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The Mahalanobis distance is a statistical technique that can be used to measure how

distant a point is from the centre of a multivariate normal distribution. By measuring

Mahalanobis distances in environmental space ecologists have also used the technique to

model: ecological niches, habitat suitability, species distributions, and resource selection

functions. Unfortunately the original description of the Mahalanobis distance technique for

ecological modelling contained an error describing how Mahalanobis distances could be

converted into probabilities using a chi-squared distribution. This error has been repeated

in the literature, and is present in popular modelling software. In the hope of correcting

this error to maximise the potential application of the Mahalanobis distance technique

within the ecological modelling community, I explain how Mahalanobis distances are

calculated, and through a virtual ecology experiment demonstrate how to correctly

produce probabilities and discuss the implications of the error for previous Mahalanobis

distance studies.
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ABSTRACT9

The Mahalanobis distance is a statistical technique that can be used to measure how distant a point is from

the centre of a multivariate normal distribution. By measuring Mahalanobis distances in environmental

space ecologists have also used the technique to model: ecological niches, habitat suitability, species

distributions, and resource selection functions. Unfortunately the original description of the Mahalanobis

distance technique for ecological modelling contained an error describing how Mahalanobis distances

could be converted into probabilities using a chi-squared distribution. This error has been repeated

in the literature, and is present in popular modelling software. In the hope of correcting this error to

maximise the potential application of the Mahalanobis distance technique within the ecological modelling

community, I explain how Mahalanobis distances are calculated, and through a virtual ecology experiment

demonstrate how to correctly produce probabilities and discuss the implications of the error for previous

Mahalanobis distance studies.

10

11

12

13

14

15

16

17

18

19

20

INTRODUCTION21

The Mahalanobis distance (Mahalanobis, 1936) is a statistical technique that can be used to measure how22

distant a point is from the centre of a multivariate normal distribution. Consider a data matrix A with m23

rows of observations and n columns of measured variables.24

A =















x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

x31 x32 x33 . . . x3n

...
...

...
. . .

...

xm1 xm2 xm3 . . . xmn















The Mahalanobis distance D2 for each observation vector xm = [xm1,xm2,xm3, . . . ,xmn] is calculated25

as a function of an n-dimensional vector x̄ containing the means for each column of variables, and a26

variance-covariance matrix S of dimensions n×n that contains variances for each column along the main27

diagonal and pair-wise column covariances values elsewhere (Manly, 2005).28

D2(xm) = (xm − x̄)T
S
−1(xm − x̄) (1)

When applied to m = 50 points in n = 2 dimensions, the calculated D2 values follow a characteristic29

elliptical pattern with D2 radiating out from the central location of the distribution (Figure 1a).30

While D2 can be calculated for any n-dimensions, the values of D2 are not comparable when n varies,31

as D2 increases as n increases (Figure 2a-c). However, the x̄ and S
−1 used to calculate D2 (Equation 1)32

transform the values from each n into independent standard normal distributions, with x̄ centering and S
−1

33

scaling and rotating each variable distribution. This means that D2 is essentially the sum of n independent34
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Figure 1. Two-dimensional example of Mahalanobis distance. (a) Given a set of points distributed in

two-dimensional space, the Mahalanobis distances (D2) for each point can be calculated. (b) The D2

values can be transformed into probabilities using a chi-squared cumulative probability distribution. This

highlights that there are two points points that have a very high probability of not belonging to the

distribution and could be classified as outliers when α = 0.975 as they are beyond that probability

threshold.

standard normal variables, and as such follows a chi-squared distribution with degrees of freedom equal35

to the number of dimensions n (Manly, 2005).36

For a chi-squared random variable with n degrees of freedom denoted as χ2
n , the probability density37

function f of χ2
n when x ≥ 0 is38

f
χ2

n
(x) =

1

2n/2Γ(n/2)
e−x/2x(n/2)−1 (2)

where Γ is a gamma function (as the chi- squared distribution is actually a special case of the gamma39

distribution), and the associated cumulative distribution function is F
χ2

n
(x) = P(χ2

n ≤ x) (Johnson et al.,40

1994). When the variables in A are normally distributed, the association between D2 and f
χ2

n
(x) can be41

clearly seen (Figure 2a-c).42

By converting D2 into probabilities using F
χ2

n
(x) we can put D2 from any number of dimensions on43

a common 0-1 scale that indicates the probability P(χ2
n ≤ D2) that a location has a D2 that is greater44

than that would be expected by chance (Figure 2d-f). By specifying a significance level α this process is45

commonly used as an outlier detection method as it is: parameter free, computational efficient, accounts46

for collinearity between variable dimensions, and is scale independent (Aggarwal, 2017). Returning to47

our earlier example, having transformed the values from D2 to P(χ2
n ≤ D2) we can see that there are two48

points that are very likely to be outliers, and would be classified as outliers with α = 0.975 (Figure 1b).49

