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ABSTRACT
The Mahalanobis distance is a statistical technique that can be used to measure how
distant a point is from the centre of a multivariate normal distribution. By measuring
Mahalanobis distances in environmental space ecologists have also used the technique
to model: ecological niches, habitat suitability, species distributions, and resource
selection functions. Unfortunately, the original description of theMahalanobis distance
technique for ecological modelling contained an error describing how Mahalanobis
distances could be converted into probabilities using a chi-squared distribution. This
error has been repeated in the literature, and is present in popular modelling software.
In the hope of correcting this error to maximise the potential application of the
Mahalanobis distance technique within the ecological modelling community, I explain
how Mahalanobis distances are calculated, and through a virtual ecology experiment
demonstrate how to correctly produce probabilities and discuss the implications of the
error for previous Mahalanobis distance studies.

Subjects Biogeography, Ecology, Statistics
Keywords Species distribution modelling, Ecological niche modelling, Mahalanobis distance,
Habitat suitability modelling, Resource selection functions, Virtual ecology, Presence-only,
Multivarite normal distribution, Chi-squared distribution, Probability

INTRODUCTION
The Mahalanobis distance (Mahalanobis, 1936) is a statistical technique that can be used
to measure how distant a point is from the centre of a multivariate normal distribution.
Consider a datamatrixAwithm rows of observations and n columns ofmeasured variables.

A=


x11 x12 x13 ... x1n
x21 x22 x23 ... x2n
x31 x32 x33 ... x3n
...

...
...

. . .
...

xm1 xm2 xm3 ... xmn

.

The Mahalanobis distance D2 for each observation vector xm= [xm1,xm2,xm3,...,xmn]

is calculated as a function of an n-dimensional vector x̄ containing the means for each
column of variables, and a variance–covariance matrix S of dimensions n×n that contains
variances for each column along the main diagonal and pair-wise column covariances
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Figure 1 Two-dimensional example of Mahalanobis distance. (A) Given a set of points distributed in
two-dimensional space, the Mahalanobis distances (D2) for each point can be calculated. (B) The D2 val-
ues can be transformed into probabilities using a chi-squared cumulative probability distribution. This
highlights that there are two points points that have a very high probability of not belonging to the distri-
bution and could be classified as outliers when α= 0.975 as they are beyond that probability threshold.

Full-size DOI: 10.7717/peerj.6678/fig-1

values elsewhere (Manly, 2005).

D2(xm)= (xm− x̄)TS−1(xm− x̄). (1)

When applied to m= 50 points in n= 2 dimensions, the calculated D2 values follow
a characteristic elliptical pattern with D2 radiating out from the central location of the
distribution (Fig. 1A).

While D2 can be calculated for any n-dimensions, the values of D2 are not comparable
when n varies, as D2 increases as n increases (Figs. 2A–2C). However, the x̄ and S−1 used to
calculate D2 (Eq. (1)) transform the values from each n into independent standard normal
distributions, with x̄ centering and S−1 scaling and rotating each variable distribution. This
means that D2 is essentially the sum of n independent standard normal variables, and as
such follows a chi-squared distribution with degrees of freedom equal to the number of
dimensions n (Manly, 2005).

For a chi-squared random variable with n degrees of freedom denoted as χ2
n , the

probability density function f of χ2
n when x ≥ 0 is

fχ2
n
(x)=

1
2n/20(n/2)

e−x/2x(n/2)−1 (2)

where 0 is a gamma function (as the chi- squared distribution is actually a special
case of the gamma distribution), and the associated cumulative distribution function is
Fχ2

n
(x)= P(χ2

n ≤ x) (Johnson, Kotz & Balakrishnan, 1994). When the variables in A are
normally distributed, the association between D2 and fχ2

n
(x) can be clearly seen (Figs.

