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Abstract  24 

Ant-mediated seed dispersal, also known as myrmecochory, is a widespread and 25 

important mutualism that structures both plant and ant communities. However,  the extent 26 

to which ant functional types gradients (e.g granivorous generalists vs myrmecochorous 27 

ants) across environment affect seed removal rates is not fully understood. We used a 28 

replicated, standardized seed removal experiment along elevation gradients in four 29 

mountain ranges in the southwestern United States to test predictions that: (1) seed 30 

removal rates would be greater at lower elevations, and (2) seed species identity 31 

influences seed removal rates, (i.e. seeds from their native elevation range would be 32 

removed at higher rates than seeds outside of their range). Both predictions were 33 

supported. Seed removal rates were ~25% higher at lower elevation sites than at higher 34 

elevation sites. The low elevation Datura and high elevation Iris were removed at higher 35 

rates in their respective native ranges. We attribute observed differences in dispersal rates 36 

to changes in ant community composition, functional diversity, and abundance. We, and 37 

also suggest that temperature variation along the elevation gradient may explain these 38 

differences. 39 

 40 
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 47 

Introduction 48 

The geographic variation in ant-plant mutualistic relationships can shed light on 49 

plant and arthropod community structure and how they may respond to changing 50 

environmental conditions. In the temperate deciduous forests of North America, ants 51 

disperse up to 50% of all herbaceous species (Zelikova et al. 2008(Zelikova, Sanders & 52 

Dunn, 2011)). Myrmecochory– ant-mediated seed dispersal – is an ecologically important 53 

and ubiquitous mutualistic interaction that exists between ants and plants (Ness and 54 

Bressmer 2005), occurring in over 11,000 species, and across 70 plant families (Lengyel 55 

et al. 2010). Seeds of myrmecochorous plants contain lipid-rich appendages called 56 

elaiosomes, which serve as nutritional rewards for ants (Warren and Giladi 2014; Gomez 57 

and Espadaler 2013, Ness 2005). Myrmecochory is an important and widespread 58 

ecological phenomenon, and variation Variation in seed removal rates can be explained 59 

by ant morphological traits (Fokuhl et al. 2012) and seed traits like eliaosome and plant 60 

size (Leal et al. 2015; Peters et al. 2003). Ants also influence the dispersal capacity of a 61 

seed by making seeds unavailable to other potential seed predators (Leal et al. 2015) and 62 

also disperse non-elaiosome bearing seeds through seed harvesting or granivory 63 

(Christianini et al. 2007; Taber 1999). In both cases, ant-mediated seed dispersal plays a 64 

key role as an ecosystem service process by shaping vegetation community structure (Del 65 

Toro et al. 2012; Ghobadi et al. 2015).  66 

Seed dispersal distance has been studied on a global scale (Lengyel et al. 2010; 67 

Gomez and Espadaler 2013), but the variation in seed dispersal rates along environmental 68 

gradients on a landscape scale remains to be studied and can clarify the mechanisms 69 
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behind seed dispersal. “Sky islands” are individual mountains isolated from larger 70 

continuous ranges by vastly different habitat types, in this case the Chihuahuan and 71 

Sonoran deserts at the lower elevations. The sky islands of the southwestern United 72 

States provide an excellent system for studying how myrmecochory varies along a 73 

continuous elevation and habitat gradient. This gradient extends from desert scrub to 74 

subalpine coniferous forest (Brusca and Moore 2013), which is an excellent natural 75 

experiment as both plant and arthropod communities tend to change systematically along 76 

gradients (Del Toro 2012).  77 

Ant-mediated seed dispersal shapes vegetative communities (Zelikova et al. 2008) and 78 

this important mutualism is potentially resilient to increased temperatures in temperate 79 

forests in the eastern U.S. (Stuble et al. 2014). However, less is known about the potential 80 

breakdown of ant-mediated seed dispersal in a desert to forest mountain gradient gradient 81 

due to changes in climate. We suspect strong mutualisms within desert communities, due 82 

to their extreme climates and rapidly changing environmental gradients (for example, 83 

intense deluges of rain and dramatic shifts in temperatures in a single day). Thus, we 84 

predict that myrmecochory may play a strong role in shaping vegetation communities in 85 

desert environments and expect tightly coupled ant-plant mutualisms that are species-86 

specific.  87 

 Adding to the threats to ant-mediated seed dispersal include shifts in ant 88 

community composition, potentially either in response to a changing climate or being 89 

displaced by invasive competitor species (Rodriguez-Cabal 2011). We documented seed 90 

removal rates, and the effect of seed species identity on seed removal rates along this 91 

gradient. We predicted that: 1) rates of seed removal would be higher at lower elevations, 92 
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possibly associated with higher ant abundances and known different ant communities 93 

