
1 **Transcriptome sequencing of olfactory related genes in olfactory**
2 **transduction of large yellow croaker (*Larimichthys crocea*) in response**
3 **to bile salts**

4

5 Jiabao Hu^{1,2,3}, Yajun Wang^{1,2,3 *}, Qijun Le^{1,2,3,4}, Na Yu^{1,2,3}, Xiaohuan Cao^{1,2,3}, Siwen Kuang^{1,}
6 ^{2,3}, Man Zhang^{1,2,3}, Weiwei Gu^{1,2,3}, Yibo Sun^{1,2,3}, Yang Yang^{1,2,3}, Xiaojun Yan^{1,2,3 *}

7

8 ¹Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education,
9 Ningbo, China

10 ²Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo,
11 China

12 ³College of marineMarine Sciences, Ningbo University, Ningbo, China

13 ⁴Ningbo Entry-Exit Inspection and Quarantine Bureau Technical Centre, Ningbo, China

14

15 Correspondence:

16 Dr Yajun Wang,

17 wangyajun@nbu.edu.cn;

18 Dr Xiaojun Yan,

19 yanxiaojun@nbu.edu.cn

20

21

22

23

24

25

26

27

28

29

30 **Abstract**

31 Fish produce and release bile salts as chemical signalling substances that act as sensitive
32 olfactory stimuli. To investigate how bile salts affect olfactory signal transduction in large yellow
33 croaker (*Larimichthys crocea*), deep sequencing of olfactory epithelium was conducted to analyse
34 olfactory-related genes in olfactory transduction. Sodium cholates (SAS) have ~~the~~ typical bile salt
35 chemical structures, hence we used four different concentrations of SAS to stimulate *L. crocea*,
36 and the fish displayed a significant behavioural preference for 0.30%. We then sequenced
37 olfactory epithelium tissue, and identified 9938 unigenes that were significantly differentially
38 expressed between SAS-stimulated and control groups, including 9055 up-regulated and 883
39 down-regulated unigenes. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes
40 and Genomes (KEGG) analyses found eight categories linked to olfactory transduction pathways
41 that were highly enriched with some differentially expressed genes (DEGs), including Olfactory
42 receptor (OR), Adenylate cyclase type 3 (ADCY3) and Calmodulin (CALM). Genes in these
43 categories ~~was-were~~ analysed by RT-qPCR, which revealed aspects of the pathway transformation
44 between odor detection, and recovery and adaptation. The results provide new insight into the
45 effects of bile salt stimulation in olfactory molecular mechanisms in fishes, and expands our
46 knowledge of olfactory transduction, and signal generation and decline.

Commented [JR1]: This makes no sense without some descriptor. What is this 0.30%?

47
48 **Introduction**

49 Bile salts are highly structurally variable in vertebrates, and can be classified into three types;
50 C (27) bile alcohols, C (27) bile acids, and C (24) bile acids, with default hydroxylation at C-3 and
51 C-7 (Hofmann *et al.*, 2010). They are biliary constituents derived from cholesterol that are
52 synthesised in the liver and stored in the gall bladder (Haslewood, 1967). Regulated by different
53 transport proteins, these salts are released into the intestinal lumen through enterohepatic
54 circulation (Trauner and Boyer, 2003). Because bile salts can help intestines to digest and absorb
55 dietary lipids and fat-soluble vitamins (Haslewood, 1967; Fuentes *et al.*, 2018), they are included
56 in the diet of fishes to improve growth and digestive enzyme activities (Deshimaru *et al.*, 1982;
57 Alam *et al.*, 2015). Moreover, many studies on behaviour and physiology have reported that bile
58 salts are important chemical signalling substances as well as effective olfactory stimuli in fishes,

59 which have distinct sensitivity to different components (Zhang *et al.*, 2001; Døving *et al.*, 1980),
60 but molecular studies ~~are have been~~ limited.

61 During olfactory activity, odourant molecules released into the environment bind to olfactory
62 related receptors (Kaupp, 2010). To date, three types of receptor genes have been identified in
63 fishes, namely olfactory receptors (ORs) (Freitag *et al.*, 1998), vomeronasal receptors (VRs)
64 (Freitag *et al.*, 1995), and trace amine-associated receptors (TAARs) (Eisthen, 2004). Among
65 them, OR genes play an essential role in many odor detecting activities (Hu *et al.*, 2017; Yabuki *et*
66 *al.*, 2016; Bird *et al.*, 2018). ORs encoding α -G protein-coupled receptors expressed in ciliated
67 sensory neurons were previously identified in *Rattus norvegicus* (Buck and Axel, 1991). According
68 to function, they can be divided into two classes; class I (α , β , γ , δ , ε and ζ) and class II (η , θ , κ and
69 λ) (Niimura and Nei, 2005; Hoover, 2013). In fishes, OR genes mainly belong to class I, which are
70 believed to recognize water-soluble odours (Freitag *et al.*, 1998; Zhou *et al.*, 2011). ORs are
71 member of a multigene family of G protein-coupled receptors and seven transmembrane domain
72 proteins (Buck and Axel, 1991), and G_{olf}, one subunit of the G protein-coupled to OR, activates
73 adenylyl cyclase in olfactory sensory cells (Hansen *et al.*, 2004; Schild and Restrepo, 1998;
74 Gonçalves *et al.*, 2016). Olfactory signals are eventually transmitted to the brain via regulation of
75 distinct factors in olfactory transduction (Meredith *et al.*, 2012).

