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Abstract

Fish produce and release bile salts as chemical signalling substances that act as sensitive
olfactory stimuli. To investigate how bile salts affect olfactory signal transduction in large yellow
croaker (Larimichthy crocea), deep sequencing of olfactory epithelium was conducted to analyse
olfactory-related genes in olfactory transduction. Sodium cholates (SAS) have a-typical bile salt
chemical structures, hence we used four different concentrations of SAS to stimulate L. crocea,
and the fish displayed a significant behavioural preference for b.30%. We then sequenced
olfactory epithelium tissue, and identified 9938 unigenes that were significantly differentially
expressed between SAS-stimulated and control groups, including 9055 up-regulated and 883
down-regulated unigenes. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses found eight categories linked to olfactory transduction pathways
that were highly enriched with some differentially expressed genes (DEGs), including Olfactory
receptor (OR), Adenylate cyclase type 3 (4DCY3) and Calmodulin (CALM). Genes in these
categories was-were analysed by RT-qPCR, which revealed aspects of the pathway transformation
between odor detection, and recovery and adaptation. The results provide new insight into the
effects of bile salt stimulation in olfactory molecular mechanisms in fishes, and expands our

knowledge of olfactory transduction, and signal generation and decline.

Introduction

Bile salts are highly structurally variable in vertebrates, and can be classified into three types;
C (27) bile alcohols, C (27) bile acids, and C (24) bile acids, with default hydroxylation at C-3 and
C-7 (Hofmann et al., 2010). They are biliary constituents derived from cholesterol that are
synthesised in the liver and stored in the gall bladder (Haslewood, 1967). Regulated by different
transport proteins, these salts are released into the intestinal lumen through enterohepatic
circulation (Trauner and Boyer, 2003). Because bile salts can help intestines to digest and absorb
dietary lipids and fat-soluble vitamins (Haslewood, 1967; Fuentes et al., 2018), they are included
in the diet of fishes to improve growth and digestive enzyme activities (Deshimaru et al., 1982;
Alam et al., 2015). Moreover, many studies on behaviour and physiology have reported that bile

salts are important chemical signalling substances as well as effective olfactory stimuli in fishes,
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which have distinct sensitivity to different components (Zhang et al., 2001; Doving et al., 1980),
but molecular studies are-have been limited.

During olfactory activity, odourant molecules released into the environment bind to olfactory
related receptors (Kaupp, 2010). To date, three types of receptor genes have been identified in
fishes, namely olfactory receptors (ORs) (Freitag et al., 1998), vomeronasal receptors (VRs)
(Freitag et al., 1995), and trace amine-associated receptors (TAARSs) (Eisthen, 2004). Among
them, OR genes play an essential role in many odor detecting activities (Hu et al., 2017; Yabuki et
al., 2016; Bird et al., 2018). ORs encoding &G protein-coupled receptors expressed in ciliated
sensory neurons were previously identified in Rattus norvegicus (Buck and Axel, 1991). According
to function, hhey ]can be divided into two classes; class I (o, B, v, 6, € and {) and class II (n, 6, x and
A) (Niimura and Nei, 2005; Hoover, 2013). In fishes, OR genes mainly belong to class I, which are
believed to recognize water-soluble odours (Freitag et al., 1998; Zhou et al., 2011). ORs are
member of a multigene family of G protein-coupled receptors and seven transmembrane domain
proteins (Buck and Axel, 1991), and Gqorr, one subunit of the G protein-coupled to OR, activates
adenylyl cyclase in olfactory sensory cells (Hansen et al., 2004; Schild and Restrepo, 1998;
Gongalves et al., 2016). Olfactory signals are eventually transmitted to the brain via regulation of
distinct factors in olfactory transduction (Meredith et al., 2012).

Many recent studies have focused on the identification and expression of olfactory related
receptor genes in fishes (Zhu et al., 2017; Fatsini et al., 2016; Cui et al., 2017). In the present
study, to increase our knowledge of gene expression in the whole olfactory transduction system in
fishes following stimulation by bile salts, we identified the optimal concentration for stimulation
in L. crocea—firstly, and performed deep sequencing of olfactory epithelium tissue using an
Illumina HiSeq 2500 platform. Subsequent GO and KEGG pathway analyses identified

significantly differentially expressed genes (DEGs) enriched in eight categories related to

olfactory transduction, and gene expression levels were confirmed for selected genes by RT-qPCR.

