

Microgeographic variation in body condition of three Mexican garter snakes in central Mexico

Erika Valencia-Flores ¹, Crystian S Venegas-Barrera ², Victor Fajardo ³, Javier Manjarrez ^{Corresp. 1}

Corresponding Author: Javier Manjarrez Email address: jsilva@uaemex.mx

Background. Geographic variation in body size and condition can reveal differential local adaptation to resource availability or climatic factors. Body size and condition are related to fitness in garter snakes (*Thamnophis*), thus good body condition may increase survival, fecundity in females, and mating success in males. Phylogenetically related species in sympatry are predicted to exhibit similar body condition when they experience similar environmental conditions. We focused on interspecific and geographical variation in body size and condition in three sympatric Mexican garter snakes from the highlands of Central Mexico. Methods. We assessed SVL, mass, and body condition (obtained from Major axis linear regression of In-transformed body mass on In-transformed SVL) in adults and juveniles of both sexes of Thamnophis eques, T. melanogaster, and T. scalaris sampled at different locations and ranges from 3-11 years over a 20-year period. Results. We provide a heterogeneous pattern of sexual and ontogenic reproductive status variations of body size and condition among local populations. Each garter snake species shows locations with good and poor body condition; juvenile snakes show similar body condition between populations, adults show varying body condition between populations, and adults also show sex differences in body condition. We discuss variations in body condition as possibly related to the snakes' life cycle differences.

¹ Facultad de Ciencias. Universidad Autónoma del Estado de México, Toluca, Estado de México, México

División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Ciudad Victoria, Tamaulipas, México

Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico

2 MICROGEOGRAPHIC VARIATION IN BODY

3 CONDITION OF THREE MEXICAN GARTER SNAKES

4 IN CENTRAL MEXICO

5

6 Erika Valencia-Flores¹, Crystian S. Venegas-Barrera², Victor Fajardo³ and Javier Manjarrez¹

7

- 8 ¹ Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México,
- 9 México
- 10 ² División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria,
- 11 Ciudad Victoria, Tamaulipas, México
- 12 ³ Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México,
- 13 Toluca, Estado de México, México

14

- 15 Corresponding Author:
- 16 Javier Manjarrez¹
- 17 Instituto Literario 100, Centro, Toluca, Estado de México, CP 50000, México
- 18 Email address: jsilva@uaemex.mx

19

20 ABSTRACT

21	Background. Geographic variation in body size and condition can reveal differential local
22	adaptation to resource availability or climatic factors. Body size and condition are related to
23	fitness in garter snakes (Thamnophis), thus good body condition may increase survival, fecundity
24	in females, and mating success in males. Phylogenetically related species in sympatry are
25	predicted to exhibit similar body condition when they experience similar environmental
26	conditions. We focused on interspecific and geographical variation in body size and condition in
27	three sympatric Mexican garter snakes from the highlands of Central Mexico.
28	Methods. We assessed SVL, mass, and body condition (obtained from Major axis linear
29	regression of ln-transformed body mass on ln-transformed SVL) in adults and juveniles of both
30	sexes of <i>Thamnophis eques</i> , <i>T. melanogaster</i> , and <i>T. scalaris</i> sampled at different locations and
31	ranges from 3-11 years over a 20-year period.
32	Results. We provide a heterogeneous pattern of sexual and ontogenic reproductive status
33	variations of body size and condition among local populations. Each garter snake species shows
34	locations with good and poor body condition; juvenile snakes show similar body condition
35	between populations, adults show varying body condition between populations, and adults also
36	show sex differences in body condition. We discuss variations in body condition as possibly
37	related to the snakes' life cycle differences.
38	
39	INTRODUCTION
40	Organisms usually respond to differences in environmental conditions by exhibiting local
41	adaptation in phenotypic traits. Geographic variation in phenotypic traits associated with body
42	size and condition can reveal differential adaptation of local populations to local biotic and
43	abiotic fluctuations as presence of related species, resource availability, or climatic factors

44 (Bronikowski & Arnold 1999, Bronikowski 2000, Miller et al. 2011). Also, geographic variation in body size and body condition can reveal fundamental variation in selective pressures, 45 especially in reptiles such as snakes (Bronikowski & Arnold 1999, Miller et al. 2011). Thus, 46 47 analyses of geographic variation in body size and condition are important to explain locally 48 variable adaptations that produce morphological diversity in snake species. Geographic variation 49 in body condition comes from many causes, including phenotypic plasticity (Krause, Burghardt 50 & Gillingham 2003) or microevolutionary change among natural populations (Bronikowski 2000). These population differences may arise from geographic variation in food resources 51 52 (Bronikowski & Arnold 1999), climate (Ashton 2001), or intra-inter species interactions (e.g. 53 Kurzava & Morin 1994). 54 Body condition is an expression of weight and length (size-adjusted body mass), and it is 55 correlated with body reserves (Hayes & Shonkwiler 2001), especially with energy stores in the liver, muscle, and fat of snakes (Bonnet et al. 1998, Falk, Snow & Reed 2017). During periods of 56 low resource availability, starvation and low body reserves are a good predictor of mortality 57 58 (Shine et al. 2001, Kissner & Weatherhead 2005), decreased reproductive status (Naulleau & Bonnet 1996, Lind & Beaupre 2015, Catherine, LeMaster & Lutterschmidt 2018), and low 59 60 growth rates in snakes (Bronikowski 2000). 61 Thus, there is a relation between body size and condition with fitness, but in different 62 ways for the two sexes, especially with reproductive status of snakes. For example, a good body 63 condition may be associated with enhanced survival of both sexes of garter snakes, greater fecundity in female garter snakes, and increased mating success for males (Naulleau & Bonnet 64 65 1996); thereby, a reduction in body condition may reduce reproductive capacity (Lind & Beaupre

66 2015). Conversely, adult female snakes in poor condition that are carrying eggs experience greater mortality (Madsen & Shine 1993, Brown & Weatherhead 1997, Shine et al. 2001). 67 Additionally, phylogenetically related species in sympatry are predicted to exhibit similar 68 69 body condition when they have similar ecology, because they share similar evolutive history, 70 interspecific interactions and selective pressures (i.e. Yom-Tov & Geffen 2006, Koyama et al. 71 2015, Sivan et al. 2015). For example, closely related species of garter snakes with highly 72 overlapping ranges in Mexico, *Thamnophis melanogaster* and *T. eques*, show similar patterns of neonate body condition as a function of date of birth (Manjarrez & San-Roman-Apolonio 2015). 73 74 To understand the complex evolution of body condition, we studied interspecific and 75 geographical variation in traits known to be associated with body condition in three sympatric 76 Mexican garter snakes (*Thamnophis* sp.) inhabiting five sites from the highlands of Central 77 Mexico. Given that the geographic distribution of these three garter snakes comprises a range of different environmental conditions, we hypothesized that traits associated with body condition 78 79 of snakes would potentially reveal a pattern of geographical variation among local populations 80 that could be influenced by dietary differences, ontogenic reproductive status (juvenile, adult), 81 and sex of snakes. We predicted that the geographic variation in body condition in garter snakes 82 is influenced by diet differences among populations, such that body condition would vary among populations. We discuss possible body condition differences as they are related to life cycle 83 differences. 84 85 In this study we assessed snout-vent length (SVL), mass, and body condition in adults and juveniles of both sexes from three sympatric garter snakes in the Central Mexican Highlands 86 (Fig. 1); Mexican garter snake (*Thamnophis eques*), Mexican Black-bellied garter snake (*T.* 87 88 melanogaster), and Longtail Alpine garter snake (T. scalaris). They are grouped within the well-

