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ABSTRACT
Far more attention has been paid to the microbes in our feces than the microbes in
our food. Research efforts dedicated to the microbes that we eat have historically
been focused on a fairly narrow range of species, namely those which cause disease
and those which are thought to confer some “probiotic” health benefit. Little is
known about the effects of ingested microbial communities that are present in typical
American diets, and even the basic questions of which microbes, how many of them,
and how much they vary from diet to diet and meal to meal, have not been answered.

We characterized the microbiota of three different dietary patterns in order to
estimate: the average total amount of daily microbes ingested via food and bever-
ages, and their composition in three daily meal plans representing three different
dietary patterns. The three dietary patterns analyzed were: (1) the Average American
(AMERICAN): focused on convenience foods, (2) USDA recommended (USDA):
emphasizing fruits and vegetables, lean meat, dairy, and whole grains, and (3) Vegan
(VEGAN): excluding all animal products. Meals were prepared in a home kitchen or
purchased at restaurants and blended, followed by microbial analysis including aero-
bic, anaerobic, yeast and mold plate counts as well as 16S rRNA PCR survey analysis.

Based on plate counts, the USDA meal plan had the highest total amount of
microbes at 1.3 × 109 CFU per day, followed by the VEGAN meal plan and the
AMERICAN meal plan at 6 × 106 and 1.4 × 106 CFU per day respectively. There
was no significant difference in diversity among the three dietary patterns. Individual
meals clustered based on taxonomic composition independent of dietary pattern. For
example, meals that were abundant in Lactic Acid Bacteria were from all three dietary
patterns. Some taxonomic groups were correlated with the nutritional content of the
meals. Predictive metagenome analysis using PICRUSt indicated differences in some
functional KEGG categories across the three dietary patterns and for meals clustered
based on whether they were raw or cooked.

Further studies are needed to determine the impact of ingested microbes on
the intestinal microbiota, the extent of variation across foods, meals and diets, and
the extent to which dietary microbes may impact human health. The answers to
these questions will reveal whether dietary microbes, beyond probiotics taken as
supplements—i.e., ingested with food—are important contributors to the composi-
tion, inter-individual variation, and function of our gut microbiota.
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INTRODUCTION
The human gut microbiome (the total collection of microbes found in the human gut)

mediates many key biological functions and its imbalance, termed dysbiosis, is associated

with a number of inflammatory and metabolic diseases from inflammatory bowel disease

to asthma to obesity and insulin resistance (Machonkin et al., 2014; Costello et al., 2012).

How to effectively shift the microbiome and restore balance is a key question for disease

prevention and treatment. The gut microbiome is influenced by a number of factors

including the nature of the initial colonization at birth (e.g., vaginal vs. C-section delivery),

host genotype, age, and diet. As diet is a readily modifiable factor, it is an obvious target

for interventions. Several studies have confirmed high inter-individual variability in the

bacterial composition of the gut microbiome in healthy individuals (Brownawell et al.,

2012; Costello et al., 2009). Despite this high variability at the species level, enterotypes,

or distinct clusters at the genus level, were described as core microbiomes that are

independent of age, gender, nationality, or BMI (Arumugam et al., 2011). Although the

concept of enterotypes is itself controversial, diet has been shown to play a key role in

determining enterotype (Wu et al., 2011; De Filippo et al., 2010; Muegge et al., 2011).

Although the core microbiota within each person are stable over longer time scales

(e.g., 5 years), community composition is highly dynamic on shorter time scales (e.g., 0–50

weeks) (Faith et al., 2013). In fact, major shifts occur within 1 day of a significant dietary

change (Wu et al., 2011; Turnbaugh et al., 2009). “Blooms” in specific bacterial groups were

observed in response to controlled feeding of different fermentable fibers (Walker et al.,

2011). Dietary changes affect both the structure and function of the gut microbiome in

animals (Hildebrandt et al., 2009), and humans under controlled feeding conditions (Wu

et al., 2011). Rapid shifts in microbiome composition are observed in response to change

from a vegetarian to an animal based diet (David et al., 2013).

An ecological perspective helps to delineate the complexity and multi-layered nature

of the relationships between the microbiota, the human host, and both the nutritive and

non-nutritive compounds we ingest (Costello et al., 2012). The concept of the human gut

microbiome as a distinct ecosystem or collection of micro-ecosystems allows us to identify

and characterize the components of the system, including its inputs and outputs. In this

case, the inputs of the system include all of the various ingested compounds that can either

serve as food substrates (e.g., complex sugars) or that can be metabolized by or that affect

the metabolism of the microbiota (e.g., polyphenolic compounds, environmental chemi-

cals, medications). Some of these inputs, such as probiotics have been studied extensively.

It has been well documented that certain sugars such as galactooligosaccharides, fruc-

tooligosaccharides, and oligosaccharides found in milk act as prebiotics that support the

establishment and growth of certain commensal microbial species (Brownawell et al., 2012;

de Vrese & Schrezenmeir, 2008; Roberfroid, 2007; German et al., 2008; Zivkovic & Barile,
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2011). Research has also documented the effects of antibiotics, and pathogens on the mi-

crobiota composition, its recovery or lack of recovery to baseline following resolution, and

the various immunological and physiological effects of these perturbations (Manichanh et

al., 2010; Ubeda & Pamer, 2012; Bien, Palagani & Bozko, 2013; Dethlefsen & Relman, 2010).

Yet, little is known about the effects of ingested microorganisms on gut microbiota

composition or function, and even the basic questions of which microbes, how many of

them, and how much they vary from diet to diet and meal to meal, have not been answered.

We do know about the microbial ecology of various specialty foods where fermentation,

colonization, ripening, and/or aging are part of the preparation of these foods, for example

pancetta (Busconi, Zacconi & Scolari, 2014) and of course cheese (Gatti et al., 2008; Button

& Dutton, 2012). The microbial ecology of the surfaces of raw plant-derived foods such

as fruits and vegetables has also been characterized (Leff & Fierer, 2013). There is a large

base of literature on food-borne pathogens (Aboutaleb, Kuijper & Van Dissel, 2014).

Furthermore, it is known that the microbial ecology of endemic microbes found on food

surfaces can affect mechanisms by which pathogens colonize these foods (Critzer & Doyle,

2010). A recent article showed that certain ingested microbes found in foods such as cheese

and deli meats were detected in the stool of individuals who consumed them, and that

furthermore they were culturable and thus survived transit through the upper intestinal

tract (David et al., 2013). However, the microbial ecology or microbial assemblages of

different meals and diets, as well as the total number of live microorganisms ingested in

these meals and diets are largely unknown. In fact, studies of the effects of diets and foods

on the gut microbiota rely on dietary recalls and other dietary reporting instruments

that were not designed to capture the potential variability in aspects of foods other than

their basic macronutrient and micronutrient content. Specifically, current instruments

for collecting individual dietary data do not capture the provenance of foods or their

preparation, both of which would likely influence certain compositional aspects of the

foods, especially the microbes on those foods.

