradient, as expected, start with that.

1, Figure S1), a pattern consistent with our first prediction. Our repeated measures analyses suggested a strong interaction additive effect between elevation and seed species (Table 2, p < 0.001). In all analyses (global model and seed specific models), time influenced the number of seeds removed. This suggests that the longer the depots are active, the more seeds are removed, ranging from 25% to 58% over the 48-hour time period.

Datura and oat seeds accounted for most of the seed removal (Figure 2A, 2C, (13% and 18% respectively)), whereas Iris and Sumac seeds were removed at lower rates (2B, 2D (~5% for either species)). Datura seed removal was highest at the low elevation sites, with no differences between the mid and high elevation sites. Oat seed removal tended to be greater at mid elevations and approximately the same at low and high elevations (Figure 2C), compared to the other seed species. Iris and Sumac seeds were removed less frequently from our depots, with Iris seeds having greater removal rates (Figure 2B) while Sumac had the lowest removal rates between these two species (Figure 2D), at high elevation sites after 48 hours. Our repeated measures analyses suggest that elevation was an important factor in explaining seed removal rates for all four species, and site level effects were important for Datura . Iris and Oats, but Iris not or Sumac.

Discussion

Our findings highlight that while granivory seed removal may be widespread across environmental gradients, it may be more pronounced in arid low-elevation compared with mesic high-elevation habitats. Observed seed removal rates were greater in lower elevations than in higher elevations. Seed removal was strongly dependent on seed species identity and its native elevation range, which was consistent with our predictions.

Commented [JZ26]: I again don't know what this additive effect means, its not a parametric statistical result

Formatted: Highlight

Commented [JZ27]: This seems obvious to me, not sure it's a big result to present. I guess it would be interesting and unexpected if seeds were not removed?

Formatted: Highlight

Commented [JZ28]: A result like this worries me – elevation cannot in and of itself remove seeds but is being involved as a driving thing when in actually, variation in seed removal rates is likely driven by shifts in ant community composition and/or activity and those aspects were not presented or invoked.

Commented [IDT29]: The geographic variation in ant-plant mutualistic relationships can shed light on plant and arthropod community structure and how they may respond to changing environmental conditions. In the temperate deciduous forests of North America, ants disperse up to 50% of all herbaceous species (Zelikova et al. 2008(Zelikova, Sanders & Dunn, 2011)).

Commented [JZ30]: I find it puzzling that the study did not include any observation of which ants were interacting with the seeds and no link made between the ant communities and seed removal. This is a fetal flaw for this study that keeps it from (1) addressing the actual research goals, (2) drawing any conclusions whatsoever about the mechanisms that are structuring seed movement and I would venture, resultant plant communities. As a result, this study misses the mark and does not bring any new knowledge or understanding. If the authors can find a way to reshift their focus and think about the biological interactions rather than using elevation as a proxy for everything, this study can be made relevant.

186 dispersing ants, especially Harvester ants (Pogonomyrmex spp., Novomessor spp.). These 187 two species are more common at lower elevations (Taber, 1998)(Taber, 1998)(Taber, 188 1998)[5](Taber 1998) and have multiple traits which make these ants ideal dispersers of 189 seeds that are dropped while foraging and not consumed (Warren and Giladi 2014; 190 Zelikova et al. 2008), including a specialized dietary preference for seeds (Taber 1999). 191 These harvester ants were observed removing seeds of Datura and Sumac, as well as the 192 control Oat, but never dispersing the Iris. This observation may be a fruitful line of 193 inquiry in future work. 194 In other temperate region studies, ant abundance is correlated with unimodal species 195 richness and abundance patterns with low ant diversity/abundance at high elevations, 196 with a peak of diversity/abundance in mid to lower elevations (Bharti et al 2013; Lessard 197 et al. 2011). Our results suggest a similar pattern of ant abundance could be driving seed 198 removal rates, as both seed removal and ant abundances were higher at low elevation 199 sites. Myrmecochory may be more prevalent in ecosystems where high ant abundances 200 can be advantageous for dispersing seeds, (e.g. Datura in low-elevations). The mutualistic 201 relationship of harvester ants (Pogonomyrmex) and Datura wrightti has been carefully 202 documented and the effects of Datura seed diets on ant reproductive output have been 203 experimentally tested (Marussich, 2006). (Zelikova et al. 2008). Ant community composition also changes 204 along these elevation gradients, with the lower elevations having high abundances of hot-205 climate specialist and generalized Myrmicinae species, and high elevation sites tend to 206 have lower abundances of ants which were mainly cold climate specialist and 207 opportunistic species (Andersen 1997) (S1). The observed ant community differences

