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The gut microbiota is crucial for metabolic homeostasis, immunity, growth and overall health, and it
recognized that early-life microbiota acquisition is a pivotal event for later life health. Recent studies
show that gut microbiota diversity and functional activity are synchronized with the host circadian
rhythms in healthy individuals, and circadian disruption elicits dysbiosis in mammalian models. However,
no studies have determined the associations between circadian disruption in early life, microbiota
colonization, and the consequences for microbiota structure in birds.

Chickens, as a major source of protein around the world, are one of the most important agricultural
species, and their gut and metabolic health are significant concerns. The poultry industry routinely
employs extended photoperiods (>18 hours’ light) as a management tool, and their impacts on the
chicken circadian, its role in gut microbiota acquisition in early life, and consequences for later life
microbiota structure remain unknown. In this study, the objectives were to a) characterize chicken
circadian activity under two different light regimes (12/12 hours’ Light/Dark and 23/1 hours Light/Dark),
b) characterize gut microbiota acquisition and composition in the first four weeks of life, c) determine if
gut microbiota oscillate in synchrony with the host circadian, and d) to determine if fecal microbiota is
representative of cecal microbiota. Expression of clock genes (clock, bmall, and per2) were assayed, and
fecal and cecal microbiota was characterized using 16s rRNA amplicon analyses from birds raised under
two photoperiod treatments.

Chickens raised under 12/12 LD photoperiods exhibited rhythmic clock gene activity, which was absent in
birds raised under the extended (23/1 LD) photoperiod. This study is also the first to report differential
microbiota acquisition under different photoperiod regimes. Gut microbiota members showed a similar
oscillating pattern as the host, but this association was not as strong as found in mammals. Finally, the
fecal microbiota was found to be not representative of cecal microbiota membership and structure. This
is one of the first studies to demonstrate the use of photoperiods to modulate microbiota acquisition, and
show its potential utility as a tool to promote the colonization of beneficial microorganisms.
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Abstract

The gut microbiota is crucial for metabolic homeostasis, immunity, growth and overall
health, and it recognized that early-life microbiota acquisition is a pivotal event for later life
health. Recent studies show that gut microbiota diversity and functional activity are
synchronized with the host circadian rhythms in healthy individuals, and circadian disruption
elicits dysbiosis in mammalian models. However, no studies have determined the associations
between circadian disruption in early life, microbiota colonization, and the consequences for
microbiota structure in birds.

Chickens, as a major source of protein around the world, are one of the most important
agricultural species, and their gut and metabolic health are significant concerns. The poultry
industry routinely employs extended photoperiods (>18 hours’ light) as a management tool, and
their impacts on the chicken circadian, its role in gut microbiota acquisition in early life, and
consequences for later life microbiota structure remain unknown. In this study, the objectives
were to a) characterize chicken circadian activity under two different light regimes (12/12 hours’
Light/Dark and 23/1 hours Light/Dark), b) characterize gut microbiota acquisition and
composition in the first four weeks of life, ¢) determine if gut microbiota oscillate in synchrony
with the host circadian, and @ determine if fecal microbiota is representative of cecal
microbiota. Expression of clock genes (clock, bmall, and per2) were assayed, and fecal and
cecal microbiota was characterized using 16s rRNA amplicon analyses from birds raised under
two photoperiod treatments.

Chickens raised under 12/12 LD photoperiods exhibited rhythmic clock gene activity,
which was absent in birds raised under the extended (23/1 LD) photoperiod. This study is also

the first to report differential microbiota acquisition under different photoperiod regimes. Gut
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microbiota members showed a similar oscillating pattern as the host, but this association was not
as strong as found in mammals. Finally, the fecal microbiota was found to be not representative
of cecal microbiota membership and structure. This is one of the first studies to demonstrate the
use of photoperiods to modulate microbiota acquisition, and show its potential utility as a tool to

promote the colonization of beneficial microorganisms.

Keywords: Microbiota acquisition, circadian disruption, photoperiods, poultry, gut health, Cecal

microbiota, fecal microbiota
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Introduction

Photoperiods and photo-intensity have played important roles in the success of domestic
chickens as a globally important food source. Poultry products constitute a significant and
growing proportion of global consumption (Henchion et al. 2014). Lighting has been one of the
ubiquitious tools used to manage performance and welfare in broiler and layer production (Ernst
et al. 1987; Morris 1967). The use of photoperiods to stimulate egg-laying is one of the most
important transformations in the commercial poultry industry, and in addition to modulating
reproductive behavior (Sharp et al. 1984), lighting has been of interest in reducing cannibalism,
optimizing feed intake and activity levels in modern poultry environments (Ernst et al. 1987,
Morris 1967). Blokhuis (1983) suggested that benefits of sleep in poultry are comparable to
those in mammals, and several works have reported on the role of lighting for welfare
(Kristensen 2008; Manser 1996; Martrenchar 1999) and production (Lewis & Morris 1999) in
poultry. Whether photoperiods play the same role in modulating poultry health and homeostasis,
as they do in mammals, remains unclear.

One of the key biological systems directly influenced by photoperiods is the circadian
system, with a well-documented role in influencing health. For instance, circadian disruption is
associated with a variety of metabolic, and immune disorders in mammals (Archer et al. 2014;
Buxton et al. 2012; Fonken et al. 2010). In modern poultry rearing environments, extended
photoperiods - ranging from 14 to 23 hours of light - are routinely used as a management
practice (Olanrewaju et al. 2006). The impact of extended photoperiods has been addressed in
poultry previously, but the existing literature has focused on balancing welfare and performance
(Deep et al. 2012; Schwean-Lardner et al. 2012). As recent interest in the role of circadian
disruption in human health has increased, we have learned about the multiple functional
processes regulated by the circadian system. These studies point to the critical role that circadian
function plays in metabolic, immune, and musculoskeletal health, with a high relevance for
livestock species (Aoyama & Shibata 2017; Di Cara & King-Jones 2016; Ohta et al. 2006;
Shimizu et al. 2016; Stothard et al. 2017). However, we do not know how extended photoperiods
influence the circadian system and clock-controlled processes, such as gut microbiota
acquisition, metabolic, and gut health in poultry. A better characterization of these interactions is
necessary, as we attempt to make progress towards safe, secure and sustainable food for the
future.