We performed a preliminary study designed to generate hypotheses about the microbes

we eat, and how they vary in terms of total abundance and relative composition in different

meals and dietary patterns typical of American dietary intakes. We have selected to

characterize the microbiota of 15 meals that exemplify the typical meals consumed as

part of three different dietary patterns in order to determine the average total amount

of daily microbes ingested via food and beverages and their composition in the average

American adult consuming these typical foods/diets: (1) the Average American dietary

pattern (AMERICAN) focused on convenience foods, (2) the USDA recommended dietary

pattern (USDA) emphasizing fruits and vegetables, lean meat, dairy, and whole grains, and

(3) the Vegan (VEGAN) dietary pattern, which excludes all animal products. We used DNA

sequencing, plate counting, and informatics methods to characterize microbes in these

meals and dietary patterns.
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METHODS
Meal preparation
We conducted a series of experiments consisting of food preparation followed by sample

preparation and microbial analysis. Food was purchased and prepared in a standard

American home kitchen by the same individual using typical kitchen cleaning practices

including hand washing with non-antibacterial soap between food preparation steps,

washing of dishes and cooking instruments with non-antibacterial dish washing detergent,

and kitchen clean-up with a combination of anti-bacterial and non-antibacterial cleaning

products. Anti-bacterial products had specific anti-bacterial molecules added to them

whereas “non-antibacterial” products were simple surfactant-based formulations. The

goal was to simulate a typical home kitchen rather than to artificially introduce sterile

practices that would be atypical of how the average American prepares their meals at home.

All meals were prepared according to specific recipes (from raw ingredient preparation

such as washing and chopping, to cooking and mixing).

After food preparation, meals were plated on a clean plate, weighed on a digital scale

(model 157W; Escali, Minneapolis, MN), and then transferred to a blender (model

5,200; Vita-Mix Corporation, Cleveland, OH) and processed until completely blended

(approximately 1–3 min). Prepared, ready to eat foods that were purchased outside the

home were simply weighed in their original packaging and then transferred to the blender.

4 mL aliquots of the blended meal composite were extracted from the blender, transported

on dry ice and then stored at −80 ◦C until analysis. The following analyses were completed

using these meal composite samples: (1) total aerobic bacterial plate counts, (2) total

anaerobic bacterial plate counts, (3) yeast plate counts, (4) fungal plate counts, and (5) 16S

rDNA analysis for microbial ecology.

Diet design
Diets were designed by a nutritional biologist to deliver the average number of calories

consumed by an average American per day. The average American woman is 63 inches in

height and weighs 166 pounds, and the average American man is 69 inches in height and

weighs 195 pounds with an average age of 35, National Health and Nutrition Examination

Survey, which translates to a total daily calorie intake range of 2,000–2,600 calories per

day respectively to maintain weight, as determined using the USDA MyPlate SuperTracker

tool. Therefore an intermediate daily calorie intake of about 2,200 calories was chosen as

the target.

Meal plans were created using the NutriHand program (Nutrihand Inc., Soraya, CA).

Diet nutrient composition was calculated by the NutriHand program from reference

nutrient data for individual foods using the USDA National Nutrient Database for

Standard Reference. Three one-day meal plans were created to be representative of three

typical dietary patterns that are consumed by Americans: (1) the Average American dietary

pattern (AMERICAN), which includes meat and dairy and focuses on convenience foods,

(2) the USDA recommended dietary pattern (USDA), which emphasizes fresh fruits and

vegetables, lean meats, whole grains and whole grain products, and dairy, and (3) the
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Table 1 Aerobic and anaerobic microbial plate counts. Bacterial (aerobic and anaerobic), yeast, and mold plate counts were performed by Covance
Laboratories (Covance Inc., Madison, WI). Plate counts are reported as colony forming units (CFU) per gram for each meal.

Dietary pattern Meal Aerobic plate
count

Anaerobic plate
count

Yeast count Mold count Total
microorganisms

Average American Breakfast 2.15E+05 2.26E+05 5.66E+02 5.66E+03 4.48E+05

Lunch 2.23E+05 1.31E+04 1.31E+03 1.31E+03 2.38E+05

Snack 1.87E+04 2.34E+03 2.34E+02 2.34E+02 2.15E+04

Dinner 1.47E+05 5.35E+05 7.75E+02 7.75E+02 6.84E+05

Total 6.04E+05 7.77E+05 2.88E+03 7.98E+03 1.39E+06

USDA recommended Breakfast 1.14E+04 5.72E+02 4.29E+04 1.49E+06 1.54E+06

Snack #1 2.11E+05 5.42E+07 5.42E+02 1.19E+05 5.45E+07

Lunch 3.25E+07 2.26E+06 1.06E+06 2.55E+06 3.84E+07

Snack #2 5.54E+08 6.09E+08 3.32E+04 1.39E+04 1.16E+09

Dinner 3.49E+05 5.81E+04 9.69E+02 9.69E+03 4.17E+05

Total 5.87E+08 6.66E+08 1.14E+06 4.18E+06 1.26E+09

Vegan Breakfast 3.38E+04 1.99E+04 3.98E+02 9.95E+03 6.41E+04

Snack #1 1.97E+06 1.67E+06 5.41E+05 4.92E+05 4.67E+06

Lunch 1.22E+05 2.34E+04 9.35E+02 9.35E+02 1.47E+05

Snack #2 9.81E+04 4.67E+03 3.50E+04 2.80E+05 4.18E+05

Dinner 4.07E+05 1.45E+05 4.53E+02 9.05E+03 5.62E+05

Snack #3 1.43E+05 2.94E+03 8.40E+01 8.40E+01 1.46E+05

Total 2.77E+06 1.87E+06 5.78E+05 7.92E+05 6.01E+06

Vegan dietary pattern (VEGAN), which excludes all animal products. The AMERICAN

meal plan totaled 2,268 calories, which consisted of 35% fat, 53% carbohydrates of which

16.6 g was fiber, and 12% protein. The USDA meal plan totaled 2,260 calories, consisting of

25% fat, 49% carbohydrates of which 45 g was fiber, and 27% protein. The VEGAN meal

plan totaled 2,264 calories and consisted of 31% fat, 54% carbohydrates of which 52 g was

fiber, and 15% protein.

Microbial community analysis
Microbial plate counts were performed by Covance Laboratories (Covance Inc., Madison,

WI). Aerobic plate counts were performed according to SPCM:7, anaerobic plate counts

were performed according to APCM:5 and the yeast and mold counts were performed

according to Chapter 23 of the FDA’s Bacteriological Analytical Manual. Plate counts were

reported as colony forming units (CFU) per gram for each meal composite. The CFU/g

values were multiplied by the total number of grams in each meal to obtain the CFU per

meal, and the values for meals for each day were added to obtain the CFU per day for each

dietary pattern (Table 1).

The taxonomic composition of each meal microbiome was assessed via amplification

and sequencing of 16S rDNA from the homogenized meals. DNA was extracted from

homogenized food samples with the Power Food Microbial DNA Isolation Kit (MoBio

Laboratories, Inc.) according to the manufacturer’s protocol. Microbial DNA was

amplified by a two-step PCR enrichment of the 16S rRNA gene (V4 region) using primers
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515F and 806R, modified by addition of Illumina adaptor and barcodes sequences. All

primer sequences and a detailed PCR protocol are provided in Table 2 and in a GitHub

repository (https://github.com/hollybik/protocols/blob/master/16S rRNA twostep PCR.

tex), respectively. Libraries were sequenced using an Illumina MiSeq system, generating

250bp paired-end amplicon reads. The amplicon data was multiplexed using dual barcode

combinations for each sample. We used a custom script (available in a GitHub repository

(https://github.com/gjospin/scripts/blob/master/Demul trim prep.pl), to assign each pair

of reads to their respective samples when parsing the raw data. This script allows for 1

base pair difference per barcode. The paired reads were then aligned and a consensus

was computed using FLASH (Magoč & Salzberg, 2011) with maximum overlap of 120

and a minimum overlap of 70 (other parameters were left as default). The custom

script automatically demultiplexes the data into fastq files, executes FLASH, and parses

its results to reformat the sequences with appropriate naming conventions for QIIME

v.1.8.0 (Caporaso et al., 2010) in fasta format. The resulting consensus sequences were

analyzed using the QIIME pipeline.

