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ABSTRACT
Nitrogen limitation is considered a good strategy for enhancement of algal lipid
production while conversely N repletion has been shown to result in biomass rich
in proteins. In this study, the influence of long-term N limitation on Euglena gracilis
fatty acid (FA), protein, chlorophyll a, and carotenoid concentrations was
studied in N limited cultures. Biomass composition was analyzed from three-time
points from N starved late stationary phase cultures, exposed to three different initial
N concentrations in the growth medium. Total lipid content increased under
N limitation in ageing cultures, but the low N content and prolonged cultivation time
resulted in the formation of a high proportion of saturated FAs. Furthermore,
growth as well as the production of proteins, chlorophyll a and carotenoids were
enhanced in higher N concentrations and metabolism of these cellular components
stayed stable during the stationary growth phase. Our findings showed that a
higher N availability and a shorter cultivation time is a good strategy for efficient
E. gracilis biomass production, regardless of whether the produced biomass is
intended for maximal recovery of polyunsaturated FAs, proteins, or photosynthetic
pigments. Additionally, we showed an increase of neoxanthin, β-carotene, and
diadinoxanthin as a response to higher N availability.

Subjects Biochemistry, Biotechnology, Food Science and Technology
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INTRODUCTION
Microalgae are useful organisms in the field of biotechnology, and the main interest
is currently in the production of high value substances for human and animal nutrition,
cosmetics, and pharmaceuticals (Pulz & Gross, 2004; Spolaore et al., 2006). As primary
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producers of long chain polyunsaturated fatty acids (LC-PUFAs) microalgae are an
ecological alternative for fish oils in food, food supplements, and aquaculture feed (Pulz &
Gross, 2004; Harwood & Guschina, 2009; Van Hoestenberghe et al., 2016) and provide a
protein source with an amino acid composition comparable to other plant based
proteins (Becker, 2007). Algal pigments are used as colorants, antioxidants, and vitamin A
precursors in cosmetics and nutritional products (Spolaore et al., 2006; Vílchez et al., 2011),
and anti-inflammatory, antitumor, and antibacterial properties of chlorophylls and
carotenoids have been reported (Vílchez et al., 2011; Da Silva Ferreira & Sant`Anna, 2017).
The potential of several microalgal strains for these applications is widely studied, but only
a few strains are utilized commercially. For example, Crypthecodinium is a producer
of LC-PUFA docosahexaenoic acid (Pulz & Gross, 2004), Chlorella and Spirulina
are protein-rich strains used in human nutrition, Dunaliella salina is a natural source
of β-carotene and Haematococcus fluvialis is used for astaxanthin production for
aquaculture feed (Spolaore et al., 2006).

Algal growth and biomass composition is regulated by environmental factors, such as
light, temperature and availability of essential nutrients, and carbon (C). Growth is
enhanced under optimal light and temperature and with abundant nutrients and C.
Generally, in nutrient replete growth conditions, cellular C is mostly allocated to formation
of nitrogen (N) containing macromolecules, especially proteins, and nucleic acids, but also
chlorophylls, amino acids, and betaine glycine (Geider & La Roche, 2002). However,
variation in N allocation between cellular protein (59.3–96.8% of Total N) and non-protein
N containing compounds is broad, and the importance of non-protein compounds
tends to be greater during the exponential growth phase than in aging cultures (Lourenço
et al., 1998). In addition, C partitioning between starch and lipids has been shown to
be regulated by N availability. In N replete conditions, C is allocated to starch synthesis
whereas lipid synthesis is inhibited and vice versa (Wang et al., 2015). In N limited growth,
cellular C flow turns into non-N containing compounds, especially neutral lipids,
carbohydrates, and carotenoids (Geider & La Roche, 2002). Cellular phosphorus (P) is
mostly allocated to RNA, DNA, and phospholipids (PLs) (Geider & La Roche, 2002).
Within the lipid fraction, growth phase and the availability of C, N, and P also influence
cellular FA composition. Generally, under optimal growth conditions, cellular lipids
mainly consist of membrane lipids such as PLs, which are rich in polyunsaturated
FAs (PUFAs) and C-PUFAs (Hodgson et al., 1991). Synthesis of saturated and
monounsaturated FAs (SAFAs and MUFAs), typical in storage lipids, is enhanced during
the stationary growth phase under nutrient depletion (Hodgson et al., 1991).

Among the microalgae, Euglena gracilis is known as a producer of PUFAs (Schwarzhans
et al., 2015), proteins (Becker, 2007), vitamins B, C, and E (Baker et al., 1981; Takeyama
et al., 1997), chlorophylls a and b, several types of carotenoid pigments (Takaichi, 2011),
and the carbohydrate paramylon (β- 1,3-glucan) (Santek et al., 2009). A decrease in cellular
PUFA content in stationary growth phase cells in comparison to exponential growth phase
cells in N deprived, photoheterotophic E. gracilis cultures has been shown (García-Ferris
et al., 1996) and the protein content has been proven to decrease under N limitation
(Regnault, Piton & Calvayrac, 1990). A decrease in chlorophyll and total carotenoid
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production by E. gracilis was observed during a short term exposure to N deprivation
(García-Ferris et al., 1996).

So far, production of particular cellular components of E. gracilis as a response to
environmental factors have mostly been studied separately, and in many studies the
biochemical composition is analyzed only at single time points (Hulanicka, Erwin & Bloch,
1964; Rocchetta et al., 2006). However, earlier studies have observed a transition in cellular
biochemical composition between the exponential and stationary growth phases
(Regnault et al., 1995). To date, the most thorough study of FA formation during the growth
of E. gracilis under photoheterotrophic and heterotrophic conditions with different
concentrations of glucose (C source) and proteose peptone (N source) is provided in the study
by Schwarzhans et al. (2015). However, Schwarzhans et al. (2015) did not analyze the cellular
nutritional status of E. gracilis, and it is thus unclear whether C or N limited the growth.