2A–2C).
By converting D2 into probabilities using Fχ2

n
(x) we can put D2 from any number

of dimensions on a common 0–1 scale that indicates the probability P(χ2
n ≤D2) that a

location has a D2 that is greater than that would be expected by chance (Figs. 2D–2F).
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Figure 2 Mahalanobis distance (D2) dimensionality effects using data randomly generated from inde-
pendent standard normal distributions. We can see that the values of D2 grow following a chi-squared
distribution as a function of the number of dimensions (A) n= 2, (B) n= 4, and (C) n= 8. By using a chi-
squared cumulative probability distribution the D2 values can be put on a common scale, such that all val-
ues range 0–1 and so that statistics such as the median are consistent across dimensions of (D) n = 2, (E)
n= 4, and (F) n= 8. The near uniform distribution of the probability values is expected given the under-
lying data were randomly generated from independent standard normal distributions.

Full-size DOI: 10.7717/peerj.6678/fig-2

By specifying a significance level α this process is commonly used as an outlier detection
method as it is: parameter free, computational efficient, accounts for collinearity between
variable dimensions, and is scale independent (Aggarwal, 2017). Returning to our earlier
example, having transformed the values from D2 to P(χ2

n ≤D2) we can see that there
are two points that are very likely to be outliers, and would be classified as outliers with
α= 0.975 (Fig. 1B).

The potential of D2 for use in habitat modelling was first identified by Clark, Dunn &
Smith (1993) and then discussed further in the context of niche modelling by Farber &
Kadmon (2003)—which is how I will continue the discussion. The premise here is that
given a data matrix A of m species observations for which various environmental variables
n are measured,D2 can be used as a measure of niche suitability from an optimum location
in environmental space. Having defined a niche in this way, by measuring the D2 for each
location on a landscape amap of niche suitability can then be produced. The key advantages
of using D2 over other methods are that the D2 method needs only presence information,
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and so does not require either absences or a background definition, and that independence
of explanatory variables is not required (Clark, Dunn & Smith, 1993; Farber & Kadmon,
2003). Studies that have compared Mahalanobis distance to other modelling approaches
have also shown that while the optimum method tends to vary by the species in question,
the Mahalanobis distance approach performs well against a variety of other presence-only,
presence-background, and presence-absence modelling approaches (Dettmers, Buehler &
Bartlett, 2002; Johnson & Gillingham, 2005; Tsoar et al., 2007).

While introducing D2 into the ecological modelling domain Clark, Dunn & Smith
(1993) also highlighted that D2 will follow a chi-squared distribution, and therefore the
potential to convert the distances into probabilities. However, as ecological niche models
aim to describe probability of belonging to the niche, rather than use the chi-squared
cumulative distribution function Fχ2

n
(x)= P(χ2

n ≤ x) that has 0 at the optimum, we use
the inverse chi-squared cumulative distribution function F−1

χ2
n
(x)= P(χ2

n > x) that has 1 at

the optimum. This means that the probabilities P(χ2
n >D2) indicate locations with a D2

that is less than that would be expected by chance, and hence are more likely to be within
the niche.

Unfortunately, when describing the use of a chi-squared distribution to convert D2

into probabilities, Clark, Dunn & Smith (1993) p.522 state that ‘‘Assuming multivariate
normality, Mahalanobis distances are approximately distributed as Chi-square with n−1
degrees of freedom, where n equals the number of habitat characters.’’, but this is incorrect.
D2 values follow a chi-squared distribution with degrees of freedom equal to n (Manly,
2005) as has already been clearly shown (Fig. 2). This error has been repeatedly described
in the literature (Knick & Rotenberry, 1998; Farber & Kadmon, 2003; Hellgren et al., 2007),
and has even permeated into software such as the R package adehabitat (Calenge, 2006).

To demonstrate this error and to examine its implications, I present an experiment
based on a virtual ecology approach (Zurell et al., 2010)—which allows us to examine
methodologies in a controlled system uncomplicated by the uncertainties of the real
world!

MATERIALS AND METHODS
The virtual ecology experiment began by defining, and therefore knowing truthfully, the
fundamental niche of the imaginary species Mimbulus mimbletonia (Rowling, 2003). This
fundamental niche N was defined using a multivariate normal distribution describing the
niche in relation to two environmental variables of temperature and rainfall.

N(x,y)= e−
1
2 ((x,y)−µ)

T6−1((x,y)−µ),where µ=
[
25 100

]
6=

[
9 60
60 625

]
. (3)

A sample of observations was then created by randomly sampling the niche space ranging
15–35 ◦C of temperature and 0–200 mm of rainfall. At each randomly selected location the
species was considered detected using a probability equal to the fundamental niche. This
process was continued until a sample of 200 observations was generated.