Statistical analyses and data visualization
Unless otherwise noted, all statistical analyses were performed using python scripts imple-

mented in QIIME v.1.8.0, and all python scripts referenced here are QIIME scripts. The

IPython notebook file used for all QIIME analyses is available at http://nbviewer.ipython.

org/gist/jennomics/c6fe5e113525c6aa8add. To explore the differences in overall microbial

community composition across the 15 meals, both the phylogenetic weighted UniFrac

distances (Lozupone et al., 2011) and the taxonomic Bray–Curtis dissimilarities (Bray &

Curtis, 1957) were calculated using the beta diversity through plots.py script. This script

also produced a principal coordinates analysis (PCoA) plot in which the Bray–Curtis

dissimilarities between samples were used to visualize differences among groups of

samples (see Fig. 1 for this type of visualization for the three Diet Types.) To test for the

significance of dietary pattern on the overall microbial community composition, we used a

permutational multivariate ANOVA as implemented in the compare categories.py script.

To test for significant differences in taxonomic richness across dietary patterns, we used

the non-parametric Kruskal–Wallis test (Kruskal & Allen Wallis, 1952) with the FDR (false

discovery rate) correction as implemented in compare alpha diversity.py. To test for the

significant variation in frequency of individual OTUs across dietary patterns, we used the

Kruskal–Wallis test with the FDR correction as implemented in the group significance.py

script. We also used the biplot function of the make emperor.py script to plot the

family-level OTUs in PCoA space alongside each meal. To test for significant correlation

between the relative abundance of a single taxonomic group and meal metadata categories

(i.e., nutrient composition, whether a meal contains fermented foods, etc.) at 5 taxonomic

levels (phylum-genus) Pearson correlation coefficients (Pearson, 1895) were calculated

and tested for statistical significance using Stata (Stata Statistical Software Release 13;

StataCorp, College Station, TX). Figures 2 and 3 were produced with R (R-project, 2014),

using the phyloseq package (McMurdie & Holmes, 2013).
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Figure 1 Principle Coordinates Analysis plot. Principle Coordinates Analysis (PCoA) based on
Bray–Curtis dissimilarities of microbial communities found in the 15 meals, color-coded according to
the dietary patterns they represent. Axes are scaled to the amount of variation explained.

Figure 2 Alpha diversity measures for the three diet types. While some individual meals had higher
alpha diversity (defined either by the number of OTUs observed or by the Chao1 and Shannon diversity
measures) than others, there was no significant difference in diversity between the different dietary
patterns (AMERICAN, USDA, and VEGAN).

Metagenome prediction with PICRUSt
A synthetic metagenome was generated based on the observed 16S rDNA sequences

for each meal. To do this, the 16S rDNA sequences were clustered into a collection of

OTUs sharing 99% sequence identity, using the pick closed reference otus.py script. The

resultant OTU table was normalized with respect to inferred 16S rRNA gene copy numbers

Lang et al. (2014), PeerJ, DOI 10.7717/peerj.659 14/39

https://peerj.com
http://dx.doi.org/10.7717/peerj.659


Figure 3 The cumulative relative abundance of Families representing the 50 most abundant
OTUs. The 50 most abundant OTUs in this study (clustered at 97% similarity) belong to 25 different
bacterial families, including many that are commonly found in association with plants and animals. None
of them vary significantly with respect to diet type.

using the normalize by copy number.py script distributed with PICRUSt v.1.0.0 (Langille

et al., 2013). The normalized OTU table was used to predict meal microbial metagenomes

with PICRUSt’s predict metagenomes.py script. The final predicted metagenome is

output as a .biom table, which is suitable for analysis with a tool such as STAMP (Parks

et al., 2014). We used STAMP to test for and visualize significant (predicted) functional

differences in microbial communities between the three dietary patterns.

RESULTS
Meal composition
The detailed meal plans with all ingredients are shown in Table 3, food preparation

descriptions (all steps prior to placing into blender and blending foods as described in

“Methods” section) are shown in Table 4, and nutrient values based on the USDA nutrient

database are shown in Table 5. The AMERICAN meal plan consisted of a large Starbucks

Mocha Frapuccino for breakfast, a McDonald’s Big Mac, French fries, and Coca Cola

for lunch, Stouffer’s lasagna for dinner, and Oreo cookies for a snack. The USDA meal

plan consisted of cereal with milk and raspberries for breakfast, an apple and yogurt

for a morning snack, a turkey sandwich on whole wheat bread with salad (including a

hard-boiled egg, grapes, parmesan cheese, and Ceasar dressing) for lunch, carrots, cottage

cheese and chocolate chips for an afternoon snack, and chicken, asparagus, peas and

spinach on quinoa for dinner. The VEGAN meal plan consisted of oatmeal with banana,

peanut butter, and almond milk for breakfast, a protein shake (including vegetable-based

protein powder, soy milk, banana and blueberries) for a morning snack, a vegetable and

tofu soup (including soba noodles, spinach, carrots, celery and onions in vegetable broth)
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Table 3 Ingredients included in each meal. A detailed accounting of each component of each meal, including the weight of each ingredient.

Average American USDA Vegan

Amount Item Amount Item Amount Item

Breakfast 20 oz (566 g) Starbucks
Mocha Frappucino

2 cups (88 g) Kashi
GoLean cereal

0.5 each (60 g) large banana

1 cup (232 g) 1% milk 1 cup (250 g) Almond Breeze
almond milk

0.5 cup (58 g) raspberries 2 tsp (14 g) maple syrup

1 tbsp (28 g) peanut butter

0.5 cup (46 g) rolled oats

Lunch 1 each (215 g) McDonald’s Big Mac 2 tbsp (26 g) Cesar dressing 6 oz (171 g) firm tofu

1 large (154 g) McDonald’s French Fries 20 each (125 g) green seedless grapes 2 oz (57 g) soba noodles

12 fl oz (380 g) McDonald’s Coke 1 each (78 g) Oroweat whole wheat
burger bun

1 cup (28 g) spinach

3 cups (72 g) green leaf lettuce 1 each (71 g) medium carrot

1 each (52 g) large hard boiled egg 2 cups (480 g) Pacific Foods
vegetable broth

3 tbsp (18 g) parmesan cheese, shredded 1 stalk (56 g) medium celery

2 slices (46 g) roasted turkey breast 0.25 cup (65 g) chopped yellow onion

1 tsp (5 g) extra virgin olive oil

0.25 tsp (2 g) toasted sesame oil

Dinner 2 slices (515 g) Stouffer’s Lasagna 1 tbsp (12 g) extra virgin olive oil 0.25 each (38 g) avocado

1 cup (171 g) quinoa 1 each (159 g) portabella mushroom

0.33 cup (35 g) diced yellow onion 1 tbsp (14 g) balsamic vinegar

4 each (65 g) medium asparagus spears 1 tbsp (14 g) Vegenaise

0.5 cup (72 g) frozen green peas 1 slice (57 g) tomato

6 oz (165 g) boneless skinless
chicken poached

1 leaf (14 g) red lettuce

0.5 cup (13 g) spinach 1 cup (80 g) chopped broccoli

1 tsp (0.5 g) lemon juice 1 tsp (0.5 g) lemon juice

1.5 cup (435 g) water 1 clove (0.5 g) garlic

1 tbsp chopped basil

1 bun Oroweat whole wheat
burger bun

Snack #1 1 each small Fuji apple 0.5 each large banana

6 oz Yoplait strawberry yogurt 1 cup soy milk

1 scoop Spirutein protein
powder

1 cup blueberries (Chile)

Snack #2 3 each Oreo cookies 10 each large baby carrots 1 bag green tea

1 cup 2% cottage cheese 1 cup water

2 tbsp semi-sweet chocolate chips 1 each medium Fuji apple

20 each almonds

Snack #3 2 cups pop corn

17 each hazelnuts

3 each Newman’s Own fig bars
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Table 4 Food preparation details. The meal preparation and cooking instructions (when appropriate) are presented here.