For utilization of microalgae biomass as such or for maximizing production of specific
compounds it is important to determine the influence of growth conditions on biomass
composition. Since N limitation is often considered the most critical factor regulating
cellular metabolism, this study aimed to measure the time-dependent influence of
long-term N deprivation on growth and biomass composition of E. gracilis in
photoheterotrophic growth conditions and to investigate the influence of N limitation on
cellular metabolism during the stationary phase. Biomass N and C accumulation, total
lipid, protein, chlorophyll a, and carotenoid contents as well as the FA profile of E. gracilis
were analyzed at three time-points of late stationary phase. Main carotenoids were
identified and quantified at the end of the cultivation. Our first hypothesis was that higher
N content in the growth medium boosts N and C uptake and thus the growth of E. gracilis,
and that exposure to N limitation increases lipid production and decreases protein
production. Second, we hypothesized that the proportion of PUFAs is higher in biomass
grown under high initial N concentrations and it decreases as a function of time.
Third, higher N concentrations were hypothesized to favor chlorophyll a production
while carotenoid production was assumed to be independent of N concentration
since the carotenoids, acting in light harvest and photoprotection, do not contain N
(Christaki et al., 2012).

MATERIAL AND METHODS
Strain, medium, and culturing methods
Euglena gracilis (CCAP 1224/5Z) was cultivated in autoclaved (120 �C, two bar, 1 h)
modified Hutner medium (Takeyama et al., 1997) with the following modifications;
L-Glutamic acid was not used, the amount of glucose was reduced to five g L-1, (NH4)2SO4

was added as an extra N source, CaCO3 was replaced with CaCl2 (0.2 g L-1), and
the amount of vitamin B12 was doubled from the original to 0.02 mg L-1. Three different
N levels were used in the experiments: 0.0, 0.2, and 0.5 g L-1 of (NH4)2SO4 (hereafter
called low N¼LN, medium N¼MN, and high N¼HN treatments). The composition
of the cultivation medium and the modified trace element solution are given in Table 1.
The initial ammonium nitrogen (NH4-N) concentrations in the treatments were 42.5, and
84.9 and 148.5 mg L-1, respectively. N limitation, rather than P or C, during the stationary
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growth phase, was confirmed by using high P containing medium and both glucose
and CO2 as a C source.

Culturing with three replicates was done in a growth chamber (SANYO growth cabinet
MLR-350 H; 294L; SANYO Electric Co. Ltd, Osaka, Japan) in two L borosilicate bottles with
a cultivation volume of 1.6 L. A total of 10 mL of algal seed culture with DW 2.7 g L-1

was used as an inoculant. Cultivation bottles were equipped with aeration, degassing, and
harvesting pipes. The light and dark cycle was 16:8, light intensity 170 µmol m-2 s-1 (Li-Cor
190R Quantum Sensor and LI-1400 Light Sensor Logger; Li-Cor, Lincoln, NE, USA),
and temperature 25 �C. Cultures were fed with 2% CO2 (99.8%) in moist air (0.5 L min-1)
during the light period. For mixing the supplied gas, compressed air (10 L min-1, Hailea
318 air compressor) and CO2 (0.2 L min-1) were pumped via flasks half filled with distilled
H2O, and from the gaseous phase of the flask, the mixture of moist air and CO2 was supplied
to the cultivation bottles trough PTFE membrane filters (Acro�37 TF Vent).

Sampling and growth determination
Biomass growth was followed as DW, with samples taken twice a week. DW was
determined as described by Tredici & Zittelli (1998) from samples filtered onto pre-dried
(105 �C, overnight) glass fiber filters (GF/C 47; Whatman, Maidstone, UK). Specific
growth rates (µ, d-1) during the exponential growth phase (days 0–5) were calculated using
the equation m ¼ Ln DW1=DW0ð Þ= t1 � t0ð Þ, where DW0 and DW1 are the biomass DWs

Table 1 Composition of culture medium.

Reagent (g L-1)

Glucose 5

(NH4)2SO4 0.0–0.5a

KH2PO4 0.4

(NH4)2HPO4 0.2

MgSO4·7H2O 0.5

CaCl2 0.2

H3BO3 0.0144

Vitamin B1 0.0025

Vitamin B12 0.00002
bTrace element stock solution (in g 100 mL-1 MQ-water)

ZnSO4·7H2O 4.4

MnSO4·H2O 1.16

NaMoO4·2H2O 0.3

CuSO4·5H2O 0.32

CoCl2·6H2O 0.28
cFe-solution (in g 100 mL-1 MQ water)

(NH4)2SO4Fe(SO4)2·6H2O 1.14

EDTA 1.0

Notes:
a 0.0, 0.2, and 0.5 g L-1.
b, c one mL of stock solutions was added to one L of base medium.
LN, low N; MN, medium N; HN, high N treatments.
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at the beginning (t0) and end (t1) of the exponential growth. The supernatants
were collected for analysis of NH4-N in the cultivation medium. Exponential
growth ceased after 5 days and samples for C, N, FA, and total carotenoid and chlorophyll
a analysis were taken from the late stationary growth phase on cultivation days 14, 16,
and 19 and for HPLC analysis of carotenoid pigments on cultivation day 19. Biomass was
collected on day 19 by centrifugation (Heraeus Multifuge 1S-R, Kendro Laboratory
Products, Osterode, Germany) (3,000 rpm, 4 �C, 15 min). Algal pellets for C and N
analyses were stored at -20 �C and for lipid and pigment analysis at -70 �C. Before
analysis, biomass pellets were freeze-dried (Christy� Alpha 1-4; B. Braun Biotech
International, Melsungen, Germany). Approximately 100 mg of dried biomass was used
for C and N analyses and lipid extraction, and 40 mg for pigment extraction.

