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ABSTRACT
Weevils (Coleoptera: Curculionoidea) represent one of the most diverse groups of
organisms on Earth; interactions with their host plants have been recognized to play
a central role in their remarkable diversity, yet the exact mechanisms and factors
still remain poorly understood. Using phylogenetic comparative analyses, here
we investigate the evolution of host use and its possible role in diversification
processes of Rhinusa and Gymnetron, two closely related groups of weevils that feed
and develop inside plant tissues of hosts within the families Scrophulariaceae and
Plantaginaceae. We found strong evidence for phylogenetic conservatism of host
use at the plant family level, most likely due to substantial differences in the chemical
composition of hosts, reducing the probability of shifts between host families.
In contrast, the use of different plant organs represents a more labile ecological
trait and ecological niche expansion that allows a finer partitioning of
resources. Rhinusa and Gymnetron weevils initially specialized on plants within
Scrophulariaceae and then shifted to the closely related Plantaginaceae; likewise, a
gall inducing behavior evolved from non-galler weevils, possibly in response to
resource competition, as galls facilitate larval development by providing enhanced
nutrition and a favorable microhabitat. Results from trait-dependent diversification
analyses suggest that both use of hosts within Plantaginaceae and parasitism on
fruits and seed capsules are associated with enhanced diversification of Rhinusa
and Gymnetron via low extinction rates. Our study provides quantitative evidence
and insights on the ecological factors that can promote diversification in
phytophagous insects that feed and develop inside plant tissues.
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INTRODUCTION
Comprising approximately 5,800 genera and more than 60,000 described species
(Oberprieler, Anderson & Marvaldi, 2014; Oberprieler, Marvaldi & Anderson, 2007),
weevils (Coleoptera: Curculionoidea) have been described as one of the most successful
adaptive radiations on Earth (Mayr, 1963; McKenna et al., 2009). The evolution of a
rostrum, shifts in larval feeding habits and co-evolutionary relationships with flowering
plants have been proposed as likely explanations for their great diversity (Marvaldi et al.,
2002; McKenna et al., 2009; Oberprieler, Marvaldi & Anderson, 2007); however, the
factors and processes involved are still little understood. Using every plant part and nearly
every plant taxon (Anderson, 1995; McKenna et al., 2009), weevils often exhibit a close
relationship with their host plants and, as is frequently observed in many other
plant-feeding insect groups (Futuyma, Keese & Scheffer, 1993; Jaenike, 1990; Janz & Nylin,
1998), specialization on one or a few closely related host plant species is a recurrent
phenomenon (Marvaldi et al., 2002). In some cases life history attributes such as
endoparasitism, in which larvae not only feed but also develop inside a great variety of
plant structures, contribute to a more intimate host association, which in turn may amplify
the selection pressure imposed by the host, making weevils more susceptible to
ecological divergence (Hernández-Vera et al., 2010; Mopper, 1996).

Here, we focus attention on species from the closely related genera Rhinusa and
Gymnetron (Curculionidae: Curculioninae), endophagous parasitic weevils whose larvae
feed and develop within tissues of plant species in the families Scrophulariaceae and
Plantaginaceae. The genus Rhinusa comprises approximately 40 species with a Palearctic
distribution (Caldara, 2001, 2013) that feed on species within the plant genera Verbascum
and Scrophularia in the family Scrophulariaceae and Linaria, Kickxia, Chaenorhinum,
Antirrhinum and Misopates within the family Plantaginaceae (Caldara, Sassi & Toševski,
2010). Gymnetron includes approximately 30 species with a Palearctic distribution
(Caldara, 2008) and approximately 60 species from the Afrotropical region, of which 55 are
knownmainly from South Africa and considered to be endemic to this area (Caldara, 2003).
All Palearctic Gymnetron use species from the genus Veronica (Plantaginaceae) as host
plants (Caldara, 2008), whereas representatives from the Afrotropical region use different
host genera within the plant family Scrophulariaceae, namely, Hebenstreitia, Sutera,
Selago, Pseudoselago, Tetraselago, Buddleja, Diascia, Nemesia, Hemimeris and the genus
Anastrebe in the family Stilbaceae (Caldara, 2003; Caldara, Colonnelli & Osella, 2008, 2009).
At the intraspecific level, mitochondrial and nuclear DNA sequence data has revealed
cryptic host-associated diversity within the species Rhinusa antirrhini (Hernández-Vera
et al., 2010) and R. pilosa (Toševski et al., 2015); several evolutionary lineages were found to
be associated with species and subspecies in the genus Linaria, suggesting host specialization
as a likely driver for diversification.