Average American USDA Vegan

Breakfast Used as purchased from
Starbucks.

Cereal poured directly from box into
bowl. Milk poured into measuring cup,
then into cereal bowl. Raspberries washed
first in colander under running water then
transferred on top of cereal.

Almond milk brought to a boil, then oats added and
cooked for 5 min on low heat. Peanut butter and
maple syrup measured out then stirred into cooked
oats. Banana peeled and sliced into slices on top of
cooked oats.

Snack #1 Cookies taken out of
packaging.

Apple washed and sliced, core discarded.
Yogurt used as purchased.

Soy milk measured into measuring cup, protein
powder measured into scoop, banana peeled and cut
in half, blueberries rinsed in colander under running
water.

Lunch Used as purchased from
McDonald’s.

Sliced roasted turkey breast deli meat
taken out of packaging and placed into
burger bun. Lettuce rinsed in colander
under running water and dried on paper
towel then cut into strips and tossed with
premade Ceasar dressing. Egg boiled in
water for 8 min then peeled and sliced in
half and placed in top of dressed salad.
Parmesan cheese shredded and added on
top of salad. Grapes rinsed in colander
under running water, then sliced in half
and placed on top of salad.

Carrot rinsed under running water, peeled, and sliced.
Celery washed under running water and sliced. Onion
outer layer peeled and diced. Sliced carrot, celery and
onion sauteed in olive oil for 5 min, then vegetable
broth measured out in measuring cup and added
to vegetables, brought to a boil. Tofu taken out of
packaging, excess water discarded, cut into cubes,
added to broth. Spinach taken out of prepackaged,
prerinsed bag and added to broth. Noodles and
sesame oil added to broth. Soup cooked for 8 min
on low heat.

Snack #2 Baby carrots taken out of packaging and
used. Cottage cheese measured out in
measuring cup. Chocolate chips measured
out and used.

Water boiled and poured into cup with tea bag,
steeped for 5 min. Apple rinsed under running water,
sliced, and core discarded. Almonds taken out of
packaging.

Dinner Lasagna prepared ac-
cording to manufacturer
instructions (taken out of
freezer and baked at 400F
for 1 h and 45 min, cooled,
then sliced.

Chicken breast taken out of plastic
packaging, and placed into pot with
boiling water, boiled for 3 min, removed
from heat, covered, let stand for 18 min,
then sliced. Quinoa rinsed in colander
under running water, added to water in
pan and brought to a boil, simmered
covered for 20 min. Oil heated in large
skillet over medium heat, onion peeled
and diced, asparagus spears rinsed and
sliced, both added to oil and cooked for
5 min. Peas added from frozen packaging
and cooked for 1 min. Spinach rinsed in
colander under running water and added
to skillet, cooked for 3 min. Quinoa,
vegetables, and chicken combined with
lemon juice.

Mushroom destemmed and peeled, soaked in vinegar,
then grilled in grill pan for 5 min on each side. Garlic
peeled and grated into Vegenaise, lemon juice added.
Basil rinsed under running water, chopped and added
to Vegenaise mixture. Tomato rinsed under running
water, then sliced. Lettuce leaf rinsed under running
water. Broccoli rinsed under running water, then
steamed in colander for 3 min, chopped. Burger
assembled: Vegenaise mixture spread onto bottom
of bun, topped with mushroom, lettuce leaf, tomato
slice and top of bun.

Snack #3 Popcorn (no salt, no oil) prepared in microwave
bag as directed (placed in microwave for 4 min).
Hazelnuts taken out of packaging. Fig bars taken out
of packaging.
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Table 5 Nutrient composition by meal. Diet nutrient composition was calculated by the NutriHand program from reference nutrient data for
individual foods using the USDA National Nutrient Database for Standard Reference.

Dietary
pattern/meal

Energy
(kcal)

Protein
(g)

Total lipid
(fat) (g)

Carbohydrate,
by difference
(g)

Fiber, total
dietary (g)

Sugars,
total (g)

Calcium,
Ca (mg)

Iron,
Fe (mg)

AMERICAN breakfast 367 8.52 4.98 73.33 0 60 250 1.2

AMERICAN lunch 1,174 31.76 57.58 138.6 10 43.53 280 5.7

AMERICAN dinner 568 26.62 20.81 68.2 5.6 11.4 380 2.88

AMERICAN snack 160 1 7 25 1 14 20 1.8

USDA breakfast 414 34.96 4.85 79.52 24 27.41 466 4.09

USDA snack #1 256 8.91 3.07 52.29 3.6 20.45 268 0.3

USDA lunch 656 37.26 28.97 68.61 6 19.06 298 6.06

USDA snack #2 352 29.2 11.74 34.13 5.8 27.43 254 2.22

USDA dinner 581 48.44 19.22 56.41 5.6 6.97 58 3

VEGAN breakfast 367 10 12.78 58.19 6.7 28.31 311 0.9

VEGAN snack #1 373 23.76 4.95 62.8 7.7 40.46 373 6.65

VEGAN lunch 468 25.49 13.89 64.31 7 7.95 348 6.94

VEGAN snack #2 233 5.82 12.59 30.39 7.3 19.86 82 1.11

VEGAN dinner 444 15.4 20.19 55.62 16.3 13.74 176 3.5

VEGAN snack #3 378 7.41 18.69 50.46 6.8 23.42 59 3.02

Dietary
pattern/meal

Sodium,
Na (mg)

Vitamin C,
total ascorbic
acid (mg)

Cholesterol
(mg)

Carotene,
beta (mcg)

Sucrose
(g)

Glucose
(dextrose)
(g)

Fructose
(g)

Lactose
(g)

AMERICAN breakfast 300 0 17 0 N/A N/A N/A N/A

AMERICAN lunch 1,399 12.1 79 0 1.27 2.28 3.7 0.7

AMERICAN dinner 2,102 7.2 56 N/A N/A N/A N/A N/A

AMERICAN snack 160 0 0 N/A N/A N/A N/A N/A

USDA breakfast 278 16.1 12 61 0.12 1.14 1.45 12.69

USDA snack #1 100 8 10 47 3.08 3.62 8.79 0

USDA lunch 1,516 110 223 56 0.15 7.2 8.13 0

USDA snack #2 863 3.9 23 9,600 4.08 3.3 1.5 6.55

USDA dinner 446 25.6 90 1,953 3.78 1.58 1.56 0

VEGAN breakfast 312 6 85 18 3.14 8.49 9.03 0

VEGAN snack #1 266 80 0 69 1.79 10.47 10.51 0

VEGAN lunch 1,618 16.2 0 6,850 2.65 1.4 1.11 0

VEGAN snack #2 9 8.4 0 50 4.63 4.45 10.76 0

VEGAN dinner 499 102.3 0 1,018 0.11 6.96 3.23 0.19

VEGAN snack #3 169 1.6 0 17 1.12 0.03 0.03 0

Dietary
pattern/meal

Maltose
(g)

Galactose
(g)

Starch
(g)

Fatty acids, total
monounsaturated
(g)

Fatty acids, total
polyunsaturated
(g)

Vitamin A,
IU (IU)

Fatty acids, total
saturated (g)