Analytical methods
Ammonium nitrogen in the growth medium was analyzed using Hach Lange Kits
(Hach Lange, Düsseldorf, Germany) and a DR 2800TM spectrophotometer (Hach Lange,
Germany). C and N content of the biomass was analyzed with a Leco CNS-2000 analyzer
(Leco Corporation, St Joseph, MI, USA). Lipids were extracted according to the
method described by Parrish (1999) and modified by Natunen et al. (2017). Methylation
was carried out with the modified method (Natunen et al., 2017) of Christie & Han (2010).
FAs were analyzed with GC–MS (GC/MS-QP 2010 Ultra SYSTEM; Shimadzu, Canby, OR,
USA) equipped with an autosampler (AOC-20 s; Shimadzu, Kyoto, Japan) and the operating
software (GCMS solution, Version 2.6) using a DB-23 capillary column (Agilent
Technologies, Santa Clara, CA, USA). The temperature program for GC–MS analysis was set
as described earlier (Natunen et al., 2017; Tossavainen et al., 2017). FAs were identified using
retention times and mass spectra of FAs in FAME standard solution (SupelcoTM 37
Component FAME Mix; Supelco, Bellefonte, PA, USA). For quantification, a quantitative
FAME standardmix was prepared in four concentrations and standard curves were made for
each FAME. FAs were quantified with internal standard method using deuterated
octadecanoic acid (C18:0-d3) (Larodan Fine Chemicals, Solna, Sweden) as an internal
standard (Natunen et al., 2017). Total FA (TFA) content was calculated as a sum of
quantified FAs. Biomass protein content was calculated by multiplying cellular N content by
4.78, which is the average conversion factor for microalgae (Lourenço et al., 2004).

Pigments were extracted by accelerated solvent extraction (ASE-350; Dionex,
Sunnyvale, CA, USA) (110 �C, 20 min) using acetone as an extraction solvent.
After extraction, acetone was evaporated under nitrogen flow, and samples were then
dissolved in 10 mL of MeOH for HPLC analysis. For total carotenoid and chlorophyll
analysis, one mL of MeOH extract was evaporated, and the pigments were dissolved
in EtOH and filtered (PTFE syringe filter, 0.2 mm; VWR International, Radnor, PA, USA)
before analysis. Total carotenoid and chlorophyll a concentrations were measured
spectrophotometrically (UV–Vis spectrophotometer, UV-2401PC; Shimadzu, Suzhou,
China) using wavelengths 450 nm for carotenoids and 665 nm for chlorophyll a. Total
carotenoid concentration was calculated using Beer–Lambert’s law and a specific
absorption coefficient of 2,620 (A1% cm-1) for β-carotene in ethanol (Rodriguez-Amaya,
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2011). Chlorophyll a concentration was calculated using absorption coefficient 84 (L g-1

cm-1) and the standard protocol (SFS 5772).
For HPLC analysis of carotenoid pigments, two separate standard mixes with five (first

mix) and four (second mix) concentrations for identification and quantification were
prepared. The first contained fucoxanthin, neoxanthin, astaxanthin, zeaxanthin, cantaxanthin,
β-carotene (Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany) and lutein (CaroteNature
GmbH, Ostermundigen, Switzerland) (Fig. S1), and the second included violaxanthin,
diadinoxanthin, diatoxanthin, alloxanthin, myxoxantophyll, and echinenone (DHI,
Hørsholm, Denmark) (Fig. S2). Trans-β-apo-8′-carotenal (Sigma-Aldrich Chemie Gmbh,
Germany) was added both to the standard mix and to the samples to confirm stability of
retention times. Carotenoids were analyzed from MeOH extracts with HPLC (Prominence
liquid chromatograph, LC-20AT; Shimadzu) using YMC carotenoid C30 column (250 �
4.6 mml.D.) (YMCAmerica, Inc., Allentown, PA, USA), and the detection wavelength 450 nm
(Prominence UV/Vis detector; Shimadzu, Suzhou, China). Essentially the analysis was
performed as described in the column manufacturer’s instructions: Elution solvent A for
MeOH:MTBE:H2O was prepared according to instructions (81:15:4 vol), and elution solvent
B was slightly modified (16:80:4 vol). The flow rate was one mL min-1 and the running time
in analysis (100% A to 100% B) was 55 min. Concentrations were quantified using the
external standard method. All the extraction and preparation steps were carried out in dim
light to avoid deterioration of pigments.

A high definition mass spectrometer (Synapt G2-Si Q-Tof; Waters, Milford, MS, USA)
equipped with APCI interface in positive mode was used to characterize diadinoxanthin
in E. gracilis samples. The instrument settings were as follows: mass range 50–2,000 amu,
corona current seven mA, probe and source temperatures 400 and 120 �C, desolvation gas
880 L/h, trap collision energy 30V. For accurate mass measurement the instrument was
calibrated with a mixture of sodium iodide and Ultramark standard material. Proper mass
calibration was considered to be <3 ppm. Leucine enkephaline ((M + H)+ ¼ 556.2766 amu;
Waters, Milford, MS, USA) served as a lock mass calibrant.