Caldara, Sassi & Toševski (2010) suggest that Rhinusa species typically exhibit host
conservatism at the plant family level and perhaps at the plant genus level for some species.
Similarly, Gymnetron species appear to show host conservatism at the plant family
level (Caldara, 2008; Caldara, Colonnelli & Osella, 2008); however, the extent to which host
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plant use is phylogenetically conserved across species within both genera remains to be
explored quantitatively. Furthermore, given the intimate association of larvae with
plant organs such as fruits, stems, roots and induced galls (Caldara, 2001; Toševski,
Gassmann & Desanči�c, 2007), this group of weevils provides an excellent opportunity to
test for phylogenetic conservatism in both associations with different host plants and
larval parasitic modes. Within Coleoptera, larval feeding habits are usually more
evolutionarily conservative than associations with different host plant taxa (Farrell &
Sequeira, 2004; Marvaldi et al., 2002; Morse & Farrell, 2005), however, for other groups of
insects it has been shown that shifts in larval feeding habits may occur at a significantly
greater rate (Cook et al., 2002; Joy & Crespi, 2007). The study of plant-insect
interactions has traditionally focused on host taxa associations (driven by host secondary
compounds), however, the use of different plant organs represents another important
dimension in the space of available resources that can potentially promote diversification
by facilitating species coexistence (Nyman, 2010). Although it has been recognized
that larval feeding habits represent ecological traits that may have important
macroevolutionary consequences for phytophagous insects (Futuyma & Agrawal, 2009;
Nyman, 2010), there are relatively few quantitative studies explicitly assessing their
role in diversification processes (Farrell & Sequeira, 2004; Leppänen et al., 2012;
Nyman et al., 2006, 2010).

Here, we use a previously inferred phylogeny from mitochondrial and nuclear DNA
sequence data (Hernández-Vera et al., 2013) in conjunction with phylogenetic comparative
methods (FitzJohn, Maddison & Otto, 2009; Hernández et al., 2013; Pagel, 1999;
Pagel, Meade & Barker, 2004) to investigate the evolution of traits of host plant use and
their role on the diversification of Rhinusa and Gymnetronweevils. The specific aims of the
study were to: (1) assess phylogenetic conservatism in host use by plant family and
in different modes of parasitic behavior; (2) estimate ancestral states of traits associated
with host plant use; and (3) assess possible effects of these traits on speciation and
extinction rates within the Rhinusa/Gymnetron species complex. These analyses should
provide valuable insights into the evolution of different traits of host plant use and their
role in diversification processes of phytophagous insects that feed and develop inside
plant tissues.

MATERIALS AND METHODS
Study system data
We used the Bayesian consensus tree and a random sample of 1,000 post burn-in trees
generated by Hernández-Vera et al. (2013) from a DNA sequence alignment comprising
3,943 bp of concatenated sequences from two mitochondrial (cytochrome c oxidase
subunit II and 16S ribosomal RNA (16S)) and three nuclear gene fragments (elongation
factor-1a, arginine kinase and 18S ribosomal RNA (18S)). The sampled taxa include
32 species of Rhinusa representing approximately 80% of recognized species, with
representatives from the three main taxonomic groups proposed by Caldara, Sassi &
Toševski (2010) and 36 species of Gymnetron from the Palearctic and Afrotropical regions
(approximately 40% of recognized species). Additionally, since some of the analyses
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performed in this study require ultrametric trees, we performed a Bayesian analysis for the
same dataset of concatenated sequences using BEAST 2.1.3 (Bouckaert et al., 2014).
For this analysis, two Monte Carlo Markov chains (MCMC) were run for 40 million
generations, sampling every 4,000 generations using independent relaxed molecular clock
models for the mitochondrial and nuclear gene sequences. Parameterisation of the
prior distribution for the mutation rate was as inHernández-Vera et al. (2013). Convergence
of the MCMC chains and posterior probability distributions of the sampled parameters
were examined graphically using the program Tracer 1.6 (Rambaut et al., 2014).
The obtained maximum clade credibility (MCC) tree and a random sample of 1,000 trees
from the posterior probability distribution were used in subsequent analyses. Host plant
associations were determined by (a) direct observation of emerging weevils from host plants
in the field, (b) records from published literature (Caldara, 2001, 2003, 2008; Caldara, Sassi &
Toševski, 2010), and (c) technical reports on studies of host plant use and host preferences in
which individuals were reared and monitored through adult emergence (Gassmann &
Paetel, 1998; Groppe, 1992; Toševski, Gassmann & Desanči�c, 2007).