AMERICAN breakfast N/A N/A N/A N/A N/A 0 2.64

AMERICAN lunch 1.07 0 90.32 19.63 7.86 412 11.52

AMERICAN dinner N/A N/A N/A N/A N/A 600 11.4

AMERICAN snack N/A N/A N/A N/A N/A 0 2
(continued on next page)
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Table 5 (continued)

Dietary
pattern/meal

Maltose
(g)

Galactose
(g)

Starch
(g)

Fatty acids, total
monounsaturated
(g)

Fatty acids, total
polyunsaturated
(g)

Vitamin A,
IU (IU)

Fatty acids, total
saturated (g)

USDA breakfast 0 0 0 0.72 0.33 499 1.97

USDA snack #1 0 0 0.07 1.16 0.55 836 2.06

USDA lunch 0 0 0 7.71 11.43 5,179 7.29

USDA snack #2 0 0 0 1.01 0.27 20,852 5.99

USDA dinner 0.05 0.02 2.79 9.88 1.61 3,271 1.97

VEGAN breakfast 0.21 0.43 4.43 3.9 2.32 544 2.25

VEGAN snack #1 0.01 0 3.7 1.06 2.6 5,129 0.62

VEGAN lunch 0 0.29 0.87 5.9 5.82 13,184 1.79

VEGAN snack #2 0.01 0.01 0.27 7.99 3.48 102 1.48

VEGAN dinner 0.19 0.01 0 10.74 5.56 1,779 2.64

VEGAN snack #3 0 0 8.81 12.48 3.51 52 1.69

for lunch, an apple and almonds with tea for an afternoon snack, a Portobello mushroom

burger (including Portobello mushroom, avocado, tomato, lettuce, and a whole wheat

bun) with steamed broccoli for dinner, and popcorn, hazelnuts and fig bars for an evening

snack.

The following meals contained fermented foods that contained live active cultures

according to the package and were prepared without heat treatment: USDA meal plan

snack #1 (yogurt), lunch (parmesan cheese), and snack #2 (cottage cheese). The following

meals contained fermented foods that were cooked as part of meal preparation: VEGAN

meal plan lunch (tofu), and AMERICAN meal plan lunch and dinner (cheese). Meal

ingredients were purchased at local grocery stores in Saint Helena, CA, and prepared meals

were purchased in restaurants in Napa, CA.

Plate counts
The aerobic, anaerobic, yeast and mold plate counts are shown in Table 1. The meals

ranged in total numbers of microorganisms from CFU to CFU with the aerobic and

anaerobic plate counts being among the highest and the yeast and mold plate counts

being among the lowest across all meals. The USDA dietary pattern had the highest total

microorganisms for the day at CFU mostly due to the higher amounts of anaerobic bacteria

in the morning snack (CFU) and higher amounts of aerobic and anaerobic bacteria in

the afternoon snack (5.5 × 108 and 6 × 108 CFU respectively). Not surprisingly, both of

these meals contained fermented products, in the first case yogurt, and in the second case

cottage cheese. The AMERICAN and VEGAN dietary patterns had 3 orders of magnitude

fewer total microorganisms than the USDA dietary patterns, with total microorganisms

of CFU and CFU respectively. Neither the AMERICAN nor the VEGAN dietary pattern

meals contained fermented foods that were not heat treated as part of meal preparation.

The AMERICAN lunch and dinner contained cheese that was either cooked on a grill

or baked in the oven and the VEGAN lunch contained tofu, which was cooked in the

vegetable broth. The USDA lunch also had the highest amounts of yeast and mold (and
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Table 6 Sequence summary statistics by meal. The number of sequences per meal before and after filtration to remove eukaryotic, chimeric, and
singleton reads, and the number of OTUs per meal after filtration.

Meal # Sequences
pre-filtration

# Sequences
post-filtration

# OTUs (open reference,
97% similarity)

AMERICAN breakfast 267,254 226,903 1,838

AMERICAN dinner 298,442 11,666 660

AMERICAN lunch 299,035 96,898 622

AMERICAN snack 311,311 279,136 969

USDA breakfast 318,956 5,002 502

USDA dinner 277,213 6,149 476

USDA lunch 270,166 16,456 607

USDA snack1 299,998 226,403 334

USDA snack2 238,057 104,114 333

VEGAN breakfast 274,360 7,310 399

VEGAN dinner 303,246 3,576 417

VEGAN lunch 291,459 13,874 480

VEGAN snack1 244,886 62,446 644

VEGAN snack2 288,319 974 1,053

VEGAN snack3 168,669 54,483 229

CFU respectively) of all the meals, and this meal also had relatively high amounts of

aerobic bacteria (CFU). In the VEGAN dietary pattern, the morning snack had the highest

amounts of aerobic and anaerobic bacteria (and CFU respectively).

Sequence processing and summary statistics
The number of high-quality sequences per sample (i.e., meal) ranged from 168,669

to 318,956 (see Table 6). Sequences were clustered and clusters were assigned to a

taxonomic group (when possible) using the pick open reference otus.py script with a 97%

similarity cutoff and the gg 13 8 otus reference taxonomy provided by the Greengenes

Database Consortium (http://greengenes.secondgenome.com). After OTU assignment,

mitochondrial and chloroplast sequences were filtered out, sequences that were observed

only once across all samples were removed, and sequences that were Unassigned at the

Domain taxonomic level were removed (these Unassigned sequences were verified via

a manual BLAST search to be chloroplast sequences). After this filtration, the range of

sequences per sample decreased to 771–244,597. All subsequent beta diversity analyses

(comparisons across samples) were performed on samples that were rarefied to 771

sequences per sample.

Taxonomic composition and diversity of the different dietary
patterns
In terms of taxonomic alpha diversity, there was no significant difference between dietary

patterns (Fig. 2) (non-parametric Kruskal–Wallis test with compare alpha diversity.py,

p > 0.6). This is the case for multiple diversity metrics, including a count of the absolute

number of OTUs observed, as well as the Chao1 and Shannon–Weiner (parametric and
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nonparametric, respectively) diversity indices, which account for the relative abundance

(evenness) of the OTUs observed. We also tested for the significant variation in frequency

of individual OTUs between diet types using the Kruskal–Wallis test, as implemented

in the group significance.py script. This test is appropriate for comparing independent

groups, with unequal sample sizes, that may not be normally distributed. None of the

OTUs were significantly different between the three diet types. The most abundant 50

OTUs (clustered at 97% similarity) belong to 25 different bacterial families, including

many that are commonly found in association with plants and animals (see Fig. 3).

Factors driving the differences in microbial community
composition and diversity of individual meals
There was no effect of dietary pattern on the overall community composition within

individual meals (PERMANOVA with compare categories.py, p = 0.591). There was

no obvious clustering based on any potentially distinguishing feature tested, including

whether the meals contained fermented foods, dairy, whether they ware raw or cooked,

or the calculated nutritional content (see Table 5 for complete meal metadata). However,

different meals clustered together independent of dietary pattern. For example, meals that

were relatively abundant in Prevotellaceae included the USDA dinner, VEGAN dinner,

AMERICAN dinner, USDA breakfast, VEGAN snack 2, and VEGAN snack 3. Prevotel-

laceae includes organisms that tend to be very abundant in the guts of many animals, and

have been associated with Inflammatory Bowel Disease in humans (Henderson et al., 2013;

Wu, Bushmanc & Lewis, 2013). The AMERICAN snack, AMERICAN lunch, USDA snack 2

and USDA snack 1 had a high relative abundance of Streptococcaceae (Fig. 4). It is difficult

to know what specific features of these meals made them similar in this regard. Possible

contributing factors may be provenance of ingredients and/or individual meal components

such as presence of a certain fruit or vegetable.