The potential of D2 for use in habitat modelling was first identified by Clark et al. (1993) and then50

discussed further in the context of niche modelling by Farber and Kadmon (2003) — which is how I will51

continue the discussion. The premise here is that given a data matrix A of m species observations for52

which various environmental variables n are measured, D2 can be used as a measure of niche suitability53

from an optimum location in environmental space. Having defined a niche in this way, by measuring the54

D2 for each location on a landscape a map of niche suitability can then be produced. The key advantages55

of using D2 over other methods are that the D2 method needs only presence information, and so does56

not require either absences or a background definition, and that independence of explanatory variables is57

not required (Clark et al., 1993; Farber and Kadmon, 2003). Studies that have compared Mahalanobis58

distance to other modelling approaches have also shown that while the optimum method tends to vary59

by the species in question, the Mahalanobis distance approach performs well against a variety of other60

presence-only, presence-background, and presence-absence modelling approaches (Dettmers et al., 2002;61

Johnson and Gillingham, 2005; Tsoar et al., 2007).62
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Figure 2. Mahalanobis distance (D2) dimensionality effects using data randomly generated from

independent standard normal distributions. We can see that the values of D2 grow following a chi-squared

distribution as a function of the number of dimensions (a) n = 2, (b) n = 4, and (c) n = 8. By using a

chi-squared cumulative probability distribution the D2 values can be put on a common scale, such that all

values range 0-1 and so that statistics such as the median are consistent across dimensions. The near

uniform distribution of the probability values is expected given the underlying data were randomly

generated from independent standard normal distributions.

While introducing D2 into the ecological modelling domain Clark et al. (1993) also highlighted63

that D2 will follow a chi-squared distribution, and therefore the potential to convert the distances into64

probabilities. However, as ecological niche models aim to describe probability of belonging to the niche,65

rather than use the chi-squared cumulative distribution function F
χ2

n
(x) = P(χ2

n ≤ x) that has 0 at the66

optimum, we use the inverse chi-squared cumulative distribution function F−1
χ2

n
(x) = P(χ2

n > x) that has 167

at the optimum. This means that the probabilities P(χ2
n > D2) indicate locations with a D2 that is less68

than that would be expected by chance, and hence are more likely to be within the niche.69

Unfortunately, when describing the use of a chi-squared distribution to convert D2 into probabilities,70

Clark et al. (1993, p.522) state that “Assuming multivariate normality, Mahalanobis distances are approxi-71

mately distributed as Chi-square with n−1 degrees of freedom, where n equals the number of habitat72

characters.”, but this is incorrect. D2 values follow a chi-squared distribution with degrees of freedom73

equal to n (Manly, 2005) as has already been clearly shown (Figure 2). This error has been repeatedly74

described in the literature (Knick and Rotenberry, 1998; Farber and Kadmon, 2003; Hellgren et al., 2007),75

and has even permeated into software such as the R package adehabitat (Calenge, 2006).76

To demonstrate this error and to examine its implications, I present an experiment based on a virtual77

ecology approach (Zurell et al., 2010) – which allows us to examine methodologies in a controlled system78

uncomplicated by the uncertainties of the real world!79
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MATERIALS AND METHODS80

The virtual ecology experiment began by defining, and therefore knowing truthfully, the fundamental81

niche of the imaginary species Mimbulus mimbletonia (Rowling, 2003). This fundamental niche N was82

defined using a multivariate normal distribution describing the niche in relation to two environmental83

variables of temperature and rainfall.84

N(x,y) = e−
1
2 ((x,y)−µµµ)T

ΣΣΣ
−1((x,y)−µµµ),where µµµ =

[

25 100
]

ΣΣΣ =

[

9 60

60 625

]

(3)