The circadian clock system is the central regulatory system that controls almost all
aspects of an organism’s behavior, physiology, and molecular function (Cassone 2015; Dawson
et al. 2001). The circadian is an evolutionarily conserved, hierarchically organized system with a
master clock and peripheral clocks (Bell-Pedersen et al. 2005). In birds, the master circadian
clock is a tripartite system of pacemakers, including the pineal gland, the retinae, and the
suprachiasmatic nucleus (SCN), which responds to environmental cycles and photoperiods
(Cassone 2014; Cassone & Westneat 2012). Peripheral clocks are found in almost all cells in the
body and are synchronized with the master clock, ensuring specific day-night molecular
processes that anticipate environmental and behavioral changes (Albrecht 2012). At the
molecular level, rhythmic expression of genes is controlled by a feedback loop that includes the
positive elements (clock and bmall), and the negative elements (Period 2, Period 3,
Cryptochrome 1 and Cryptochrome 2) (Cassone 2014). It has been shown in songbirds and
galliformes (including chicken) that the rhythmic production of the pineal hormone melatonin
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entrains circadian rhythms. In mammals, the diurnal oscillations of circadian clock genes (bmall,
clock, per2 etc.) and of clock-controlled genes (CCG) are an important indicator of health and
homeostasis (Mukherji et al. 2013; Thaiss et al. 2014), whereas a disruption of normal circadian
rhythms is associated with metabolic, and gut microbiota dysfunction (Miyazaki et al. 2011;
Shimizu et al. 2016). In birds, photoperiods directly or indirectly entrain circadian rhythms, with
each of the three components (SCN, retinae, pineal) interacting to maintain master and peripheral
clock rhythms (Cassone 2014). As light can be perceived by both the pineal and retinal
components of the avian clock, changes in light duration can render the avian circadian
arrhythmic (Cassone et al. 2008).

Evidence from avian studies on photoperiods and lighting intensity has demonstrated
negative consequences for welfare traits (Barbur et al. 2002; Prescott et al. 2003), as well as for
eye development and function (Barbur et al. 2002; Kristensen 2008; Lauber et al. 1961; Nickla &
Totonelly 2016). These studies indicate a mechanistic basis for circadian disruption under
extended photoperiods. Although the organization of the circadian system in birds is slightly
different, and more complex, compared to mammals (Bell-Pedersen et al. 2005; Cassone 2014),
the functioning and downstream regulation at the molecular level are expected to be broadly
similar to mammals (Bell-Pedersen et al. 2005). The expression of clock genes (clock, bmall
and bmal?2) in the pineal gland of the chicken has been demonstrated previously (Kommedal et
al. 2013; Nickla & Totonelly 2016; Okano et al. 2001), and while clock gene expression has
been shown in peripheral tissues (Chong et al. 2003), the synchrony of peripheral rhythms with
the master clock has not been characterized. In poultry species clock gene expression (bmall,
per3) in the pineal gland (Turkowska et al. 2014), and melatonin production (Kommedal et al.
2013) do not display under continuous dark or light conditions.

One common feature of most commercial production systems is the lighting regimens
that newly hatched chicks are reared under. Both broiler and layer chicks are started at 20-23
hours of continuous light during the first few weeks of their life. While broilers are maintained at
extended photoperiods for the entirety of their life (6-7 weeks), layer chicks follow a varying
photoperiod regimen until sexual maturity. In both cases, chicks experience 20+ hours of
continuous lighting for the first few weeks of life. This early-life period also overlaps with a
crucial window for the acquisition of the gut microbiota, which in turn is linked with later life
metabolic and immune homeostasis. It is being increasingly recognized that early life microbiota
acquisition determines the later life microbiota structure and diversity.

In most vertebrates studied to date, including chicken, commensal microorganisms
colonize the gastrointestinal tract (Pritchard 1972; Salanitro et al. 1974; Waite & Taylor 2014),
and the membership of these communities have broad similarities across vertebrate species. In
chicken, and birds in general, the crop, and the ceca are considered the most interesting foci in
terms of their significance for host physiology or performance. Early studies such as Apajalahti

1 (2004) showed that the chicken gastrointestinal tract is colonized rapidly in the first days of

. In terms of diversity and complexity, and the immune maturation it elicits, it has been
shown that acquisition of new taxa continued up to and beyond day 19 (Crhanova et al. 2011).
This data supports the view that the early life microbiota acquisition is crucial for the
establishment of a stable microbiota in later life (Stanley et al. 2013). The diversity of
microbiota, acquired early in life, has been shown to be critical for the regulation of immune and
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metabolic health in vertebrates (Cox et al. 2014; Lee et al. 2013; Moloney et al. 2014;
Subramanian et al. 2015; Thaiss et al. 2014) and also in chicken (Crhanova et al. 2011; Kogut
2013; Stanley et al. 2014). A resilientg=plthy microbiota is crucial for health, whereas a
dysbiotic microbiota may cause disea C?Sommer et al. 2017).

Recent work has revealed the association of microbiota in homeostasis; in animals with a
functional circadian, gut microbiota show rhythmic oscillations in synchrony with the host
circadian clock (Thaiss et al. 2014). Since then, other studies have also reported on the circadian
regulation of gut microbiota (Liang et al. 2015; Rosselot et al. 2016). However, no studies to date
have characterized this relationship in birds. In domestic chicken, these associations take on
special significance; the extended photoperiods used in poultry production systems likely disrupt
normal circadian rhythms, and influence the normal acquisition of microbiota, and establishment
of stable communities. Additionally, as the poultry industry transitions to antibiotic free
production, there is an urgent need to identify economical solutions for promoting gut health. If
gut microbiota structure and membership can be influenced by photoperiods in early life, this
approach can become a potentially valuable, and economical approach to manage gut and
metabolic health in poultry.

In this study, we investigated the relationship between extended photoperiods, h(@
circadian oscillations and the gut microbiota acquisition under two photoperiod regime
Additionally, this study also tracked the early life microbiota (cecal and fecal) in the first three
weeks of life to determine if and when cecal microbiota communities diverge under different
photoperiods. Finally, we compared fecal and cecal microbiota in the first three weeks (period of
circadian entrainment, and microbiota est=klishment) to answer whether fecal microbiota are
representative of early life cecal microbi »

Materials and Methods
Animal Ethics Statement
All animal work was conducted in accordance with national and international guidelines

for animal welfare. The animal trials were approved and monitored by the Institutional Animal
Care and Use Committee of Texas A&M University (Assurance Number 2016-0064).