A large amount of variation (52%) was explained by PCo1 (i.e., the eigenvector that

explains the most variation)(Fig. 1), and our attempts to determine the factors driving

this variation led us to look at specific taxonomic groups that may be important. We

did this in two ways. First, we produced a biplot with the make emperor.py script,

showing the prevalence of bacterial families in the PCoA space defined by the weighted

unifrac distance between the 15 meals (Fig. 5). A cluster of 4 meals, including USDA

snack 1, AMERICAN snack, AMERICAN lunch, and USDA lunch, was comprised of

samples that were dominated by Lactic Acid Bacteria. These are members of the order

Lactobacillales, which are commonly found in association with both food products,

especially in fermented milk products (Terzic-Vidojevic et al., 2014) and human mucosal

surfaces (Rizzello et al., 2011). The Vegan snack #1 was unique in that it was dominated

(70.4%) by Xanthamonadaceae, a family containing many plant pathogens. A second

cluster of 7 meals including VEGAN dinner, VEGAN breakfast, AMERICAN breakfast,

AMERICAN dinner, USDA dinner, VEGAN snack 3, and USDA breakfast, was comprised

of samples containing a large percentage (average = 27%) of Thermus, a clade with many

heat and dessication-resistant organisms. Second, we calculated correlations between the
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Figure 4 Heatmap of taxa abundance in each meal. Heatmap showing relative abundance of bacterial
families of individual meals. Similarities between meals are not necessarily part of the same dietary
pattern. Hierarchical clustering is based on Ward clustering of the Pearson correlation coefficients, with
sample by sample normalization performed using the median.

relative abundance of a single taxon and the PCo1 value for each meal using a simple

regression (see Table 7). The bacterial family most tightly correlated with PCo1 was

Streptococcaceae (r = 0.852).

We also asked whether the relative abundance of any particular taxonomic group was

correlated with the nutritional content of the meals via pairwise Pearson’s correlations. We

limited this analysis to organisms that were present in all 15 meals. Due to the exploratory

nature of this study, there were no specific hypotheses tested with these correlations, and

therefore no corrections for multiple hypothesis testing. Some taxa frequently abundant

in human microbiome studies were found to be significantly correlated with particular

nutrients (Table 7). For example, members of the genus Blautia are frequently observed in

human fecal samples, and in our study, the relative abundance of this genus was found to

be positively correlated with the sugar content of the meals p < 0.05 (Fig. 6). We emphasize
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Figure 5 Biplot of taxa in sample PCoA space. Bacterial families (light blue spheres) are displayed
in a PCoA biplot based on weighted Unifrac distances between the 15 meals. The size of the spheres
representing taxa is correlated with the relative abundance of the labeled organism. In the interest of
readability, only the bacterial families discussed in the text are labeled. Axes are scaled to amount of
variation explained.

Figure 6 Correlation of Blautia abundance with sugar content in meals. Scatterplot with simple regres-
sion line of the relative abundance of Blautia versus grams of sugar in each sample (i.e., meal). Pearson’s
r = 0.56.

here that due to the large numbers of OTUs present in this study, corrected p values

were always non-significant. However, the goal of this small-scale study is to inform the

development of future hypotheses, not test current ones. Nevertheless, this result suggests

that there could be interesting relationships between the nutritional content of the foods

that we eat, the microbes that associate with those foods, and our gut microbiome, not just

because we are “feeding” our gut microbes, but because we are eating them as well (but, see

“Caveats” section below.)
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Table 7 Pairwise Pearson correlations between individual taxonomic groups and meal nutrient composition. Pairwise Pearson correlation
coefficients (R) reveal significant correlations between some taxonomic groups and meal nutrient contents. Correlations were performed at 5
taxonomic levels (Phylum-Genus.) Only significant correlations are reported here.

OTU taxonomy string Energy Protein Total lipid Carbohydrate Fiber Sugars Calcium

k Bacteria
p Proteobacteria

−0.0555 0.1469 −0.1615 0.0001 0.21 0.1548 0.306

k Bacteria
p Proteobacteria
c Betaproteobacteria

0.1243 0.2057 0.2017 −0.0193 0.0075 −0.1199 −0.0134

k Bacteria
p Proteobacteria
c Gammaproteobacteria

−0.0518 0.1531 −0.1693 0.0122 0.2062 0.1612 0.3298

k Bacteria
p Proteobacteria
c Betaproteobacteria
o Burkholderiales

0.1244 0.2036 0.2057 −0.0206 0.0177 −0.1158 −0.0207

k Bacteria
p Proteobacteria
c Gammaproteobacteria
o Aeromonadales

0.1881 0.3457 0.2304 0.0074 −0.0007 −0.246 0.0846

k Bacteria
p Proteobacteria
c Gammaproteobacteria
o Pseudomonadales

0.2104 0.3438 0.2531 0.0501 0.1325 −0.1955 0.1255

k Bacteria
p Bacteroidetes
c Bacteroidia
o Bacteroidales
f [Odoribacteraceae]

0.0254 0.2495 0.0801 −0.1591 0.4575 −0.4456 −0.5145*

k Bacteria
p Firmicutes
c Bacilli
o Bacillales
f Staphylococcaceae

−0.1049 0.0316 −0.0643 −0.1813 0.2204 −0.5232*
−0.1309

k Bacteria
p Proteobacteria
c Betaproteobacteria
o Burkholderiales
f Oxalobacteraceae

0.1536 0.2519 0.2072 0.0201 −0.023 −0.0741 0.0677

k Bacteria
p Proteobacteria
c Gammaproteobacteria
o Pseudomonadales
f Pseudomonadaceae

0.2383 0.3882 0.2629 0.0766 0.1229 −0.1943 0.1457

k Bacteria
p Firmicutes
c Bacilli
o Bacillales
f Staphylococcaceae
g Staphylococcus

−0.1031 0.0343 −0.0633 −0.1798 0.222 −0.5254*
−0.1292

(continued on next page)
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Table 7 (continued)

OTU taxonomy string Energy Protein Total lipid Carbohydrate Fiber Sugars Calcium

k Bacteria
p Firmicutes
c Bacilli
o Lactobacillales
f Streptococcaceae
g Lactococcus

0.2088 0.2213 0.2812 0.0331 0.1385 0.142 −0.0006

k Bacteria
p Firmicutes
c Clostridia
o Clostridiales
f Lachnospiraceae
g Blautia

−0.0198 0.1057 0.028 −0.1283 0.3711 −0.5586*
−0.2554

k Bacteria
p Proteobacteria
c Gammaproteobacteria
o Pseudomonadales
f Pseudomonadaceae
g Pseudomonas

0.2379 0.3875 0.2629 0.0764 0.1225 −0.1935 0.1452

OTU taxonomy string Iron Sodium Vitamin C Vitamin A Fatty acids Cholesterol beta Carotene

k Bacteria
p Proteobacteria

0.5187*
−0.061 0.576*

−0.0015 −0.2234 0.026 −0.2217

k Bacteria
p Proteobacteria
c Betaproteobacteria

0.1572 0.2141 0.4799 −0.1432 0.1704 0.731**
−0.2859

k Bacteria
p Proteobacteria
c Gammaproteobacteria

0.5275*
−0.0574 0.5611* 0.0223 −0.2227 0 −0.1961

k Bacteria
p Proteobacteria
c Betaproteobacteria
o Burkholderiales

0.176 0.2094 0.5029 −0.1219 0.1636 0.7205**
−0.2679

k Bacteria
p Proteobacteria
c Gammaproteobacteria
o Aeromonadales

0.2563 0.4289 0.5015 −0.0596 0.3302 0.7054**
−0.2024

k Bacteria
p Proteobacteria
c Gammaproteobacteria
o Pseudomonadales

0.3722 0.3475 0.6911** 0.0597 0.2116 0.7658**
−0.1142

k Bacteria
p Bacteroidetes
c Bacteroidia
o Bacteroidales
f [Odoribacteraceae]