Statistics
Influence of time and N treatment on N and C accumulation, growth (biomass DW),
protein, TFA, PUFA, MUFA, chlorophyll a, and carotenoid, contents were analyzed
using repeated measures ANOVA. Tukey’s test was used as a post hoc test. Because of
heterogeneity in variances (Levene statistics, test of homogeneity of variances),
statistics for SAFA and LC-PUFA contents were performed with the non-parametric
Friedman’s test. A significance level of P < 0.05 was used in all tests. Results from
non-parametric tests were Bonferroni corrected. All statistical analyses were done with
SPSS (Version 24; IBM, New York City, NY, USA).

RESULTS
Growth and C:N ratio
N availability regulated biomass growth of E. gracilis. Higher N content in the cultivation
medium boosted growth, and differences in biomass production between LN, MN,
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and HN treatments started to appear on day 5 when exponential growth ceased (Fig. 1).
Growth rates during the exponential growth phase were 0.88 ± 0.01, 0.91 ± 0.01, and
0.97 ± 0.02 d-1 in LN, MN, and HN treatments, respectively. A slow increase in biomass
DW continued until the end of cultivation in all cultures, but the increase was significant
(P < 0.05) only in MN and HN cultures. Biomass yield was highest in HN and lowest
in LN cultivation (P < 0.05) at all three sampling points when the samples for biochemical
analysis were taken. At the end of the cultivation, biomass yields in HN, MN, and LN
treatments were 4.5, 4.1, and 2.9 g L-1, respectively.

In all cultures, NH4-N was rapidly removed from the cultivation medium, apparently as
a result of uptake by the algae (Fig. 2). NH4-N was taken up almost completely after
five cultivation days in LN (91.1%) and MN (97.1%) treatments and on day 7 in HN
(98.2%) treatment.

The proportions of N and C in stationary phase biomass reflected the amount of
added NH4-N in the medium, that is, the highest initial NH4-N addition (HN treatment)
resulted in higher biomass N and C concentrations (P < 0.05), whereas there
was no significant difference between MN and LN treatments (P > 0.05). In all cultures
biomass N content decreased and C content increased slightly, but not significantly
(P > 0.05) between days 14 and 19, when the cultures had reached the stationary phase
(Table 2). The proportion of N and C in DW after 14, 16, and 19 days of cultivation
were 2.0–2.1% and 45.5–47.8% in LN, 2.3–2.5% and 47.0–47.9% in MN and
3.7–3.9% and 47.9–48.8% in HN treatments, respectively (Table 2). Based on the molar
C:N ratio in algal biomass (under optimal growth conditions C:N ratio ¼ 6.6; Redfield,
1958; Geider & La Roche, 2002) all the cultures were N limited at the time samples
for C:N analysis were taken. In all cultures the C:N ratio increased toward the end of
cultivation. In the LN treatment, the C:N ratio was 25 on day 14 and increased to
28 in the last samples. In MN and HN treatments, C:N ratios were 22 and 14 on the

Figure 1 Biomass growth (DW) in E. gracilis cultures. LN, low N (○); MN, medium N (□); HN,
high N (D). Mean ± SE, n ¼ 3, error bars are not visible. Differences in biomass DW were statistically
significant (P < 0.05) in different N treatments. Full-size DOI: 10.7717/peerj.6624/fig-1
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first sampling day and increased to 24 and 16, respectively, towards the end of the
cultivation (Table 2).

Biochemical composition
In all N-treatments, TFA content of E. gracilis increased toward the end of the cultivation
(P < 0.05) (Fig. 3). Although TFA contents were always highest in the late growth phase on
day 19, that is, 121, 123, and 99.5 mg g-1 (12.1%, 12.3%, and 9.95% of DW) in LN,
MN, and HN treatments, respectively, the differences between cultures were not
statistically significant (P > 0.05).

Culture age, as well as N-treatment, influenced the degree of FA unsaturation.
Generally, the prolonged cultivation time resulted in higher SAFA and lowered PUFA
contents. The SAFA content increased in MN and HN treatments (P < 0.05) and the PUFA
content decreased in MN treatment (P < 0.05) (Table 3). The MUFA and LC-PUFA
contents remained stable (P > 0.05) in all cultures until the end of the cultivation (Table 3).
Influence of different N treatments on proportions of SAFAs and LC-PUFAs were
significant only when comparing HN and LN treatments. The contents of SAFAs were
lower (44.4–52.9%) and LC-PUFAs higher (26.1–29.3) in HN treatment than in LN

Figure 2 NH4-N removal in E. gracilis cultures grown under different initial N concentrations.
LN, low N (○); MN, medium N (□); HN, high N (D). Mean ± SE, n ¼ 3, smallest error bars are not
visible. Full-size DOI: 10.7717/peerj.6624/fig-2

Table 2 Proportions of C and N and molar C:N ratio in the biomass under different N treatments in the late stationary phase cultures on
cultivation days 14, 16, and 19.

Day 14 Day 16 Day 19

LN MN HN LN MN HN LN MN HN

C (%) 45.45 ± 0.56 47.02 ± 0.49 47.90 ± 0.36 46.74 ± 0.64 47.53 ± 0.13 48.63 ± 0.21 47.81 ± 0.50 47.88 ± 0.34 48.81 ± 0.65