Animals and Experimental Design

All birds used in the study were female Hy-Line Brown Layers (Gallus gallus
domesticus). Eighty hatch day chicks were obtained from a local hatchery and transported to the
Texas A&M Poultry Research and Education Center in College Station, Texas. Forty chicks
were randomly assigned to one of two treatments, and then moved into one of two identical
environmental chambers with independent lighting controls. Within each chamber, 20 chicks
were placed into one of two brooder cages. Each environmental chamber was set to one of the
photoperiod treatments - normal photoperiod (NP) of 12 h of light and 12 h of darkness (12/12
LD), with lights-on at 06:00 h, and extended photoperiod (EP) treatment of 23 hL and 1 h D
(23/1 LD), with lights-off from 05:00-06:00 h. Following the convention from circadian studies,
Zeitgeber Time 0 (ZT0) was defined as the time of lights-on (0600 hours). A total of 40 birds
were raised under each photoperiod. Except for the photoperiod treatment, the experimental birds
experienced identical conditions, and had ad libitum access to feed and water. Temperature
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controlled experimental rooms were maintained at 32 + 2°C for the first week and then decreased
by ca. 2-3°C per week down to 23°C, following the producer’s manual.

Sample Collection

For birds raised under each photoperiod, we monitored early life cecal and fecal
microbiota for the first 19 days of life (entrainment period), followed by two days of circadian
sampling (19-21 days old). To monitor the cecal microbiome during the entrainment period (Day
1-18), chicken were sacrificed every other day at ZT1 (12:00 h) starting on Day 4 (n=1
individual/treatment/day) and the cecal content was collected and stored as described bel{)In
addition, two fecal samples were collected every day (Day 1-20) from both groups at ZTr-
ensure collection of fecal samples deposited close to ZT1, fecal trays were lined with clean lab
bench paper, which was replaced after every sampling event, and only fresh fecal samples were
collected. Fecal samples were transported to the laboratory on ice and stored at -80°C until
further processing.

At the end of the entrainment period (19 days), two birds were randomly selected and
euthanized at every 6 hour intervals to characterize circadian oscillations. Individual birds were
euthanized by exposure to 5 minutes of CO, followed by cervical dislocation. Two birds from
each photoperiod treatment were sampled this way every 6 h (2 individuals/treatment/time point)
over a 48 h period, starting at ZTO. For collections in the dark period (NP), birds were taken in
the dark using only an infrared lamp to avoid light exposure, and placed in a dark container
which was used as the euthanasia chamber. Tissue samples (brain, ceca, cecal content) were
collected within 30 minutes of euthanasia and immediately placed into RNALater (1:5 ratio).
Both ceca were removed and the bottom tips were separated. Cecal content from each cecum was
then gently squeezed into a sterile collection tube to obtain enough cecal content for downstream
analyses. As birds from both treatments had to be sampled at exactly the same times, four
personnel simultaneously performed identical st rom euthanasia to tissue collection, within
30 min post-mortem. Following the dissections,ﬁe samples were stored at 4°C for at least 24
h to ensure complete penetration of RNALater. Following the removal of RNALater, the samples
were stored at -80°C. A total of 18 individual samples were collected (9 time points x 2 birds per
time point) for each photoperiod treatment. These 18 samples per photoperiod treatment were
used for microbiota community analyses.

DNA/RNA isolation and gene expression analyses

Brain and ceca tissue samples were homogenized in Trizol reagent (Invitrogen) using a
hand-held Tissuemiser (Fisher Scientific) and total RNA was extracted according to the
manufacturer’s instructions. Tissue samples were collected for expression analysis from 2
individuals at each of 9 time points ovez2a 48-hour period (6-hour intervals), for each
photoperlod treatment. One hundred nrams of total RNA were used to generate cDNA using
the Supag=Sqript VILO MasterMix RT-PCR kit (Invitrogen). RealTime PCR was performed using
gene- spr c primers (Integrated DNA Technologies) and PowerUp SYBR Green Master Mix
(Applied Biosystems) on a 7900HT Fast Real-Time PCR System (Applied Biosystems). PCR
conditions We1j)°C for 2 min, 95°C for 2 min, followed by 40 cycles of 95°C for 15 s and
57°C for 1 mirQ
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Microbiota Analysis

DNA from cecal content and fecal samples was extracted using the MoBio PowerFecal k@
according to the manufacturer’s instructions. 20 ng of purified DNA were used for PCR
amplification of bacterial 16S rRNA gene sequences, using Q5® High-Fidelity DNA polymerase
(NEBNext® High-Fidelity 2X PCR Master Mix, New England BioLabs, Ipswich, MA). We
used a 15-cycle PCR to first amplify the 16s sequence (in triplicate) followed by 7-cycle PCR to
add the Illumina barcodes. The V4 primer pair was specifically chosen to avoid amplification of
eukaryotic 18S TRNA gene sequences (HybS515F rRNA: 5'-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTA -3'

, Hyb806R rRNA: 3'-
TAATCTWTGGGVHCATCAGGGACAGAGAATATGTGTAGAGGCTCGGGTGCTCTG-5")
(Wang & Qian 2009). Barcoded amplicons were cleaned up using Ampure beads (Beckman
Coulter, Indianapolis, USA). Library preparation and sequencing was performed in at the
Genome Sequencing and Analysis Facility (GSAF, University of Texas, Austin, TX). Amplicons
were sequenced in 2x250 bp paired-end mode on an Illumina MiSeq platform (Illumina, San
Diego, CA). Reads were processed using the Mothur software, version 1.38, (Schloss 2009).
Briefly, paired-end reads were joined using the make.contigs command. Sequences of incorrect
length and with ambiguous base calls were removed using the screen.seqs command. The
remaining sequences were aligned against the SILVA database (release 123) (Quast et al. 2013)
using the NAST algorithm (DeSantis et al. 2006) and screened for homopolymers greater than
eight bases. Chimeras were removed with UCHIME (Edgar et al. 2011) and sequences were
classified against the SILVA taxonomy (Yilmaz et al. 2014) using the Bayesian classifier (Wang
et al. 2007). Sequences that classified to Eukaryota, Archaea, chloroplast, mitochondria, or
unknown were removed from the data set. Sequences were clustered into operational taxonomic
units (OTUs) of 97% sequence similarity using the average neighbor algorithm (default).
Rarefaction curves for the observed number of OTUs were generated in Mothur using 1,000
randomizations. Weighted and Unweighted Unifrac analyses were also performed using the
Mothur software. a diversity and the impact of other variables (photoperiod, sample type and
age) on community differences was analyzed and compared using the Phyloseq (version 1.14.0)
(McMurdie & Holmes 2013) and vegan (version 2.4-2) (Oksanen et al. 2017) packages in the R
software environment (R et al. 2012). Principal coordinates analysis (PCoA) and non-metric
multidimensional scaling (NMDS) plots were created in R. Permutational multivariate analysis
of variance (PERMANOVA) with linear model fitting (Anderson 2001; McArdle & Anderson
2001) using the “Adonis” function in the vegan package was performed to test how well the
groupings, based on the metadata factors, accounted for the variation between the samples.
Statistical tests of a and B diversity (PERMANOVA, metastats, LEfSe) between the two
photoperiods were based on 18 replicates per treatment. All other statistical tests were performed
in R.