−0.0743 −0.1711 0.2335 −0.2165 −0.2105 −0.0428 −0.0989

k Bacteria
p Firmicutes
c Bacilli
o Bacillales
f Staphylococcaceae

0.1455 0.1666 −0.0834 0.005 −0.2458 −0.1784 0.142

(continued on next page)
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Table 7 (continued)

OTU taxonomy string Iron Sodium Vitamin C Vitamin A Fatty acids Cholesterol beta Carotene

k Bacteria
p Proteobacteria
c Betaproteobacteria
o Burkholderiales
f Oxalobacteraceae

0.2238 0.2378 0.5455*
−0.0402 0.1842 0.7828**

−0.2121

k Bacteria
p Proteobacteria
c Gammaproteobacteria
o Pseudomonadales
f Pseudomonadaceae

0.4155 0.3834 0.7115** 0.0968 0.2367 0.764**
−0.0822

k Bacteria
p Firmicutes
c Bacilli
o Bacillales
f Staphylococcaceae
g Staphylococcus

0.1482 0.1686 −0.0819 0.0068 −0.2455 −0.1771 0.1437

k Bacteria
p Firmicutes
c Bacilli
o Lactobacillales
f Streptococcaceae
g Lactococcus

−0.0765 0.136 −0.2465 0.603* 0.3762 −0.0024 0.6236*

k Bacteria
p Firmicutes
c Clostridia
o Clostridiales
f Lachnospiraceae
g Blautia

0.2255 0.1582 0.0478 0.0257 −0.2386 −0.2277 0.1791

k Bacteria
p Proteobacteria
c Gammaproteobacteria
o Pseudomonadales
f Pseudomonadaceae
g Pseudomonas

0.4149 0.3819 0.7113** 0.0964 0.236 0.7645**
−0.0828

Notes.
* p < 0.05.

** p < 0.01.

Metagenome prediction with PICRUSt
Because of the vast, historical effort to make the 16S rRNA gene sequence available for

hundreds of thousands of organisms, we are typically able to characterize well the taxo-

nomic diversity of most microbial communities. One might assume that each organism

present in a community has some functional role to play, and the most straightforward way

to predict what that role each organism might play is to use metagenomic sequencing to

interrogate the genomes of all members of the community. Unfortunately, in many cases

and with current sequencing technology, the amount of microbial DNA relative to host or

other environmental DNA is small enough to make metagenomic sequencing infeasible.

This is the case here, where the plant and animal DNA present in the food we eat is typically

much more abundant than the microbial DNA. Some exceptions may exist with respect
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Figure 7 PICRUSt metagenome prediction suggests higher abundance of genes in the “Other glycan
degradation” KEGG pathway in the VEGAN diet. Metagenome prediction with PICRUSt reveals func-
tional categories that differ significantly between the AMERICAN, USDA, and VEGAN diet types. The
abundance of genes annotated in the “Other glycan degradation” (KO00155) pathway are significantly
higher in the VEGAN diet (p = 8.21e−3). Due to the exploratory nature of this data set corrections for
multiple testing were not applied.

to fermented foods, but we are equally interested in the microbiota associated with a wide

variety of food types.

In a case like this for which metagenomic sequencing is infeasible, another approach

suggests itself. There is evidence that a correlation exists between the evolutionary

relatedness of two organisms and the similarity of their genomic content (Martiny, Treseder

& Pusch, 2012). This allows us to leverage the information obtained by sequencing the

genome of one organism to predict the functional potential of another, even if the other

genome is represented only by a 16S rRNA sequence. The power of this approach is

increased when very many, very closely-related genome sequences are available. This

predictive approach has recently been implemented in the software package PICRUSt.

PICRUSt uses the phylogenetic placement of a 16S rRNA sequence within a phylogeny of

sequenced genomes to infer the content of the genome of the organism represented by that

16S rRNA sequence.

With PICRUSt one can calculate a metric (NSTI) that measures how closely related the

average 16S rDNA sequence in an environmental sample is to an available sequenced

genome. When this number is low, PICRUSt is likely to perform well in predicting

the genomes of the organisms in an environmental sample (i.e., a metagenome). The
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Figure 8 PICRUSt metagenome prediction suggests higher abundance of genes in the “Sporulation”
KEGG pathway in cooked meals. Metagenome prediction with PICRUSt reveals functional categories
that differ significantly between the cooked and raw meal types. The abundance of genes annotated in the
“Sporulation” pathway are significantly higher in the cooked meals (p = 0.039). Due to the exploratory
nature of this data set corrections for multiple testing were not applied.

average NSTI for our 15 meals was 0.038, which is on par with the NSTI for the Human

Microbiome Project samples (mean NSTI = 0.03 ± 0.02 s.d.), for which a massive effort

has been made to obtain reference genome sequences (Proctor, 2011). This low NSTI metric

suggests that PICRUSt may perform well when predicting the metabolic potential of the

microbial communities found in the meals prepared for this study. Here, we have shown

the most significant KEGG functional category, for “Other N-glycan degradation” (KO

00511, p = 8.21e−3), which was highest in the VEGAN dietary pattern (Fig. 7). Again,

this is not a significant result when a p-value correction is applied, but is nevertheless

highlighted as a potential source of information when using a pilot study like this to inform

future research questions. As a sanity check for the PICRUSt predictions, we compared

the relative abundance of genes present in the KEGG functional category “Sporulation”

between meals that were cooked were compared to those that were raw (Fig. 8). As

expected, because organisms that can form spores are more likely to survive the cooking

process, Sporulation-associated genes are more abundant in cooked versus raw foods. All

KEGG (Level 3) pathways that vary significantly between dietary patterns are presented in

Table 8. These findings suggest that there are functional differences in bacterial populations

associated with different foods and meals, and that these may be related not only to

bacterial substrate preferences, but also techniques used in meal preparation.
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Table 8 KEGG Pathways with significant differences between meal categories as predicted by PI-
CRUSt. PICRUSt was used to predict the functional potential of the microbial community found in
each meal. This table contains all of the predicted KEGG pathways (at the 3rd hierarchical level) that
vary significantly (p-value <0.05) across nutrient composition or meal category type.