N (%) 2.1 ± 0.11 2.53 ± 0.13 3.88 ± 0.13 2.0.7 ± 0.08 2.43 ± 0.08 3.81 ± 0.11 1.98 ± 0.08 2.3 ± 0.12 3.66 ± 0.11

C:N 25 22 14 26 23 15 28 24 16

Notes:
Values for C and N are mean ± SE (n ¼ 3).
LN, low N; MN medium N; HN, high N.
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treatment (SAFAs 68.1–71.5% and LC-PUFAs 18.2–19.2%) (P < 0.05), whereas the
differences were not significant between LN and MN or MN and HN treatments (P > 0.05)
(Table 3). The PUFA content was highest in HN treatments (13.4–18.3%), and MUFA
content was lower in the cultures from LN treatment (6.2–6.5%) than in other cultures
(P < 0.05). The main FAs in all cultures were C14:0 and C16:0 SAFAs. The most abundant
PUFA in all cultures was a-linolenic acid (ALA) and the most abundant LC-PUFAs
were arachidonic acid (ARA) and eicosapentaenoic acid (EPA) (Table 3). In addition,
E. gracilis is known to produce C16:4 PUFA (Shibata et al., 2018; Tossavainen et al., 2018),
but since it was not included in our standards, it was excluded from the analysis.
The nutritional status of cultures clearly influenced FA metabolism. The high overall C:N
ratio in LN treatment and the increase in C:N ratio in all cultures during the experiment
resulted in a higher content of C14:0 and a lowered C16:0 content. Lower C:N ratio
favored the synthesis of PUFAs and LC-PUFAs, especially ALA, ARA, and EPA.

In each N-treatment biomass protein content was stable (P > 0.05) during the
stationary phase, but in the HN treatment the content was higher than in other cultures
(P < 0.05). Protein contents in HN treatment varied between 175.1 and 185.6 mg g-1

(17.51–18.56% of DW) whereas the protein contents in LN and MN treatments were
100.2–101.9 mg g-1 (10.02–10.19% of DW) and 109.9–120.9 mg g-1 (10.99–12.09%
of DW) (Fig. 4).

In all treatments, the biomass total carotenoid and chlorophyll a concentrations
were stable during the stationary phase (Figs. 5A and 5B) (P > 0.05). Chlorophyll a and
total carotenoid concentrations were higher in HN treatment (6,554–8,250 and
2,975–3,109 mg g-1) than in MN (3,595–4,638 and 1,734–1,960 mg g-1) or LN (2,493–3,260
and 873–1,337 mg g-1) treatments (P < 0.05) (Figs. 5A and 5B). Diadinoxanthin (Fig. S2),
β-carotene and neoxanthin (Fig. S1) were identified as the most abundant carotenoid

Figure 3 TFA contents in different N treatments in the late stationary phase cultures on days 14, 16,
and 19. LN, low N (gray column); MN, medium N (white column); HN, high N (black column). Mean ±
SE, n¼ 3. Statistically significant (P < 0.05) differences in TFA contents (% of DW) during the cultivation
are shown (a ¼ day 14, b ¼ day 16, c ¼ day 19). Differences in LN, MN, and HN treatments were not
statistically significant (P > 0.05). Full-size DOI: 10.7717/peerj.6624/fig-3
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Table 3 Percentage of FAMEs and sum of SAFAs, MUFAs, PUFAs, and LC-PUFAs in the late stationary phase cultures on days 14, 16, and 19.

Day 14 Day 16 Day 19

FAME LN (%) MN (%) HN (%) LN (%) MN (%) HN (%) LN (%) MN (%) HN (%)

C12:0 2.4 ± 0.4 1.4 ± 0.1 0.9 ± 0.0 2.5 ± 0.1 2.3 ± 0.2 2.1 ± 0.3 2.2 ± 0.1 2.6 ± 0.2 1.9 ± 0.5

C13:0 12.4 ± 1.0 5.7 ± 0.8 3.7 ± 0.1 13.4 ± 0.3 6.0 ± 0.9 5.4 ± 1.8 14.9 ± 0.7 7.7 ± 0.6 7.2 ± 2.5

C14:0 28.0 ± 0.6 21.5 ± 0.9 14.8 ± 0.2 28.9 ± 0.6 23.6 ± 0.3 19.2 ± 2.3 30.7 ± 0.1 25.2 ± 0.0 21.0 ± 3.3

C15:0 7.1 ± 0.1 3.2 ± 0.4 2.4 ± 0.2 7.7 ± 0.1 3.1 ± 0.4 2.5 ± 0.6 8.7 ± 0.1 3.5 ± 0.5 3.3 ± 0.7

C16:0 17.3 ± 0.3 21.3 ± 0.5 20.9 ± 0.1 15.8 ± 0.2 20.9 ± 0.7 19.8 ± 1.3 14.3 ± 0.3 19.4 ± 0.6 18.7 ± 2.1

C16:1 4.0 ± 0.1 4.8 ± 0.2 4.0 ± 0.1 3.9 ± 0.1 5.3 ± 0.2 4.4 ± 0.3 3.9 ± 0.1 5.2 ± 0.3 4.4 ± 0.5

C18:0 0.9 ± 0.1 0.9 ± 0.1 1.7 ± 0.7 0.9 ± 0.0 1.0 ± 0.1 1.0 ± 0.0 0.8 ± 0.0 1.2 ± 0.4 0.9 ± 0.0

C18:1(n-9c) 2.5 ± 0.2 3.3 ± 0.3 3.9 ± 0.8 2.3 ± 0.2 3.2 ± 0.3 3.0 ± 0.1 2.2 ± 0.0 3.6 ± 0.5 3.1 ± 0.0

C18:2(n-6c) 2.9 ± 0.2 4.5 ± 0.2 6.6 ± 0.5 2.3 ± 0.2 3.8 ± 0.0 5.8 ± 1.0 1.9 ± 0.2 3.3 ± 0.1 5.1 ± 1.1

C18:3(n-3) 3.5 ± 0.3 6.4 ± 0.3 11.7 ± 1.7 3.0 ± 0.5 5.2 ± 0.5 9.9 ± 1.9 2.2 ± 0.3 3.9 ± 0.5 8.3 ± 2.0