Analysis of circadian oscillations

Gene expression values and microbial abundance data were both analyzed for rhythmic
oscillations using the JTK cycle test (Hughes et al. 2010). JTK Cycle is a program that performs
the Jonckheere-Terpstra-Kendall nonparametric test for detecting patterns and ordering across
independent groups. In this context, the program tests for rhythmic changes in the length of
circadian period (the amount of time between a recurring event), and the phase (the time of peak
activity). The implementation of Kendalls’ Tau is known to reduce the impact of outliers, and

Peer] reviewing PDF | (2018:08:30221:0:2:NEW 9 Aug 2018)


jl0025
Highlight
Don't need to state this as it is a given when using 16S primers.

jl0025
Sticky Note
Manufacturer?


Peer]

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

hence provides a more robust detection of periods and phases. Furthermore, this program has
been shown to be less prone to false positives compared to other commonly used tests for
circadian rhythms (Hughes et al. 2010). For the analysis of rhythmic oscillations and their
amplitudes we used a window of 24-36 hours for the detection of circadian periodicity and
phase. Bonferroni-adjusted P-values < 0.05 were considered significant. The dataset for
circadian analysis (both gene expression and microbiota) was comprised of 18 samples for each
photoperiod (9 time points x two birds per time point).

Results
Absence of circadian rhythms under extended photoperiods

Circadian oscillations, and their corresponding period and phase, were analyzed using the
gene expression data for three clock genes (clock, bmall, per2) from the time-series experiment.
JTK Cycle analyses showed that all three assayed genes oscillated with significant 24-hour
rhythms in the brains of chicks entrained to the normal photoperiod (12/12 hours Light/Dark),
whereas such rhythms were absent in the brains of the chicks entrained to the extended
photoperiod (23/1 hours Light/Dark) (Figure 1). Clock and bmall gene expression peaked
towards the bg===ning of the Scotophase, and was at its lowest expression towards the start of the
photophase. ’@ mRNA levels peaked at the end of the scotophase, and were lowest towards
the end of the photophase. In contrast, gene expression levels in chick brains exposed to the
extasded photoperiod didnot show distinct oscillation patterns. Clock and per2 mRNA levels did
n = cillate at all and b mRNA levels were lowest during the 1-hour scotophase. These
results show that chicken raised under a NP treatment have a functioning circadian rhythm,
whereas chicken raised under EP treatment do not have a discernible circadian rhythm.

Clock gene (clock, bmall, per2) expression levels in the ceca followed the same pattern as the
brain, but with a slight delay in phase (Figure 1). These results indicate that the peripheral clock
in the ceca is synchronized with the central clock and also oscillates in a 24-hour rhythm under
the 12/12LD photoperiod even under ad libitum feeding conditions, but not in the extended
photoperiod treatment.

Different photoperiods promote differential microbiota membership and structure

Amplicon sequencing resulted in 495,572 sequences, of which 442, 177 sequences were
retained after quality filtering (wrong length and ambiguous base calls). Sequence counts per
sample averaged 13,614-paired reads. Following the analysis of microbiota using the Mothur
pipeline, a total of 843 operational taxonomic units (OTUs) were observed in the entire data set.
The 843 OTUs were classified into 19 phyla, 89 families, and 118 genera. Among these, 595
OTUs were classified into 14 phyla, 58 families, and 94 genera in the NP treatment. In the
extended photoperiod (EP) treatment, we observed 646 OTUs that were classified into 18 phyla,
75 families, and 100 genera. However, as singletons and low abundance OTUs can inflate
measures of diversity, and bias community analysis (Kunin et al. 2010; Schloss et al. 2011; Zhan
et al. 2014) singletons and low abundance OTUs were filtered out. The total dataset was filtered
at two thresholds recommended in the Phyloseq manual — namely 10~ (0.01%) and a more
stringent, 10-3 (1%) threshold, based on the mean abundance across samples. We considered
these filtered data thresholds to be more biologically relevant, especially from the point of
detecting taxa that oscillate rhythmically across time points. For taxa occurring at very low
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abundance, it may be difficult to distinguish presence-absence resulting from low biological
occurrence, versus an oscillating pattern generated due to circadian rhythmicity in microbial
abundance. Our inferences and discussion are based on the 0.01% threshold, but we report 1%
threshold data for comparison.

