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ABSTRACT
Background: The gut microbiota plays an important role in host immunity and
metabolic homeostasis. Although analyses of gut microbiotas have been used
to assess host health and foster disease prevention and treatment, no comparative
comprehensive study, assessing gut microbiotas among several species of farmed
snake, is yet available. In this study, we characterized and compared the gut
microbiotas of four species of farmed snakes (Naja atra, Ptyas mucosa, Elaphe
carinata, and Deinagkistrodon acutus) using high-throughput sequencing of
the 16S rDNA gene in southern China and tested whether there was a relationship
between gut microbiotal composition and host species.
Results: A total of 629 operational taxonomic units across 22 samples were
detected. The five most abundant phyla were Bacteroidetes, Proteobacteria,
Firmicutes, Fusobacteria, and Actinobacteria, while the five most abundant genera
were Bacteroides, Cetobacterium, Clostridium, Plesiomonas, and Paeniclostridium.
This was the first report of the dominance of Fusobacteria and Cetobacterium in the
snake gut. Our phylogenetic analysis recovered a relatively close relationship between
Fusobacteria and Bacteroidetes. Alpha diversity analysis indicated that species
richness and diversity were highest in the gut microbiota of D. acutus and lowest in
that of E. carinata. Significant differences in alpha diversity were detected among
the four farmed snake species. The gut microbiotas of conspecifics were more similar
to each other than to those of heterospecifics.
Conclusion: This study provides the first comparative study of gut microbiotas
among several species of farmed snakes, and provides valuable data for the
management of farmed snakes. In farmed snakes, host species affected the species
composition and diversity of the gut microbiota.

Subjects Bioinformatics, Microbiology, Veterinary Medicine, Zoology
Keywords Host species, Gut microbiota, High-throughput sequencing, Farmed snakes,
Microbial diversity

INTRODUCTION
Vertebrates have evolved intimate symbiotic relationships with their internal microbes,
especially those that reside in the host gut (Li et al., 2008; Gao, Wu & Wang, 2010).
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Studies of these symbiotic relationships have fundamentally increased our understanding
of evolution, health, disease, and aging (Kundu et al., 2017). Gut microbiotas are
extremely diverse, have unique functional characteristics, and may strongly affect the
physiological functions of the host (Costea et al., 2018). For example, the gut microbiota
may regulate the immune response, thereby affecting energy homeostasis (Spiljar,
Merkler & Trajkovski, 2017) and nutrient metabolism (Shibata, Kunisawa & Kiyono,
2017). Changes in the gut microbiota may influence the functions of the brain and nerves
(Kundu et al., 2017). Therefore, the gut microbiota may be an important factor
determining the growth, immunity, and survival rate of farmed animals (Hu et al., 2018;
Rosshart et al., 2017). The characterization of the gut microbiotas of farmed animals
provides a scientific basis for disease diagnosis and health management (Kohl, Skopec &
Dearing, 2014; Jiang et al., 2017; Lyons et al., 2017). Such characterizations are also
essential for the commercial production of economically important animals and the
conservation management of endangered species (Larsen, Mohammed & Arias, 2014).

Studies of gut microbiotas are primarily based on host fecal samples, as the collection
of these samples is non-invasive. In mammals, fecal DNA reflects the composition and
structure of the gut microbiota of the host (Ley et al., 2008a; Costea et al., 2018).
Previous studies indicate that mammal gut microbiotas are dominated by Firmicutes and
Bacteroidetes (Ley et al., 2008a; Hu et al., 2017). In birds, the microbiota demonstrates
a similar phylum-level composition to that of mammals, being dominated by Bacteroidetes,
Firmicutes, and Proteobacteria (Waite & Taylor, 2014). In reptiles, the gut microbiota also
appeared to be dominated by Firmicutes, followed by Bacteroidetes and Proteobacteria
(Costello et al., 2010; Colston, Noonan & Jackson, 2015; Yuan et al., 2015; Jiang et al., 2017).
These results raise the possibility that there may be a certain phylogenetic relationship
among gut microbiota of the amniotes (reptiles, birds, and mammals). A thorough
characterization of the gut microbiota increases our understanding of gut microbial function,
and, consequently, our ability to manipulate the gut microbiota to treat disease (Kundu et al.,
2017; Rosshart et al., 2017; Hu et al., 2018). However, there have been few studies of
the gut microbiotas of snakes, an ancient group with more than 3,000 extant species
(Uetz, Hošek & Hallermann, 2016). Of the studies available, most investigated single
species (Costello et al., 2010; Colston, Noonan & Jackson, 2015; McLaughlin, Cochran &
Dowd, 2015; Shi & Sun, 2017). Therefore, it remains necessary to comparatively assess
the composition, diversity, and phylogeny of snake gut microbiotas.

In recent years, several snake species have been successfully artificially bred on a large
scale; such artificial-breeding programs not only satisfy commercial needs, but also
reduce pressure on wild snake populations to some extent (Hu et al., 2013; Hu, Tan &
Yang, 2013; Li, 2009). Naja atra (Elapidae), Ptyas mucosa (Colubridae), Elaphe carinata
(Colubridae), and Deinagkistrodon acutus (Viperidae) are the snake species most
commonly farmed in southern China (Li, 2009); N. atra and P. mucosa are listed in
Appendix II of the Convention on International Trade in Endangered Species of
Wild Fauna and Flora (1990; https://www.cites.org/).

The aim of this study was to characterize the fecal microbiotas of four different species
of farmed snakes in southern China, and to evaluate the effect of host species on the
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composition and diversity of the gut microbiota. This work serves as the first
high-throughput sequencing analysis that compares the gut microbiotas of several
farmed snake species. It is beneficial to study the gut microbiotas of snakes to improve
the management of farmed snake populations.