Commented [JR2]: Is this ORs?

76 Many recent studies have focused on the identification and expression of olfactory related
77 receptor genes in fishes (Zhu *et al.*, 2017; Fatsini *et al.*, 2016; Cui *et al.*, 2017). In the present
78 study, to increase our knowledge of gene expression in the whole olfactory transduction system in
79 fishes following stimulation by bile salts, we identified the optimal concentration for stimulation
80 in *L. crocea* firstly, and performed deep sequencing of olfactory epithelium tissue using an
81 Illumina HiSeq 2500 platform. Subsequent GO and KEGG pathway analyses identified
82 significantly differentially expressed genes (DEGs) enriched in eight categories related to
83 olfactory transduction, and gene expression levels were confirmed for selected genes by RT-qPCR.
84 The results indicate that bile salts have attractant effects on *L. crocea*. The findings provide new
85 insight into effects of bile salt stimulation on olfactory molecular mechanisms in fishes, and
86 expand our knowledge of olfactory transduction and olfactory signalling.

87
88

89 **Methodology**

90 **Fish and bile salt stimulation treatments**

91 The large yellow croakers (mean weight = 20 ± 1.2 g) used in the study were commercially
92 reared at 25–27°C in Xiangshan Bay, Zhejiang, China. All fish experiments were conducted in
93 accordance with the recommendations in the National Institutes of Health Guide for the Care and
94 Use of Laboratory Animals. The Animal Care and Use Committee of Ningbo University approved
95 the protocols.

96 Sodium cholates (SAS) with typical bile salt chemical structures were chosen for stimulation
97 treatments (Haslewood, 1967). Four different concentrations of SAS diluted in distilled water
98 (0.20%, 0.30%, 0.40% and 0.50%) were applied to SAS groups, while the control group (Control)
99 was treated with distilled water alone. SAS was released into cultured water slowly using an air
100 stone tube (submerged in the center of the pond) equipped with a 20 mL syringe (100 individuals
101 per group, three independent biological replications). The behavioural responses of the each fish
102 were classified as two types: biting the air stone (a positive feeding response), and swimming
103 close to the air stone without biting (a positive movement response). We replaced the tested fish
104 with another new fish for subsequent replications at all concentrations. Culture water was changed
105 after every test, and each test was performed at 24 h intervals. Behaviours were recorded with a
106 camera for 5 min, and the number of each type of response was recorded and analysed statistically
107 by one-way analysis of variance (ANOVA) and Tukey's multiple comparison tests (SPSS, version
108 16.0).

109 The concentration that produced the highest number of behavioural responses was used for
110 subsequent stimulation experiments, which were performed as described as above. After
111 stimulation, we captured control group fish, and fish from SAS groups exhibiting significantly
112 positive feeding responses, and immediately extracted olfactory epithelium tissues by cutting the
113 nostrils. Olfactory epithelium tissues from 15 randomly selected fish were extracted and pooled
114 into three 1.5 mL RNAase-free tubes (three independent biological replicates for each group) and
115 stored in liquid nitrogen for RNA-seq and RT-qPCR experiments.

116

117 **RNA isolation, library construction and Illumina sequencing**

118 Total RNAs were extracted using TRIzol reagent (Invitrogen, CA, USA). RNA was

119 monitored on 1% agarose gels, RNA purity was checked using a NanoPhotometer
120 spectrophotometer (IMPLEN, CA, USA), RNA concentration was measured using a Qubit RNA
121 Assay Kit with a Qubit 2.0 Fluorimeter (Life Technologies, CA, USA), and RNA integrity was
122 assessed using an RNA Nano 6000 Assay Kit with a Bioanalyzer 2100 system (Agilent
123 Technologies, CA, USA).

124 Sequencing libraries were generated using an NEBNext Ultra RNA Library Prep Kit for
125 Illumina (NEB, CA, USA) and barcodes were added to attribute sequences to each sample.
126 Clustering of the barcoded samples was performed on a cBot Cluster Generation System using a
127 TruSeq PE Cluster Kit v3-cBot-HS (Illumina). After cluster generation, library preparations were
128 sequenced on an Illumina HiSeq 2500 platform and paired-end reads were generated.

129

130 **Assembly of sequencing data and gene annotation**

131 Raw data were firstly processed through in-house perl scripts, and clean data were obtained
132 by removing reads containing adapters or poly-N sequences, and reads of low quality. Q20, Q30
133 and GC values were calculated, and all downstream analyses were based on high-quality clean
134 data.