The results indicate that bile salts have attractant effects on L. crocea. The findings provide new
insight into effects of bile salt stimulation on olfactory molecular mechanisms in fishes, and

expand our knowledge of olfactory transduction and olfactory signalling.
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Methodology
Fish and bile salt stimulation treatments

The large yellow croakers (mean weight = 20 + 1.2 g) used in the study were commercially
reared at 25-27°C in Xiangshan Bay, Zhejiang, China. All fish experiments were conducted in
accordance with the recommendations in the National Institutes of Health Guide for the Care and
Use of Laboratory Animals. The Animal Care and Use Committee of Ningbo University approved
the protocols.

Sodium cholates (SAS) with typical bile salt chemical structures were chosen for stimulation
treatments (Haslewood, 1967). Four different concentrations of SAS diluted in distilled water
(0.20%, 0.30%, 0.40% and 0.50%) were applied to SAS groups, while the control group (Control)
was treated with by distilled water alone. SAS was released into cultured water slowly using an air
stone tube (submerged in the center of the pond) equipped with a 20 mL syringe (100 individuals
per group, three independent biological replications). The behavioural responses of the-each fish
were classified as two types: biting the air stone (a positive feeding response), and swimming
close to the air stone without biting (a positive movement response). We replaced the tested fish
with another new fish for subsequent replications at all concentrations. Culture water was changed
after every test, and each test was performed at 24 h intervals. Behaviours were recorded with a
camera for 5 min, and the number of each type of response was recorded and analysed statistically
by one-way analysis of variance (ANOVA) and Tukey’s multiple comparison tests (SPSS, version
16.0).

The concentration that produced the highest number of behavioural responses was used for
subsequent stimulation experiments, which were performed as described as above. After
stimulation, we captured control group fish, and fish from SAS groups exhibiting significantly
positive feeding responses, and immediately extracted olfactory epithelium tissues by cutting the
nostrils. Olfactory epithelium tissues from 15 randomly selected fish were extracted and pooled
into three 1.5 mL RNAase-free tubes (three independent biological replicates for each group) and

stored in liquid nitrogen for RNA-seq and RT-qPCR experiments.

RNA isolation, library construction and Illumina sequencing
Total RNAs were extracted using TRIzol reagent (Invitrogen, CA, USA). RNA was

4
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monitored on 1% agarose gels, RNA purity was checked using a NanoPhotometer
spectrophotometer (IMPLEN, CA, USA), RNA concentration was measured using a Qubit RNA
Assay Kit with a Qubit 2.0 Fluorimeter (Life Technologies, CA, USA), and RNA integrity was
assessed using an RNA Nano 6000 Assay Kit with a Bioanalyzer 2100 system (Agilent
Technologies, CA, USA).

Sequencing libraries were generated using an NEBNext Ultra RNA Library Prep Kit for
Illumina (NEB, CA, USA) and barcodes were added to attribute sequences to each sample.
Clustering of the barcoded samples was performed on a cBot Cluster Generation System using a
TruSeq PE Cluster Kit v3-cBot-HS (Illumina). After cluster generation, library preparations were

sequenced on an Illumina HiSeq 2500 platform and paired-end reads were generated.

Assembly of sequencing data and gene annotation

Raw data were firstly processed through in-house perl scripts, and clean data were obtained
by removing reads containing adapters or poly-N sequences, and reads of low quality. Q20, Q30
and GC values were calculated, and all downstream analyses were based on high-quality clean
data.

The reference genome of the large yellow croaker was downloaded from the National Center
of Genome Research website (https://www.ncbi.nlm.nih.gov/genome/?term=JPYK-00000000) (4o
et al., 2015), and data were mapped using TopHat (version 2.0.12) and Bowtie2 (Trapnell et al.,
2009; Langmead et al., 2009). Unigenes were searched using BLASTX against the National
Center for Biotechnology Information (NCBI) non-redundant protein sequence (NR) database, the
NCBI non-redundant nucleotide sequence (NT) database, and Gene Ontology (GO), KEGG

Orthology (KO) and SwissProt databases with an E-value threshold of 107,

Identification of differentially expressed genes (DEGs) and functional analysis

Differential expression analysis was performed using the DEGSeq R package (1.20.0) and
Reads per Kilobase Millon Mapped Reads (RPKM) values (Mortazavi et al., 2008). The resulting
p-values were adjusted using the Benjamini and Hochberg's approach for controlling the false
discovery rate. DEGs were selected with the criteria adjusted p-value < 0.05 and

[log2fold-change| >1.
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GO enrichment analysis of DEGs was implemented by the GOseq R package, and KEGG
enrichment was used to identify putative functions and pathways of DEGs

(http://www.genome.jp/kegg/).