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

supported clade of garter snakes composed of species found mostly in Mexico (de Queiroz, Lawson & Lemos-Espinal 2002, Guo et al. 2012, McVay & Carstens 2013). Garter snakes are the most abundant snake genus in Central Mexico (Flores-Villela, Canseco-Marquez & Ochoa-Ochoa 2010). Garter snakes exhibit substantial variation within and among species in certain aspects of morphology, behavior and physiology, a pattern specially demonstrated in two North American species recognized as examples of evolution (Burghardt & Schwartz, 1999). There is considerable intra-interspecific variation in color patterns, body size, diet, habitat, resistance to toxic prey, reproductive characteristics and behavior that the patterns of the constraints may vary among poplations (Burghardt & Schwartz 1999, Rossman, Ford & Seigel 1996). In general, garter snakes are sexually dimorphic in body size (Shine 1993) with females regularly larger than males (Shine 1994). Almost all studies comparing the body condition of garter snake species were conducted separately for each sex and rarely have been combined in a single study; therefore, there is scarce information of possible sex differences in garter snake body condition, but see (Rollings et al. 2017). We chose the species T. eques, T. melanogaster, and T. scalaris that occur in Central Mexico because there are no studies that describe the body condition or its possible interspecific or spatial variations under natural conditions for these three species. Only one study of T. melanogaster and T. eques detected body condition patterns in offspring born from females caught in the wild (Manjarrez & San-Roman-Apolonio 2015). For both species, body condition of neonates differed by being lower in the early season and higher in the late season. Snout-vent length of neonates and mean mass of neonates per litter did not change throughout the birth season (Manjarrez & San-Roman-Apolonio 2015).

Thamnophis eques is widely distributed from Central Mexico to southern New Mexico and Arizona in the United States (Rossman, Ford & Seigel 1996). It is a generalist snake because it preys on both terrestrial and aquatic prey such as frogs, fish and tadpoles, and occasionally, mice and lizards (Drummond & Macías García 1989, Manjarrez 1998, Manjarrez, Pacheco-Tinoco & Venegas-Barrera 2017). Thamnophis melanogaster is endemic to the Central Mexican Plateau. It is a semiaquatic snake present at the edge of water bodies and preys mostly on tadpoles, fish, and leeches (Rossman, Ford & Seigel 1996, Manjarrez, Macías García & Drummond 2013). Thamnophis scalaris is also endemic to Central Mexico (Rossman, Ford & Seigel 1996). It inhabits forests and grasslands, where it specializes on earthworms, although it can eat vertebrates such as lizards and mice (Manjarrez, Venegas-Barrera & García-Guadarrama 2007).

MATERIALS & METHODS

In Central Mexico, we irregularly sampled garter snakes at eight different locations in the Rio Lerma drainage (Fig. 1A) over a period of 20 years, however, we selected only those five populations (Fig. 1B) with more than 24 records of snakes, which allowed us to make spatial and sex comparisons. We selected the records of snakes collected over three different years for *T. scalaris* (2003, 2005, and 2010) at three locations; seven years for *T. melanogaster* (2005–2011), at two locations, and eleven years for *T. eques* (2000–2003, 2005–2011) at three locations (Table 1). Locations are separated by 92.6 Km of mean distance (SD = 80 Km, range 9.5–215 km). Among the five sites, mean annual temperature ranged from 13.7°–18.1°C and mean annual precipitation ranged from 116 mm–755.8 mm (Table 1). *Thamnophis eques* were captured

between March and November, *T. melanogaster* between January and December, and *T. scalaris* between June and November.

We found snakes by searching under rocks and tree trunks, and some were found simply basking on the ground. All snakes were captured by hand. Adult females were carefully examined for the presence of embryos, and those identified as gravid were excluded from analysis. Measurements of captured snakes included sex (visual inspection of tail-base breadth or by everting the male hemipenes in small snakes), snout-vent length (SVL), and mass (measured on an electronic scale [±0.1 g]). Dietary differences among the localities were examined by analysis of stomach contents from *T. eques* and *T. melanogaster*. We obtained stomach contents by making the snakes regurgitate by abdominal palpation (Fitch 1987). For *T. scalaris*, no stomach contents were recorded. Immediately after processing, snakes were released where they had been captured.

This study received the approval of field permit (Secretaria del Medio Ambiente y Recursos Naturales # 07164) and the ethics committee of the Universidad Autónoma del Estado de México (Number 4047/2016SF). All subjects were treated humanely on the basis of guidelines outlined by the American Society of Ichthyologists and Herpetologists (ASIH, 2004).

Analysis

Individual body condition was calculated using residuals from the Major axis (MA) linear regression of ln-transformed body mass on ln-transformed SVL. This MA residual index is considered an excellent estimator of true snake body condition because it shows a strong association with body fat mass but not SVL (Falk, Snow & Reed 2017). The condition that the MA linear regression is unbiased in with respect to size is considerable for hypothesis testing, because an absence of correlation with size permit to compare MA residual index across

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

individuals of different size ranges. Particularly, only 2% of the variation in the MA residual index is associated with SVL (Falk, Snow & Reed 2017). This regression was significant for all species (T. eques, r = 0.90, P < 0.0001; T. melanogaster, r = 0.93, P < 0.0001; T. scalaris, r = 0.900.95, P < 0.0001). Residuals were used to categorize body condition, with positive residuals corresponding to individuals with good body condition and negative residuals corresponding to individuals with poor body condition (Weatherhead & Brown 1996, Falk, Snow & Reed 2017). In this way, the average condition by location is interpreted as good or bad condition by location for each species. Because the optimal body condition should approximate the true body condition of the snakes and should be unbiased with respect to body size, we evaluated this relationship with Kendall rank correlation coefficient to test for a correlation between body condition and Intransformed SVL as a measure of size and estimated the percent variation in body condition. Also, with the coefficient of determination (R^2) , we estimated the percent variation in body condition and mass that can be explained by SVL. Geographic comparison. The SVL and mass of snakes were transformed with natural logarithms prior to analyses. We utilized one-way analyses of variance (ANOVA) to compare body condition, SVL, and mass as dependent variables among populations of each species. In these analyses, we pooled male and female snakes because a three-way ANOVA (locality, year, and sex) indicated that body condition, SVL and mass within each species did not differ between sexes, but did differ among locality and between years (Table 2). We used a Chi-square goodness-of-fit test to determine if

sex ratio among species was different than 1:1 (Table 3). Statistical significance was assessed at

 $\alpha = 0.05$. All data are reported as means ± 1 SD.