The pattern of total seed removal may be attributable to higher abundance of seed

185

Formatted: u-mb-2, Indent: Left: -0.25", Space After: 0 pt, Outline numbered + Level: 1 + Numbering Style: Bullet + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5", Font Alignment: Center, Pattern: Clear (Custom Color(RGB(252,252,252)))

may explain the patterns of seed removal along this gradient. Behaviorally dominant and abundant genera may remove more seeds at low elevations, while opportunistic genera may remove fewer seeds at high elevation sites. Higher rates of seed removal at lower elevations may also correlate with higher temperatures, which leads to increased activity such as removal rates (Stuble et al. 2014).

Seed species identity also influenced observed seed removal patterns. Datura and Iris seeds were removed at higher rates in their native elevation ranges (1600 m and 2800 m, respectively). The pattern detected in our study suggests that at low elevations, ant communities have highly active and abundant, seed-dispersing species (S1). Midelevation sites tend to have preferentially granivorous ant communities (as indicated by the higher removal of oat seeds at mid-elevations). High-elevation sites have relatively lower ant abundances (S1) largely comprised of opportunistic species. Our results may reflect an unequal distribution of functional ant diversity along these elevation gradients. This uneven distribution of functional diversity places concern on seed-dispersing ant species that may be sensitive to climate change, especially in temperate (high elevation) ecosystems (Del Toro et al. 2015) or instances where climate-driven ecological mismatches between seed drop and ant activity occur (Warren and Bradford 2014).

Future work should explore the network of ants interacting with various seed species being dispersed along environmental gradients. This would help identify major seed dispersing ant species and the total influence they have on structuring vegetation communities. We recognize the potential for the influence of seed-drop phenology influencing the seeds being dispersed, a pattern that was documented in eastern North American forests (Warren and Bradford 2014). This may partially explain low rates of

Sumac removal, since it tends to drop its seeds earlier in summer than the other seeds (Cater 1997).

Conclusions

Although myrmecochory is widespread and important in structuring plant and animal communities (Warren and Giladi 2014; Del Toro et al. 2012), this relationship is not equally distributed along elevation and habitat gradients. Furthermore, a single ant species can perform a majority of seed dispersal, such as *Pogonomyrmex* spp. and *Novomessor* spp. in this study or *Aphaenogaster rudis* in the Great Smoky Mountains (Zelikova et al. 2008). We highlight that for some species (Datura and Iris) their ant-mediated dispersal rate is highest in their native elevation range, which may suggest strong mutualistic links between ants and these plant species. The work on seed dispersal along elevation gradients allows us to explore how key ant-mediated ecosystem processes respond to environmental cues and help us predict how communities might respond to future climatic and habitat change.

Acknowledgements:

Sampling permits were obtained from the United States Forest Service. We thank
Christian Rodriguez and Bill McKay for data collection and genera identification
assistance, Sara Baqla and Julie Schlicte for data collection assistance, and the Sanders
lab group and Brandon Bestelmeyer for input on previous drafts of this manuscript.