MATERIALS AND METHODS
Sample collection
Fecal samples were collected from specimens of N. atra, P. mucosa, E. carinata, and
D. acutus. All sampled snakes were healthy adults, hatched in 2014 and reared in similar
farm environments. All snakes were kept in farming rooms with a temperature of
28 ± 2 �C, and a relative humidity of 80% ± 5%. Snakes were fed farmed chicks
(Gallus domestiaus) and mice (Mus musculus). All snakes were fed once a week, all given
the same food each feeding. For example, all snakes were fed chicks one time, and all
snakes were fed mice the next time. The fecal matter of each snake was sampled after they
were fed the chicks. Fecal samples from N. atra, D. acutus, and P. mucosa were collected
at the Gong Xinguo snake farm, Yongzhou City, Hunan Province, China from July 8
to 11, 2017; fecal samples from E. carinata were collected at the Lvdongshan snake farm,
Tujia-Miao Autonomous Prefecture of Xiangxi, Hunan Province, China on August 26,
2017. The wildlife operation licenses of the two snake farms were authorized by the
Forestry Department of Hunan Province. The work was performed in accordance with
the recommendations of the Institution of Animal Care and the Ethics Committee of
Central South University of Forestry and Technology (approval number: CSUFT NS
#20175167). The fecal sampling procedures used in this study were non-invasive to
the snakes.

Individual snakes were farmed in plastic rearing boxes. The boxes were numbered to
allow us to distinguish individuals. Individual snakes used for sampling were randomly
selected. Fresh fecal samples from same individuals were collected using a sterilized
sampling spoon and put in the same centrifuge tube:N. atra (group “Na”; n = 6), P. mucosa
(group “Pmu”; n = 4), E. carinata (group “Ec”; n = 6), and D. acutus (group “Da”; n = 6).
All fresh samples were immediately submerged in liquid nitrogen, and then frozen
at -20 �C within 10 h. Samples were sent within 12 h on dry ice to the Wuhan Sample
Center of Beijing Genomics Institute (BGI; Wuhan, China) for DNA extraction.

DNA extraction, sequencing
Total DNA was extracted from the fecal samples using an E.Z.N.A. Stool DNA Kit
(Omega Bio-tek, Inc., Norcross, GA, USA). The V4 hypervariable region of the 16S rDNA
gene was amplified using polymerase chain reaction (PCR), with the primers 515F
(5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′).
PCR products were purified with AmpureXP beads (Agencourt; Beckman Coulter,
Brea, CA, USA) to remove any non-specific amplicons. Qualified libraries were pair-end
sequenced on a MiSeq System (Illumina, San Diego, CA, USA) with MiSeq reagents
using the PE250 (PE251+8+8+251) sequencing strategy, following the manufacturer’s
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instructions. All libraries were sequenced on the Illumina MiSeq platform by the BGI
(Wuhan, China).

Bioinformatics and statistical analysis
The raw sequencing data were filtered, and the low quality reads were removed using an
in-house procedure. The specific steps are as follows: (1) Sequence reads without an
average quality of 20 over a 30 bp sliding window based on the phred algorithm were
truncated, and trimmed reads with less than 75% of their original length and their
paired reads were removed; (2) removal of reads contaminated by adapter (default
parameter: 15 bases overlapped by reads and adapter with maximal three bases mismatch
allowed); (3) removal of reads with ambiguous basa (N base), and its paired reads;
(4) removal of reads with low complexity (default: reads with 10 consecutive same base).
The remaining high-quality reads were used for all subsequent analyses (Fadrosh et al.,
2014). Paired end reads are merged to tags: If the two paired-end reads overlapped,
the consensus sequence was generated by FLASH (Fast Length Adjustment of Short
reads, v1.2.11), and the details of the method are as follows: (1) Minimal overlapping
length: 15 bp; (2) Mismatching ratio of overlapped region: < = 0.1. Removal of paired end
reads without overlaps (Magoč & Salzberg, 2011). Tags were aggregated into operational
taxonomic units (OTUs) at 97% similarity using USEARCH v7.0.1090 (Edgar, 2013).
Species annotation was then performed on the OTUs by comparing the OTUs to
the 16S database (/RDP_set14/RDP_set14_NCBI_download_20151028) (Cole et al.,
2014; Quast et al., 2012) with QIIME v1.80 package (confidence threshold: 0.60;
Caporaso et al., 2010).

The bacterial species corresponding to the recovered OTUs were identified by comparing
the OTUs to the species database (/RDP_set14/RDP_set14_NCBI_download_20151028).
Profiling area maps and histograms for each sample set at the phylum, class, order,
family, and genus levels were created. Heatmap analyses were also performed to compare
bacterial community composition among the different host species. All bacterial
classes with less than 0.5% relative abundance were combined into an "Others" class
(Henderson et al., 2015; Hu et al., 2017; Song et al., 2017).

The representative sequences were aligned against the Silva core set
(Silva_108_core_aligned_seqs) using PyNAST using “align_seqs.py.” A representative
OTU phylogenetic tree was constructed using the QIIME (v1.80) built-in scripts including
the fasttree method for tree construction (Caporaso et al., 2010). The most abundant
tags in each genus were chosen to represent the genus, and genus level phylogenetic
tree was obtained by the same way of OTU phylogenetic tree. The phylogeny tree was
imaged by software R (v3.1.1) (R Core Team, 2014) (Caporaso et al., 2010; Costello
et al., 2010).

Within each sample, sequences were considered part of the same OTUs at a
97% similarity threshold. A Venn diagram was constructed based on these OTUs with
the VennDiagram package (Chen & Boutros, 2011) in R (v3.1.1), showing the number of
OTUs shared and unique among the different host species. A principal components
analysis (PCA) was used to quantify the differences in OTUs composition among samples
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and the distances between OTUs on a two-dimensional coordinate map. PCA was
performed with the ade4 package (Dray & Dufour, 2007) in R (v3.1.1).