Assessing phylogenetic conservatism of traits associated with host
plant use
We used Mesquite 3.1 (Maddison &Maddison, 2016) to assess phylogenetic conservatism of
traits associated with host plant use by testing whether the minimum number of
evolutionary steps in a character on a phylogenetic tree is lower than expected by chance
(Maddison & Slatkin, 1991). For each trait, a null probability distribution was generated by
randomly reshuffling the character data 10,000 times across the terminal taxa of the
consensus Bayesian tree. Additionally, we assessed phylogenetic conservatism in a likelihood
framework by estimating Pagel’s lambda (l) parameter (Pagel, 1999) using the fitDiscrete
function implemented in the R package GEIGER (Harmon et al., 2008) for discrete
characters employing Markov models. This method provides a continuously varying
parameter to assess trait variation associated with a phylogeny; a lambda value equal or close
to one is indicative of strong phylogenetic signal, that is, the evolution of a trait is not
independent of phylogeny, as opposed to values equal or close to zero (Freckleton, Harvey &
Pagel, 2002). Statistical significance of the difference between log-likelihood values of models
with the estimated lambda and models assuming no phylogenetic signal (l = 0) was
evaluated with likelihood ratio tests (Münkemüller et al., 2012). In both cases, outgroup taxa
were excluded and ingroup taxa pruned so that each species was represented by one
individual. Host plant use was categorized according to the plant families parasitized by the
weevils, namely Plantaginaceae and Scrophulariaceae, as recently circumscribed (Schäferhoff
et al., 2010; The Angiosperm Phylogeny Group, 2016). Additionally, host plant use was
categorized according to modes of parasitism on different plant structures: (i) roots,
(ii) stems and (iii) fruit/seed capsules, and as gall inducers vs. non gall inducers.

Ancestral state reconstruction of traits associated with host plant use
Using the same host plant use categorization as for phylogenetic conservatism analyses,
ancestral states were reconstructed across the random sample of 1,000 post burn-in
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trees from the analysis performed with MrBayes. We used the Bayesian approach
reversible jump MCMC (rjMCMC), implemented in BayesTraits 2.0 (Pagel, Meade &
Barker, 2004); the advantage of this method is the possibility to integrate over both
uncertainty in the phylogeny and the set of plausible models of trait evolution, rather than
conditioning inferences on a specific model (Huelsenbeck, Larget & Alfaro, 2004; Pagel &
Meade, 2006). The ancestral states reconstruction was performed for the two most
basal nodes of the ingroup taxa (labelled as Nodes 1 and 2) using the command
“AddMRCA,” which identifies the most recent common ancestor to a group of species and
reconstructs the state of that node, combining information across trees (Pagel, Meade &
Barker, 2004). Based on preliminary maximum likelihood analyses, we employed an
exponential hyper-prior with mean values drawn from a uniform distribution with an
interval 0–10. A total of 100 million iterations were run discarding the first 25% as burn-in,
sampling the Markov chain every 37,500 iterations. To assess convergence of the
Markov chains, analyses were run at least twice and posterior distributions of the estimated
parameters were examined in Tracer 1.6 (Rambaut et al., 2014). Posterior probability
density plots were generated as violin plots (Hintze & Nelson, 1998) with the R package
Vioplot 0.2 (Adler, 2005).

For comparison with the rjMCMC approach and to account for differential speciation,
extinction and character transition rates in the reconstruction of ancestral states, we
additionally performed ancestral state reconstructions using maximum likelihood under
binary and multi-state speciation and extinction models (BiSSE/MuSSE) (FitzJohn, 2012;
Maddison, Midford & Otto, 2007) in the R package Diversitree 0.9-6. Analyses were
performed using the MCC tree obtained with BEAST and the models of trait evolution
with the highest posterior probability according to the results of the rjMCMC analyses.