135 The reference genome of the large yellow croaker was downloaded from the National Center
136 of Genome Research website (<https://www.ncbi.nlm.nih.gov/genome/?term=JPYK-00000000>) (*Ao*
137 *et al.*, 2015), and data were mapped using TopHat (version 2.0.12) and Bowtie2 (*Trapnell et al.*,
138 2009; *Langmead et al.*, 2009). Unigenes were searched using BLASTX against the National
139 Center for Biotechnology Information (NCBI) non-redundant protein sequence (NR) database, the
140 NCBI non-redundant nucleotide sequence (NT) database, and Gene Ontology (GO), KEGG
141 Orthology (KO) and SwissProt databases with an E-value threshold of 10^{-5} .

142

143 **Identification of differentially expressed genes (DEGs) and functional analysis**

144 Differential expression analysis was performed using the DEGSeq R package (1.20.0) and
145 Reads per Kilobase Million Mapped Reads (RPKM) values (*Mortazavi et al.*, 2008). The resulting
146 *p*-values were adjusted using the Benjamini and Hochberg's approach for controlling the false
147 discovery rate. DEGs were selected with the criteria adjusted *p*-value < 0.05 and
148 $|\log_{2}\text{fold-change}| > 1$.

149 GO enrichment analysis of DEGs was implemented by the GOseq R package, and KEGG
150 enrichment was used to identify putative functions and pathways of DEGs
151 (<http://www.genome.jp/kegg/>).

152

153 **Real-time quantitative PCR (RT-qPCR) analysis**

154 Total RNA was reverse-transcribed into cDNA using a PrimeScript RT Reagent Kit (TaKaRa,
155 Dalian, China). Primers were designed using Primer 5.0 software (Table 1). β -actin served as an internal
156 normalisation control for RT-qPCR analysis, and reactions contained 2 μ l cDNA, 1 μ l forward and
157 reverse primers, 10 μ l SYBR Green I Master Mix (TaKaRa), and 6 μ l water. RT-qPCR was performed
158 on an Eppendorf PCR machine (Mastercycler ep Realplex, Hamburg, Germany) with one cycle at 95°C
159 for 2 min, followed by 40 cycles at 95°C for 15 s, 58°C for 15 s, and 72°C for 20 s. The relative
160 expression level was calculated using the $2^{-\Delta\Delta CT}$ method, and statistical analysis was performed using
161 independent sample t-tests (SPSS, version 16.0).

162

163 **Results**

164 **Selecting the optimal concentration of bile salts and assessing fish responses**

165 For bile salt stimulation treatments, SAS was diluted four different concentrations, added
166 slowly to water, and *L. crocea* responses were monitored (Fig. 1). For feeding responses, the fish
167 reacted most obviously to 0.30% SAS (17.67 ± 0.58 fish responded in 5 min). Meanwhile, for
168 movement responses, they exhibited optimal attraction responses to 0.30% SAS (64.33 ± 3.51 fish
169 responded in 5 min) and 0.40% (48.33 ± 3.51 fish responded in 5 min). Thus, we chose 0.30%
170 SAS for subsequent RNA-seq and RT-qPCR experiments.

171

172 **Results and analysis of transcriptome sequencing data**

173 cDNA libraries were constructed from control and SAS groups, resulting in 39,805,502 and
174 39,116,990 raw reads, and more than 81% raw reads were filtered to yield clean reads. In total,
175 25,684,902 and 25,830,011 clean reads were mapped to the reference genome of *L. crocea* for
176 control and SAS groups, respectively, and the Q30 value was >95% for libraries (Table 2).

177

178 **Identification and functional annotation of DEGs**

179 Transcriptome data from olfactory epithelium tissue of control and SAS groups were compared,
180 and 19,197 unigenes were annotated, of which 9938 DEGs met the criteria ($|\log_2\text{Foldchange}| > 1$
181 and $p < 0.05$). Of these, 9055 were up-regulated and 883 were down-regulated (Fig. 2). **Three**
182 **types of olfactory-related receptor genes were found to be differentially expressed in our data (all**
183 **up-regulated), comprising 59 ORs, two VRs and 17 TAARs.**

184 To investigate the functions of DEGs, 9245 unigenes (8424 up-regulated and 821 down-regulated)
185 were assessed in terms of the three main GO classifications, namely biological processes (BP), cellular
186 component (CC), and molecular function (MF; Fig. 3). According to the criteria (p -value < 0.001),
187 single-organism process (GO:0044699), intrinsic to membrane (GO:0031224) and
188 substrate-specific channel activity (GO:0022838) were highly represented, and potentially play an
189 important role in olfactory responses to bile salts.

190 To identify KEGG pathways between control and SAS groups, 3140 DEGs were mapped to
191 321 pathways, and 20 pathways were highly enriched according to q -value < 0.05 (Table 3).
192 Among these pathways, olfactory transduction (map04740) was mainly involved in olfactory
193 responses to bile salts. In this pathway, 73 differentially expressed olfactory-related genes were
194 enriched among eight categories including calmodulin (CALM, k02183), adenylate cyclase
195 3 (ADCY3, k08043), guanine nucleotide-binding protein G (olf) subunit alpha (GNAL, k04633),
196 calcium/calmodulin-dependent protein kinase (CaM kinase) II (CAMK2, k04515), olfactory
197 receptor (OLFR, k04257), cyclic nucleotide gated channel beta 1 (CNGB1, k04952), cyclic
198 nucleotide gated channel alpha 3 (CNGA3, k04950) and protein kinase A (PKA, k04345; Fig. 4).
199 Significantly differentially expressed olfactory-related genes in these categories were
200 subsequently analysed RT-qPCR (Table 4).