The values of temperature and rainfall at each of the 200 sampled locations were then
used to estimate the fundamental niche usingMahalanobis distances. TheD2 was calculated
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for each of the sampled locations, and the resulting distribution ofD2 was compared against
a range of inverse cumulative chi-squared distribution functions based on differing degrees
of freedom.

Finally, theD2 values for the sampleswere converted into probabilities of belonging to the
fundamental niche, and these predictions were compared against the known fundamental
niche values for the locations. Probabilities were calculated using chi-squared distributions
with n and n−1 degrees of freedom to examine any differences.

RESULTS
The fundamental niche defined using the multivariate normal distribution (Eq. (3))
produced an elliptically shape niche with positive correlation between rainfall and
temperature (Fig. 3A). The random sampling resulted in a set of 200 samples that followed
this elliptical niche pattern, with a greater concentration of samples towards the centre of
the niche (Fig. 3B).

The D2 values calculated on the basis of these samples also followed an elliptical pattern
(Fig. 3C), and when the calculatedD2 values for each sample were plotted against the actual
fundamental niche value for each sample, a trend that clearly follows the inverse cumulative
chi-squared distribution when n= 2 can be seen (Fig. 3D). This is as we would expect as
in this example the fundamental niche is based on the two environmental variables of
temperature and rainfall.

When the D2 values were converted to probabilities using n= 2 degrees of freedom we
see a near-perfect linear fit between the estimated niche suitability and the actual known
niche suitability (Fig. 3E). This proves quite clearly that to get a truthful estimate of our
known fundamental niche, the probabilities need to be based on an inverse cumulative
chi-squared distribution with n degrees of freedom. In contrast, when the D2 values are
converted to probabilities using n−1 degrees of freedom we see a badly-fitting curvilinear
relationship that underestimates niche suitability (Fig. 3F).

DISCUSSION
The results of the virtual ecology experiment (Fig. 3) clearly shows the erroneous under
prediction of niche suitability when using a chi-squared distribution with n−1 degrees
of freedom. Fortunately most previous D2 studies simply rescaled the D2 into quantiles
or ranks of increasing suitability (Knick & Dyer, 1997; Knick & Rotenberry, 1998; Johnson
& Gillingham, 2005; Hellgren et al., 2007; Etherington et al., 2009) or binary classifications
based on a threshold (Farber & Kadmon, 2003; Thatcher, Van Manen & Clark, 2006; Tsoar
et al., 2007) and so are not affected by this problem. Also, although I could not find
any examples of this, those studies that did create chi-square probabilities using n− 1
degrees of freedom, but then converted to categories based on quantiles or a predictive
threshold would not have impacted the conclusions of the study as while the shape of
the relationship becomes curved with n−1, the trend is still one of monotonic increase,
therefore the quantiles would be the same. However, those studies that have created
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Figure 3 Virtual ecology experiment to examine the importance of chi-squared distribution degrees of
freedom. (A) The virtual fundamental niche with (B) random sampling across niche space and (C) result-
ing D2 calculations. (D) The trend of D2 compared against the inverse chi-squared cumulative probability
distributions with differing degrees of freedom n. The trend for the sampling locations between the actual
fundamental niche values and the niche estimates from D2 values converted to probabilities via an inverse
cumulative probability distribution with degrees of freedom equal to (E) n= 2 and (F) n= 1 (or n= 2−
1).

Full-size DOI: 10.7717/peerj.6678/fig-3

chi-squared probabilities with n− 1 as some form of suitability index (Clark, Dunn &
Smith, 1993) will have underestimated the niche suitability.

CONCLUSION
Given that D2 values are unitless and unbounded and are not directly comparable for
different dimensions, I would argue that anyone using the Mahalanobis distance method
should present their results as chi-squared probabilities. This will putMahalanobis distance
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models on a 0–1 scale that enables models based on differing numbers of n to be directly
comparable, and is consistent with most other types of ecological niche models that
also use a 0–1 scale. As such, it will be very important that the chi-square probabilities
are calculated correctly and hopefully the methodological description and experimental
evidence presented here will enable that to be achieved.
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