Assessing effects of traits associated with host plant use on
speciation and extinction rates
A BiSSE model was employed to assess the effect of binary traits on speciation and
extinction rates within the Rhinusa/Gymnetron species complex. We independently used
the model to assess the effect of host plant family use (Scrophulariaceae or Plantaginaceae)
and the mode of parasitism as gall or non-gall inducer. The model estimates six
parameters; speciation (l) and extinction (m) rates for states 0 and 1 (l0, l1, m0, m1)
and transition rates from state 0 to 1 and vice versa (q01 and q10). Similarly, a multi-state
speciation and extinction (MuSSE) model was employed to assess the effect of different
modes of parasitism on either roots, stems or fruit/seed capsules. The MuSSE model
is an extension of the BiSSE model to discrete traits with more than two states or
combinations of binary traits analyzed simultaneously (FitzJohn, 2012). Models with
asymmetrical state-dependent speciation and extinction rates were compared against
models with speciation and extinction rate parameters constrained to be equal for
all states. Parameter values for both unconstrained and constrained models were estimated
with the R package Diversitree 0.9-6 (FitzJohn, 2012) for the sample of 1,000 post burn-in
trees from the Bayesian analysis with BEAST, thus taking into account phylogenetic
uncertainty. We corrected for incomplete sampling (FitzJohn, Maddison & Otto, 2009)
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by specifying the proportion of species included in the phylogeny (0.52) with the argument
“sampling.f.” Statistical significance of model differences was assessed by performing
likelihood ratio tests as implemented in Diversitree. To graphically visualize net
diversification rates (l—m) associated with the different traits of host plant use, posterior
density plots were generated with Bayesian analyses performed in Diversitree by running
10,000 Markov chains using the MCC tree and the same BiSSE and MuSSE models
as above. For comparison with the Bayesian estimates and to account for phylogenetic
uncertainty, diversification rates were also estimated with maximum likelihood analyses
from 1,000 post burn-in trees inferred with BEAST and the mean values were
plotted on the posterior density plots.

RESULTS
Phylogenetic conservatism of traits associated with host plant use
Rhinusa and Gymnetron represent two non-reciprocally monophyletic groups with deep
genetic divergences between southern Africa and Palearctic lineages (Hernández-Vera
et al., 2013). Results from both parsimony and likelihood-based tests indicate that there is
statistically significant phylogenetic conservatism in host use by plant family and
modes of parasitism. Characters of host use by plant family are not randomly distributed
across the Bayesian consensus tree (p < 0.001). Eight parsimony steps were observed
against 14 expected steps at the lower confidence limit under 10,000 character
randomizations of the null model. When host plant use is categorized according to the
plant parts being parasitized and as gall inducer vs. non gall inducer, the distribution
of characters over the Bayesian consensus tree is marginally significant at the 0.05
confidence level, that is, in both cases the difference between the expected (null model) and
observed number of parsimony steps is only one. A similar trend was observed for the
results from the estimation of Pagel’s lambda parameter, which indicate a strong
phylogenetic signal for host use by plant family (l = 1) but less phylogenetic signal for both
host use as either gall or non-gall inducer and parasitic mode on different plant
structures (Table 1).

Table 1 Summary statistics of Pagel’s lambda parameter estimated from the MCC tree inferred with
BEAST and different categorization schemes of host plant use.

Estimated
lambda value

Log-likelihood of models

lambda set
to zero

lambda
estimated

x2 value
(df = 1)