201 In the olfactory transduction pathway (Fig. 4), olfactory stimulation could be divided into odor
202 detection, and recovery **and adaptation**. During odor detection, odour-activated OLFR stimulates
203 G protein release protein GNAL, and ADCY3, which is positively regulated by GNAL, stimulates
204 cAMP release; cAMP is then transported out of the olfactory cell, and Na^+ and Ca^{2+} are exchanged
205 by CNGB1. This process is an example of signal production and amplification. During recovery
206 **and adaptation**, an increase in cAMP activates PKA, which phosphorylates OLFR; meanwhile,
207 CALM represses CNGB1 and activated CAMK2 to suppress ADCY3 by phosphorylation. This
208 process represents an example of signal suppression.

209

210 RT-qPCR analysis of eight categories related to olfactory transduction

211 The expression levels of nine DEGs related to the olfactory transduction pathway were validated by
212 RT-qPCR. These genes were all significantly expressed in the olfactory epithelium (* $p < 0.05$ and ** p
213 < 0.01), especially *CAMK2*, *ADCY3*, *OR 2D3* and *CNGB1*, confirming the reliability of the
214 transcriptome sequencing data (Fig. 5). Furthermore, *CNGB1 a* and *CNGB1 b* both belonging to
215 *CNGB1*, and *CNGB1 a* (up-regulated) displayed more significant differential expression than *CNGB1 b*
216 (down-regulated).

217

218 Discussion

219 Bile salts act as effective olfactory stimuli in fishes

220 Fish can display different olfactory responses to different levels of odours. Using
221 electroolfactograms (EOGs), many fish species have been shown to possess specific thresholds to
222 different levels of cholic acid (CA) (Meredith *et al.*, 2012; Døving *et al.*, 1980). In the present
223 study, we found that *L. crocea* acted differently to different concentrations of bile salts based on
224 behavioural analysis, and responded optimally to 0.3% SAS rather than to higher levels. We believe
225 that fishes have limited olfactory related receptors, which leads to limited olfactory ability,
226 explaining why they do not exhibit significantly more intense behaviour with increased levels of
227 odours. This— suggests that fishes may possess a maximum detection peak for concentrations of
228 certain stimuli, and a similar phenomenon has been observed in other studies (Zhao, 2007; Hu *et al.*,
229 2017).

230 The olfactory sensitivity of fishes can also be measured using EOGs. However, unlike EOG
231 analysis, our behavioural experiments revealed fish response to stimuli directly (approach and
232 avoidance). By imitating conditions in which fishes detect bile salts in natural environments, we
233 found that *L. crocea* performed feeding movements upon exposure to SAS, which suggests that
234 the fish had a particular preference toward it. Indeed, many studies have demonstrated that some
235 bile salts could be good phagostimulants for fish feed (Hu *et al.*, 2017; Rolen and Caprio, 2008;
236 Yamashita *et al.*, 2010), suggesting that they may act on both olfactory and taste pathways in fish,
237 and might be good attractants.

238

Commented [JR3]: Towards what? Concrete noun better.

239 **Analysis of olfactory related receptor genes in the odorant transduction cascade**

240 In *L. crocea*, OR genes have largest gene families in three receptor genes (Ao *et al.*, 2015;
241 Zhou *et al.*, 2011). In our current study, 59 OR genes were found to be all up-regulated after the
242 fish were stimulated, many more than two other two types of receptors, consistent with previous
243 studies (Saraiva and Korschning, 2007; Hashiguchi and Nishida, 2006; Hu *et al.*, 2017). Thus, ORs
244 appear to be the major receptors responding to bile salts in *L. crocea*. Fish produce and release bile
245 salts as sex pheromones to communicate with other individuals (Zhang *et al.*, 2001). However,
246 regarding pheromone receptors in the epithelium (Muramoto *et al.*, 2011), only two VR genes
247 were differentially expressed (up-regulated) in the present study. We speculate that the fish used in
248 our study might be juveniles, hence VRs were not sensitive to sex pheromones at this stage of the
249 life cycle. Moreover, 17 TAAR genes were found to be all up-regulated following stimulation by
250 SAS in our study. Interestingly, TAARs could only be activated by amines at trace level in a
251 previous study (Borowsky *et al.*, 2001), and SAS is not an amine, suggesting that the fish might
252 release some amines substances to communicate with each other in response to SAS. Our study
253 reveals that ORs might be the main bile salt receptors in the olfactory epithelium during different
254 developmental stages in fish species.

255

256 **Signal transduction and regulation components**

257 During signal transduction, ORs bind to their corresponding G proteins, among which G_{olf} is
258 one of most important subunits (Jones and Reed, 1989). In the present study, G_{olf} was released in
259 the olfactory transduction pathway after ORs were activated by SAS, and two G_{olf} genes were
260 up-regulated alongside high expression of ORs, which suggests that olfactory receptors bind to G
261 protein possessing the G_{olf} subunit. Some studies on olfactory sensory neurons also have
262 confirmed similar binding relationships of them (Jones and Reed, 1989; Ronnett and Moon, 2002).
263 However, only three G_{olf} genes were identified in *L. crocea*, indicating that they may be a small
264 gene family in this fish species.