Sexual and size status comparison

Each snake was assigned an ontogenic reproductive status (juvenile, adult) according to size at capture (adult snakes > 39.0, 33.0, and 34 cm SVL for *T. eques*, *T. melanogaster* and *T. scalaris*, respectively; Manjarrez 1998, Manjarrez, Venegas-Barrera & García-Guadarrama 2007). We performed a discriminant function analysis (DFA) for testing intraspecific differences (between location, sex, and size category) according to the mean of the exploratory variables (SVL, mass, and body condition) and for generating linear combinations that classify snakes as a function of their morphological traits associated with snake body condition. The grouping variables were location, sex (male, female) and ontogenic reproductive status. DFA is an inferential, descriptive multivariate procedure for testing differences between groups according to the mean of all variables and for generating linear combinations that classify objects as a function of their characteristics (Statistica, ver. 12; StatSoft 2012).

The objective of DFA was to test differences between groups and identify which variables discriminate between two or more groups. Comparisons between groups were performed under the null hypothesis that morphological traits between categories of grouping variables were similar, and the estimated value was contrasted with the theoretical value of the F-distribution. We employed a probability of 0.05 to test the hypothesis, where P values lower than 0.05 were associated with groups of snakes showing different morphological traits, whereas values greater than or equal to 0.05 were associated with groups with similar morphological traits. The canonical average of the observations from each category (centroid) for the significant roots (canonical scores) was plotted, which reflects morphological variations between categories of grouping variables. The position of the centroids was interpreted using the variables that contributed most to discriminating between groups.

203

204

205

206

207

208

209

210

We chose those variables that exhibited a coefficient of the factor structure higher than 0.5 or lower than -0.5. The coefficients represent the correlation between the original variables and the roots. We applied one-way ANOVAs or Student-t with Statistica software (ver. 8.0 StatSoft, Tulsa, Oklahoma, USA) when only one morphological variable exhibited a coefficient of the factor structure higher than 0.5 or lower than -0.5.

This study received the approval of field permit and the ethics committee of the Universidad Autónoma del Estado de México (Number 4047/2016SF). All subjects were treated humanely on the basis of guidelines outlined by the American Society of Ichthyologists and Herpetologists (ASIH, 2004).

The biggest species of garter snake was T. eques with a mean body size of SVL 43.43 ± 17.57

211

212

213

223

224

RESULTS

cm (range 12.51–81.30), mass of 55.62 ± 60.56 g (range 1.40–335.86, n = 253). Thamnophis 214 215 melanogaster was slightly larger than T. scalaris (T. melanogaster: SVL 29.17 ± 41 cm [range 14.40-66.0], mass 19.10 ± 23.3 g [range 1.62-196.0], n = 686; T. scalaris: SVL 28.70 ± 9.21 cm 216 217 [range 12.10–53.0], mass 16.44 ± 12.59 g [range 1.30–60.70], n = 80). 218 The number of males and females collected was independent of locations sampled for T. melanogaster ($\chi^2 = 0.001$, df = 1, P = 0.97), and T. scalaris ($\chi^2 = 3.69$, df = 2, P = 0.15), but 219 dependent on location for T. eques ($\chi^2 = 10.4$, df = 2, P = 0.006). Considering all individuals 220 221 collected, the sex ratio was biased toward females. For *T. eques* and *T. scalaris*, the sex ratio was skewed toward females in two or three locations analyzed (Table 3), whereas the sex ratio for T. 222

melanogaster was biased toward females in Cuitzeo but not in Lerma (Table 3). For T. scalaris

the female bias was very distinct, especially Zempoala where no males were found (Table 3).

PeerJ

225 Both body condition (residuals from MA linear regression of ln-transformed body mass on In-transformed SVL) and body mass were related to In-SVL in each garter snake (Table 4). 226 227 The R^2 values suggest that more than 80% of the variation in body mass is explained by SVL, and less than 12% of the variation in body condition is explained by SVL (Table 4). 228 229 Geographic comparison 230 Thamnophis eques. For the three locations that we analyzed for T. eques (Lerma, Cerrillo and Cuitzeo), we observed a difference in mean body condition. Thamnophis eques from Lerma 231 showed a mean poor body condition that was the lowest of the three populations ($F_{2.250} = 10.7$, P232 233 < 0.0001; Fig. 2), although snakes in this location were significantly larger than in the other two (ln-SVL $F_{2,250} = 6.7$, P = 0.001). Conversely, T. eques from Cuitzeo showed the best body 234 235 condition, but the shortest length (Fig. 2). Mean body mass was not different between locations 236 of *T. eques* (ln-mass $F_{2,250} = 2.2$, P = 0.11). Thamnophis melanogaster. For T. melanogaster, the statistical test did not detect a significant 237 difference in mean body condition between the two locations, Lerma and Cuitzeo ($F_{1.684} = 3.1$, P238 = 0.07). However, the Lerma snakes were significantly larger (ln-SVL $F_{1.684}$ = 42.3, P < 0.0001), 239 and heavier than those collected in Cuitzeo (ln-mass $F_{1.684} = 56.4$, P < 0.0001; Fig. 2). 240 241 Thamnophis scalaris. In this species the mean SVL and mass showed no differences among the three locations analyzed (Lerma, S. Morelos and Zempoala, In-SVL $F_{2,77} = 1.55$, P = 0.21; In-242 mass $F_{2.77} = 0.58$, P = 0.56), however, mean body condition was good in the individuals from S. 243 Morelos and poor for those from Zempoala ($F_{2,77} = 20.9$, P < 0.0001; Fig. 2). 244 Sexual and size status comparison 245 246 The results of DFA showed that each garter snake had a unique pattern of intraspecific 247 differences.

248 Thamnophis eques. Juvenile females of Cuitzeo had a better body condition than juvenile females of Lerma ($t_{36} = 2.17$, P = 0.03), but body size (SVL and mass) were similar between 249 Juvenile females of both locations ($F_{2.35} = 2.9$, P = 0.06). Juvenile males T. eques have similar 250 body size and body condition between Lerma and Cuitzeo. 251 252 Adult males T. eques of Cuitzeo had a higher mass $(140 \pm 130.1 \text{ g})$ than adult males of Lerma $(57.2 \pm 32.7 \text{ g})$ and Cerrillo $(49.7 \pm 18.7 \text{ g}, \text{ANOVA } F_{2.37} = 8.2, P < 0.0001)$. Adult 253 female T. eques of Lerma presented greater body size (SVL 59.0 \pm 9.3 cm; mass 104.0 \pm 68.1 g) 254 than adult females of Cerrillo (SVL 49.7 ± 8.5 cm; mass 71.0 ± 41.3 g; DFA $F_{4.158}$ = 3.51, P = 255 256 0.008, Fig. 3). Thamnophis melanogaster. Juvenile male T. melanogaster showed that body size traits and the 257 258 body condition were similar between Lerma and Cuitzeo ($F_{1.165} = 1.3$, P = 0.25). In the case of 259 juvenile female T. melanogaster, SVL was greater in Lerma (26.2 \pm 4.8 cm) than Cuitzeo (23.3 \pm 4.7 cm), and body condition was similar between both locations ($F_{1,260} = 5.06$, P = 0.02). 260 261 Adult T. melanogaster of both sexes presented a similar pattern. A better body condition in Lerma than Cuitzeo (males: 0.09 ± 0.29 vs. -0.04 ± 0.24 ; females 0.18 ± 0.34 vs. -0.07 ± 0.09 262 0.33), and similar body size (SVL and mass) between Lerma and Cuitzeo (males: $F_{1.86} = 4.9$, P =263 264 0.02; females: $F_{2,98} = 8.07$, P = 0.0006). Thamnophis scalaris. Only females T. scalaris (juvenile and adult) were enough to make 265 266 comparisons between locations. Juvenile female T. scalaris of Zempoala were significantly 267 longer, lighter, and had poor body condition than other locations. Lerma snakes showed lower SVL, mass, and average body condition, while snakes from Cerrillo and S. Morelos presented a 268 better body condition, average SVL, and higher mass ($F_{1,165} = 1.3$, P = 0.25, Fig. 4A). 269