Alpha diversity describes species diversity at a single site or within a single sample
(Schloss et al., 2009). Alpha diversity was estimated by calculating the observed species index
and the Shannon index using mothur v1.31.2 (http://www.mothur.org/wiki/Calculators).
Difference analysis and mapping were performed in R (v3.1.1) (White, Nagarajan &
Pop, 2009). To compare differences in bacterial diversity between pairs of snake species,
beta diversity was analyzed based on Bray–Curtis dissimilarity using QIIME v1.80
(Caporaso et al., 2010).

The cladogram and biomarkers images were generated using linear discriminant
analysis effect size (LEfSe) (Segata et al., 2011). The one-sample Kolmogorov–Smirnov test
was used to test the normality of the data. Then, we quantified the effect of host
species on the five most abundant bacterial phyla using the general linear model
(for the normally distributed data) or the generalized linear model (for the non-normally
distributed data). A sequential Holm–Bonferroni correction was used to control for
Type I error in SPSS v20.0 (IBM, Corp., Armonk, NY, USA). Differences in bacterial
species abundance among samples were identified using the kruskal.test package
(White, Nagarajan & Pop, 2009) in R (v3.1.1), adjusting for the false discovery rate and
with the threshold P-value among groups set to 0.05. Based on these results,
the bacterial species that most influenced the differences in sample composition among
groups were identified.

Availability of supporting data
The raw data obtained in this study have been deposited in National Centre for
Biotechnology Information Sequence Read Achieve (Bioproject: PRJNA516815;
accession numbers: SRR8494339–SRR8494360).

RESULTS
Data quality evaluation
Across all samples, 727,310 sequences with an average length of 252 bp were obtained
(Table S1). The observed species and Shannon rarefaction curves tended to plateau, which
showed that these sequence depths sufficiently captured the major microbiota in
each sample (Fig. S1). Here, a total of 629 OTUs were obtained at the 97% sequence
similarity cut-off levels and the number of OTUs shared by each sampling group was 109
(Table S1; Fig. S2). On average, 0.10% of all OTUs were unclassified at the phylum level
(Fig. 1A), and 12.79% were unclassified at the genus level (Fig. 1B).

Dominant bacterial taxa across all snake hosts
The gut microbiotas of the four farmed snake species fell into 15 phyla, 18 classes,
22 orders, 35 families, and 58 genera (Table 1; Fig. 1; Fig. S3). In the overall dataset, the
five most abundant phyla were identified as Bacteroidetes (30.98%), Proteobacteria
(24.80%), Firmicutes (20.96%), Fusobacteria (20.20%), and Actinobacteria (1.53%),
while the five most abundant genera were Bacteroides (26.63%), Cetobacterium (19.06%),
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Clostridium (7.84%), Plesiomonas (4.90%), and Paeniclostridium (2.89%) (Table S2).
Phylogenetic analysis indicated that most genera fell into Bacteroidetes, Firmicutes, and
Proteobacteria; only two genera fell into Fusobacteria (Fig. 2).

Comparisons of gut microbiotas among the four snake species

Alpha diversity analysis
Alpha diversity indices (observed species, P = 0.001; Shannon, P = 0.002) differed
significantly among the four snake species (Figs. 3A and 3B). For the community richness
estimator (observed species index), each pairwise comparison among three species
(D. acutus, E. carinata, and N. atra) was significant, while P. mucosa was not significantly
different from E. carinata or N. atra. For the community diversity estimator (the Shannon
index), among three species (D. acutus, E. carinata, and P. mucosa) was significant,
but N. atra was not significantly different from E. carinata or P. mucosa (Figs. 3A and 3B).
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Full-size DOI: 10.7717/peerj.6658/fig-2

Table 1 Composition of the fecal microbiotas of four snake species.

Group Number of
Phyla

Number of
classes

Number of
orders

Number of
families

Number of
genera

Na 11 17 20 31 49

Pmu 11 16 19 28 44

Ec 9 15 19 27 44

Da 12 18 22 34 53

Total 15 18 22 35 58

Note:
Na, Naja atra group; Pmu, Ptyas mucosus group; Ec, Elaphe carinata group; Da, Deinagkistrodon acutus group.
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Similarity analysis
The Bray–Curtis distance suggested that the bacterial community differences within each
sample species were small; samples from the same species clustered together (with the
exception of samples Na4 and Na5, which clustered with E. carinata; Fig. 3C). The PCA
showed that the gut microbiotas from the same host species were more similar to each other
than to the gut microbiotas from different host species, indicating that gut microbiotas
were most similar within same snake species. Among the different snake species, E. carinata
and N. atra were closest, indicating that the gut microbiotas of these two species were similar.
In contrast, D. acutus was distantly separated from the other three species, indicating
that the gut microbiota ofD. acutuswas dissimilar to those of the other three species (Fig. 3D).

Heatmap vertical clustering at the genus level showed that samples from the same snake
species were tightly grouped on short branches, indicating that the composition and
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abundance of gut bacteria in the same sample were similar (with the exception of Na2 and
Pmu3, which clustered with E. carinata; Fig. 4). These results were consistent with the
beta diversity analysis.

Differential microbes among species
The LEfSe analysis was used to screen the differential microbes among species.
The cladogram also showed seven phyla, 11 classes, 17 orders, 29 families, and 45 genera
were significantly enriched in distinct species (Fig. 5). The general linear model (GLM)
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Figure 4 Heatmap showing the genus-level bacterial community composition in the gut microbiotas
of four snake species. Na, Naja atra group; Pmu, Ptyas mucosus group; Ec, Elaphe carinata group;
Da, Deinagkistrodon acutus group. Full-size DOI: 10.7717/peerj.6658/fig-4
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suggested that host species affected the relative abundances of Bacteroidetes, Firmicutes,
and Fusobacteria (with the exception of Proteobacteria), whereas the GLMs identified
no significant effects of species on Actinobacteria abundance (Table 2). The relative
abundances of the five most abundant genera across the four host species was shown
in Fig. S4. D. acutus had a significantly higher abundances of genera Clostridium,
Paeniclostridium, and Desulfovibrio. E. carinata had higher abundance of genera
Edwardsiella, Escherichia, and Plesiomonas. Compared with other species, P. mucosa
showed greater significantly in the abundances of genera Cetobacterium.