265 In the present study, the G_{olf} subunits activated ADCY3, which led to a rise in cAMP levels
266 during olfactory transduction, which is of clear relevance to signal transduction (Jones and Reed,
267 1989; Dhallan *et al.*, 1990; Menco *et al.*, 1992). We also found that ADCY3 was enriched among
268 up-regulated genes in the pathway, which suggests that this factor could act positively on signal

Commented [JR4]: This doesn't make sense, can you please reward?

269 transduction, and play a key role in regulating transformation of the pathway via the cAMP levels.
270 Moreover, ADCY3 was the first factor in secondary signal transduction (Fig. 4), and some other
271 studies have reported that signal transduction can be disrupted if ADCY3 genes are mutated
272 (Brunet *et al.*, 1996; Hacker, 2000). Thus, our results indicate that ADCY3 is one of most
273 important factors mediating signal transduction between primary and secondary signal
274 transduction.

275 In odor detection of olfactory transduction, high cAMP levels produced by ADCY3 activated
276 CNGB1, leading to the entrance of Na^+ and Ca^{2+} into olfactory sensory cells. Other studies have
277 reported the similar results (Michalakis *et al.*, 2006; Kaupp and Seifert, 2002). Thus, we speculate
278 that an increase in these two ions by CNGB1 might appear to suppress the expression of
279 CNGA3, another same functional channel protein-encoding genes, due to competition effects. In
280 recovery and adaptation of the pathway, activated CALM resulting from increased Ca^{2+} regulated
281 by CAMK2 suppresses CNGB1, leading to a drop in cAMP level indirectly, consistent with
282 observations in previous studies (Cheung, 1980; Lynch and Barry, 1989; Menini *et al.*, 1995).
283 Thus, a series of interactions may cause Ca^{2+} levels to decline, reducing the intracellular and
284 extracellular charge difference. In addition, CNGB1a was expressed at higher levels than CNGB1b
285 based on RT-qPCR, which indicates that signal transduction in fish might transform odor detection
286 into recovery and adaptation. These findings reveal that CNGB1a and CNGB1b may be involved
287 in signal production and decline in the pathway, respectively.

288 PKA can help ORs to bind to G proteins (Daaka *et al.*, 1997; Zamah *et al.*, 2002) in a
289 mechanism mediated by cAMP (Chang *et al.*, 2006), and our results showed that PKA
290 (up-regulated) was enriched during the recovery and adaptation aspect of olfactory transduction.
291 Thus, PKA might suppress the initial signal level by hindering the separation between receptor
292 and G protein by phosphorylation. Combined with the results of a previous study (Taiwo *et al.*,
293 1989), our findings indicate that the inhibitory action of PKA may be activated through a change
294 in cAMP concentration due to binding between ORs and G proteins, and indirectly by suppression
295 of ADCY3. These factors might alter the electric charge in olfactory sensory cells by mediating
296 the ion concentration, which might lead to changes in electric signalling between olfactory
297 receptor cells and olfactory sensory neurons, consistent with some previous reports (Menini *et al.*,
298 1995; Lynch and Barry, 1989). Our results therefore indicate that odor detection in fish may occur

299 out rapidly, or a long time after, stimulation by bile salts, and recovery and adaptation may occur
300 once fish become familiar to this stimulation.

Commented [JR5]: Do you mean “quite” here?

301

302 Conclusion

303 In the present study, *L. crocea* displayed a significant behavioural preference for 0.3% SAS,
304 which could be a good attractant in fishes. We performed transcriptome sequencing of olfactory
305 epithelium tissue to identify olfactory-related genes involved in the olfactory transduction pathway,
306 and eight categories were found to be highly enriched with DEGs in related DEGs, especially
307 *CAMK2*, *ADCY3*, *OR 2D3* and *CNGB1*. The pathway could be divided into two processes: odor
308 detection, and recovery and adaptation, and involving involves DEGs such as *CAMK2*, *CALM*,
309 *CNGB1* and *PKA* that may regulate conversion between the two processes. Our results provide new
310 insight into the effects of bile salt stimulation on olfactory molecular mechanisms in fishes, and
311 expand our knowledge of olfactory transduction and signal production and decline.

312

313 Acknowledgements

314 We thank Shunshun Tao of the Xiangshan harbor Harbor aquaculture Aquaculture and larva
315 Larva limited Limited company Company and Dr. Bao of Wanli ecollege College of zhejing Zhejing.

316 In addition, we thank Kanehisa Laboratories for

Commented [JR6]: Comma needed here unless all of these are involved in regulation.