Parasitism on either roots,
stems or fruit and seed capsules

0.772 -45.588 -41.198 8.782**

Gall vs. non gall inducers 0.927 -26.591 -22.461 8.261**

Host use by plant family 1.0 -32.462 -13.398 38.128***

Notes:
Lambda values equal or close to one indicate strong phylogenetic signal. Log-likelihood values from the estimates of
lambda were contrasted with those obtained from models where lambda was set to zero (no phylogenetic signal).
Likelihood ratio tests were approximated with a Chi-squared (w2) distribution.
** p-value < 0.01.
*** p-value < 0.001.
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Reconstruction of ancestral character states
Results from the Bayesian analyses provide strong support for the family Scrophulariaceae
and non-gall inducing parasitic behavior as ancestral character states of host plant
use by Gymnetron and Rhinusa. The estimated mean posterior probability for
Scrophulariaceae as the ancestral state at the two most basal nodes 1 and 2 was 0.99 and
0.96, respectively, whereas for non-gall inducing behavior the values were 0.75 and 0.81
for the same nodes. A parasitic behavior on fruits and seed capsules as the ancestral
condition appears weakly supported as the mean posterior probability values were 0.55
and 0.69 at nodes 1 and 2, respectively (Fig. 1). A single-rate model of trait evolution was
the most frequently sampled model by the rjMCMC for each of the three schemes of
host plant use, but with different restrictions on the transition rates. For use of host plant
family the transition rate from Plantaginaceae to Scrophulariaceae was equal to zero, for
gall vs non-gall parasitic behavior both transition rates were equal, and for parasitic
behavior on three different plant organs all transition rates were equal except for the
transition from fruit and seed capsules to roots, which was equal to zero.
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Figure 1 Bayesian ancestral state reconstructions for different traits of host plant use by Rhinusa and
Gymnetron weevils. Violin plots show posterior probability densities (P.P.D.) of ancestral states for
different traits of host plant use by Rhinusa and Gymnetron species: (A–B) use of either Scrophulariaceae
or Plantaginaceae taxa as hosts, (C–D) gall vs. non-gall inducer behavior, and (E–F) parasitic behavior on
three different plant organs. White dots and vertical bars inside density plots represent the median and
interquartile range, respectively. Using rjMCMC analyses and the “AddMRCA” command in Bayes-
Traits, reconstructions were performed across a random sample of 1,000 post burn-in trees for the two
most basal nodes labelled as 1 and 2 in the majority-rule consensus tree obtained with MrBayes (G).
Branch colors indicate the genera and outgrup taxa; green =Gymnetron, black = Rhinusa, red = outgroup.

Full-size DOI: 10.7717/peerj.6625/fig-1
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Ancestral state reconstructions under BiSSE and MuSSE models recovered the same
ancestral states as rjMCMC analyses for all host plant use traits, except for parasitic
behavior on fruits and seed capsules as the ancestral state at node 1. In this case the result is
equivocal with a proportional likelihood value of 0.33, hence the three states are
equally probable. For node 2, parasitic behavior on fruits and seed capsules as the ancestral
state is weakly supported with a proportional likelihood value of 0.55. Proportional
likelihoods for use of Scrophulariaceae as the ancestral condition in nodes 1 and 2 are 1.0
in both cases, whereas the values for non-gall inducer behavior as the ancestral state are
0.88 and 0.92 for nodes 1 and 2, respectively (Fig. 2).

Effects of traits associated with host plant use on speciation and
extinction rates
Significant effects of traits associated with host plant use on extinction rates were found in
two cases. The symmetric model assuming equal extinction rates for the use of
Plantaginaceae or Scrophulariaceae as hosts was rejected in 728 of the 1,000 likelihood
ratio tests performed (Fig. S1A). Likewise, 790 out of 1,000 likelihood ratio tests
rejected the symmetric model assuming equal extinction rates for weevils parasitizing

Scrophulariaceae
Plantaginaceae
NA

Non−gall inducer
Gall inducer

Roots
Stems
Fruits & seed capsules
NA

CBA

NA

Figure 2 Maximum likelihood ancestral state reconstructions. Employing the MCC tree generated
with BEAST, ancestral state reconstructions were performed under BiSSE and MuSSE models for dif-
ferent traits of host plant use by Rhinusa (black branches) and Gymnetron (magenta branches) species:
(A) use of Scrophulariaceae or Plantaginaceae as hosts, (B) gall vs. non-gall inducer behavior, and
(C) parasitic behavior on three different plant organs. Pie graphs represent proportional likelihoods of
alternative character states; NA stands for not available trait data.