DISCUSSION
Tens of billions of bacterial species have colonized vertebrates, typically in the gut
(Ley et al., 2008b; Costea et al., 2018). The composition and structure of the normal gut
microbiota can be used to assess animal health and diagnose or prevent disease

Figure 5 A cladogram showing the differences in relative abundance of taxa at five levels across four snake species. The plot was generated using
the online LEfSe project. The orange, cyan, blue, and purple circles mean that four snake species showed differences in relative abundance, and
yellow circles mean non-significant differences. Full-size DOI: 10.7717/peerj.6658/fig-5
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(Kundu et al., 2017; Rosshart et al., 2017;Hu et al., 2017). In the present study, we provided
the first comparative study of gut microbiotas among several species of farmed snakes
in southern China, and revealed the factor driving variation that will be useful for
understanding the relationship between gut microbiota and host species.

On average, we obtained 33,059 sequences per snake species (Table S1), consistent with
previous similar studies. For example, a mean of 33,690 sequences were obtained in
the forest musk deer (Moschus berezovskii) and the alpine musk deer (Moschus
chrysogaster) (Hu et al., 2017); a mean of 30,000 sequences were obtained in crocodile
lizards (Shinisaurus crocodilurus) (Jiang et al., 2017); and a mean of 16,307 sequences were
obtained in black bears (Song et al., 2017). Thus, that the mean number of sequences
and the depths of the sequencing data for each individual sample we obtained were
reasonable (Table S1; Fig. S1).

Dominant gut microbes
Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Actinobacteria were the
five most abundant phyla in the gut microbiota of the four farmed snake species (Fig. 1A).
This differed from mammals (Ley et al., 2008a), birds (Waite & Taylor, 2014), and other
reptiles (Colston, Noonan & Jackson, 2015; Keenan, Engel & Elsey, 2013; McLaughlin,
Cochran & Dowd, 2015; Jiang et al., 2017). In previous studies of vertebrates, the
gut microbiota have been dominated by the phyla Bacteroidetes and Firmicutes, which
influence the physiological functions of the host with respect to metabolism and immunity
(Thomas et al., 2011).

Lizards are another major taxon of reptiles (∼60%) (Uetz, Hošek & Hallermann, 2016).
Previous reports have indicated that the gut microbiota of lizards is dominated by the
phyla Firmicutes (2.6–73%), Bacteroidetes (6.2–32.1%), and Proteobacteria (19.1–56.4%)
(Hong et al., 2011; Ren et al., 2016; Jiang et al., 2017; Kohl et al., 2017). Proteobacteria
enrichment in the human gut was an indicator of gut microbiota imbalance and
was associated with host disease (Shin, Whon & Bae, 2015). However, the proportion
of Proteobacteria in the gut microbiota of lizards was relatively high, although this
proportion varied greatly by species. A similar situation has been reported in snakes.
For example, the gut microbiota of the Burmese python (Python bivittatus) was

Table 2 The differences in relative abundance (% ± SD) of the top five most abundant phylum of
four snake species.

Top five most
abundant phyla

Na group Pmu group Ec group Da group F P

Bacteroidetes 45.07 ± 4.92 10.22 ± 2.32 43.54 ± 6.93 18.24 ± 16.89 =16.04 <0.001

Proteobacteria 27.67 ± 8.10 27.74 ± 14.28 28.31 ± 10.81 16.38 ± 6.08 =2.06 =0.14

Fusobacteria 16.81 ± 10.55 42.53 ± 8.38 19.42 ± 9.59 9.57 ± 6.56 =11.40 <0.001

Firmicutes 9.91 ± 5.45 18.71 ± 7.51 7.88 ± 3.04 46.54 ± 10.73 =36.49 <0.001

Actinobacteria 0.02 ± 0.01 0.07 ± 0.06 0.01 ± 0.01 8.35 ± 9.93 =2.10 =0.15

Notes:
The significances of Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria were determined using the general linear
model, whereas the generalized linear models was used to examine the significances of Actinobacteria.
Na, Naja atra group; Pmu, Ptyas mucosus group; Ec, Elaphe carinata group; Da, Deinagkistrodon acutus group.

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.6658 11/18

http://dx.doi.org/10.7717/peerj.6658/supp-5
http://dx.doi.org/10.7717/peerj.6658/supp-5
http://dx.doi.org/10.7717/peerj.6658/supp-1
http://dx.doi.org/10.7717/peerj.6658
https://peerj.com/


10.1% Proteobacteria (Costello et al., 2010), while that of the Timber rattlesnake
(Crotalus horridus) was 85.0% Proteobacteria (McLaughlin, Cochran & Dowd, 2015).
Similar results were also observed in the farmed snake species analyzed here (16.4–36.9%)
(Table 2).

The proportion of Fusobacteria in the gut microbiotas of mammals, birds, and
other snakes was relatively small (Ley et al., 2008a; Costello et al., 2010; Waite & Taylor,
2014; Colston, Noonan & Jackson, 2015; McLaughlin, Cochran & Dowd, 2015). However,
Fusobacteria was a core gut microbiome of the American alligator (Alligator mississippiensis),
which could affect lumen biofilm development (Keenan, Engel & Elsey, 2013). Here,
Fusobacteria dominated the gut microbiotas of the farmed snakes; this is compositionally
distinct from other vertebrate gut microbiomes, including those of other reptiles,
fish, birds, and mammals.