317

318 References

319 Ao, J., Mu, Y., Xiang, L., Fan, D., Feng, M., Zhang, S., Shi, Q., Zhu, L., Li, T., and Ding, Y.
320 (2015). Genome Sequencing of the Perciform Fish Larimichthys crocea Provides Insights
321 into Molecular and Genetic Mechanisms of Stress Adaptation. Plos genetics 11, 8-8. DOI:
322 10.1371/journal.pgen.1005118
323 Alam, M. S., Teshima, S., Ishikawa, M., and Koshio, S. (2015). Effects of ursodeoxycholic acid
324 on growth and digestive enzyme activities of Japanese flounder *Paralichthys olivaceus*
325 (Temminck & Schlegel). *Aquaculture Research* 32, 235-243. DOI:
326 10.1046/j.1355-557x.2001.00020.x

Commented [JR7]: ?

Commented [JR8]: Reference formatting inconsistent, and species names missing italics etc. While our editorial services can edit small things, please ensure this section is completely redone and edited before any resubmission.

327 BIRD, D. J., MURPHY, W. J., FOXROSALES, L., HAMID, I., EAGLE, R. A. & VAN, B. V.
328 2018. Olfaction written in bone: cribriform plate size parallels olfactory receptor gene
329 repertoires in Mammalia. *Proceedings of the Royal Society B Biological Sciences*, 285,
330 20180100. DOI: 10.1098/rspb.2018.0100

331 Brunet, L. J., Gold, G. H., and Ngai, J. (1996). General Anosmia Caused by a Targeted Disruption
332 of the Mouse Olfactory Cyclic Nucleotide–Gated Cation Channel. *Neuron* 17, 681–693. DOI:
333 10.1016/S0896-6273(00)80200-7

334 Borowsky, B., Adham, N., Jones, K. A., Raddatz, R., Artymyshyn, R., Ogozalek, K. L., Pathirana,
335 S. (2001). Trace amines: identification of a family of mammalian G protein-coupled
336 receptors. *Proceedings of the National Academy of Sciences of the United States of America*,
337 98(16), 8966–8971. doi: 10.1073/pnas.151105198

338 Buck, L., and Axel, R. (1991). A novel multigene family may encode odorant receptors: a
339 molecular basis for odor recognition. *Cell* 65, 175–187.
340 DOI: 10.1016/0092-8674(91)90418-X

341 Chang, L. Y., Yu-Ming, X. U., and Zhang, S. M. (2006). cAMP-PKA signal pathway mediates the
342 promotive effect of NGF on axon regeneration in cerebral ischemia-reperfusion rats. *Chinese
343 Journal of Geriatric Heart Brain & Vessel Diseases*.

344 Cheung, W. Y. (1980). Calmodulin plays a pivotal role in cellular regulation. *Science* 207, 19–27.
345 DOI: 10.1126/science.6243188

346 CUI, R., DELCLOS, P. J., SCHUMER, M. & ROSENTHAL, G. G. 2017. Early social learning
347 triggers neurogenomic expression changes in a swordtail fish. *Proceedings of the Royal
348 Society B Biological Sciences*. DOI: 10.1098/rspb.2017.0701

349 Døving, K. B., Selset, R., and Thommesen, G. (1980). Olfactory sensitivity to bile acids in
350 salmonid fishes. *Acta Physiologica Scandinavica* 108, 123–131.
351 DOI: 10.1111/j.1748-1716.1980.tb06509.x

352 Daaka, Y., Luttrell, L. M., and Lefkowitz, R. J. (1997). Switching of the coupling of the
353 beta2-adrenergic receptor to different G proteins by protein kinase A. *Nature* 390, 88–91. DOI:
354 10.1038/36362

355 Deshimaru, O., Kuroki, K., and Yone, Y. (1982). Suitable levels of lipids and ursodesoxycholic
356 acid in diet for yellowtail [Fish]. *Bulletin of the Japanese Society of Scientific Fisheries*. DOI:
357 10.2331/suisan.48.1265

358 Dhallan, R. S., Yau, K. W., Schrader, K. A., and Reed, R. R. (1990). Primary structure and
359 functional expression of a cyclic nucleotide-activated channel from olfactory neurons. *Nature*
360 347, 184-7. DOI: 10.1038/347184a0

361 Eisthen, H. L. (2004). The goldfish knows: olfactory receptor cell morphology predicts receptor
362 gene expression. *Journal of Comparative Neurology* 477, 341–346. DOI: 10.1002/cne.20258

363 **FATSINI, E., BAUTISTA, R., MANCHADO, M. & DUNCAN, N. J. 2016. Transcriptomic**
364 **profiles of the upper olfactory rosette in cultured and wild Senegalese sole (Solea**
365 **senegalensis) males. Comp Biochem Physiol Part D Genomics Proteomics, 20, 125-135.**
366 **DOI: 10.1016/j.cbd.2016.09.001**

367 Freitag, J., Krieger, J., Strotmann, J., and Breer, H. (1995). Two classes of olfactory receptors in
368 *xenopus laevis*. *Neuron* 15, 1383-92. DOI: 10.1016/0896-6273(95)90016-0

369 Freitag, J., Ludwig, G., Andreini, I., Rössler, P., and Breer, H. (1998). Olfactory receptors in
370 aquatic and terrestrial vertebrates. *Journal of Comparative Physiology A* 183, 635-650.
371 DOI: 10.1007/s003590050287