Full-size DOI: 10.7717/peerj.6625/fig-2
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either roots, stems or fruits and seed capsules (Fig. S1B). Extinction rates associated with
use of plants within Plantaginaceae as hosts were consistently estimated to be equal or
close to zero for the 1,000 analyzed post burn-in trees (Fig. 3A); similarly, the lowest
extinction rates were estimated for weevils parasitizing fruits and seeds (Fig. 3B). Because
low sample size (56 tips in our tree) may reduce the accuracy and precision of parameter
estimation in trait-dependent diversification analyses (Davis, Midford & Maddison,
2013), we additionally simulated fully sampled trees using the previously estimated
speciation and extinction rates (median values from the ML analyses performed on 1,000
post burn-in trees) and then we inferred those rates after pruning the trees to the
proportion of taxa in our original tree (0.52). The results show that both BiSSE and MuSSE
analyses are able to correctly estimate extinction rates from the pruned tree (Fig. S2).
No evidence of character state-dependent speciation rates was found for any of the traits
associated with host plant use. Bayesian estimation of net diversification rates (l—m)
associated with use of host plant family and parasitic behavior on different plant
parts are presented as density plots in Fig. 4. Consistent with the likelihood estimates of
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Figure 3 Estimated extinction rates associated with different traits of host plant use by Rhinusa and
Gymnetron weevils. (A) Host plant use categorization according to plant family. (B) Host plant use
categorization according to parasitic behavior on different plant organs. Rates were estimated under
BiSSE and MuSSE models (FitzJohn, 2012) from 1,000 post burn-in Bayesian trees.

Full-size DOI: 10.7717/peerj.6625/fig-3
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low extinction rates, higher diversification rates were estimated for weevils using
Plantaginaceae taxa as hosts and parasitizing fruits and seed capsules.

DISCUSSION
Phylogenetic conservatism of host plant use
Our results provide strong evidence for phylogenetic conservatism of host use at the plant
family level. Although examples of generalist plant-feeding insects exist (Ali & Agrawal,
2012; Bernays & Minkenberg, 1997; Forister et al., 2015; Ribeiro et al., 2005), the most
commonly observed pattern is that most species are restricted to a few closely related plant
taxa where related insects tend to feed on related groups of plants, that is, host plant
use is maintained over evolutionary time scales (Jaenike, 1990; Janz & Nylin, 1998;
Winkler & Mitter, 2008). Since the publication of Ehrlich & Raven’s (1964) influential
paper, it has been recognized that host plant chemistry (secondary compounds) and insect
dietary tolerances play a significant role in shaping insect-host plant associations
(Becerra, 1997; Berenbaum, 1983; Feeny, 1975; Nishida, 2014; Wahlberg, 2001). At high
taxonomic ranks such as plant family, plants may exhibit important differences in
their secondary compounds, making host shifts less frequent due to the difficulty of insects
to metabolize different compounds (Becerra, 1997; Futuyma & McCafferty, 1990;
Janz & Nylin, 1998).

In the case of the host plant families utilized by Rhinusa and Gymnetron, there is an
apparent pattern of mutually exclusive occurrence of two types of iridoid glycosides
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Figure 4 Posterior probability density plots of net diversification rates (λ—μ) for Rhinusa and
Gymnetron weevils associated with two traits of host plant use. (A) Use of two different plant
families as hosts, (B) parasitic behavior on three different plant organs. Parameters were estimated from
the MCC tree generated with BEAST under BiSSE and MuSSE models, respectively. Vertical lines
represent mean maximum likelihood estimates from 1,000 post burn-in trees inferred with BEAST.
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(Boros & Stermitz, 1990; Bowers, 1991; Jensen, Nielsen & Dahlgren, 1975). Host plants in
the Scrophulariaceae synthetize aucubine and or catalpol, whereas host plants within
Plantaginaceae lack of these compounds or they are present in only small amounts.
Except for the genusVeronica, the main iridoid constituents of hosts within Plantaginaceae
are antirrhinoside, antirrhinum glycoside B, and or asarina glycoside (Kooiman, 1970).
Hence, qualitative and quantitative variation in the levels of these compounds might
explain, at least in part, host use at the plant family level. It has been shown that some
species included in the same tribe of our focal group (Mecinini) and the closely
related Cionini, exhibit metabolic differences in the sequestration of these compounds.
Weevils of the genera Cionus and Cleopus sequester iridoid glycosides from their host
plants Scrophularia and Verbascum, in contrast, there is no evidence of sequestration of
these compounds by weevils of the generaMecinus and Rhinusa (Baden, Franke & Dobler,
2012; Baden, Franke & Dobler, 2013; Jamieson & Bowers, 2010). Although iridoid
glycosides may play a significant role in the interaction of Gymnetron and Rhinusa weevils
with their hosts, perhaps as feeding stimulants and oviposition cues (Nieminen et al., 2003;
Reudler Talsma et al., 2008), further studies will be necessary to elucidate the exact
mechanism of host plant preferences, as concentrations of secondary metabolites may be
affected by a variety of abiotic and biotic factors (Jamieson & Bowers, 2010, 2012).