270	Adult female T. scalaris of Lerma and Zempoala had poorer body condition than those of
271	Cerrillo and S. Morelos ($F_{6,62} = 8.4$, $P < 0.0001$, Fig. 4C).
272	Stomach contents
273	Of the total snakes collected by species in this study, 17.4% (44 <i>T. eques</i>) and 13.3% (91 <i>T.</i>
274	melanogaster), had some prey in the stomach. The diet of T. eques in Lerma and Cerrillo
275	included aquatic prey (leeches, fish and tadpoles) and amphibious prey (frogs). The terrestrial
276	prey (earthworms and mice) were only ingested by <i>T. eques</i> at Cerrillo (Table 5). At Cuitzeo, <i>T.</i>
277	eques consumed mainly fish and only some leeches (Table 5).
278	The diet of <i>T. melanogaster</i> included more prey items at Lerma than in Cuitzeo. At
279	Lerma, the fish were the main prey and leech and axolotl were ingested in similar proportion
280	(Table. 5). At Cuitzeo, <i>T. melanogaster</i> snakes contained only fishes.
281	
282	DISCUSSION
283	In this study, we provide a heterogeneous pattern of sexual and ontogenic reproductive status
284	variations in body size and condition among populations of three sympatric garter snakes
285	collected in the Central Mexico Highlands over several years. We found: (1) each garter snake
286	species shows good and poor body condition in a variety of locations, (2) juvenile garter snakes
287	show similar body condition between populations, (3) adults show different body conditions
288	between populations, and (4) adults also show sex differences in body condition. Thus,
289	geographical differences in body condition were present in juvenile female <i>T. eques</i> , both sexes
290	of adult <i>T. melanogaster</i> , and juvenile and adult females of <i>T. scalaris</i> .
291	Admionally, dietary differences were checked to associated the ith body condition
292	differences between the localities. Thamnophis eques snakes where fish were the predominant

prey (Cuitzeo) had significantly be ody condition than snakes that fed on fish and other aquatic, terrestrial and amphibious prey (Lerma and Cerrillo). Although *T. eques* snakes from Lerma and Cerrillo have greater body size than Cuitzeo snakes. Overall, adult females were significantly heavier than females from Cuitzeo. On the other hand, *T. melanogaster* snakes where more prey items were ingested (Lerma), had significantly greater body size (SVL and mass) and better body condition (adult males and females) than *T. melanogaster* snakes where fish were the only prey (Cuitzeo).

We hypothesized that body condition of garter snakes would reveal a pattern of geographical variation influenced by ontogenic reproductive status (juvenile, adult), sex, and diet differences among populations. Several problems may confound these inter- and intraspecific patterns of differences in body condition because each responds to complex interactions between sexual and ontogenic reproductive status with local environmental variables and local resource availability (Congdon 1989, Shine et al. 2001). Thus, the differences in body condition between sites may result from differences in local prey availability, dietary quality, or predation efficiency (Britt, Hicks & Bennett 2006), or a complex spatio-temporal interaction that is reflected in micro-geographic diet variation, a pattern common in garter snakes (Seigel 1996). The body condition differences among years and localitions within species would be evidence that the patterns found are likely just based on prey availability or climatic constraints on feeding as temporarily fluctuating assimilation rates.

Morphological plasticity induced by diet is extensively documented, especially for natricine snakes (e.g. Krause, Burghardt & Gillingham 2003, Vincent et al. 2009, Hampton 2013), and some involve comparisons of snake populations separated by geographic distances. In this study, location and diet were a significant overall factor influencing body size and body

condition in garter snakes. The diet has differential effects on *T. eques* and *T. melanogaster*. Both snakes eating fish (Cuitzeo populations) have shorter or lighter relative body sizes, but they respond differentially in their body condition to the piscivorous diet. The generalist *T. eques* have relative best body condition at Cuitzeo, while the specialist *T. melanogaster* apparently does not present significant differences in body condition between the piscivorous population versus other prey. The differences across the two localities may not be strictly due to diet, as is suggested by the fact that juveniles and adult males and females in the two sites, show particular differences in any measure of body size (SVL and mass).

Sympatric and closely related species are expected to exhibit a similar body condition due to the ecological similarities that impose common selective pressures, as suggested by the study in closely related and sympatric garter snakes *T. melanogaster* and *T. eques* with similar patterns of neonate body condition (Manjarrez & San-Roman-Apolonio 2015). However, we cannot assume that the garter snakes we studied make similar use of local energy supplies, which may vary according to intra-interspecific competition and available resources (Congdon 1989), especially on prey availability (Krause, Burghardt & Gillingham 2003).

Growth and body condition in snakes may reflect intraspecific competition intensity that would correspond to availability and allocation of energy (Bronikowski 2000, Bronikowski & Arnold 1999, Blouin-Demers, Prior & Weatherhead 2002). This is especially applicable for female garter snakes because they are generally heavier bodied and have greater reproductive energy demands than males (Naulleau & Bonnet 1996, Shine et al. 2001, Blouin-Demers & Weatherhead 2007).

For most of the locations in this study, the sex ratio was biased towards females, a common pattern in other species of *Thamnophis* (Parker and Plummer 1987); however, the basic

question is whether the variation is true, displaying actual population structure, or is false, reflecting different sexual behavioral traits that can influence catchability of males and females at some locations (Parker and Plummer 1987). The sex ratio of the present locations of the garter snakes studied may not be accurate, in this sense, our conclusions about the geographical differences of the corporal condition should be considered with caution due to the sexual variability of the body condition between locations.

Ontogenic differences in body condition can result from differential resource use. For example, studies on *T. melanogaster*, *T. eques*, and *T. scalaris* have reported intraspecific differences in the diet of snakes, such as the changing of aquatic invertebrate to terrestrial vertebrate prey between small and large snakes (Macias-Garcia & Drummond 1988, Manjarrez, Venegas-Barrera & García-Guadarrama 2007, Manjarrez, Macías García & Drummond 2013, Manjarrez, Pacheco-Tinoco & Venegas-Barrera 2017). This suggests different trade-off strategies between growth rate and body mass for resource allocation among sites, according to sex (King 1989, 1997, Krause, Burghardt & Gillingham 2003) and ontogenic reproductive status (Naulleau & Bonnet 1996, Lind & Beaupre 2015). This trade-off has been sparsely studied in neonate snakes (i.e *Nerodia sipedon* and *Elaphe obsolete*; Weatherhead et al. 1999, Blouin-Demers & Weatherhead 2007).