372 **FUENTES, J., RIBEIRO, L. & ARAG O, C. 2018. Bile salts regulate ion transport in the intestine**
373 **of Senegalese sole. Aquaculture, 495, 842-848. DOI: 10.1016/j.aquaculture.2018.06.050**

374 **GON ALVES, I., HUBBARD, P. C., TOM S, J., QUINTELA, T., TAVARES, G., CARIA, S.,**
375 **BARREIROS, D. & SANTOS, C. R. 2016a. 'Smelling' the cerebrospinal fluid: olfactory**
376 **signaling molecules are expressed in and mediate chemosensory signaling from the choroid**
377 **plexus. The FEBS journal, 283, 1748-1766. DOI: 10.1111/febs.13700**

378 Hacker, B. (2000). Disruption of the type III adenylyl cyclase gene leads to peripheral and
379 behavioral anosmia in transgenic mice. *Neuron* 27, 487-97.
380 DOI: 10.1016/S0896-6273(00)00060-X

381 Hansen, A., Anderson, K. T., and Finger, T. E. (2004). Differential distribution of olfactory
382 receptor neurons in goldfish: structural and molecular correlates. *Journal of Comparative*
383 *Neurology* 477, 347. DOI: 10.1002/cne.20202

384 Hashiguchi, Y., and Nishida, M. (2006). Evolution and origin of vomeronasal-type odorant
385 receptor gene repertoire in fishes. *BMC Evolutionary Biology* 6, 1-13.
386 DOI: 10.1186/1471-2148-6-76

387 Haslewood, G. A. (1967). Bile salt evolution. *Journal of Lipid Research* 8, 535-550.

388 Hofmann, A. F., Hagey, L. R., and Krasowski, M. D. (2010). Bile salts of vertebrates: structural
389 variation and possible evolutionary significance. *Journal of Lipid Research* 51, 226-46.
390 DOI: 10.1194/jlr.R000042

391 Hoover, K. C. (2013). "Evolution of Olfactory Receptors," *Humana Press*. DOI:
392 10.1007/978-1-62703-377-0_18

393 HU, J., WANG, Y., LE, Q., NA, Y., CAO, X., ZHENG, H., KUANG, S., MAN, Z., ZHENG, J. &
394 WU, X. (2017). Transcriptomic analysis reveals olfactory-related genes expression in
395 large yellow croaker (*Larimichthys crocea*) regulated by taurine: May be a good
396 phagostimulant for all-plant protein diets. *Aquaculture Research*, 49. DOI:
397 10.1111/are.13559

398 Jones, D. T., and Reed, R. R. (1989). Golf: an olfactory neuron specific-G protein involved in
399 odorant signal transduction. *Science* 244, 790-795. DOI: 10.1126/science.2499043

400 Kapiloff, M. S., Mathis, J. M., Nelson, C. A., Lin, C. R., and Rosenfeld, M. G. (1991).
401 Calcium/calmodulin-dependent protein kinase mediates a pathway for transcriptional
402 regulation. *Proceedings of the National Academy of Sciences of the United States of America*
403 88, 3710-4.

404 KAUPP, U. B. 2010. Olfactory signalling in vertebrates and insects: differences and
405 commonalities. *Nature Reviews Neuroscience*, 11, 188-200.

406 Kaupp, U. B., and Seifert, R. (2002). Cyclic nucleotide-gated ion channels. *Physiological Reviews*
407 82, 769. DOI: 10.1152/physrev.00008.2002

408 Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-efficient
409 alignment of short DNA sequences to the human genome. *Genome Biology* 10, 1-10.

410 Lynch, J. W., and Barry, P. H. (1989). Action potentials initiated by single channels opening in a small
411 neuron (rat olfactory receptor). *Biophysical Journal* 55, 755-768. DOI:
412 10.1016/S0006-3495(89)82874-7

413 Menco, B. P. M., Bruch, R. C., Dau, B., Danho, and Waleed (1992). Ultrastructural localization of
414 olfactory transduction components: the G protein subunit G_α and type III adenylyl cyclase.
415 *Neuron* 8, 441. DOI: 10.1016/0896-6273(92)90272-F

416 Meredith, T. L., Caprio, J., and Kajiura, S. M. (2012). Sensitivity and specificity of the olfactory
417 epithelia of two elasmobranch species to bile salts. *Journal of Experimental Biology* 215,
418 2660-2667. DOI: 10.1242/jeb.066241

419 Menini, A., Picco, C., and Firestein, S. (1995). Quantal-like current fluctuations induced by
420 odorants in olfactory receptor cells. *Nature* 373, 435-437. DOI: 10.1038/373435a0

421 Michalakis, S., Reisert, J., Geiger, H., Wetzel, C., Zong, X., Bradley, J., Spehr, M., Hüttl, S., Gerstner,
422 A., and Pfeifer, A. (2006). Loss of CNGB1 Protein Leads to Olfactory Dysfunction and Subiliary
423 Cyclic Nucleotide-gated Channel Trapping. *The Journal of biological chemistry* 281, 35156. DOI:
424 10.1074/jbc.M606409200