C20:2 2.7 ± 0.1 3.5 ± 0.2 3.1 ± 0.1 2.5 ± 0.1 3.2 ± 0.2 2.6 ± 0.0 2.4 ± 0.0 3.1 ± 0.1 2.6 ± 0.1

C20:3(n-6) 0.7 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 0.7 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.7 ± 0.1 0.9 ± 0.1 0.8 ± 0.1

C20:4(n-6) 5.7 ± 0.7 9.0 ± 0.4 10.4 ± 0.1 5.8 ± 0.3 8.6 ± 0.2 9.5 ± 0.4 5.5 ± 0.2 8.0 ± 0.1 8.5 ± 0.5

C20:3(n-3) 1.0 ± 0.0 1.6 ± 0.1 1.6 ± 0.0 1.0 ± 0.0 1.5 ± 0.1 1.6 ± 0.0 0.9 ± 0.0 1.4 ± 0.1 1.8 ± 0.1

C20:5(n-3) 6.1 ± 0.4 8.2 ± 0.4 9.1 ± 0.0 6.5 ± 0.3 8.2 ± 0.3 8.8 ± 0.2 6.2 ± 0.2 8.0 ± 0.2 9.1 ± 0.5

C22:6(n-3) 2.6 ± 0.2 3.6 ± 0.2 4.1 ± 0.1 2.7 ± 0.1 3.2 ± 0.2 3.4 ± 0.2 2.5 ± 0.1 3.0 ± 0.1 3.3 ± 0.3

SAFA 68.1 ± 1.7 54.0 ± 1.4 44.4 ± 1.3 69.2 ± 1.0 56.8 ± 1.0 50.0 ± 3.8 71.5 ± 0.6 59.7 ± 0.3 52.9 ± 4.9

MUFA 6.5 ±0.3 8.2 ± 0.3 8.0 ± 0.7 6.2 ± 0.1 8.5 ± 0.4 7.5 ± 0.2 6.2 ± 0.1 8.8 ± 0.3 7.6 ± 0.5

PUFA 6.4 ± 0.4 11.0 ± 0.4 18.3 ± 2.2 5.4 ± 0.7 9.1 ± 0.4 15.7 ± 2.9 4.1 ± 0.5 7.2 ± 0.6 13.4 ± 3.1

LC-PUFA 19.0 ± 1.5 26.8 ± 1.4 29.3 ± 0.2 19.2 ± 0.4 25.6 ± 0.9 26.8 ± 0.7 18.2 ± 0.2 24.4 ± 0.2 26.1 ± 1.4

Note:
Values are mean ± SE (n ¼ 3).

Figure 4 Protein contents in different N treatments in the late stationary phase cultures on days 14,
16, and 19. LN, Low N (gray column); MN, medium N (white column); HN, high N (black column).
Mean ± SE, n ¼ 3. Statistically significant (P < 0.05) differences on days 14, 16, and 19 in different N
treatments are shown. �Significantly higher protein content (% of DW).

Full-size DOI: 10.7717/peerj.6624/fig-4
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pigments on the last cultivation day. Concentrations of identified carotenoids were
always lowest in LN treatment and highest in HN treatment (Fig. 6). Diadinoxanthin was
eluted as a front part of the double peak (Rt ¼ 12.1 min) containing the carotenoid
(m/z 583) and a green pigment (m/z 909). UV–Vis (277, 422, 445 (max), 476 nm) and
mass spectra data ((M + H)+ ¼ 583.4125 amu, 3.6 ppm error, and fragment ions (m/z 565,
547, 221) confirmed the presence of diadinoxanthin (Young & Britton, 1993). Due to this
co-elution of diadinoxanthin with a green pigment, diadinoxanthin amounts were
considered only as suggestive values.

DISCUSSION
As hypothesized, the higher N addition in HN treatment boosted N and C uptake and
resulted in a higher biomass yield of E. gracilis. Exponential growth in all cultures ceased
after 5 days, whereas the NH4-N was exhausted from the medium on day 5 in LN and MN
treatments and on day 7 in the HN treatment. This indicates that growth was N
limited in LN and MN cultures on day 5 but in the thicker HN culture, the primary reason
for growth slowing down was probably light limitation and decreased photosynthetic

Figure 5 Chlorophyll a and total catotenoid concentrations in the late stationary phase E. gracilis
cultures on days 14, 16, and 19. (A) Chlorophyll a and (B) total carotenoid concentrations (µg g-1)
in the late stationary phase cultures on days 14, 16, and 19. LN, low N (gray column); MN, medium N
(white column); HN, high N (black column). Mean ± SE, n ¼ 3. Statistically significant (P < 0.05) dif-
ferences on days 14, 16, and 19 in different N treatments are shown. �Significantly higher chlorophyll a or
carotenoid content. Full-size DOI: 10.7717/peerj.6624/fig-5
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activity. However, the high C:N ratio in stationary phase cultures shows that all cultures
were N limited in late stationary phase; this was seen already on day 14 when the first
samples for C:N analysis were taken. The slow assimilation of C to biomass in stationary
phase cultures was not significant (P > 0.05). Biomass DW increased significantly
only in MN and HN treatments between days 14 and 19 (P < 0.05). Sufficient amount of
NH4-N in HN culture resulted also in higher C and N contents (P < 0.05). Thus, the
differences in biomass production between cultures can be explained by influence of initial
NH4-N concentrations on cellular metabolism. Continued C assimilation and growth
under short-term exposure to N starvation has been shown earlier in cultures of Isochrysis
zhangjiangensis, whereas long-term N deprivation restricted both assimilation and
growth as a response to decreased photosynthetic activity (Wang et al., 2015).
Deterioration of photosynthetic pigments in N deprived cells has been shown earlier
(Wang et al., 2015; Da Silva Ferreira & Sant`Anna, 2017) and indications of this effect was
also seen in this study. Additionally, C uptake of E. gracilis from organic substrates
(Ogbonna, Ichige & Tanaka, 2002) allows C accumulation also under conditions restricting
photosynthesis, which makes growth under N deprivation less sensitive to chlorophyll
degradation.