252	Funding was provided by a National Science Foundation postdoctoral research fellowship	
253	awarded to IDT, and UTEP REU and Jornada LTER REU programs.	
254		
255	Conflict of Interest: The authors declare that they have no conflict of interest.	
256		
257	References:	
258	Andersen, A. N. (1997). Functional groups and patterns of organization in North	
259	American ant communities: a comparison with Australia. Journal of Biogeography,	
260	24(4), 433–460. http://doi.org/doi:10.1046/j.1365-2699.1997.00137.x	
261	Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-	
262	effects models using lme4. <i>Journal of Statistical Software</i> , 67(1), 1–48.	
263	http://doi.org/10.18637/jss.v067.i01	
203	http://doi.org/10.1000//jss.v00/.io1	
264	Bharti, H., Sharma, Y. P., Bharti, M., & Pfeiffer, M. (2013). Ant species richness,	
265	endemicity and functional groups, along an elevational gradient in the himalayas.	
266	Asian Myrmecology, 5(1), 79–101. http://doi.org/10.1111/j.1600-0706.2010.18772.x	
b < 7	Drugge D. C. & Magne W. (2012) Angton-University of the Court Contains M.	
267	Brusca, R. C., & Moore, W. (2013). A natural history of the Santa Catalina Mountains,	
268	Arizona, with an introduction to the Madrean sky islands. Arizona-Sonora Desert	
269	Museum Press.	
270	Carter, J. L., Dennis, B., Leggitt, M. C., & Underwood, W. J. (1997). <i>Trees and shrubs of</i>	Formatted: Line spacing: Double
 271	New Mexico. Mimbres Pub.	

272	Christianini, A. V., Mayh, J., Oliveira, P. S., Mayhé-Nunes, A. J., Oliveira, P. S., Mayh,
273	J., Mayhé-Nunes, A. J. (2007). The role of ants in the removal of non-
274	myrmecochorous diaspores and seed germination in a neotropical savanna. Journal
275	of Tropical Ecology, 23(3), 343. http://doi.org/10.1017/S0266467407004087
276	Del Toro, I., Ribbons, R. R., & Pelini, S. L. (2012). The little things that run the world
277	revisited: A review of ant-mediated ecosystem services and disservices
278	(Hymenoptera: Formicidae). Myrmecological News.
279	Del Toro, I., Silva, R. R., & Ellison, A. M. (2015). Predicted impacts of climatic change
280	on ant functional diversity and distributions in eastern North American forests.
281	Diversity and Distributions, 21(7), 781–791. http://doi.org/10.1111/ddi.12331
282	Fokuhl, G., Heinze, J., & Poschlod, P. (2012). Myrmecochory by small ants - Beneficial
283	effects through elaiosome nutrition and seed dispersal. Acta Oecologica, 38, 71-76.
284	http://doi.org/10.1016/j.actao.2011.09.007
285	Fox, J., & Weisberg, S. (2011). An {R} Companion to Applied Regression, Second Edition.
286	Sage, (September 2012), 2016. Retrieved from http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
 287	Ghobadi, M., Agosti, D., Mahdavi, M., & Jouri, M. H. (2015). Effects of Harvester Ants'
288	Nest Activity (Messor spp.) on Structure and Function of Plant Community in a
289	Steppe Rangeland (Case Study: Roodshoor, Saveh, Iran). Journal of Rangeland
290	Science, 5(4), 269–283. Retrieved from
291	http://www.rangeland.ir/article_516635_110095.html%5Cnhttp://www.rangeland.ir/
292	pdf_516635_3a47b7f56ebd5c39ddb668e6579733cc.html