Another reason for geographic variation in the body condition of juvenile and adult snakes includes geographic variation in the percentage of juveniles and adults in the population. For *T. melanogaster*, 94% of juveniles and 76% of adults were collected from Cuitzeo; while for *T. eques* 70% of juveniles and 77% of adults were collected Lerma. In *T. scalaris* locations, this age bias was less evident, with collection percentages of juveniles ranging from 17% to 31% by location, and 15% to 27% for adults.

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

According to our results, the models propose different paths for population fitness of each garter snake species assuming the current body condition. In this way, the future scenario responds according to the local geographic variation of each population, however, this prediction is difficult to rely upon because environmental fluctuations can be unpredictable, and changes in the climate, vegetation, topography, and land use variables will reduce the future potential distribution of these three garter snakes, as has been predicted in Gonzalez et al. (2018).

Another important pattern in this study is the interspecific difference of body condition within the same location. For example, in Cuitzeo, the body condition of *T. eques* is good, and in Lerma it is poor, while in *T. melanogaster* the body condition is inverse; poor in Cuitzeo and good in Lerma. This difference could be explained by interspecific differences in resource use and its differential microdistribution. In this sense, T. eques is a generalist in its diet, ingesting aquatic and terrestrial prey, while T. melanogaster is a specialist ingesting only aquatic prey. The majority of specialist-generalist trade-offs are related with wide ecological traits that result in distinct performance between specialists and generalists (Drummond 1983, Futuyma & Moreno 1988). If these species exploit different foraging environments, it is likely that they are exposed to different environmental conditions. For example, Cuitzeo is a permanent lake that offers a constant aquatic foraging environment for the aquatic specialist *T. melanogaster*, while Lerma is a wetland environment, more suitable for the aquatic-terrestrial *T. eques*, a differential pattern that is reflected in the interspecific differential body condition within both locations. In this sense, the interspecific differences of the body condition can be a reflection of the phenotypic plasticity of both garter snakes, because the geographical difference in the diet is reflected in the local differences of body condition.

The morphological differences found in these studies reflected phenotypic plasticity,
rather than genotypic differences, although the relative function of genotype, ontogeny, and sex
in the presence of this plasticity could only be inquired through future studies. Also, further
exploration including a larger sample size by local diet, is requirement.
CONCLUSIONS
In conclusion, our analyses suggest that traits associated with body condition of sympatric
Mexican garter snakes T. eques, T. melanogaster, and T. scalaris in the Central Mexico
Highlands, reveal a pattern of microgeographical variation among local populations that differ
little by ontogenic reproductive status, and therefore, sex has little or no influence on body
condition in these garter snakes. The diet has differential effects on T. eques and T. melanogaster
in traits associated with body condition.
ACKNOWLEDGEMENTS
For their assistance in the field and laboratory work we thank all of the students of the
Evolutionary Biology Laboratory. Ruthe J. Smith provided comments and corrections regarding
the manuscript. EVF is grateful to the graduate program "Maestria en Ciencias Agropecuarias y
Recursos Naturales" of "Universidad Autonoma del Estado de Mexico" and to the "Consejo
Nacional de Ciencia y Tecnología". Support moral to JM was provides by Carmen Zepeda,
Javier and Mariana Manjarrez-Zepeda.
REFERENCES
Ashton KG. 2001. Body size variation among mainland populations of the western rattlesnake
(Crotalus viridis). Evolution 55:2523–2533.

407	Blouin-Demers G, Prior KA, Weatherhead PJ. 2002. Comparative demography of black rat
408	snakes (Elaphe obsoleta) in Ontario and Maryland. Journal of Zoology, London 256:1-
409	10. DOI: 10.1017/S0952836902000018.
410	Blouin-Demers G, Weatherhead PJ. 2007. Allocation of offspring size and sex by female black
411	ratsnakes. <i>Oikos</i> 116:1759–1767. DOI: 10.1111/j.0030-1299.2007.15993.x.
412	Bonnet X, Shine R, Naulleau G, Vallas-Vacher M. 1998. Sexual dimorphism in snakes: different
413	reproductive roles favour different body plans. Proceedings of the Royal Society B
414	265:179–183.
415	Britt E, Hicks J, Bennett AF. 2006. The energetic consequences of dietary specialization in
416	populations of the garter snake, Thamnophis elegans. The Journal of the Experimental
417	Biology 209:3164–3169 DOI 10.1242/jeb.02366.
418	Bronikowski AM. 2000. Experimental evidence for the adaptive evolution of growth rate in the
419	garter snake Thamnophis elegans. Evolution 54:1760–1767.
420	Bronikowski AM, Arnold SJ. 1999. The evolutionary ecology of life history variation in the
421	garter snake Thamnophis elegans. Ecology 80:2314-2325.
422	Brown GP, Weatherhead PJ. 1997. Effects of reproduction on survival and growth of female
423	northern water snakes, Nerodia sipedon. Canadian Journal of Zoology 75:424-432.
424	Burghardt GM, Schwartz JM. 1999. Geographic variations on methodological themes in
425	comparative ethology: A natricine snake perspective. In: Foster SA, Endler JA, eds.
426	Geographic variation in behavior: Perspectives on evolutionary mechanisms. Oxford:
427	Oxford University Press, 69-94.
428	Catherine AD, LeMaster MP, Lutterschmidt DI. 2018. Physiological correlates of reproductive
429	decisions: Relationships among body condition, reproductive status, and the

30	hypothalamus-pituitary-adrenal axis in a reptile. Hormones and Behavior 100:1–11. DOI
31	10.1016/j.yhbeh.2018.02.004.
32	Congdon JD. 1989. Proximate and evolutionary constraints on energy relations of reptiles.
33	Zoology Physiological 62:356–373.
34	de Queiroz A, Lawson R, Lemos-Espinal JA. 2002. Phylogenetic relationships of North
35	American Garter snakes (Thamnophis) based on four mitochondrial genes: How much
36	DNA sequence is enough?. <i>Molecular Phylogenetics and Evolution</i> 22:315–329. DOI:
37	10.1006/mpev.2001.1074.
38	Drummond H. 1983. Aquatic foraging in garter snakes: a comparison specialist and generalist.
39	Behaviour 86:1–30.
40	Drummond H, Macías García C. 1989. Limitations of a generalist: a field comparison of
41	foraging snakes. <i>Behaviour</i> 108:23–43. DOI 10.1163/156853989X00033.
42	Falk BG, Snow RW, Reed RN. 2017. A validation of 11 body-condition indices in a giant snake
43	species that exhibits positive allometry. PLoS ONE 12: e0180791. DOI:
44	10.1371/journal.pone.0180791.
45	Fitch HS. 1987. Collecting and life history techniques. In: Seigel RA., Collins, J. T. & Novak S.
46	S. eds. Snakes: ecology and evolutionary biology. New York: Macmillan, 143–164.
47	Flores-Villela O, Canseco-Márquez L, Ochoa-Ochoa L. 2010. Geographic distribution and
48	conservation of the herpetofauna of the highlands of Central Mexico. In: Wilson LD,
49	Towsend JH, Johnson JD, eds. Conservation of mesoamerican amphibians and reptiles.
50	Utah: Eagle Mountain Publishing Co., 303–321.
51	Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. <i>Annual Review of</i>