Above the 0.01% threshold, 382 OTUs (45% of the original 843 OTUs) were retained
that were classified into 10 phyla, 36 families, and 69 genera. At this abundance threshold, 14
and 11 OTUs were found exclusively in the NP and EP treatments respectively. A list of these
OTUs can be found in the supplementary data (Supplemental Table 1). At the 1% threshold, a
total of 190 OTUs (23% of the original 843 25Us) were retained that were classified into 7
phyla, 20 families, and 43 genera. For the eatment, the dominant phylum was Firmicutes
(94.2%), followed by Tenericutes (1.3%), Actinobacteria (0.65%), and Proteobacteria (0.14%).
For the extended photoperiod, the dominant phylum was also Firmicutes (90.89%), followed by
Bacteroidetes (2.92%), Tenericutes (1.19%), Actinobacteria (0.63%), and Proteobacteria
(0.15%). At the genus level (>1%), the normal photoperiod was dominated by Faecalibacterium
(24.5%), followed by Lachnoclostridium (8.9%), Ruminococcaceae UCG-014 (7.1%),
Anaerotruncus (4.1%), and Lactobacillus (3.7%). The EP treatment was also dominated by
Faecalibacterium (31.3%), followed by Ruminococcaceae UCG-014 (8.1%), Lachnoclostridium
(7.8%), Anaerotruncus (4.0%), and Alistipes (2.9%). Stacked bar plots depicting all the classified
genera above 1% relative abundance for both the NP and EP treatments are shown in Figure 2.
Considering only the OTUs with a relative abundance above 1% across all the samples, the two
photoperiods shared 129 OTUs (80.1%) and 18 (11.2%) and 14 (8.7%) OTUs were unique to the
normal and extended photoperiods respectively. A list of unique OTUs for each photoperiod is
presented in Table 1.

Next, the OTU tables were used to estimate o and 3 diversity. (All statistical analyses were
performed using 18 replicates available for each photoperiod treatment taken during the
circadian sampling (day 19-21). The PCoA plot showed that the two communities do not cluster
completely independently of each other, and show some overlap (Figure 3), Which'is not entirely
unexpected given the same tissue, age, and diet of the subjects. However, o diversity estimates
using Mann-Whitney U-tests were significantly higher (Z-Score=-1.91, P=0.02) for the NP
group across different estimators (Chao, Simpson, Inverse Simpson), showing that NP
photoperiods supported a higher overall microbial diversity (Figure 4).

To compare the microbial community between treatments (3 diversity), we used a
permutational multivariate analysis of variance (PERMANOVA), parsimony (clustering within
tree), as well as Weighted and Unweighted Unifrac analyses. The PERMANOVA analysis on the
Bray-Curtis distances revealed that the cecal gut microbiota communities were significantly
different for the two photoperiods (P=0.002). Similarly, B diversity between the NP and EP
groups were found to be significantly different using the parsimony (P=0.034), unweighted
UniFrac (P<0.001), as well as weighted UniFrac (P<0.001) approaches. The weighted and
unweighted UniFrac analyses both show that membership and structure of the microbiota
communities were different between the photoperiod treatments.

To investigate the directionality and extent of differences in microbiota between the two

photoperiod treatments, differentially abundant taxa was investigated using the program
Metastats, and the non-parametric Linear Discriminant Analysis (LDA) tool LEfSe. The latter
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approach is used to detect biomarkers that differ between two or more phenotypes in a
metagenomic context. The non-parametric approaches are considered more robust to violations
of normality that is typical in Smaller datasets: Metastats analysis showed that 62 taxa (16% of
total) occurred at significantly different abundance (P<0.05) between the two light treatments.
The LEfSe analysis sk=xyed that 33 total taxa were differentially enriched between the two
treatments, of which .gere enriched in NP and 7 were enriched in EP treatments respectively.
The top enriched taxa by effect size (LDA score) were Rikenellaceae (Alistipes) in EP, and
Lachnospiraceae in NP (Figure 5).

Rapid cecal microbiota divergence under different photoperiods

To understand how long after hatch and entrainment under different photoperiods the
cecal microbigsz=gommunities diverge, median a diversity indices over the first three weeks were
compared (FioQ 2). This analysis utilized cecal samples collected every second day during the
entrainment period (first 20 days), and divided them by week since hatch (weeks 1, 2, 3). Within
each photoperiod treatment, the a diversity indices showed a linear increasing pattern, but there
was weak correlation between the two populations (R?=0.58, P=0.10). Overall, the EP group had
lower median a diversity values compared to the NP treatment, but these differences were not
statistically significant for the whole group. The non-parametric test Mann-Whitney U test,
showed that o diversity values were statistically different in the second week (Z-score=-2.28,
P=0.013), and in the third week (Z-score=-1.69, P=0.045). Median o diversity for the first week
was compared using Chi-square goodness-of-fit test (due to lower replication), and was also
significantly different (}>=52.61, df=1, P<0.001). Comparisons of B diversity using AMOVA and
PERMANOVA were not significant, owing to the small sample sizes. However, Metastats
analysis showed an increasing number of differentially abundant taxa with every passing week.
There were five (1.3% of total), eighteen (4.7 of total), and twenty-three (6% of total) taxa found
at significantly different abundances in Week 1, Week 2, and Week 3 respectively, between the
two photoperiod treatments. In Summary, microbiota structure appears to differentiate starting
within the first few days of life under different photoperiods.

Cecal microbiota oscillations show concordance with host circadian rhythms

Abundance data for 382 OTUs were analyzed for circadian oscillations using JTK cycle.
For the NP treatment, five OTUs oscillated with a significant 24-hour rhythm, whereas one OTU
oscillated with a 36-hour rhythm (£,4<0.05) (Table 2). Except for the taxon oscillating on a 36-
hour period, all other oscillating OTU’s had a low phase shift (0-12 hour), indicating that
abundance of these taxa follows the host rhythms closely. On the other hand, six OTUs were
found to oscillate rhythmically in the EP treatment. Three of these were on 24-hour rhythm,
whereas three were in a 36-hour rhythm (P,4<0.05) (Table 3). However, all the oscillating OTUs
in the EP treatment showed prolonged phase-shifts, ranging from 15-33 hours.

Overall, the results showed that a small fraction of the total cecal microbiota oscillate
with a significant rhythm in either photoperiod treatment, and fewer still oscillated with a 24-
hour rhythm. When taxa with significant 24-hour rhythms were found, they were almost
exclusively in the normal photoperiod treatment. The absence of 24 hour rhythms and protracted
phase shifts observed in the extended photoperiods correspond with the host circadian gene
expression, which showed a complete lack of 24-hour rhythms.
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Fecal microbiota is not reflective of cecal microbiota

The large majority of OTUs found in the cecal and fecal samples belonged to the phylum
Firmicutes, followed by Bacteroidetes (data not shown). These two phyla are commonly found
in the cecal chicken microbiome (Oakley et al: 2014b). However, at the family level, there were
distinct differences between cecal and fecal samples. The cecal samples (Day 4-20) were mainly
composed of Ruminococcaceae (ca. 50-75%), followed by Lachnospiraceae (ca. 20-40%). On
the other hand, the fecal samples (Day 16-20) were largely composed of Lactobacillaceae (ca.
10-75%), followed by Ruminococcaceae (ca. 50%), Clostridiaceae 1 (ca. 25-60%) and
Lachnospiraceae (ca. 5-20%). The cecal samples from the entrainment period (days 4-18) group
closely with the cecal samples, and show a temporal movement as chicks get older.