293	Gómez, C., & Espadaler, X. (2013). An update of the world survey of myrmecochorous	
294	dispersal distances. <i>Ecography</i> , 36(11), 1193–1201. http://doi.org/10.1111/j.1600-	
295	0587.2013.00289.x	
273	0307.2013.00207.X	
296	Leal, I. R., Leal, L. C., & Andersen, A. N. (2015). The benefits of myrmecochory: A	
207	mother of statum Distriction 47(2) 201 205 http://doi.org/10.1111/htm.12212	
297	matter of stature. <i>Biotropica</i> , 47(3), 281–285. http://doi.org/10.1111/btp.12213	
298	Lengyel, S., Gove, A. D., Latimer, A. M., Majer, J. D., & Dunn, R. R. (2010).	
200	•	
299	Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in	
300	flowering plants: A global survey. Perspectives in Plant Ecology, Evolution and	
301	Systematics. http://doi.org/10.1016/j.ppees.2009.08.001	
	, , , , , , , , , , , , , , , , , , , ,	
302	Lessard, JP., Sackett, T. E., Reynolds, W. N., Fowler, D. A., & Sanders, N. J. (2011).	
303	Determinants of the detrital arthropod community structure: the effects of	
304	temperature and resources along an environmental gradient. Oikos, 120(3), 333–343.	
305	http://doi.org/10.1111/j.1600-0706.2010.18772.x	
303	http://doi.org/10.1111/j.1000/0700.2010.10772.x	
306	Marussic, W.A. (2006). Testing myrmecochory from the ant's perspective: The effects	Formatted: Font: Times New Roman, 12 pt, Not Bold
300	Martussic, W.A. (2000). Testing mynnecocnory from the ant 8 perspective. The criects	Formatted: Font: Times New Roman, 12 pt
307	of Datura wrightii and D. discolor on queen survival and brood production	Formatted: Line spacing: Double
507	or Dutara wrighta and D, assessor on queen survivar and brood production	Formatted: Font: Times New Roman, 12 pt
	Ingastas Cosique	Formatted: Indent: Left: 0.33", Line spacing: Double
308	in Pogonomyrmex californicus. Insectes Sociaux 53(4), 403-	Formatted: Font: Italic
309	411	Formatted: Font: Times New Roman, 12 pt
307	+11. ₄	Formateur Form. Times New Roman, 12 pt
310	Ness, J. H., & Bressmer, K. (2005). Abiotic influences on the behaviour of rodents, ants,	Formatted: Line spacing: Double
 311	and plants affect an ant-seed mutualism. <i>Ecoscience</i> , 12(1), 76–81.	
	•	

312

http://doi.org/10.2980/i1195-6860-12-1-76.1

313	Peters, M., Oberrath, R., & Bohning-Gaese, K. (2003). Seed dispersal by ants: are seed
314	preferences influenced by foraging strategies or historical constraints? Flora,
315	198(6), 413–420. http://doi.org/10.1078/0367-2530-1210114
316	R Development Core Team. (2016). R: A Language and Environment for Statistical
317	Computing. R Foundation for Statistical Computing Vienna Austria, 0, {ISBN} 3-
318	900051-07-0. http://doi.org/10.1038/sj.hdy.6800737
319	Stuble, K. L., Andrew, N., Patterson, C. M., Rodriguez-Cabal, M. A., Ribbons, R. R.,
320	Dunn, R. R., & Sanders, N. J. (2014). Ant-mediated seed dispersal in a warmed
321	world. http://doi.org/10.7717/peerj.286
322	Taber, S. W. (1999). The world of the harvester ants. Texas A & M University Press.
323	Warren, R. J., & Giladi, I. (2014). Ant-mediated seed dispersal: A few ant species
324	(Hymenoptera: Formicidae) benefit many plants. Myrmecological News.
325	Zelikova, T. J., Dunn, R. R., & Sanders, N. J. (2008). Variation in seed dispersal along an
326	elevational gradient in Great Smoky Mountains National Park. Acta Oecologica,
327	34(2), 155–162. http://doi.org/10.1016/j.actao.2008.05.002
328	
329	

Formatted: Line spacing: Double

330	Figure legends
331	
332	Figure 1. Mean seed removal rates per bait station seed depot along the elevation gradient
333	over a 48-hour period. Squares=1600 m.a.s.l., circles= 2200 m.a.s.l. and triangles=
334	2800 m.a.s.l. Bars indicate standard error about means.
335	
336	Figure 2. Mean species-specific seed removal rates per station along the elevation
337	gradient over a 48-hour period. Squares=1600 m.a.s.l., circles= 2200 m.a.s.l.,
338	triangles= 2800 m.a.s.l. Bars indicate standard error about means.
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	
352	