(Andersen 1997), and 2) individual rates of seed removal for each seed species would be 94 

highest at a seeds’ native elevation range. 95 

 96 

Materials and Methods 97 

a) Study Site and Organisms  98 

 We conducted this study on four sky islands in the southwestern United States of 99 

America in June and July 2015 (see supporting data file for site details; S1, Table 1). At 100 

each elevation band we deployed 10 seed depots, each containing 100 seeds, with 25 101 

seeds from four different plant species (Table 1). To test whether seed removal rates were 102 

dependent on species identity, we selected seeds from plants native to different habitats 103 

along the elevation gradient. We built seed depots using laminated white index cards 104 

covered with an overturned, reinforced, disposable plastic plate (Dixie Co. Atlanta GA, 105 

USA) held in place with lawn staples (Easy Gardener Inc. Waco TX, USA) to prevent 106 

seeds from being blown by wind or being removed by larger granivores. Ants were 107 

allowed to enter and exit the depot through 1cm openings, cut out around the covering 108 

plate.  Each seed depot contained 25 seeds of the four study species (detailed below). We 109 

counted the remaining seeds every 12 hours over a 48-hour period. Each depot was 110 

deployed and counted within hours of each other, within a single mountain site. 111 

We selected seeds from four different plants (Datura, Iris, Oat, and Sumac) to test 112 

our second objectiveprediction, that seeds would be removed at greater rates in their 113 

native elvation range. Datura wrightii is the only species with an eliaosome-bearing seed 114 

and is common in desert scrub habitat (typically found at elevations <1800 m.a.s.l.) 115 
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(Carter 1997)(Carter, 1997)(Carter, 1997)(Carter, 1997)[1]. We collected seeds within 116 

one week of deploying the depots to account for phenological emergence. Based on our 117 

field observations, this seed was typically removed by Harvester ants (Pogonomyrmex 118 

spp). Little Leaf Sumac (Rhus microphylla) fruits were observed in the field being 119 

harvested by various ant genera (Pogonomyrmex, Aphaenogaster and Pheidole) at mid 120 

elevations from 1800 m.a.s.l to 2400 m.a.s.l. The Rocky Mountain Iris (Iris 121 

missouriensis) normally occurs only in habitat above 2400 m.a.s.l.(`Brusca & Moore, 122 

2013), and ants in the genera Formica and Myrmica were observed actively removing 123 

seeds from the plants. Lastly, we used an oat seed (Avena sativa) that served as our 124 

control group, as it is not native to the study region nor does it contain an eliasome, but 125 

may be a source of nutrients for opportunistic and granivorous ants.  126 

To assess ant community composition and abundances, we used a16 pitfall 127 

quadrant array at each sampling location. Pitfall traps were deployed for the same 48 128 

hours when seed removal rates were observed. We report ant incidence (i.e. number of 129 

pitfalls that captured an individual genus) as a conservative measure of ant abundance.  130 

b) Statistical analyses  131 

We used a generalized linear mixed model (GLMM) to test for an additive 132 

interaction effect between elevation and seed species, and to test our first prediction that 133 

seed removal would vary across elevation and site. We treated time, elevation, and seed 134 

identity as fixed effects, and specified a Poisson distribution for the count data. The total 135 

number of seeds removed over time was compared between seed species and elevation 136 

bands using repeated-measures analysis of variance (RMANOVA). To test our second 137 

prediction (that seed identity influences seed removal across elevations) we used a 138 
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GLMM and Chi square tests for each species separately, and included site as a random 139 

factor.  140 

We conducted an overdispersion test, modified from Ben Bolker (overdisp_fun; 141 

see Supplementary material lines 24-32). This function was applied to all glmer models 142 

and results are reported in the supplementary materials. Overdispersion was not detected 143 

in the global model M1, but was present in the individual models of Iris and Sumac. For 144 