A Principal of Coordinates Analysis (PCoA) shows a clustering of the three different sample
types (Figure 6), with overlap between the cecal flora as noted previously. The fecal microbiota
is furthest removed from the two cecal populations, whereas the two cecal populations (CC =
Day 19-20, EC = Day 4-18) start out further apart and converge with the passage of time (and
chick age). The PERMANOVA results indicate that these three populations do not have the same
centroid and are significantly different from each other (P = 0.001, 999 permutations). Weighted
and unweighted UniFrac analyses also showed these communities to be significantly different
(P<0.001).

Discussion
Expression of clock genes in the brain and ceca for the two photoperiod@

Circadian gene expression oscillation patterns found in this study were in line with what
has been previously reported about photoperiods and rhythmic oscillations in various vertebrates
including chicken. Particularly, these results agree with Abraham (Abraham et al. 2003) and
Turkowska (2014), both of which studied circadian gene expression in the brain of sparrows and
chickens, respectively. This study confirms that chicks entrained to the normal photoperiod
(12/12LD) have a functioning circadian rhythm in both the brain and the ceca, Wheteas chicks
entrained to the extended photoperiod (23/1LD) do not show a functioning circadian rhythm in
the brain or the ceca. In essence, the chicks entrained to the extended photoperiod could be said
to be in a constant state of jetlag.

Different photoperiads promote different microbiota membership and structure

Various ans of B diversity showed that the cecal microbiota differed significantly
between the two photoperiods. Examining the unique genera more closely revealed that t
chicks entrained to normal photoperiod possess genera that are typically associated with hy
guts, wherea chicks entrained to the extended photoperiod possess genera that are typically
found in dise guts. The most abundant genus for both photoperiods was the
Faecalibacterium, which belongs to the class Clostridia and the phylum Firmicutes and is
considered a common gut microbe in chickens (Oakley et al. 2014a).

While the microbial communities acquired under the two photoperiods were found to be
different according to the diversity metrices, the presence and enrichment of specific taxa under
each treatment is perhaps more biologically relevant and interesting. (Analysis of differential
enrichment showed a lopsided distribution of enriched taxa between the two treatments. The
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genus Alistipes, which was only found in the extended photoperiod and belongs to the family
Rikenellaceae, thrives on high-fat diets and grows especially well in the gut of people suffering
from obesity (Clarke et al. 2013). Furthermore, it has been found in higher numbers in patients
suffering from Irritable Bowel Syndrome“Squlnier et al. 2011) and children with Autism
Spectrum Disorder (De Angelis et al. 20 G Two other enriched taxa (out of seven enriched in
EP) were Ruminiclostridium and Blautia. The enrichment of Blautia spp (Family
Lachnospiraceae) has been reported in patients with primary sclerosing choalangitis (PSC)
(Torres et al. 2016), a chronic liver disease with links to inflammatory bowel disease.
Ruminiclostridium (Family: Ruminococcaceae) has been found to be important in the
metabolism of lignocellulosic biomass (Sheng et al. 2016), which is a component of plant-based
protein and energy sources (corn, soy). The enrichmf this taxon suggests a functional shift
to optimize energy utilization from plant-based feed.

On the other hand, taxa enriched in the NP treatments were also suggestif=<pf differential
emphasis on biological function of the taxa and associations to metabolic he&rer The family
Christensenellaceae, which was found at a higher abundance in the GI tract of chicks entrained
to NP, has been associated with a reduction in body weight and adiposity in mice. It has been
found in higher numbers in the gut microbiome of people with a lower body mass index and has
been shown to have a strong protective effect against visceral fat (Goodrich et al. 2014).
Eubacterium hallii, a common gut microbe with an important role in maintaining intestinal
metabolic balance, was also found at a higher abundance in the gut microbiome of birds
entrained to the normal photoperiod compared to the extended photoperiod. This gut microbe is
able to utilize glucose and the fermentation intermediates acetate and lactate—Lactate
accumulation has been associated with malabsorption and intestinal diseasngels et al. 2016).
Finally, three Lactobacillus members were found to be enriched in the NP treatment (LEfSe
analysis). Lactobacillus spp are a well-studied group with various known benefits for metabolic
and gut health, f]Q antimicrobial activity (Schillinger & Lucke 1989; Silva et al. 1987), to their
probiotic activityarco et al. 2017; Patten & Laws 2015). While the mechanisms for selective
colonization of specifz=gbeneficial microbes need to be further investigated and understood, our
results provide a fra1JC> ork for relating normal circadian activity in early life to gut health.

The results show that cecal microbiota acquisition starts div@.,ng (based on a diversity) as
early as the first week in birds raised under different photoperiods. As these differences are
observed when the only variable was photoperiod suggests that rhythmic physiological processes
(as inferred from clock gene expression) may directly influence the colonization efficiency of
different microorganisms. Az=sgondary possibility is that the extended photoperiods affect
feeding behaviors and patte Qwhich are also likely to directly influence the acquisition and
colonization process. This study did not measure feed intake specifically, and resolving that
association was beyond the scope of this study. Specifically, as poultry rearing systems all utilize
ad libitum feeding, our intention was to assess only the effect of photoperiods on circadian.
However, we did observe that birds in 12/12 LD did not entirely stop feeding during dark hours,
and also that birds in 23/1 LD did not constantly feed during all hours. We alsofz=nd that the
final weights of birds raised in either photoperiod were not significantly differet—which shows
that the differences observed in microbiota composition was not due to differences in feeding
behaviors. Overall, the differences observed in microbiota communities, and the clear
observation of early and rapid differentiation of microbiota communities within the first week of
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life emphasize the potential utility of using photoperiods to modulate gut microbiota structure
and function.