Real-time quantitative PCR (RT-qPCR) analysis

Total RNA was reverse-transcribed into cDNA using a PrimeScript RT Reagent Kit (TaKaRa,
Dalian, China). Primers were designed using Primer 5.0 software (Table 1). B-actin served as an internal
normalisation control for RT-gPCR analysis, and reactions contained 2 pl cDNA, 1 pl forward and
reverse primers, 10 pl SYBR Green | Master Mix (TaKaRa), and 6 pl water. RT-gPCR was performed
on an Eppendorf PCR machine (Mastercycler ep Realplex, Hamburg, Germany) with one cycle at 95°C
for 2 min, followed by 40 cycles at 95°C for 15 s, 58°C for 15 s, and 72°C for 20 s. The relative
expression level was calculated using the 2724CT method, and statistical analysis was performed using

independent sample t-tests (SPSS, version 16.0).

Results
Selecting the optimal concentration of bile salts and assessing fish responses

For bile salt stimulation treatments, SAS was diluted four different concentrations, added
slowly to water, and L. crocea responses were monitored (Fig. 1). For feeding responses, the fish
reacted most obviously to 0.30% SAS (17.67 + 0.58 fish responded in 5 min). Meanwhile, for
movement responses, they exhibited optimal attraction responses to 0.30% SAS (64.33 + 3.51 fish
responded in 5 min) and 0.40% (48.33 + 3.51 fish responded in 5 min). Thus, we chose 0.30%

SAS for subsequent RNA-seq and RT-qPCR experiments.

Results and analysis of transcriptome sequencing data

cDNA libraries were constructed from control and SAS groups, resulting in 39,805,502 and
39,116,990 raw reads, and more than 81% raw reads were filtered to yield clean reads. In total,
25,684,902 and 25,830,011 clean reads were mapped to the reference genome of L. crocea for

control and SAS groups, respectively, and the Q30 value was >95% for libraries (Table 2).

Identification and functional annotation of DEGs
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Transcriptome data from olfactory epithelium tissue of control and SAS groups were compared,
and 19,197 unigenes were annotated, of which 9938 DEGs met the criteria (|log2Foldchange| >1
and p < 0.05). Of these, 9055 were up-regulated and 883 were down-regulated (Fig. 2). Three
types of olfactory-related receptor genes were found to be differentially expressed in our data (all
up-regulated), comprising 59 ORs, two VRs and 17 TAARs.

To investigate the functions of DEGs, 9245 unigenes (8424 up-regulated and 821 down-regulated)
were assessed in terms of the three main GO classifications, namely biological processes (BP), cellular
component (CC), and molecular function (MF; Fig. 3). According to the criteria (p-value < 0.001),
single-organism  process (GO:0044699), intrinsic to membrane (G0:0031224) and
substrate-specific channel activity (GO:0022838) were highly represented, and potentially play an
important role in olfactory responses to bile salts.

To identify KEGG pathways between control and SAS groups, 3140 DEGs were mapped to
321 pathways, and 20 pathways were highly enriched according to g-value <0.05 (Table 3).
Among these pathways, olfactory transduction (map04740) was mainly involved in olfactory
responses to bile salts. In this pathway, 73 differentially expressed olfactory-related genes were
enriched among eight categories including calmodulin (CALM, k02183), adenylate cyclase
3 (ADCY3, k08043), guanine nucleotide-binding protein G (olf) subunit alpha (GNAL, k04633),
calcium/calmodulin-dependent protein kinase (CaM kinase) II (CAMK2, k04515), olfactory
receptor (OLFR, k04257), cyclic nucleotide gated channel beta 1 (CNGBI, k04952), cyclic
nucleotide gated channel alpha 3 (CNGA3, k04950) and protein kinase A (PKA, k04345; Fig. 4).
Significantly differentially expressed olfactory-related genes in these categories were
subsequently analysed RT-qPCR (Table 4).