A sample of observations was then created by randomly sampling the niche space ranging 15–35◦C85

of temperature and 0–200 mm of rainfall. At each randomly selected location the species was considered86

detected using a probability equal to the fundamental niche. This process was continued until a sample of87

200 observations was generated.88

The values of temperature and rainfall at each of the 200 sampled locations were then used to estimate89

the fundamental niche using Mahalanobis distances. The D2 was calculated for each of the sampled90

locations, and the resulting distribution of D2 was compared against a range of inverse cumulative91

chi-squared distribution functions based on differing degrees of freedom.92

Finally, the D2 values for the samples were converted into probabilities of belonging to the fundamental93

niche, and these predictions were compared against the known fundamental niche values for the locations.94

Probabilities were calculated using chi-squared distributions with n and n− 1 degrees of freedom to95

examine any differences.96

RESULTS97

The fundamental niche defined using the multivariate normal distribution (Equation 3) produced an98

elliptically shape niche with positive correlation between rainfall and temperature (Figure 3a). The99

random sampling resulted in a set of 200 samples that followed this elliptical niche pattern, with a greater100

concentration of samples towards the centre of the niche (Figure 3b).101

The D2 values calculated on the basis of these samples also followed an elliptical pattern (Figure 3c),102

and when the calculated D2 values for each sample were plotted against the actual fundamental niche103

value for each sample, a trend that clearly follows the inverse cumulative chi-squared distribution when104

n = 2 can be seen (Figure 3d). This is as we would expect as in this example the fundamental niche is105

based on the two environmental variables of temperature and rainfall.106

When the D2 values were converted to probabilities using n = 2 degrees of freedom we see a near-107

perfect linear fit between the estimated niche suitability and the actual known niche suitability (Figure 3e).108

This proves quite clearly that to get a truthful estimate of our known fundamental niche, the probabilities109

need to be based on an inverse cumulative chi-squared distribution with n degrees of freedom. In contrast,110

when the D2 values are converted to probabilities using n−1 degrees of freedom we see a badly-fitting111

curvilinear relationship that underestimates niche suitability (Figure 3f).112

DISCUSSION113

The results of the virtual ecology experiment (Figure 3) clearly shows the erroneous under prediction114

of niche suitability when using a chi-squared distribution with n− 1 degrees of freedom. Fortunately115

most previous D2 studies simply rescaled the D2 into quantiles or ranks of increasing suitability (Knick116

and Dyer, 1997; Knick and Rotenberry, 1998; Johnson and Gillingham, 2005; Hellgren et al., 2007;117

Etherington et al., 2009) or binary classifications based on a threshold (Farber and Kadmon, 2003;118

Thatcher et al., 2006; Tsoar et al., 2007) and so are not affected by this problem. Also, although I could119

not find any examples of this, those studies that did create chi-square probabilities using n−1 degrees of120

freedom, but then converted to categories based on quantiles or a predictive threshold would not have121

impacted the conclusions of the study as while the shape of the relationship becomes curved with n−1,122

the trend is still one of monotonic increase, therefore the quantiles would be the same. However, those123

studies that have created chi-squared probabilities with n−1 as some form of suitability index (Clark124

et al., 1993) will have underestimated the niche suitability.125
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CONCLUSION126

Given that D2 values are unitless and unbounded and are not directly comparable for different dimensions,127

I would argue that anyone using the Mahalanobis distance method should present their results as chi-128

squared probabilities. This will put Mahalanobis distance models on a 0-1 scale that enables models129

based on differing numbers of n to be directly comparable, and is consistent with most other types of130

ecological niche models that also use a 0-1 scale. As such, it will be very important that the chi-square131

probabilities are calculated correctly and hopefully the methodological description and experimental132

evidence presented here will enable that to be achieved.133
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Figure 3. Virtual ecology experiment to examine the importance of chi-squared distribution degrees of

freedom. (a) The virtual fundamental niche with (b) random sampling across niche space and (c)

resulting D2 calculations. (d) The trend of D2 compared against the inverse chi-squared cumulative

probability distributions with differing degrees of freedom n. The trend for the sampling locations

between the actual fundamental niche values and the niche estimates from D2 values converted to

probabilities via an inverse cumulative probability distribution with degrees of freedom equal to (e) n = 2

and (f) n = 1 (or n = 2−1).
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