Cecal microbiota oscillations

Cecal gut microbiota in the normal photoperiod oscillate in a 24-hour rhythm in
synchrony with their host. On the other hand, cecal gut microbiota in the extended photoperiod
do not oscillate in a 24-hour rhythm and are not in synchrony with their host. Ip-=ddition, they
exhibit greater phase shifts, further indicating the absence of rhythmic oscillati > While
mammalian studies (Thaiss et al. 2014) have shown strong signals of gut microbiota oscillations
in synchrony with the host circadian clock, this study did not show a comparable fraction of
oscillating microbiota. Mouse studies have showed that these oscillations represent both
compositional and functional differences of the microbiota (eg. Wu et al, 2018 ), and the same
processes are likely in chicken. While some authors have used tools such as PICRUSt
(Phylogenetic Investigation of Communities by Reconstruction), those inferences expected to
improve with the quality of underlying microbial function database. At the moment, such
databases are best representative of human and human-model organisms, and may not be
accurate for chicken gut microbiota studies. Anothet option to infer the function of oscillating
microbial taxa would be utilizing microbial transcriptome or metabolome data (eg. Thaiss et al
2014, 2016). We did not generate microbial transcriptome data in the current study, but the
results from this study emphasizer”<)validity and need for generating additional functional data
in chicken models: While oscillat within treatments were observed, there was a general
correspondence between host rhythms and microbiota oscillations. A relativelz==mall number of
OTUs, representing limited cumulative abundance, were found to be oscillati@One potential
explanation for this pattern is that the birds used in our study were placed on ad libitum feed,
whereas mammalian studies typically use time-restricted feeding. It has been shown that gut
microbiota oscillations are responsive to the host circadian, as well as feeding times (Adamovich
et al. 2014; Asher & Sassone-Corsi 2015; Hatori et al. 2012).

@Le of the potential caveats in this study is the lower replication of microbiota sampling, in
comparison to mice studies which have previously reported on these phenomena. For example,
Thaiss et al (2016; 2014) used 5-10 replicates per time point, compared to two replicates in this
study. However, one major difference between mice and chicken studies is the suitability of fecal
samples for gut microbiota studies. While the applicability of mouse data for human health has
been discussed (Nguyen et al. 2015), mouse fecal pellets are an accepted and reliable source of
information about gut microbiota. However, chicken fecal samples are notg==liable indicator of
gastrointestinal tract microbial communities as reported previously (StanleJC> al. 2015) and
confirmed in this study. Taken together with the suitability of fecal samples, and the smaller
space requirements, longitudinal and temporal studies with higher replication is less challenging
in mouse models compared to chicken models. While our study provides initial evidence of the
association between host microbiota and gut microbiota oscillations in chicken, further
confirmation of mechanisms and functional outcomes will require additional data. Future studies
would benefit from use of novel, non-invasive approaches to assay gut microbiota in chicken and
other avian models.
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Cecal versus fecal microbiota communiJTeér|

This study showed that fecal and cecal microbiota communities are significantly
different. Furthermore, it also found that these differences do not follow any discernible pattern
during the acquisition period (first three weeks) or later. While overlap in the cecal and fecal
communities was observed, and they are in broad agreement with the findings of Stanley et al
(2015), and Oakley & Kogut (2016), this data shows that fecal samples are not a reliable
indicator of divergence in gut microbiota colonization, membership, or structure. As the present
study focusedan the first four weeks, it is not clear how the findings apply to later life
microbiota. tional studies are required to investigate these patterns extending up to and
beyond sexual maturity.

@lclusions

Here, we present the first report on avian circadian and related gut microbiota
oscillations, comparing the consequences of normal versus extended photoperiod exposure. This
study is also the first to describe differential microbiota acquisition under different photoperiod
regimens in birds, or in any vertebrates to our knowledge. This study provides evidence for a
framework linking photoperiod-driven circadian rhythms in early life to benefits for gut health.
While this study provides the first evidence of these associations in early life, additional
investigation of similar and variable photoperiod regimens and their influence on microbiota are
required. Additionally, in-depth understanding of the mechanisms of selective microbiota
colonization under photoperiods, their functional importance, and the later life benefits for the
host is required to make this knowledge applicable for animal and human health. Finally, this
study points to potential applications for the modulation of colonization by beneficial microbiota
in livestock species, especially in the context of raising antibiotic free animals.
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Figure Legends

Figure 1. Expression of clock genes (per2, bmall, and clock) in the chicks entrained to either
normal (12L:12D) (yellow) or extended photoperiods (23L:1D) (blue), measured with qPCR.
The shaded areas represent the hours of darkness. Top panel shows expression and oscillation

patterns in brain tissue, whereas bottom panel shows expression oscillation in cecal tissue.

Figure 2. Relative abundance (> 1%) at the taxonomic genus level depicting the diversity of
cecal microbial communities in HyLine Brown layer chicks entrained to the normal photoperiod
(top) and the extended photoperiod (bottom). Samples were taken at 6 hour intervals over a 48-

hour period from Day 19-21.

Figure 3. Principal Coordinate Analysis (PCoA) plot of cecal microbial communities entrained
under normal photoperiods (NP) and extended photoperiods (EP). Solid shaded ellipses around
colored points show the 90% Euclidean distance from the center, whereas dashed lines show the

95% normal distribution span.

Figure 4. Alpha diversity measures for the two different photoperiods, normal (NP) (12L:12D)
and extended (EP) (23L:1D). Top panel shows boxplots of a diversity during the entrainment
period (first three weeks), divided by each week. The bottom panel shows boxplots of a diversity

estimates from samples taken during the circadian experiment.
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Figure 5: A plot of the results from Linear Discriminant Analysis Effect Size to determine
differential enrichment of taxa between photoperiod treatments. Of thirty three differentially
enriched taxa between treatments, 26 were enriched above an LDA score of 2 the normal

photoperiod treatment, whereas the rest were enriched in the extended photoperiod treatment.

Figure 6. Principal Coordinate Analysis plot of cecal and fecal bacterial communities in HyLine

Brown layer chicks. CC = cecal samples Day 19-20, EC = cecal samples Day 4-18, FE = fecal

samples Day 16-20.
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Figure 1(on next page)

Plots of gene expression in the brain, and cecal tissue of birds raised under different
photoperiods.

Expression of clock genes (per2, bmall, and clock) in the chicks entrained to either normal
(12L:12D) (yellow) or extended photoperiods (23L:1D) (blue), measured with qPCR. The
shaded areas represent the hours of darkness. T@)anel shows expression and oscillation

patterns in brain tissue, whereas bottom panel shows expression oscillation in cecal tissue.
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Figure 2(on next page)

Column plots of microbiota structure over a 48-hour sampling period.