Iris and Sumac, overdispersed models were fitted using a quasi-Poisson distribution, 145 

which allowed us to estimate which sites and elevations are driving the primary detected 146 

patterns. For Iris- the significant difference in high elevations is driven by site MOG. For 147 

Sumac- variable responses at high elevation sites (2800 m) may be dampening any 148 

possible trends.  149 

See the supporting information file (S1) for the detailed code and dataset used in 150 

the analyses. All analyses including GLMMs were implemented in R statistical program 151 

version 3.2.3 (R Development Core Team 2014) using the “lme4” package (Bates et al. 152 

2015)(Douglas Bates et al., 2014)(Douglas Bates et al., 2014)(Douglas Bates et al., 153 

2014)[3] and Chi square tests in the “car” package (Fox and Weisberg 2011)(Fox & 154 

Weisberg, 2011)(Fox & Weisberg, 2011)(Fox & Weisberg, 2011)[4]. To identify 155 

differences in ant community composition we used Principal Component Analysis (PCA) 156 

implemented in the "FactoMineR" package and visually inspected PCA biplots.  157 

 158 

Results 159 

Total seed removal rates were similar among sites at 1600 m and those at 2200 m, 160 

but seed removal rates were 23.8% lower at 2800 m than at the lower elevations (Figure 161 
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1, Figure S1), a pattern consistent with our first prediction. Our repeated measures 162 

analyses suggested a strong interaction additive effect between elevation and seed species 163 

(Table 2, p < 0.001). In all analyses (global model and seed specific models), time 164 

influenced the number of seeds removed. This suggests that the longer the depots are 165 

active, the more seeds are removed, ranging from 25% to 58% over the 48-hour time 166 

period. 167 

Datura and oat seeds accounted for most of the seed removal (Figure 2A, 2C, 168 

(13% and 18% respectively)), whereas Iris and Sumac seeds were removed at lower rates 169 

(2B, 2D (~5% for either species)). Datura seed removal was highest at the low elevation 170 

sites, with no differences between the mid and high elevation sites. Oat seed removal 171 

tended to be greater at mid elevations and approximately the same at low and high 172 

elevations (Figure 2C), compared to the other seed species. Iris and Sumac seeds were 173 

removed less frequently from our depots, with Iris seeds having greater removal rates 174 

(Figure 2B) while Sumac had the lowest removal rates between these two species (Figure 175 

2D), at high elevation sites after 48 hours. Our repeated measures analyses suggest that 176 

elevation was an important factor in explaining seed removal rates for all four species, and site 177 

level effects were important for Datura , Iris and Oats, but Iris not or Sumac. 178 

Discussion 179 

 Our findings highlight that while granivory seed removal may be widespread across 180 

environmental gradients, it may be more pronounced in arid low-elevation compared with 181 

mesic high-elevation habitats. Observed seed removal rates were greater in lower 182 

elevations than in higher elevations. Seed removal was strongly dependent on seed 183 

species identity and its native elevation range, which was consistent with our predictions. 184 
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The pattern of total seed removal may be attributable to higher abundance of seed 185 

dispersing ants, especially Harvester ants (Pogonomyrmex spp., Novomessor spp.). These 186 

two species are more common at lower elevations (Taber, 1998)(Taber, 1998)(Taber, 187 

1998)[5](Taber 1998) and have multiple traits which make these ants ideal dispersers of 188 

seeds that are dropped while foraging and not consumed (Warren and Giladi 2014; 189 

Zelikova et al. 2008), including a specialized dietary preference for seeds (Taber 1999). 190 