The lower phylogenetic signal for traits of parasitic behavior suggest they are more labile
ecological traits. This finding contrasts with evidence reported for several beetle
groups that suggests larval feeding habits and modes of parasitism exhibit higher
phylogenetic conservatism than host plant taxa associations (Farrell & Sequeira, 2004;
Marvaldi et al., 2002; Morse & Farrell, 2005). Other studies on gall-inducing insects have
found evidence that shifts between host plant organs can occur at a significantly
greater rate than shifts between different host taxa (Cook et al., 2002; Joy & Crespi, 2007).
Modes of parasitism on different plant structures may represent alternative ecological axes
for niche expansion and a finer partitioning of resources, as they can reduce potential
inter- and intraspecific competition (Denno, McClure & Ott, 1995; Klomp, 1964;
Price, 1980). Mediated by marking pheromones, many parasitoids and phytophagous
insects avoid hosts already infested by conspecifics or closely related species (Anderson,
2003; Nufio & Papaj, 2001; Roitberg & Prokopy, 1987). In beetles, there is evidence
that ovipositing females of some species within the families Chrysomelidae (Guedes &
Yack, 2016; Messina & Renwick, 1985) and Curculionidae (Addesso et al., 2007; Ferguson
et al., 1999) avoid hosts and plant structures that have been previously utilized by
other females for laying eggs. Hence, driven by chemical constraints, the use of a restricted
set of host plants over evolutionary time scales may lead to inter- and intraspecific
competition which in turn could facilitate an escape-and-radiate scenario (Ehrlich &
Raven, 1964) where weevils “escape” to different plant structures, potentially undergoing
diversification. An example of this is illustrated by five species of Rhinusa exploiting
different resources within the same host plant species Linaria vulgaris. R. antirrhini feeds
and develops inside fruit capsules, whereas R. linariae and R. pilosa are both gall inducers,
the former utilizes roots and the latter stems. A further level of ecological resource
partitioning is present with two other species, R. collina and R. eversmanni, acting as
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inquilines of the galls induced by R. linariae and R. pilosa, respectively (Gassmann et al.,
2014; Toševski, Gassmann & Desanči�c, 2007).

Evolution of host plant use and diversification
Results from Bayesian and maximum likelihood methods provide strong support for use of
host plants within Scrophulariaceae as the ancestral condition for Rhinusa and Gymnetron.
This is consistent with the hypothesis put forward by Hernández-Vera et al. (2013)
for a South African origin for this species complex, given the predominant concentration
of Scrophulariaceae genera in the southern hemisphere, particularly Africa (Olmstead
et al., 2001; Tank et al., 2006). Thus, weevils initially specialized on plants within
Scrophulariaceae and eventually colonized Plantaginaceae, a new set of plants closely
related to the ancestral ones (Albach, Meudt & Oxelman, 2005). Results from the rjMCMC
analyses also support this hypothesis, as the most frequently sampled model of trait
evolution was a single-rate model with transition rates from Plantaginaceae to
Scrophulariaceae restricted to zero. The estimated higher diversification rates associated
with use of Plantaginaceae taxa as hosts (Fig. 4) suggest that this colonization event
facilitated the diversification of the group, exploiting and adapting to newly-opened
ecological niche space, potentially reducing competition for resources and providing an
enemy-free space (Murphy, 2004; Schluter, 2000). It is worth noting that most of the taxa
(five out of six) utilized as hosts within Plantaginaceae are included in the tribe
Antirrhineae, a group of plants characterized for synthesizing antirrhinoside, an iridoid
glycoside that appears to function as a deterrent for some generalist herbivores but also
as an attractant for others, particularly those exhibiting a more specialized diet
(Beninger, Cloutier & Grodzinski, 2008; Bowers, 1991). Thus, the unique secondary
compound present in the alternative host may have represented an advantage over the
ancestral host taxa.