425 Mortazavi, A., Williams, B. A., Mccue, K., Schaeffer, L., and Wold, B. (2008). Mapping and
426 quantifying mammalian transcriptomes by RNA-Seq. *Nature Methods* 5, 621-628.
427 DOI: 10.1038/nmeth.1226

428 Muramoto, K., Hagino-Yamagishi, K., Tonosaki, K., and Kaba, H. (2011). Accessory olfactory
429 bulb neurons are required for maintenance but not induction of V2R vomeronasal receptor
430 gene expression in vitro. *Neuroscience Letters* 500, 6-9. DOI: 10.1016/j.neulet.2011.05.232

431 Niimura, Y., and Nei, M. (2005). Evolutionary dynamics of olfactory receptor genes in fishes and
432 tetrapods. *Proceedings of the National Academy of Sciences* 102, 6039-44.
433 DOI: 10.1073/pnas.0501922102

434 ROLEN, S. H. & CAPRIO, J., . 2008. Bile salts are effective taste stimuli in channel catfish.
435 *Journal of Experimental Biology*, 211, 2786-91. DOI: 10.1242/jeb.018648

436 Ronnett, G. V., and Moon, C. (2002). G proteins and olfactory signal transduction. *Annual Review
437 of Physiology* 64, 189-222. DOI: 10.1146/annurev.physiol.64.082701.102219

438 Saraiva, L. R., and Korschning, S. I. (2007). A novel olfactory receptor gene family in teleost fish.
439 *Genome Research* 17, 1448-57. DOI: 10.1101/gr.6553207

440 Schild, D., and Restrepo, D. (1998). Transduction mechanisms in vertebrate olfactory receptor
441 cells. *Physiological Reviews* 78, 429-466. DOI: 10.1152/physrev.1998.78.2.429

442 Taiwo, Y. O., Bjerknes, L. K., Goetzl, E. J., and Levine, J. D. (1989). Mediation of primary
443 afferent peripheral hyperalgesia by the cAMP second messenger system. *Neuroscience* 32,
444 577-80. DOI: 10.1016/0306-4522(89)90280-7

445 Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice junctions with
446 RNA-Seq. *Bioinformatics* 25, 1105-11. DOI: 10.1093/bioinformatics/btp120

447 Trauner, M., and Boyer, J. L. (2003). Bile salt transporters: molecular characterization, function,
448 and regulation. *Physiological Reviews* 83, 633-71. DOI: 10.1152/physrev.00027.2002

449 Wissinger, B., , Gamer, D., , JaGle, H., , Giorda, R., , Marx, T., , Mayer, S., , Tippmann, S., ,
450 Broghammer, M., , Jurklies, B., , and Rosenberg, T., . (2001). CNGA3 mutations in
451 hereditary cone photoreceptor disorders. *American Journal of Human Genetics* 69, 722-37.
452 DOI: 10.1086/323613

453 YABUKI, Y., KOIDE, T., MIYASAKA, N., WAKISAKA, N., MASUDA, M., OHKURA, M.,
454 NAKAI, J., TSUGE, K., TSUCHIYA, S. & SUGIMOTO, Y. 2016. Olfactory receptor for
455 prostaglandin F2[alpha] mediates male fish courtship behavior. *Nature Neuroscience*, 19,
456 897. DOI: 10.1038/nn.4314

457 YAMASHITA, S., YAMADA, T. & HARA, T. J. 2010. Gustatory responses to feeding- and
458 non-feeding-stimulant chemicals, with an emphasis on amino acids, in rainbow trout.
459 *Journal of Fish Biology*, 68, 783-800. DOI: 10.1111/j.0022-1112.2006.00965.x

460 Zamah, A. M., Delahunty, M., Luttrell, L. M., and Lefkowitz, R. J. (2002). Protein kinase
461 A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs
462 and Gi. Demonstration in a reconstituted system. *Journal of Biological Chemistry* 277,
463 31249-31256. DOI: 10.1074/jbc.M202753200

464 Zhang, C., Brown, S. B., and Hara, T. J. (2001). Biochemical and physiological evidence that bile
465 acids produced and released by lake char (*Salvelinus namaycush*) function as chemical
466 signals. *Journal of Comparative Physiology B* 171, 161. DOI: 10.1007/s003600000170

467 Zhao, H. Y. (2007). Studies on feeding stimulants for gibel carp(*Carassius auratus gibelio*). This is
468 for Doctor of Science.Institute of Hydrobiology,Chinese Academy of Sciences,Wuhan.

469 Zhou, Y., Yan, X., Xu, S., Zhu, P., He, X., and Liu, J. (2011). Family structure and phylogenetic
470 analysis of odorant receptor genes in the large yellow croaker (*Larimichthys crocea*). *BMC*
471 *Evolutionary Biology* 11, 2546-2552. DOI: 10.1186/1471-2148-11-237

472 ZHU, G., WANG, L., TANG, W., WANG, X. & WANG, C. 2017. Identification of olfactory
473 receptor genes in the Japanese grenadier anchovy *Coilia nasus*. *Genes & Genomics*, 39,
474 521-532. DOI: 10.1007/s13258-017-0517-8