453	Gonzalez-Fernandez A, Manjarrez J, Garcia-Vazquez U, D'Addario M, Sunny A. 2018. Present
454	and future ecological niche modeling of garter snake species from the Trans-Mexican
455	Volcanic Belt. <i>PeerJ</i> 6:e4618. DOI: 10.7717/peerj.4618.
456	Guo P, Liu Q, Xu Y, Jiang KM, Ding L, Pyron RA, Burbrink FT. 2012. Out of Asia: natricinae
457	snakes support the Cenozoic Beringian Dispersal Hypothesis. Molecular Phylogenetics
458	and Evolution 63:825-833. DOI: 10.1016/j.ympev.2012.02.021.
459	Hampton PM. 2013. Feeding in natricines: Relationships among feeding morphology, behavior,
460	performance and preferred prey type. Journal of Zoology 290: 215-224.
461	Hayes J, Shonkwiler J. 2001. Morphometric indicators of body condition: Worthwhile or wishfu
462	thinking? In: Speakman JR, ed. Body composition analysis of animals: A handbook of
463	non-destructive methods. Cambridge: Cambridge University Press, 8–38.
464	King RB. 1989. Body size variation among island and mainland snake populations.
465	Herpetologica 45:335–346.
466	King RB. 1997. Variation in Brown snake (Storeria dekayi) morphology and scalation: Sex,
467	family, and microgeographic differences. Journal of Herpetology 31:335-346.
468	Kissner KJ, Weatherhead PJ. 2005. Phenotypic effects on survival of neonatal northern
469	watersnakes Nerodia sipedon. Journal of Animal Ecology 74:259–265. DOI:
470	10.1111/j.1365-2656.2005.00919.x.
471	Koyama T, Ito H, Kakishima S, Yoshimura J, Cooley JR, Simon C, Sota T. 2015. Geographic
472	body size variation in the periodical cicadas Magicicada: implications for life cycle
473	divergence and local Adaptation. Journal of Evolutionary Biology 28:1270–1277. DOI:
474	10.1111/jeb.12653.

475	Krause MA, Burghardt GM, Gillingham JC. 2003. Body size plasticity and local variation of
476	relative head and body size sexual dimorphism in Garter Snakes Thamnophis sirtalis.
477	Journal of Zoology, London 261:399–407. DOI: 10.1017/S0952836903004321.
478	Kurzava LM, Morin PJ. 1994. Consequences and causes of geographic variation in the body size
479	of a keystone predator, Notophthalmus viridescens. Oecologia 99:271-280.
480	Lind CM, Beaupre SJ. 2015. Male Snakes Allocate Time and Energy according to Individual
481	Energetic Status: Body Condition, Steroid Hormones, and Reproductive Behavior in
482	Timber Rattlesnakes, Crotalus horridus. Physiological and Biochemical Zoology 88:
483	624–633. DOI: 10.1086/683058.
484	Macias-Garcia C, Drummond H. 1988. Seasonal and ontogenetic variation in the diet of the
485	Mexican garter snake, Thamnophis eques in Lake Tecocomulco, Hidalgo. Journal of
486	Herpetology 2:129–134.
487	Madsen T, Shine R. 1993. Costs of reproduction in a population of European adders. <i>Oecologia</i>
488	94:488–495.
489	Manjarrez J. 1998. Ecology of the Mexican Garter snake (<i>Thamnophis eques</i>) in Toluca, Mexico.
490	Journal of Herpetology 32:464–468.
491	Manjarrez J, Venegas-Barrera CS, García-Guadarrama T. 2007. Ecology of the Mexican alpine
492	blotched garter snake (Thamnophis scalaris). Southwestern Naturalist 52:258–262. DOI:
493	10.1894/0038-4909(2007)52[258:EOTMAB]2.0.CO;2.
494	Manjarrez J, Macías García C, Drummond H. 2013. Variation in the diet of the Mexican black-
495	bellied garter snake <i>Thamnophis melanogaster</i> : importance of prey availability and snake
496	body size. Journal of Herpetology 47:413-420. DOI: 10.2307/1948469.

197	Manjarrez J, San-Roman-Apolonio E. 2015. Timing of Birth and Body Condition in Neonates of
198	Two Gartersnake Species from Central Mexico. Herpetologica 71:12–18. DOI:
199	10.1655/HERPETOLOGICA-D-13-00098.
500	Manjarrez J, Pacheco-Tinoco M, Venegas-Barrera CS. 2017. Intraspecific variation in the diet of
501	the Mexican garter snake <i>Thamnophis eques</i> . <i>PeerJ</i> 5:e4036; DOI: 10.7717/peerj.4036.
502	McVay JD, Carstens B. 2013. Testing monophyly without well-supported gene tress: Evidence
503	from multi-locus nuclear data conflicts with existing taxonomy in the snake tribe
504	ThamnophiiniMolecular Phylogenetics and Evolution 68:425–431. DOI:
505	10.1016/j.ympev.2013.04.028.
506	Miller DA, Clark WR, Arnold SJ, Bronikowski AM. 2011. Stochastic population dynamics in
507	populations of western terrestrial garter snakes with divergent life histories. <i>Ecology</i> 92:
808	1658–1671. DOI: 10.1890/10-1438.1.
509	Naulleau G, Bonnet X. 1996. Body condition threshold for breeding in a viviparous snake.
510	Oecologia 107:301–306.
511	Parker WS, Plummer MV. 1987. Population ecology. In: Siegel R, Collins J, Novak S, eds.
512	Snakes: Ecology and Evolutionary Biology. Caldwell: The Blackburn Press, 253–301.
513	Rollings N, Uhrig EJ, Krohmer RW, Waye HL, Mason RT, Olsson M, Whittington CM, Friesen
514	CR. 2017. Age-related sex differences in body condition and telomere dynamics of red-
515	sided garter snakes. Proceedings of the Royal Society B 284: 20162146. DOI:
516	10.1098/rspb.2016.2146.
517	Rossman DE, Ford NB, Seigel RA. 1996. The Garter snakes: Evolution and ecology. Norman:
518	University of Oklahoma Press.