A non-gall inducing behavior is also supported as the ancestral condition for Rhinusa
and Gymnetron weevils. Based on the scarcity or absence of gall inducers in the
most ancestral families within Curculionoidea, it has been suggested that galling represents
a derived specialized life history in weevils (Korotyaev et al., 2005). Galls may represent
an expansion of ecological resources for Rhinusa and Gymnetron, providing
enhanced nutrition and a favorable microhabitat that facilitates their larval development
(Price, Fernandes & Waring, 1987; Stone & Schönrogge, 2003). However, we did not
find evidence of any effect of either gall or non-gall inducing behavior on speciation and
extinction rates. Although gall-inducing insect groups are considered to be more
host-specific than their non-galling relatives (Hardy & Cook, 2010; Price, Fernandes &
Waring, 1987; Shorthouse & Rohfritsch, 1992), to date there is no conclusive evidence of
increased diversification rates in gallers. The effect of gall inducing behavior on net
diversification rate appears to be lineage specific, where host range may also play an
important role (Hardy & Cook, 2010).

The ancestral state reconstruction of parasitic behavior on different plant structures is
highly uncertain, and as a consequence it is difficult to infer the plesiomorphic condition.
It has been reported that larvae of Gymnetron, Rhinusa and the closely related genus
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Mecinus do not exhibit a general pattern regarding the direction of evolution in their
modes of parasitism (Caldara, Sassi & Montagna, 2013; Caldara, Sassi & Toševski, 2010).
This apparent lack of directionality is consistent with our results from phylogenetic
conservatism analyses supporting the parasitic behavior as a labile ecological trait. On the
other hand, results from the trait-dependent diversification analyses under the MuSSE
model suggest that endoparasitism of fruits and seed capsules has contributed to the
diversification of Rhinusa and Gymnetron weevils (Figs. 3B and 4). The use of these
reproductive structures may represent an advantage, as they provide higher amounts of
nutrients for the developing endophagous larvae (Hulme & Benkman, 2002; Janzen, 1971)
and a favorable micro-environment which may help to overcome the problem of
desiccation of the immature stages (Anderson, 1993). Additionally, seeds can contain high
concentrations of secondary compounds toxic to some vertebrates, insects or microbes
and thus provide protection to certain specialist seed predators (Janzen, 1971). It has been
shown that concentrations of antirrhinoside and other iridoid glycosides are usually
high in reproductive organs in some host species utilized by Rhinusa and Gymnetron in the
tribe Antirrhineae (Beninger et al., 2007; Jamieson & Bowers, 2010).

Interestingly, our results indicate that the enhanced diversification rates associated with
the use of Plantaginaceae and endoparasitism of fruits and seed capsules, are driven by low
extinction rates (Figs. 3A–3B). Traditionally, studies have focused on the mechanisms
promoting speciation in Coleoptera, particularly plant-feeding beetles (Farrell, 1998;
McKenna et al., 2009;Mitter, Farrell & Wiegmann, 1988), however, it may also be fruitful to
pay attention to the factors that have inhibited their extinction (Smith & Marcot, 2015).
Although extinction estimates from phylogenies of present day species have been called into
question (Quental & Marshall, 2010; Rabosky, 2010), of relevance is the fact that all
living weevil families are known from the fossil record, and all weevil families in the fossil
record are extant (Gratshev & Zherikhin, 2003;McKenna et al., 2009). This is consistent with
the evidence that reduced extinction has played an important role in the extraordinary
diversity of modern insects (Condamine, Clapham & Kergoat, 2016; Labandeira & Sepkoski,
1993) and particularly beetles (Hunt et al., 2007; McKenna et al., 2015).

CONCLUSIONS
Rhinusa and Gymnetron weevils initially specialized on plants within Scrophulariaceae
and then shifted to the closely related Plantaginaceae. Likewise, their gall inducing
behavior represents a derived specialized trait which evolved from non-galler weevils
possibly in response to resource competition given that usually more than one species
utilize the same host (although other explanations are possible, such as escape from
parasites/predators), providing enhanced nutrition and a favorable microhabitat which
facilitates larval development. The use of restricted sets of host plants is phylogenetically
conserved, most likely because of substantial differences in the chemical composition
of their hosts, thus reducing the probability of host shifts. In contrast, the utilization of
different plant organs represents a more labile ecological trait that allows a finer
partitioning of resources; this ecological niche expansion is associated with enhanced
diversification rates in weevils exhibiting a parasitic behavior on fruits and seed capsules.
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Our results show that ecological factors such as host plant use and specialized
endoparasitic habits can promote diversification via low extinction rates in phytophagous
insects that require plant tissues for the completion of their reproductive cycle.
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