These harvester ants were observed removing seeds of Datura and Sumac, as well as the 191 

control Oat, but never dispersing the Iris. This observation may be a fruitful line of 192 

inquiry in future work.   193 

• In other temperate region studies, ant abundance is correlated with unimodal species 194 

richness and abundance patterns with low ant diversity/abundance at high elevations, 195 

with a peak of diversity/abundance in mid to lower elevations (Bharti et al 2013; Lessard 196 

et al. 2011). Our results suggest a similar pattern of ant abundance could be driving seed 197 

removal rates, as both seed removal and ant abundances were higher at low elevation 198 

sites. Myrmecochory may be more prevalent in ecosystems where high ant abundances 199 

can be advantageous for dispersing seeds, (e.g. Datura in low-elevations). The mutualistic 200 

relationship of harvester ants (Pogonomyrmex) and Datura wrightti has been carefully 201 

documented and the effects of Datura seed diets on ant reproductive output have been 202 

experimentally tested (Marussich, 2006).   (Zelikova et al. 2008). Ant community composition also changes 203 

along these elevation gradients, with the lower elevations having high abundances of hot-204 

climate specialist and generalized Myrmicinae species, and high elevation sites tend to 205 

have lower abundances of ants which were mainly cold climate specialist and 206 

opportunistic species (Andersen 1997) (S1). The observed ant community differences 207 
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may explain the patterns of seed removal along this gradient. Behaviorally dominant and 208 

abundant genera may remove more seeds at low elevations, while opportunistic genera 209 

may remove fewer seeds at high elevation sites. Higher rates of seed removal at lower 210 

elevations may also correlate with higher temperatures, which leads to increased activity 211 

such as removal rates (Stuble et al. 2014). 212 

 Seed species identity also influenced observed seed removal patterns. Datura and 213 

Iris seeds were removed at higher rates in their native elevation ranges (1600 m and 2800 214 

m, respectively). The pattern detected in our study suggests that at low elevations, ant 215 

communities have highly active and abundant, seed-dispersing species (S1). Mid-216 

elevation sites tend to have preferentially granivorous ant communities (as indicated by 217 

the higher removal of oat seeds at mid-elevations). High-elevation sites have relatively 218 

lower ant abundances (S1) largely comprised of opportunistic species. Our results may 219 

reflect an unequal distribution of functional ant diversity along these elevation gradients. 220 

This uneven distribution of functional diversity places concern on seed-dispersing ant 221 

species that may be sensitive to climate change, especially in temperate (high elevation) 222 

ecosystems (Del Toro et al. 2015) or instances where climate-driven ecological 223 

mismatches between seed drop and ant activity occur (Warren and Bradford 2014).  224 

Future work should explore the network of ants interacting with various seed 225 

species being dispersed along environmental gradients. This would help identify major 226 

seed dispersing ant species and the total influence they have on structuring vegetation 227 

communities. We recognize the potential for the influence of seed-drop phenology 228 

influencing the seeds being dispersed, a pattern that was documented in eastern North 229 

American forests (Warren and Bradford 2014). This may partially explain low rates of 230 



Sumac removal, since it tends to drop its seeds earlier in summer than the other seeds 231 

(Cater 1997). 232 

 233 

Conclusions 234 

Although myrmecochory is widespread and important in structuring plant and 235 

animal communities (Warren and Giladi 2014; Del Toro et al. 2012), this relationship is 236 

not equally distributed along elevation and habitat gradients. Furthermore, a single ant 237 

species can perform a majority of seed dispersal, such as Pogonomyrmex spp. and 238 

Novomessor spp. in this study or Aphaenogaster rudis in the Great Smoky Mountains 239 

(Zelikova et al. 2008). We highlight that for some species (Datura and Iris) their ant-240 

mediated dispersal rate is highest in their native elevation range, which may suggest 241 

strong mutualistic links between ants and these plant species. The work on seed dispersal 242 

along elevation gradients allows us to explore how key ant-mediated ecosystem processes 243 

respond to environmental cues and help us predict how communities might respond to 244 

future climatic and habitat change.  245 
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Figure legends 330 

 331 

Figure 1. Mean seed removal rates per bait stationseed depot along the elevation gradient 332 

over a 48-hour period. Squares=1600 m.a.s.l., circles= 2200 m.a.s.l. and triangles= 333 

2800 m.a.s.l. Bars indicate standard error about means.  334 

 335 

Figure 2. Mean species-specific seed removal rates per station along the elevation 336 

gradient over a 48-hour period. Squares=1600 m.a.s.l., circles= 2200 m.a.s.l., 337 

triangles= 2800 m.a.s.l. Bars indicate standard error about means. 338 
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