Total FAs were the only cellular compounds, which quantitatively were influenced by
prolonged incubation (P < 0.05), whereas the differences between treatments were not
significant (P > 0.05). This result indicates that for TFA production of E. gracilis,
culture age is more significant than N concentration and that under long-term N
limitation, and C replete conditions, C flow turns to formation of non-N containing FAs.
C allocation to lipid synthesis in C rich and N deplete conditions has also been shown
earlier (Wang et al., 2015). Clear enhancement of lipid production in aging cultures
has also been observed earlier (Schwarzhans et al., 2015), and here this enhancement took
place regardless of initial N concentrations. Additionally, as shown earlier, significant
enhancement of FA content occurs after the transition from exponential growth phase to
the stationary phase (Regnault et al., 1995). In addition, the availability of C is essential
for FA synthesis, and in C and N limited stationary phase cultures of E. gracilis,

Figure 6 Concentrations of neoxanthin, diadinoxanthin, and β-carotene in different N treatments at
the end of the cultivation. LN, low N (gray column); MN, medium N (white column); HN, high N (black
column). Mean ± SE, n ¼ 3. Full-size DOI: 10.7717/peerj.6624/fig-6
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C deficiency results in lower FA content than under C replete conditions, regardless of
N availability (Regnault et al., 1995). However, under heterotrophic growth conditions,
paramylon formation is enhanced, whereas lipid production is improved in
photoheterotrophic growth (Schwarzhans et al., 2015). Earlier, high glucose content has
been shown to shift metabolism of E. gracilis toward heterotrophy (Schwarzhans et al.,
2015). Thus, photoheterotrophy in the low glucose medium used in this study can
be assumed to be a good strategy for lipid production in N depleted growth conditions.
The C availability for lipid formation is ensured under N limited conditions which restricts
chlorophyll formation and thus inhibits photosynthetic C assimilation.

Algal FA composition defines the usefulness of the produced lipids for different
applications. Following earlier studies (Regnault et al., 1995; Schwarzhans et al., 2015), our
results showed that high N concentration and short cultivation time results in an FA
composition of good nutritional quality since generally the LC-PUFA and PUFA contents
were high and SAFA contents were low. The influence of time for FA saturation degree was
significant (P < 0.05) only for PUFAs in MN and SAFAs in MN and HN treatment.
This indicates that FA metabolism is more sensitive to initial N concentrations than to the
length of time under N deprivation. LC-PUFAs and PUFAs are typically structural
compounds in cell membranes and their proportion in total FAs is relatively high
in optimal growth conditions (Hodgson et al., 1991). Thus, it can be assumed, that relative
proportion of membrane lipids in cultures grown in HN conditions was higher than
in other treatments.

Also, the high content of C14:0 SAFA in LN and MN treatments emphasizes the
importance of nutritional status. C14:0 is more injurious to humans than other SAFAs,
since it more efficiently elevates the blood LDL cholesterol, thus increasing the risk
of cardiovascular diseases (Dubois et al., 2007). A slight increase of C14:0 and decrease in
C16:0 SAFA contents were seen here during the growth in all cultures. A similar trend of
simultaneous lowering of C16:0 content and increase of C14:0 content has been
shown earlier in aging cultures (Schwarzhans et al., 2015). Low N and high organic C
content in the growth medium induces wax ester synthesis in E. gracilis cells (Regnault
et al., 1995) and the high content of SAFAs in LN treatment indicates the same. Harvesting
in the late stationary phase ensures high biomass content and TFA yield. However,
a cultivation of E. gracilis under N depletion results in an undesirable FA profile with low
PUFA and high SAFA content, and is thus not a recommended method for production of
lipids for food or feed applications. Furthermore, from the seventh day onward, the
biomass in the HN treatment was much higher than in LN treatment. The higher biomass
compensates the lower TFA content and results in similar TFA yields, but with less
saturated FAs. By knowing this, we can simplify the production process of E. gracilis based
PUFAs and LC-PUFAs; maximum yield is achieved faster allowing a short harvesting
cycle. With the proposed method a long N starvation period is not needed for maximizing
the yield thereby saving costs in large scale production. Results also indicate that
for the optimal LC-PUFA and PUFA production, maximizing biomass production of
E. gracilis instead of FA content is more important.
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As assumed, higher N availability resulted in higher protein content (P < 0.05),
indicating that N augmentation is a good strategy for production of protein-rich biomass
for food or feed applications. However, the protein content in our cultures was low in
comparison to earlier reported protein contents of 31–61% in E. gracilis. In general,
protein content in algal biomass can vary between 6% and 63% (Becker, 2007). Since N is
the key component in proteins, the low protein content of our cultures was a consequence
of N limitation. A general response to lower cellular N content and higher C:N ratio
in biomass is a decrease in protein as well as non-protein N compounds, as has been shown
for several marine microalgae (Lourenço et al., 2004). A drastic decrease in cellular protein
content of E. gracilis immediately after exposure to N depletion was demonstrated by
Regnault, Piton & Calvayrac (1990).