Bacteroides and Cetobacterium were the dominant bacterial genera in gut microbiota of
the farmed snakes (Fig. 2). Bacteroides maintain a complex and beneficial relationship
in the host gut, and the symbiotic relationships between these bacteria and their hosts have
been widely studied (Thomas et al., 2011). For example, Bacteroides species have complex
systems for sensing nutrient utilization, regulating nutrient metabolism, and acquiring
and hydrolyzing otherwise indigestible dietary polysaccharides (Xu et al., 2003).
Bacteroides species control host gut homeostasis by interacting with the host immune
system (Wexler, 2007). Here, the gut microbiotas of the farmed snakes were dominated by
Bacteroides, especially the samples from E. carinata (42.09%) andN. atra (40.17%) (Fig. 3),
indicating that the gut microbiota in snakes are species dependent. All Cetobacterium
species are obligate anaerobes in phylum Fusobacteria (Fig. 2). Cetobacterium was the
dominant genus in the gut microbiotas of all the farmed snakes analyzed herein; this is the
first report of the dominance of this genus in the gut microbiotas of snakes.

Fusobacteria in gut microbiotas of farmed snakes
Fusobacteria is a little-studied bacterial phylum, with a somewhat uncertain phylogenetic
position (Keenan, Engel & Elsey, 2013). The results of the present study indicated
that only two genera fell into Fusobacteria by phylogenetic analysis, Cetobacterium,
and Fusobacterium (Fig. 2). However, it is possible that Fusobacteria includes additional
unclassified genera, and/or that the Fusobacteria have been undersampled in previous
studies of gut microbiotas (Keenan, Engel & Elsey, 2013). Previous studies have suggested
that Fusobacteria have a core genome dissimilar to that of other bacterial lineages
(Mira et al., 2004). Phylogenetic and comparative genomics analyses indicate that this
phylum is closely affiliated with Bacteroidetes and Firmicutes, and may be derived from
the Firmicutes (Mira et al., 2004). Phylogenetic analysis recovered a close relationship
between Fusobacteria and Bacteroidetes, indicating a relatively close evolutionary
relationship (Fig. 2). Bacteroidetes is one of the major lineages of bacteria, arising early
in bacterial evolution (Wexler, 2007). Therefore, the evolutionary relationship between
Fusobacteria and Bacteroidetes should be further investigated.

Fusobacteria species play a critical role in initial biofilm development (Mira et al.,
2004), suggesting that the presence of these species in the guts of the farmed snakes
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may affect the development of the lumen membrane (Keenan, Engel & Elsey, 2013).
Cetobacterium was first isolated from the intestinal contents of a porpoise and from the
mouth lesion of a minke whale (Balaenoptera acutorostrata) (Foster et al., 1995).
Species in this genus transform peptones and carbohydrate into acetic acid (Edwards,
Logan & Gharbia, 2015). Because Fusobacteria and Cetobacterium dominated the
gut microbiotas of the farmed snakes, species in these taxa were likely commensal
inhabitants of snake guts. It is therefore possible to speculate that, in snakes,
Fusobacteria, and Cetobacterium play important roles in digestive organ development
and in nutritional metabolism.

The relationship between gut microbiota and host species
Many factors affect the vertebrate gut microbiotas, including host species, diet, and age
(Ley et al., 2008b; Waite & Taylor, 2014; Hu et al., 2017; Jiang et al., 2017). The gut
microbiota may also vary in different regions of the gut tract (Ley et al., 2008b; Waite &
Taylor, 2014). Diet and host species influence the composition of the gut microbiota
more than other factors (Waite & Taylor, 2014). The gut microbiota of the Burmese
python was dominated by Firmicutes and Bacteroidetes (Costello et al., 2010), while the
gut microbiota of the timber rattlesnake was uniquely dominated by Proteobacteria
(McLaughlin, Cochran & Dowd, 2015). Bacteroidetes, Firmicutes, and Proteobacteria
also dominated the gut microbiota of the cottonmouth snake (Colston, Noonan &
Jackson, 2015). Therefore, the dominant bacterial phyla vary based on snake species.
However, diet, age, habitat, and research method varied in previous studies of snake
microbiotas, which possibly affected the distribution of bacterial species abundance
at the phylum level. Here, the composition of gut microbiota was unique to each species
of farmed snake. The four species shared similar breeding modes, but the composition
and diversity of the gut microbiota were more similar within species and more
different between species. This, suggested a relationship between the composition and
diversity of the gut microbiota and the host species. However, the fecal samples of
E. carinata originated from a different farm from the other three, which may have had an
impact on the study results. The composition and diversity of the E. carinata gut
microbiota differed from those of the other three species. For example, the community
richness estimate for the fecal samples of E. carinata was significantly lower than that of
N. atra and D. acutus (Fig. 3A). E. carinata had higher abundances of the dominant
genera Edwardsiella, Escherichia, and Plesiomonas (Fig. S4). We therefore hypothesize
that variations among farms may also be a factor contributing to the composition
and community structures of host gut microbiotas. However, the community diversity
estimate for the fecal samples of E. carinata did not differ significantly from N. atra
(Fig. 3B). Bray–Curtis distance, PCA, and Heatmap vertical clustering showed that the
gut microbiotas of E. carinata and N. atra were somewhat similar. Therefore, farm
variation may not be an important factor altering the gut microbiotas of farmed snakes.
In addition, the species studied here were similar with respect to diet, health, farmed
environment, and age. This suggested that host species was probably the important
factor shaping the microbiot.
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CONCLUSION
The compositions of the gut microbiotas of four farmed snake species in southern
China were different to those of other snakes and vertebrates. The gut bacteria of these
four species fell into 15 phyla, 18 classes, 22 orders, 35 families, and 58 genera. The five
most abundant phyla were Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria,
and Actinobacteria, while the five most abundant genera were Bacteroides, Cetobacterium,
Clostridium, Plesiomonas, and Paeniclostridium. This was the first report that Fusobacteria
and Cetobacterium dominated the gut microbiotas of snake species. Gut microbiotal
diversity was highest in D. acutus and lowest in E. carinata. There were interspecific
differences in gut microbiota composition and diversity among the four farmed
snake species. Our results supported our hypothesis that host species was an important
factor affecting the gut microbiotas of snakes. Further studies of snake gut microbiotas
should investigate the relationship between phylogenetic position and function,
as well as the characteristics of dominant bacteria that were unclassifiable. It is important
to determine whether the immunity and growth of farmed snake populations can be
improved by inoculating fecal suspensions generated by healthy wild snakes into the guts
of farmed conspecifics.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was funded by the National Natural Science Foundation of China
(No. 31472021) and the Project for Wildlife Conservation and Management of the State
Forestry Administration of China (No. 16180617). The funders had no role in the study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 31472021.
Wildlife Conservation and Management of the State Forestry Administration of China:
16180617.