519	Seigel RA. 1996. Ecology and conservation of garter snakes: Masters of plasticity. In: Rossman
520	DA, Ford NB, Seigel RA, eds. The Garter snakes. Evolution and ecology. Norman:
521	University of Oklahoma Press, 55–89.
522	Shine R. 1993. Sexual dimorphism in snakes. In: Seigel RA, Collins JT, eds. <i>Snakes: ecology</i>
523	and behavior. New York: McGraw-Hill, 49–86.
524	Shine R. 1994. Sexual dimorphism in snakes revised. <i>Copeia</i> 1994:326–346.
525	Shine R, Lemaster MP, Moore IT, Olsson MM, Mason RT. 2001. Bumpus in the snake den:
526	effects of sex, size, and body condition on mortality of red-sided Garter snakes. Evolution
527	55:598–604. DOI: 10.1554/0014-3820(2001)055[0598:BITSDE]2.0.CO;2.
528	Sivan J, Kam M, Hadad S, Degen AA, Rosenstrauch A. 2015. Body size and seasonal body
529	condition in two small coexisting desert snake species, the Saharan sand viper (Cerastes
530	vipera) and the crowned leafnose (Lytorhynchus diadema). Journal of Arid Environments
531	114:8–13. DOI: 10.1016/j.jaridenv.2014.10.013.
532	Vincent SE, Brandley MC, Herrel A, Alfaro ME. 2009. Convergence in trophic morphology and
533	feeding performance among piscivorous natricine snakes. Journal of Evolutionary
534	Biology 22:1203–1211.
535	Weatherhead PJ, Brown GP. 1996. Measurement versus estimation of condition in snakes.
536	Canadian Journal of Zoology 74:1617–162.
537	Weatherhead PJ, Brown GP, Prosser MR, Kissner KJ. 1999. Factors affecting neonate size
538	variation in northern water snakes, Nerodia sipedon. Journal of Herpetology 33:577-589.
539	Yom-Tov Y, Geffen E. 2006. Geographic variation in body size: the effects of ambient
540	temperature and precipitation. Oecologia 148: 213-218. DOI: 10.1007/s00442-006-0364-
541	9.

Table 1(on next page)

Capture locations of *T. eques, T. melanogaster* and *T. scalaris* in Central Mexico.

PeerJ

1 TABLE 1. Capture locations of *T. eques, T. melanogaster* and *T. scalaris* in Central Mexico.

Locality	Garter snake present	Coordinates N, W (Datum WGS84)	Elevation (m)	Mean annual temperature (°C)	Mean annual precipitation (mm)
Lerma, Estado de México	T. eques, T. melanogaster, T. scalaris	19°14'28.73", 99°29'41.14"	2573	15.8	158.7
Cerrillo, Estado de México	T. eques	19°24'20.86", 99°41'41.05"	2550	13.7	116
S. Morelos, Estado de México	T. scalaris	19°18'49.58", 99°41'29.07"	2750	13.8	746.9
Cuitzeo, Michoaca n	T. eques, T. melanogaster,	19°55'32.83", 101°08'26.78"	1837	18.1	755.8
Zempoala, Morelos	T. scalaris	19°02'53.40", 99°18'44.54"	2800	14.2	514

Table 2(on next page)

ANOVA of In-SVL and In-mass as dependent variables among locations, years and sex for each garter snake species.

- 1 TABLE 2. ANOVA of ln-SVL and ln-mass as dependent variables among locations, years and
- 2 sex for each garter snake species.

	Location	Year	Sex
T. melanogaster			
body condition	1.25	3.76**	1.54
SVL	21.58***	6.56***	0.18
mass	29.21***	5.50***	0.00
T. eques			
body condition	5.59*	2.56*	0.21
SVL	12.08***	22.75***	0.99
mass	7.47**	20.82***	1.66
T. scalaris			
body condition	14.06***	14.32***	0.23
SVL	7.12**	0.34	0.67
mass	2.42	3.73*	1.10

^{*}P < 0.05

^{4 **} *P* < 0.001

^{5 ***} *P* < 0.0001

Table 3(on next page)

Sex ratio (male:female) of T. eques, T. melanogaster, and T. scalaris for each population collected from Central Mexican Highlands (df = 1 for all tests).

PeerJ

- 1 Table 3. Sex ratio (male:female) of *T. eques*, *T. melanogaster*, and *T. scalaris* for each
- 2 population collected from Central Mexican Highlands (df = 1 for all tests).

	T. eques		T. melanogaster		T. scalaris	
	Sex Ratio	χ^2 test (P)	Sex Ratio	χ^2 test (P)	Sex Ratio	χ^2 test (P)
Lerma	1:1	0.45 (0.49)	1:1	2.0 (0.15)	1:1.5	12.46 (0.0004)
Cuitzeo	1:2	4.33 (0.03)	1:1.4	14.9 (0.0001)		(******)
Cerrillo	1:3	6.76 (0.009)		(******)		
S. Morelos					1:1.7	9.94 (0.001)
Zempoala					0:23	23.0 (<0.0001)

Table 4(on next page)

Kendall rank correlation and R^2 coefficients of In-mass and body condition on In-SVL of T. eques, T. melanogaster and T. scalaris.

PeerJ

- 1 Table 4. Kendall rank correlation and R^2 coefficients of ln-mass and body condition on ln-SVL
- 2 of *T. eques*, *T. melanogaster* and *T. scalaris*.

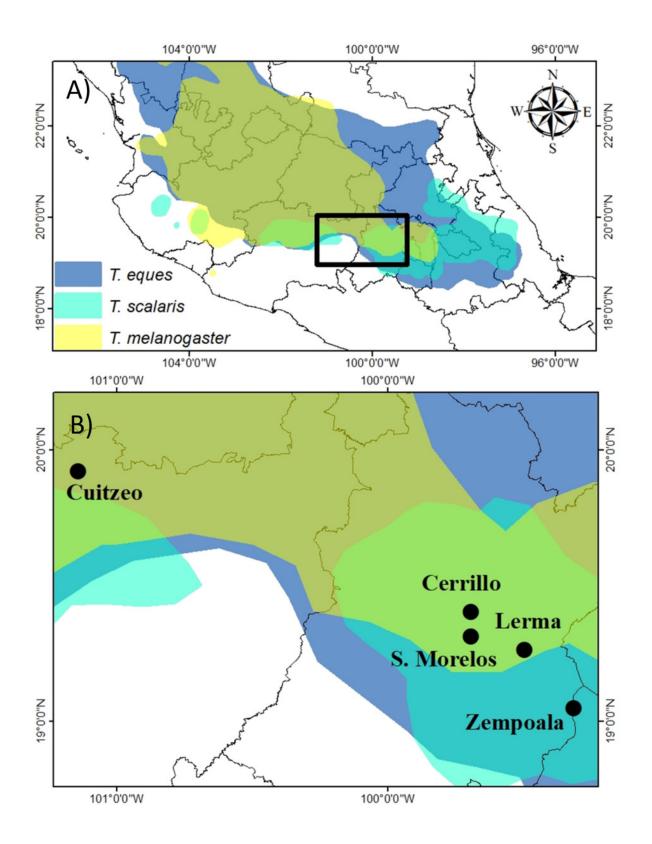
	<i>T. eques</i> $n = 253$	R^2	T. melanogaster $n = 686$	R^2	T. scalaris $n = 80$	R^2
Ln-mass	0.77*	0.84	0.81*	0.88	0.80*	0.92
Body condition	-0.25*	0.12	-0.19*	0.08	-0.21*	0.05