Relative abundance (> 1%) at the taxonomic genus level depicting the diversity of cecal
microbial communities in HyLi@rown layer chicks entrained to the normal photoperiod
(top) and the extended photoperiod (bot@). Samples were taken at 6 hour intervals over a
48-hour period from Day 19-21.
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Figure 3(on next page)

Ordination plots showing clustering of microbiota from different photoperiod treatments
Principal Coordinate Analysis (PCoA) plot of cecal microbial communities entrained under
normal photoperiods (NP) and extended photoperiods (EP). Soligaded ellipses around

colored points show the 90% Euclidean distance from the center, whereas dashed lines show

the 95% normal distribution span.
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Figure 4 (on next page)

Alpha diversity estimates during the acquisition period (3 weeks) and during the
circadian experiment.

Alpha diversity measures for the two different photoperiods, normal (NP) (12L:12D) and
extended (EP) (23L:1D). Top panel (4A) shows boxplots of a diversity during the entrainment
period (first three weeks), divided by each week. The bottom panel (4B) shows boxplots of «

diversity estimates from samples taken during the circadian experiment.
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Figure 5(on next page)

Results of linear discriminant analyses identifying differentially enriched taxa between
photoperiod treatments.

A plot of the results from Linear Discriminant Analysis Effect Size to determine differential
enrichment of taxa between photoperiod treatments. Of thirty three differentially enriched
taxa between treatments, 26 were enriched above an LDA score of 2 the normal photoperiod

treatment, whereas the rest were enriched in the extended photoperiod treatment.
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Figure 6(on next page)

Ordination plot showing clustering of cecal and fecal microbiota profiles from birds
raised under different photoperiods

Principal Coordinate Analysis plot of cecal and fecal bacterial communities in HyLine Brown
layer chicks. CC = cecal samples Day 19-20, EC = cecal samples Day 4-18, FE = fecal
samples Day 16-20.
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Table 1(on next page)

Taxa that were oscillating with a rhythm in birds raised under 23/1 LD treatment

Oscillating cecal microbiota members in the extended photoperiod (23L:1D) treatment.
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1 Table 1. List of unique OTUs (>1% relative abundance) for the normal and extended

2 photoperiods.

Taxa that were found uniquely in the normal photoperiod treatment
Phylum Class Order Family Genus
Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium
Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella
Firmicutes Clostridia Clostridiales Peptostreptococcaceae NA
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium
Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae UCG-014
Firmicutes Clostridia Clostridiales Ruminococcaceae NA
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Lachnospiraceae NC2004_gr
Firmicutes Clostridia Clostridiales Lachnospiraceae
oup
Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae NA
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae UCG-010
Christensenellaceae R-
Firmicutes Clostridia Clostridiales Christensenellaceae
7_group
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Christensenellaceae R-
Firmicutes Clostridia Clostridiales Christensenellaceae
7_group
Taxa that were found uniquely in the extended photoperiod treatment
Phylum Class Order Family Genus
Firmicutes Clostridia Clostridiales Clostridiaceae 1 Candidatus_Arthromitus
Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes
Bacteria Bacteria Bacteria
Bacteria_unclassified NA
_unclassified _unclassified _unclassified
Clostridiales vadinBB60 gr
Firmicutes Clostridia Clostridiales NA
oup
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Firmicutes Clostridia Clostridiales Clostridiales_unclassified NA
Mollicutes RF9
Tenericutes Mollicutes Mollicutes_ RF9 NA
_unclassified
Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_5
Mollicutes RF9
Tenericutes Mollicutes Mollicutes_ RF9 NA
_unclassified
Mollicutes RF9
Tenericutes Mollicutes Mollicutes RF9 NA
_unclassified
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Bacteria Bacteria Bacteria
Bacteria_unclassified NA
_unclassified _unclassified _unclassified
Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium_9
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus
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Table 2(on next page)

Taxa that showed rhythmic oscillations in birds raised in 12/12 LD treatment

Oscillating cecal microbiota members in the normal photoperiod (12L:12D) treatment.
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1  Table 2. Oscillating cecal microbiota members in the normal photoperiod (12L:12D) treatment.

Adjusted Phase
Taxa Period Amplitude
p-value Shift
Firmicutes, Clostridia, Clostridiales,
Defluviitaleaceae, 0.0005 24 0 0.0005
Defluviitaleaceae UCG-011
Firmicutes, Clostridia, Clostridiales,
0.0142 36 33 0.0016
Ruminococcaceae, Oscillibacter
Firmicutes, Clostridia, Clostridiales,
Ruminococcaceae, 0.0196 24 12 0.0007
Ruminococcaceae UCG-014
Firmicutes, Clostridia, Clostridiales,
Ruminococcaceae, 0.0312 24 0 0.0001
Ruminococcaceae UCG-014
Firmicutes, Clostridia, Clostridiales,
0.0358 24 3 0.0021
Lachnospiraceae, NA
Firmicutes, Clostridia, Clostridiales,
0.0417 24 0 0.0001
Ruminococcaceae, Anaerotruncus
2
3
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Table 3(on next page)

Taxa that were found either in the normal or the extended photoperiod treatments only

List of unique taxa (>1% relative abundance) for the normal and extended photoperiods.
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1 Table 3. Oscillating cecal microbiota members in the extended photoperiod (23L:1D) treatment.

Adjusted Phase
Taxa Period Amplitude

p-value Shift
Firmicutes, Clostridia, Clostridiales,
Christensenellaceae, 0.0043 24 21 0.0006
Christensenellaceae R-7 group
Firmicutes, Clostridia, Clostridiales,

0.0073 24 15 0.0007
Lachnospiraceae, NA
Firmicutes, Clostridia, Clostridiales,
Ruminococcaceae, 0.0142 36 21 0.0005
Ruminococcaceae UCG-004
Firmicutes, Clostridia, Clostridiales,

0.0266 36 33 0.0023
Lachnospiraceae, NA
Firmicutes, Clostridia, Clostridiales,

0.0417 36 24 0.0024
Ruminococcaceae, Ruminococcus_1
Firmicutes, Clostridia, Clostridiales,
Ruminococcaceae, 0.0417 24 21 0.0005
Ruminiclostridium 5
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