In the olfactory transduction pathway (Fig. 4), olfactory stimulation could be divided into odor
detection, and recovery and adaptation. During odor detection, odour-activated OLFR stimulates
G protein release protein GNAL, and ADCY 3, which is positively regulated by GNAL, stimulates
CAMP release; cAMP is then transported out of the olfactory cell, and Na* and Ca?" are exchanged
by CNGBI. This process is an example of signal production and amplification. During recovery
and adaptation, an increase in cAMP activates PKA, which phosphorylates OLFR; meanwhile,
CALM represses CNGBI and activated CAMK2 to suppress ADCY3 by phosphorylation. This

process represents an example of signal suppression.
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RT-qPCR analysis of eight categories related to olfactory transduction

The expression levels of nine DEGs related to the olfactory transduction pathway were validated by
RT-gPCR. These genes were all significantly expressed in the olfactory epithelium (* p <0.05 and ** p
<0.01), especially CAMK2, ADCY3, OR 2D3 and CNGBL, confirming the reliability of the
transcriptome sequencing data (Fig. 5). Furthermore, CNGB1 a and CNGBL1 b both belonging to
CNGB1, and CNGBL1 a (up-regulated) displayed more significant differential expression than CNGB1 b

(down-regulated).

Discussion
Bile salts act as effective olfactory stimuli in fishes

Fish can display different olfactory responses to different levels of odours. Using
electroolfactograms (EOGs), many fish species have been shown to possess specific thresholds to
different levels of cholic acid (CA) (Meredith et al., 2012; Doving et al., 1980). In the present
study, we found that L. crocea acted differently to different concentrations of bile salts based on
behavioural analysis, and responded optimally to 0.3% SAS rather than to higher levels. We believe
that fishes have limited olfactory related receptors, which leads to limited olfactory ability,
explaining why they do not exhibit significantly more intense behaviour with increased levels of
odours. This— suggests that fishes may possess a maximum detection peak for concentrations of
certain stimuli, and a similar phenomenon has been observed in other studies (Zhao, 2007; Hu et al.,
2017).

The olfactory sensitivity of fishes can also be measured using EOGs. However, unlike EOG
analysis, our behavioural experiments revealed fish response to stimuli directly (approach and
avoidance). By imitating conditions in which fishes detect bile salts in natural environments, we
found that L. crocea performed feeding movements upon exposure to SAS, which suggests that
the fish had a particular preference toward fit. Indeed, many studies have demonstrated that some
bile salts could be good phagostimulants for fish feed (Hu et al., 2017; Rolen and Caprio, 2008,
Yamashita et al., 2010), suggesting that they may act on both olfactory and taste pathways in fish,

and might be good attractants.
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Analysis of olfactory related receptor genes in the odorant transduction cascade
In L. crocea, bR genes have largest gene families in three receptor genes \(Ao et al, 2015;
Zhou et al., 2011). In our current study, 59 OR genes were found to be all up-regulated after the
fish were stimulated, many more than two other two types of receptors, consistent with previous
studies (Saraiva and Korsching, 2007; Hashiguchi and Nishida, 2006; Hu et al., 2017). Thus, ORs
appear to be the major receptors responding to bile salts in L. crocea. Fish produce and release bile
salts as sex pheromones to communicate with other individuals (Zhang et al., 2001). However,
regarding pheromone receptors in the epithelium (Muramoto et al., 2011), only two VR genes
were differentially expressed (up-regulated) in the present study. We speculate that the fish used in
our study might be juveniles, hence VRs were not sensitive to sex pheromones at this stage of the
life cycle. Moreover, 17 TAAR genes were found to be all up-regulated following stimulation by
SAS in our study. Interestingly, TAARs could only be activated by amines at trace level in a
previous study (Borowsky et al., 2001), and SAS is not an amine, suggesting that the fish might
release some amines substances to communicate with each other in response to SAS. Our study
reveals that ORs might be the main bile salt receptors in the olfactory epithelium during different

developmental stages in fish species.