3 * *P* < .0001

4

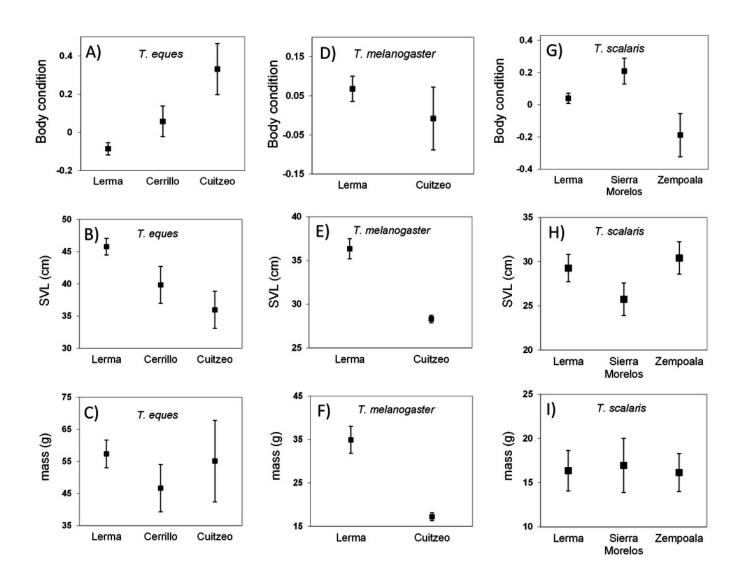
Table 5(on next page)

Number of stomachs containing each prey taxon ingested by *T. eques* and *T. melanogaster* in the Lerma, Cerrillo and Cuitzeo locations. Percentages by location in parentheses.

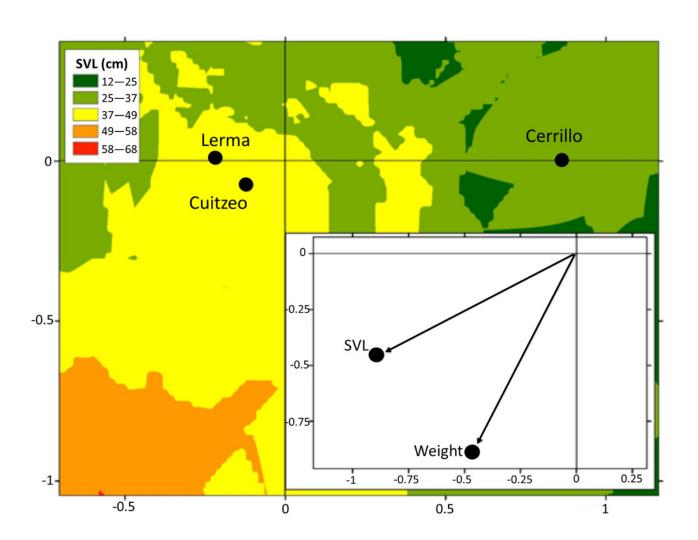

- 1 TABLE 5. Number of stomachs containing each prey taxon ingested by *T. eques* and *T.*
- 2 melanogaster in the Lerma, Cerrillo and Cuitzeo locations. Percentages by location in
- 3 parentheses.

Prey	Lerma	El Cerrillo	Cuitzeo
Thamnophis eques			
Fish	2 (22.2)	3 (12.5)	10 (90.9)
Leech	4 (44.4)	0	1 (9.1)
Tadpole	1 (11.1)	3 (12.5)	0
Earthworm	0	7 (29.2)	0
Frog	2 (22.2)	5 (20.8)	0
Mouse	0	6 (25)	0
Thamnophis melanogaster			
Fish	30 (88.2)		54 (100)
Leech	2 (5.9)		0
Tadpole	0		0
Earthworm	0		0
Axolotl	2 (5.9)		0

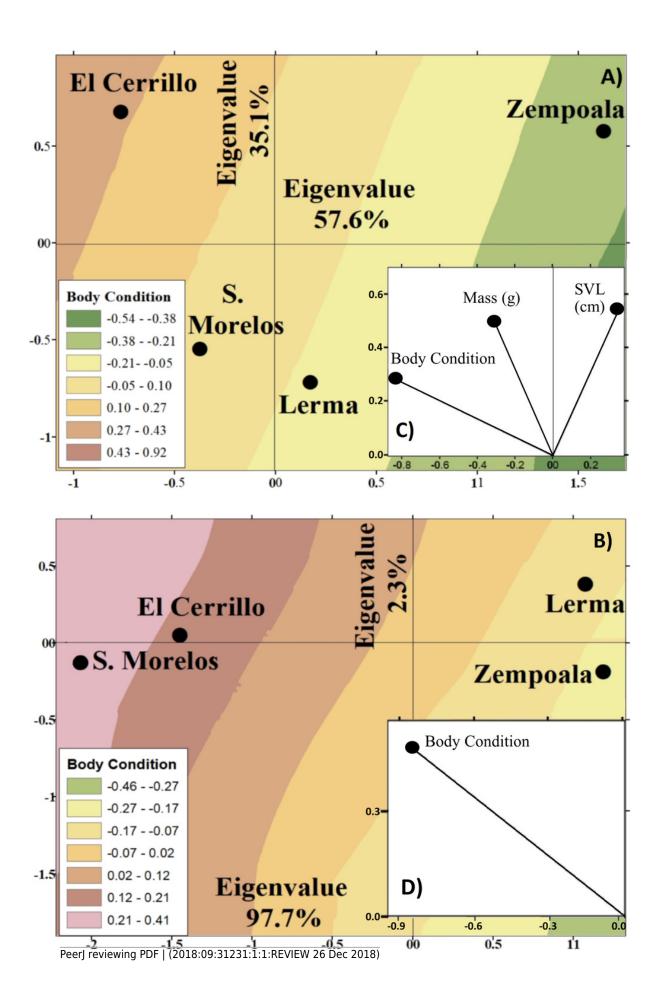
(A) Geographic distribution of *T. eques, T. melanogaster* and *T. scalaris* in Central Mexico (digitalized from Rossman et al. 1996) and (B) study locations in the Rio Lerma drainage.



Body condition, SVL and mass (mean \pm 1SE) of wild-caught snakes *T. eques* (A-C), *T. melanogaster* (D-F), and *T. scalaris* (G-I).


Snakes collected from locations in the Central Mexican Highlands over a period of 20 years. Body condition obtained of residuals from MA linear regression of In-transformed body mass on In-transformed SVL.

Average canonical position (centroid) for Lerma, Cerrillo and Cuitzeo, obtained from a discriminant function analysis of body condition traits in adult female *T. eques* and factor structure.


Isoclines represent variation on SVL of snakes in Lerma, Cerrillo and Cuitzeo.

Canonical position of the centroids of juvenile (A) and adult (B) females of garter snakes *T. scalaris* captured from Lerma, Cerrillo, S. Morelos and Zempoala.

Centroids obtained from a discriminant function analysis and the variables with the greatest discrimination between locations (C and D). Isoclines represent variation of body conditions of snakes in Lerma, Cerrillo, S. Morelos and Zempoala.