Competing Interests
Xinguo Gong is chairman of Qiyang Gong Xinguo Breeding Co., Ltd. The authors declare
that they have no competing interests.

Author Contributions
� Bing Zhang conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, prepared
figures and tables, authored or reviewed drafts of the paper.

� Jing Ren performed the experiments, analyzed the data, and wrote the paper.
� Daode Yang conceived and designed the experiments, authored or reviewed drafts of the
paper, approved the final draft.

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.6658 14/18

http://dx.doi.org/10.7717/peerj.6658
https://peerj.com/


� Shuoran Liu conceived and designed the experiments, authored and reviewed drafts of
the paper.

� Xinguo Gong performed the experiments.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

This study was performed in accordance with the recommendations of the Institution of
Animal Care and the Ethics Committee of Central South University of Forestry and
Technology (approval number: CSUFT NS #20175167).

Data Availability
The following information was supplied regarding data availability:

Data is available at NCBI SRA: SRR8494339–SRR8494360.
The data is also available at figshare: Zhang, Bing; Ren, Jing; Yang, Daode; Liu, Shuoran;

Gong, Xinguo (2019): The raw data of the article—Comparative analysis and
characterization of the gut microbiota of four farmed snakes from southern China.
figshare. Fileset. DOI 10.6084/m9.figshare.7769975.v1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.6658#supplemental-information.

REFERENCES
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N,

Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE,
Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ,
Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows
analysis of high-throughput community sequencing data. Nature Methods 7(5):335–336
DOI 10.1038/nmeth.f.303.

Chen H, Boutros PC. 2011. VennDiagram: a package for the generation of highly-customizable
Venn and Euler diagrams in R. BMC Bioinformatics 12(1):35 DOI 10.1186/1471-2105-12-35.

Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A,
Kuske CR, Tiedje JM. 2014. Ribosomal database project: data and tools for high throughput
rRNA analysis. Nucleic Acids Research 42(D1):D633–D642 DOI 10.1093/nar/gkt1244.

Colston TJ, Noonan BP, Jackson CR. 2015. Phylogenetic analysis of bacterial communities in
different regions of the gastrointestinal tract of Agkistrodon piscivorus, the cottonmouth snake.
PLOS ONE 10(6):e0128793 DOI 10.1371/journal.pone.0128793.

Costea PI, Hildebrand F, Manimozhiyan A, Bäckhed F, Blaser MJ, Bushman FD, Vos WM,
Ehrlich SD, Fraser CM, Hattori M, Huttenhower C, Jeffery IB, Knights D, Lewis JD, Ley RE,
Ochman H, O’Toole PW, Quince C, Relman DA, Shanahan F, Sunagawa S, Wang J,
Weinstock GM, Wu GD, Zeller G, Zhao L, Raes J, Knight R, Bork P. 2018. Enterotypes in
the landscape of gut microbial community composition. Nature Microbiology 3(1):8–16
DOI 10.1038/s41564-017-0072-8.

Costello EK, Gordon JI, Secor SM, Knight R. 2010. Postprandial remodeling of the gut
microbiota in Burmese pythons. ISME Journal 4(11):1375–1385 DOI 10.1038/ismej.2010.71.

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.6658 15/18

http://www.ncbi.nlm.nih.gov/sra/SRR8494339
http://www.ncbi.nlm.nih.gov/sra/SRR8494360
https://doi.org/10.6084/m9.figshare.7769975.v1
http://dx.doi.org/10.7717/peerj.6658#supplemental-information
http://dx.doi.org/10.7717/peerj.6658#supplemental-information
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1186/1471-2105-12-35
http://dx.doi.org/10.1093/nar/gkt1244
http://dx.doi.org/10.1371/journal.pone.0128793
http://dx.doi.org/10.1038/s41564-017-0072-8
http://dx.doi.org/10.1038/ismej.2010.71
http://dx.doi.org/10.7717/peerj.6658
https://peerj.com/


Dray S, Dufour A. 2007. The ade4 package: implementing the duality diagram for ecologists.
Journal of Statistical Software 22(4):1–20 DOI 10.18637/jss.v022.i04.

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads.
Nature Methods 10(10):996–998 DOI 10.1038/nmeth.2604.

Edwards KJ, Logan JMJ, Gharbia SE. 2015. Cetobacterium. Bergey’s manual of systematics of
archaea and bacteria. Hoboken: John Wiley and Sons, Ltd.

Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J. 2014. An improved
dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq
platform. Microbiome 2(1):6 DOI 10.1186/2049-2618-2-6.

Foster G, Ross HM, Naylor RD, Collins MD, Ramos CP, Garayzabal FF, Reid RJ. 1995.
Cetobacterium ceti gen. nov., sp. nov., a new Gram-negative obligate anaerobe from sea mammals.
Letters in Applied Microbiology 21(3):202–206 DOI 10.1111/j.1472-765X.1995.tb01041.x.

Gao QX, Wu TX, Wang JB. 2010. Advance in research on symbiotic relationship between
intestinal bacterial and their Host. Chinese Journal of Animal Nutrition 22(3):519–526
DOI 10.3969/j.issn.1006-267x.2010.03.002.

Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH, Global Rumen Census
Collaborators. 2015. Rumen microbial community composition varies with diet and host, but a
core microbiome is found across a wide geographical range. Scientific Reports 5(1):14567
DOI 10.1038/srep14567.