Signal transduction and regulation components

During signal transduction, ORs bind to their corresponding G proteins, among which Ga is
one of most important subunits (Jones and Reed, 1989). In the present study, Geoir Was released in
the olfactory transduction pathway after ORs were activated by SAS, and two Golf genes were
up-regulated alongside high expression of ORs, which suggests that olfactory receptors bind to G
protein possessing the Ggolr subunit. Some studies on olfactory sensory neurons also have
confirmed similar binding relationships of them (Jones and Reed, 1989; Ronnett and Moon, 2002).
However, only three Gqoir genes were identified in L. crocea, indicating that they may be a small
gene family in this fish species.

In the present study, the Gqoir subunits activated ADCY3, which led to a rise in cAMP levels
during olfactory transduction, which is of clear relevance to signal transduction (Jones and Reed,
1989; Dhallan et al., 1990; Menco et al., 1992). We also found that ADCY3 was enriched among
up-regulated genes in the pathway, which suggests that this factor could act positively on signal

9
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transduction, and play a key role in regulating transformation of the pathway via the cAMP levels.
Moreover, ADCY3 was the first factor in secondary signal transduction (Fig. 4), and some other
studies have reported that signal transduction can be disrupted if ADCY3 genes are mutated
(Brunet et al., 1996; Hacker, 2000). Thus, our results indicate that ADCY3 is one of most
important factors mediating signal transduction between primary and secondary signal
transduction.

In odor detection of olfactory transduction, high cAMP levels produced by ADCY3 activated
CNGBI, leading to the entrance of Na* and Ca?"into olfactory sensory cells. Other studies have
reported the-similar results (Michalakis et al., 2006; Kaupp and Seifert, 2002). Thus, we speculate
that an increase in these two ions by CNGB1 might appeared to suppress the expression of
CNGA3, another same functional channel protein-encoding genes, due to competition effects. In
recovery and adaptation of the pathway, activated CALM resulting from increased Ca*" regulated
by CAMK2 suppresses CNGBI, leading to a drop in cAMP level indirectly, consistent with
observations in previous studies (Cheung, 1980; Lynch and Barry, 1989; Menini et al., 1995).
Thus, a series of interactions may cause Ca’" levels to decline, reducing the intracellular and
extracellular charge difference. In addition, CNGBIa was expressed at higher levels than CNGB1b
based on RT-qPCR, which indicates that signal transduction in fish might transform odor detection
into recovery and adaptation. These findings reveal that CNGBla and CNGBIb may be involved
in signal production and decline in the pathway, respectively.

PKA can help ORs to bind to G proteins (Daaka et al., 1997; Zamah et al., 2002) in a
mechanism mediated by cAMP (Chang et al, 2006), and our results showed that PKA
(up-regulated) was enriched during the recovery and adaptation aspect of olfactory transduction.
Thus, PKA might suppress the initial signal level by hindering the separation between receptor
and G protein by phosphorylation. Combined with the results of a previous study (Zaiwo et al.,
1989), our findings indicate that the inhibitory action of PKA may be activated through a change
in cAMP concentration due to binding between ORs and G proteins, and indirectly by suppression
of ADCY3. These factors might alter the electric charge in olfactory sensory cells by meditating
the ion concentration, which might lead to changes in electric signalling between olfactory
receptor cells and olfactory sensory neurons, consistent with some previous reports (Menini et al.,
1995; Lynch and Barry, 1989). Our results therefore indicate that odor detection in fish may occur

10
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[out hrapidly, or a long time after, stimulation by bile salts, and recovery and adaptation may occur

once fish become familiar to this stimulation.

Conclusion

In the present study, L. crocea displayed a significant behavioural preference for 0.3% SAS,
which could be a good attractant in fishes. We performed transcriptome sequencing of olfactory
epithelium tissue to identify olfactory-related genes involved in the olfactory transduction pathway,
and eight categories were found to be highly enriched with DEGs in related DEGs, especially
CAMK2, ADCY3, OR 2D3 and CNGBL1. The pathway could be divided into two processes: odor
detection, and recovery and adaptation, and irvehving-involves DEGs such as CAMK2, CALM,

[CNGBZI.! and PKA that may regulate conversion between the two processes. Our results provide new

insight into the effects of bile salt stimulation on olfactory molecular mechanisms in fishes, and

expand our knowledge of olfactory transduction and signal production and decline.
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