Chlorophyll a concentration increased as a response to HN treatment (P < 0.05), a
phenomenon shown earlier (Regnault, Piton & Calvayrac, 1990; Lourenço et al., 2004).
Declining chlorophyll concentrations are typical of stationary phase algal cultures
(Lourenço et al., 2004), and since N is a structural component in chlorophyll (Da Silva
Ferreira & Sant`Anna, 2017), this decline is probably at least partly a consequence
of nutrient limitation. Chlorophyll degradation under N depletion has been observed in
cultures of E. gracilis and I. zhangjiangensis (García-Ferris et al., 1996; Wang et al., 2015),
but our results reveal that chlorophyll a concentrations are stable during the
stationary phase (P < 0.05). Thus, we assume that degradation of chlorophyll at the end of
the exponential growth phase and its stability during the late stationary growth phase
might be a response to the switch from autotrophic to photoheterotrophic growth
in conditions where chlorophyll formation and photosynthetic activity is inhibited.
The influence of changing light intensities on increased chlorophyll a synthesis in HN
treatment cannot, however, be completely excluded, since light limitation has been shown
to boost chlorophyll synthesis (Geider, MacIntyre & Kana, 1997).

Against our hypothesis, in the HN treatment, the total carotenoid concentrations also
increased (P < 0.05). Structurally, carotenoids are N free compounds, and the observed
increase under HN conditions may be related to the need for N in the formation
of pigment-protein complexes in the thylakoid membrane (Takaichi, 2011). Alternatively,
production of light harvesting primary carotenoids was enhanced in the dense culture.
The primary carotenoids have functions in photosynthesis, as light harvesting or
photoprotecting pigments, whereas the secondary carotenoids are metabolized under
stress conditions (Christaki et al., 2012), that is, during nutrient deficiency or high light
intensity (Grung & Liaaen-Jensen, 1993). However, response to N as well as P limitation
seems to be specific for different carotenoid pigments. For example, the content of
the secondary carotenoid astaxanthin in Haematococcus pluvialis increased under N and P
limitation, whereas the concentrations of primary carotenoids lutein and β-carotene,
and the secondary carotenoid cantaxanthin decreased (Boussiba et al., 1999). The major
carotenoids identified here (neoxanthin, diadinoxanthin, and β-carotene), have been
classified as primary carotenoids of E. sanguinea (Grung & Liaaen-Jensen, 1993).

We could confirm diadinoxanthin as the most abundant carotenoid pigment in
E. gracilis, which is following earlier findings (Brandt & Wilhelm, 1990;
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Schagerl, Pichler & Donabaum, 2003; Kato et al., 2017). Diatoxanthin is a minor
carotenoid in E. gracilis (Schagerl, Pichler & Donabaum, 2003; Takaichi, 2011; Kato et al.,
2017), but it was not present in our cultures, whereas β-carotene was shown here and
earlier to be one of the major carotenoids of the species (Goodwin & Jamikorn, 1954;
Heelis et al., 1979; Takaichi, 2011). However, both diadinoxanthin and diatoxanthin are
pigments syntethized in the so-called diadinoxanthin cycle, and in diatoms this cycle has
importance in photoprotection (Lepetit et al., 2010). In high light conditions,
diadinoxanthin is de-epoxidized to diatoxanthin, and in low light intensity, diatoxanthin is
epoxidazed back to diadinoxanthin (Lepetit et al., 2010). This might explain the lack
of diatoxanthin in our dense cultures. The stability of total carotenoid content during the
stationary phase (P > 0.05) shows that in E. gracilis, carotenoids are not degraded when
the growth conditions chance unfavorable for photosynthesis. Thus, a rapid
transformation of stored diadinoxanthin to diatoxanthin can provide an excellent
photoprotection system when cells are exposed to high light intensity. Lutein has also been
identified as an abundant carotenoid in E. gracilis (Goodwin & Jamikorn, 1954), but this was
later claimed to be incorrect, and the corresponding pigment was first identified as
antheraxanthin (Krinsky & Goldsmith, 1960) and later as diadinoxanthin (Heelis et al., 1979).

Our study is the first one to reveal the influence of N limitation on carotenoid
composition of E. gracilis on the late stationary growth phase. The response to
N availability was similar for all quantified carotenoids, which is in line with earlier studies
showing that concentrations of β-carotene in H. fluvialis (Boussiba et al., 1999) and
diadinoxanthin in Heterocapsa sp. (Latasa & Berdalet, 1994) cultures decrease under
N limitation. Knowledge of carotenoid production in E. gracilis is still insufficient and
contradictory, and in future, the differences between genotypes or response of pigment
biosynthesis to different growth conditions should be clarified. Presently, diadinoxanthin
is not utilized in biotechnology. The diadinoxanthin cycle pigments are important in
photoprotection and singlet oxygen scavenging in algae, and antioxidative properties
and the potential applications of diadinoxanthin need further investigations.

CONCLUSION
This study showed that long term N limitation is not a good strategy to boost lipid
production of E. gracilis for nutritional use. Long cultivation time and strict N limitation
results in higher TFA concentrations but poor FA composition with low PUFA and
LC-PUFA concentrations and high SAFA content. Greater availability of N results in
higher protein, chlorophyll a, and carotenoid concentrations. Thus, N availability is critical
for the maximal production of PUFAs, LC-PUFAs, proteins and pigments, and long-term
N limitation is not a recommended method for production of E. gracilis biomass for
nutritional purposes.
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concentrations of neoxanthin, diadinoxanthin, and β-carotene are in Dataset S5.
These values were used in statistical analysis to compare DW, biomass C, N and protein
contents, total FA contents, proportion of SAFAs, MUFAs, PUFAs, and LC-PUFAs
and total chlorophyll a and carotenoid concentrations in different N (LN, MN, and HN)
treatments.
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