Hong P-Y, Wheeler E, Cann IKO, Mackie RI. 2011. Phylogenetic analysis of the fecal microbial
community in herbivorous land and marine iguanas of the galápagos islands using
16s rrna-based pyrosequencing. ISME Journal 5(9):1461–1470 DOI 10.1038/ismej.2011.33.

Hu L, Geng S, Li Y, Cheng S, Fu X, Yue X, Han X. 2018. Exogenous fecal microbiota
transplantation from local adult pigs to crossbred newborn piglets. Frontiers in Microbiology
8:2663 DOI 10.3389/fmicb.2017.02663.

Hu X, Liu G, Shafer ABA, Wei Y, Zhou J, Lin S, Wu H, Zhou M, Hu D, Liu S. 2017.
Comparative analysis of the gut microbial communities in forest and alpine musk deer
using high-throughput sequencing. Frontiers in Microbiology 8(e2836):572
DOI 10.3389/fmicb.2017.00572.

Hu MX, Tan QY, Li Y, Yang DD. 2013. Allopatric captive rearing in the tropics increases
the growth Rates of Deinagkistrodon acutus snakelets. Scientia Silvae Sinicae 49(5):194–198
DOI 10.11707/j.1001-7488.20130526.

Hu MX, Tan QY, Yang DD. 2013. Relationships among female body size, clutch size, and
egg size in captive Deinagkistrodon acutus. Acta Ecologica Sinica 33(6):1778–1783.

Jiang H-Y, Ma J-E, Li J, Zhang X-J, Li L-M, He N, Liu H-Y, Luo S-Y, Wu Z-J, Han R-C,
Chen J-P. 2017. Diets alter the gut microbiome of crocodile lizards. Frontiers in Microbiology
8:2636 DOI 10.3389/fmicb.2017.02073.

Keenan SW, Engel AS, Elsey RM. 2013. The alligator gut microbiome and implications for
archosaur symbioses. Scientific Reports 3(1):2877 DOI 10.1038/srep02877.

Kohl KD, Brun A, Magallanes M, Brinkerhoff J, Laspiur A, Acosta JC, Laviedes-Vidal E,
Bordenstein SR. 2017. Gut microbial ecology of lizards: insights into diversity in the
wild, effects of captivity, variation across gut regions and transmission. Molecular Ecology
26(4):1175–1189 DOI 10.1111/mec.13921.

Kohl KD, Skopec MM, Dearing MD. 2014. Captivity results in disparate loss of gut
microbial diversity in closely related hosts. Conservation Physiology 2(1):cou009
DOI 10.1093/conphys/cou009.

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.6658 16/18

http://dx.doi.org/10.18637/jss.v022.i04
http://dx.doi.org/10.1038/nmeth.2604
http://dx.doi.org/10.1186/2049-2618-2-6
http://dx.doi.org/10.1111/j.1472-765X.1995.tb01041.x
http://dx.doi.org/10.3969/j.issn.1006-267x.2010.03.002
http://dx.doi.org/10.1038/srep14567
http://dx.doi.org/10.1038/ismej.2011.33
http://dx.doi.org/10.3389/fmicb.2017.02663
http://dx.doi.org/10.3389/fmicb.2017.00572
http://dx.doi.org/10.11707/j.1001-7488.20130526
http://dx.doi.org/10.3389/fmicb.2017.02073
http://dx.doi.org/10.1038/srep02877
http://dx.doi.org/10.1111/mec.13921
http://dx.doi.org/10.1093/conphys/cou009
http://dx.doi.org/10.7717/peerj.6658
https://peerj.com/


Kundu P, Blacher E, Elinav E, Pettersson S. 2017. Our gut microbiome: the evolving inner self.
Cell 171(7):1481–1493 DOI 10.1016/j.cell.2017.11.024.

Larsen AM, Mohammed HH, Arias CR. 2014. Characterization of the gut microbiota of
three commercially valuable warmwater fish species. Journal of Applied Microbiology
116(6):1396–1404 DOI 10.1111/jam.12475.

Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML,
Tucker TA, Schrenzel MD, Knight R, Gordon JI. 2008a. Evolution of mammals and their
gut microbes. Science 320(5883):1647–1651 DOI 10.1126/science.1155725.

Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008b. Worlds within worlds:
evolution of the vertebrate gut microbiota. Nature Reviews Microbiology 6(10):776–788
DOI 10.1038/nrmicro1978.

Li PP. 2009. Status of conservation and farmed breeding of snakes in China. Journal of Snake
21:173–176 DOI 10.3969/j.issn.1001-5639.2009.03.001.

Li M, Wang BH, Zhang MH, Rantalainen M, Wang SY, Zhou HK, Zhang Y, Shen J,
Pang XY, Zhang ML, Wei H, Chen Y, Lu HF, Zuo J, Su MM, Qiu YP, Jia W, Xiao CN,
Smith LM, Yang SL, Holmes E, Tang HR, Zhao GP, Nicholson JK, Li LJ, Zhao LP. 2008.
Symbiotic gut microbes modulate human metabolic phenotypes. Proceedings of the
National Academy of Sciences of the United States of America 105(6):2117–2122
DOI 10.1073/pnas.0712038105.

Lyons PP, Turnbull JF, Dawson KA, Crumlish M. 2017. Phylogenetic and functional
characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss
from both farm and aquarium settings. Journal of Applied Microbiology 122(2):347–363
DOI 10.1111/jam.13347.

Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome
assemblies. Bioinformatics 27(21):2957–2963 DOI 10.1093/bioinformatics/btr507.

McLaughlin RW, Cochran PA, Dowd SE. 2015. Metagenomic analysis of the gut microbiota
of the Timber rattlesnake, Crotalus horridus. Molecular Biology Reports 42(7):1187–1195
DOI 10.1007/s11033-015-3854-1.

Mira A, Pushker R, Legault BA, Moreira D, Rodríguez-Valera F. 2004. Evolutionary
relationships of fusobacterium nucleatum based on phylogenetic analysis and comparative
genomics. BMC Evolutionary Biology 4(1):50 DOI 10.1186/1471-2148-4-50.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012.
The SILVA ribosomal RNA gene database project: improved data processing and web-based
tools. Nucleic Acids Research 41(D1):D590–D596 DOI 10.1093/nar/gks1219.

R Core Team. 2014. R: A language and environment for statistical computing. Version
3.1.1. Vienna: R Foundation for Statistical Computing. Available at https://www.R-project.org/.

Ren T, Kahrl AF, Wu M, Cox RM. 2016. Does adaptive radiation of a host lineage promote
ecological diversity of its bacterial communities? a test using gut microbiota of anolis lizards.
Molecular Ecology 25(19):4793–4804 DOI 10.1111/mec.13796.

Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD,
McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel De Villena F, Yewdell JW,
Rehermann B. 2017. Wild mouse gut microbiota promotes host fitness and improves
disease resistance. Cell 171(5):1015–1028.e13 DOI 10.1016/j.cell.2017.09.016.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,
Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Webe CF.
2009. Introducing mothur: open-source, platform-independent, community-supported

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.6658 17/18

http://dx.doi.org/10.1016/j.cell.2017.11.024
http://dx.doi.org/10.1111/jam.12475
http://dx.doi.org/10.1126/science.1155725
http://dx.doi.org/10.1038/nrmicro1978
http://dx.doi.org/10.3969/j.issn.1001-5639.2009.03.001
http://dx.doi.org/10.1073/pnas.0712038105
http://dx.doi.org/10.1111/jam.13347
http://dx.doi.org/10.1093/bioinformatics/btr507
http://dx.doi.org/10.1007/s11033-015-3854-1
http://dx.doi.org/10.1186/1471-2148-4-50
http://dx.doi.org/10.1093/nar/gks1219
https://www.R-project.org/
http://dx.doi.org/10.1111/mec.13796
http://dx.doi.org/10.1016/j.cell.2017.09.016
http://dx.doi.org/10.7717/peerj.6658
https://peerj.com/


software for describing and comparing microbial communities. Applied and Environmental
Microbiology 75(23):7537–7541 DOI 10.1128/AEM.01541-09.

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011.
Metagenomic biomarker discovery and explanation. Genome Biology 12(6):R60
DOI 10.1186/gb-2011-12-6-r60.

Shi YD, Sun H. 2017. Characterization of the intestinal microflora of Elaphe taeniura.
Journal of Hunan Agricultural University (Natural Sciences) 43:292–297
DOI 10.13331/j.cnki.jhau.2017.03.013.

Shibata N, Kunisawa J, Kiyono H. 2017. Dietary and microbial metabolites in the regulation
of host immunity. Frontiers in Microbiology 8:2171 DOI 10.3389/fmicb.2017.02171.

Shin N-R, Whon TW, Bae J-W. 2015. Proteobacteria: microbial signature of dysbiosis in gut
microbiota. Trends in Biotechnology 33(9):496–503 DOI 10.1016/j.tibtech.2015.06.011.

Song C, Wang B, Tan J, Zhu L, Lou D, Cen X. 2017. Comparative analysis of the gut microbiota
of black bears in China using high-throughput sequencing. Molecular Genetics and Genomics
292(2):407–414 DOI 10.1007/s00438-016-1282-0.

Spiljar M, Merkler D, Trajkovski M. 2017. The immune system bridges the gut microbiota
with systemic energy homeostasis: focus on TLRs, mucosal barrier and SCFAs.
Frontiers in Immunology 8:1353 DOI 10.3389/fimmu.2017.01353.

Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. 2011. Environmental and
gut bacteroidetes: the food connection. Frontiers in Microbiology 2:93
DOI 10.3389/fmicb.2011.00093.

Uetz P, Hošek J, Hallermann J. 2016. The reptile database. Available at
http://www.reptile-database.org.

Waite DW, Taylor MW. 2014. Characterizing the avian gut microbiota: membership,
driving influences, and potential function. Frontiers in Microbiology 5:223
DOI 10.3389/fmicb.2014.00223.

Wexler HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty. Clinical Microbiology
Reviews 20(4):593–621 DOI 10.1128/CMR.00008-07.

White JR, Nagarajan N, Pop M. 2009. Statistical methods for detecting differentially abundant
features in clinical metagenomic samples. PLOS Computational Biology 5(4):e1000352
DOI 10.1371/journal.pcbi.1000352.

Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI.
2003. A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science
299(5615):2074–2076 DOI 10.1126/science.1080029.

Yuan ML, Dean SH, Longo AV, Rothermel BB, Tuberville TD, Zamudio KR. 2015. Kinship,
inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting
tortoise. Molecular Ecology 24(10):2521–2536 DOI 10.1111/mec.13169.

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.6658 18/18

http://dx.doi.org/10.1128/AEM.01541-09
http://dx.doi.org/10.1186/gb-2011-12-6-r60
http://dx.doi.org/10.13331/j.cnki.jhau.2017.03.013
http://dx.doi.org/10.3389/fmicb.2017.02171
http://dx.doi.org/10.1016/j.tibtech.2015.06.011
http://dx.doi.org/10.1007/s00438-016-1282-0
http://dx.doi.org/10.3389/fimmu.2017.01353
http://dx.doi.org/10.3389/fmicb.2011.00093
http://www.reptile-database.org
http://dx.doi.org/10.3389/fmicb.2014.00223
http://dx.doi.org/10.1128/CMR.00008-07
http://dx.doi.org/10.1371/journal.pcbi.1000352
http://dx.doi.org/10.1126/science.1080029
http://dx.doi.org/10.1111/mec.13169
http://dx.doi.org/10.7717/peerj.6658
https://peerj.com/

	Comparative analysis and characterization of the gut microbiota of four farmed snakes from southern China
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