Nutrient/Descriptor KEGG functional category (level 3) Type of test used p-value

Calcium bin Peptidases ANOVA 0.039

Carotene beta bin Prenytransferases Welch’s T-test 0.041

Carotene beta bin Vibrio cholera pathogenic cycle 0.041 0.042

Dairy Other glycan degradation Welch’s T-test 0.041

Protein Phenypropanoid biosynthesis ANOVA 0.021

Vitamin C bin Calcium signaling pathway ANOVA 0.023

Vitamin C bin Transporters ANOVA 0.049

Vitamin A Cytoskeleton proteins ANOVA 0.017451421

Vitamin A Peptidases ANOVA 0.019130989

Vitamin A Flavonoid biosynthesis ANOVA 0.023972731

Vitamin A Germination ANOVA 0.029007085

Vitamin A Chaperones and folding catalysts ANOVA 0.031168211

Total/lipid/bin Secondary bile acid biosynthesis ANOVA 0.029181829

Total/lipid/bin Biosynthesis of siderophore group
nonribosomal peptides

ANOVA 0.043392615

Sodium Peptidases ANOVA 0.014721635

Sodium Benzoate degradation ANOVA 0.019865137

Sodium Limonene and pinene degradation ANOVA 0.031164989

Sodium Butanoate metabolism ANOVA 0.032537666

Sodium Nucleotide excision repair ANOVA 0.033766923

Sodium Phenylalanine, tyrosine and
tryptophan biosynthesis

ANOVA 0.036768304

Sodium Peroxisome ANOVA 0.037176174

Sodium Ethylbenzene degradation ANOVA 0.039923012

Sodium Naphthalene degradation ANOVA 0.040749468

Sodium Restriction enzyme ANOVA 0.043486893

Sodium Tyrosine metabolism ANOVA 0.047200716

Iron bin Carbon fixation in photosynthetic
organisms

ANOVA 0.021668245

Iron bin Protein kinases ANOVA 0.022263474

Iron bin Translation proteins ANOVA 0.024669694

Iron bin Pyruvate metabolism ANOVA 0.032434551

Iron bin Thiamine metabolism ANOVA 0.038685974

Iron bin D-Glutamine and D-glutamate
metabolism

ANOVA 0.041514757

Iron bin One carbon pool by folate ANOVA 0.042928705

Fiber bin Other glycan degradation ANOVA 0.014660951

Fiber bin N-Glycan biosynthesis ANOVA 0.042139092

Fiber bin Proteasome ANOVA 0.047590993

Fiber bin Prostate cancer ANOVA 0.048468144
(continued on next page)
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Table 8 (continued)
Nutrient/Descriptor KEGG functional category (level 3) Type of test used p-value

Fiber bin Antigen processing and
presentation

ANOVA 0.048618504

Fiber bin Progesterone-mediated oocyte
maturation

ANOVA 0.048618504

Fiber bin Other transporters ANOVA 0.049130295

Fermented Transcription factors Welch’s T-test 0.009468352

Fermented Phosphonate and phosphinate
metabolism

Welch’s T-test 0.011059743

Fermented Cytoskeleton proteins Welch’s T-test 0.011669915

Fermented Amoebiasis Welch’s T-test 0.012857954

Fermented Oxidative phosphorylation Welch’s T-test 0.013841012

Fermented Transporters Welch’s T-test 0.015647729

Fermented Protein processing in endoplasmic
reticulum

Welch’s T-test 0.017210951

Fermented Riboflavin metabolism Welch’s T-test 0.017938599

Fermented Steroid hormone biosynthesis Welch’s T-test 0.020976432

Fermented PPAR signaling pathway Welch’s T-test 0.021710104

Fermented Peroxisome Welch’s T-test 0.02186366

Fermented Citrate cycle (TCA cycle) Welch’s T-test 0.021867149

Fermented Toluene degradation Welch’s T-test 0.022788506

Fermented Carbon fixation pathways in
prokaryotes

Welch’s T-test 0.024411154

Fermented alpha-Linolenic acid metabolism Welch’s T-test 0.026939926

Fermented Methane metabolism Welch’s T-test 0.030552388

Fermented Synthesis and degradation of ketone
bodies

Welch’s T-test 0.031611873

Fermented RNA degradation Welch’s T-test 0.032553878

Fermented Dioxin degradation Welch’s T-test 0.036756638

Fermented Adipocytokine signaling pathway Welch’s T-test 0.04018659

Fermented Benzoate degradation Welch’s T-test 0.040925365

Fermented Chlorocyclohexane and
chlorobenzene degradation

Welch’s T-test 0.04187257

Fermented Nicotinate and nicotinamide
metabolism

Welch’s T-test 0.049217654

Fatty acids bin Other glycan degradation ANOVA 0.002774493

Fatty acids bin N-Glycan biosynthesis ANOVA 0.009783852

Fatty acids bin Proteasome ANOVA 0.012010853

Fatty acids bin Prostate cancer ANOVA 0.014268966

Fatty acids bin Antigen processing and presentation ANOVA 0.014432811

Fatty acids bin Progesterone-mediated oocyte
maturation

ANOVA 0.014432811

Fatty acids bin NOD-like receptor signaling pathway ANOVA 0.019075184

Fatty acids bin Chloroalkane and chloroalkene
degradation

ANOVA 0.02167892

Fatty acids bin Taurine and hypotaurine metabolism ANOVA 0.022063389
(continued on next page)

Lang et al. (2014), PeerJ, DOI 10.7717/peerj.659 30/39

https://peerj.com
http://dx.doi.org/10.7717/peerj.659


Table 8 (continued)
Nutrient/Descriptor KEGG functional category (level 3) Type of test used p-value

Fatty acids bin Sphingolipid metabolism ANOVA 0.028794158

Fatty acids bin Other transporters ANOVA 0.033398699

Fatty acids bin Primary bile acid biosynthesis ANOVA 0.033705405

Fatty acids bin Stilbenoid, diarylheptanoid and
gingerol biosynthesis

ANOVA 0.034295974

Fatty acids bin Glycolysis/Gluconeogenesis ANOVA 0.041601128

Fatty acids bin Amyotrophic lateral sclerosis (ALS) ANOVA 0.045157824

Fatty acids bin Purine metabolism ANOVA 0.048100832

Energy bin Nucleotide excision repair ANOVA 0.002532996

Energy bin Chromosome ANOVA 0.003249937

Energy bin Ubiquinone and other
terpenoid-quinone
biosynthesis

ANOVA 0.00500867

Energy bin Mismatch repair ANOVA 0.006531889

Energy bin Photosynthesis proteins ANOVA 0.00816459

Energy bin Photosynthesis ANOVA 0.009638124

Energy bin Restriction enzyme ANOVA 0.009805668

Energy bin Carbohydrate metabolism ANOVA 0.009966615

Energy bin Limonene and pinene degradation ANOVA 0.010243464

Energy bin DNA replication proteins ANOVA 0.010451223

Energy bin Lipoic acid metabolism ANOVA 0.010843214

Energy bin Phenylalanine, tyrosine and
tryptophan biosynthesis

ANOVA 0.011059994

Energy bin Peptidases ANOVA 0.01407109

Energy bin DNA repair and recombination
proteins

ANOVA 0.015827001

Energy bin Type II diabetes mellitus ANOVA 0.016276453

Energy bin alpha-Linolenic acid metabolism ANOVA 0.018912274

Energy bin Butanoate metabolism ANOVA 0.020566276

Energy bin Homologous recombination ANOVA 0.025440256

Energy bin Flavone and flavonol biosynthesis ANOVA 0.025662772

Energy bin Protein export ANOVA 0.025889019

Energy bin DNA replication ANOVA 0.026934029

Energy bin Primary immunodeficiency ANOVA 0.027524778

Energy bin Glycosphingolipid biosynthesis—
lacto and neolacto series

ANOVA 0.027782212

Energy bin Indole alkaloid biosynthesis ANOVA 0.028725346

Energy bin Amoebiasis ANOVA 0.028866801

Energy bin Benzoate degradation ANOVA 0.029913338

Energy bin D-Alanine metabolism ANOVA 0.029961727

Energy bin C5-Branched dibasic acid
metabolism

ANOVA 0.030293739

Energy bin Peptidoglycan biosynthesis ANOVA 0.031023499

Energy bin Glycerolipid metabolism ANOVA 0.032020201
(continued on next page)
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Table 8 (continued)
Nutrient/Descriptor KEGG functional category (level 3) Type of test used p-value

Energy bin Bisphenol degradation ANOVA 0.032129248

Energy bin Betalain biosynthesis ANOVA 0.032513208

Energy bin Biosynthesis of siderophore group
nonribosomal peptides

ANOVA 0.033939326

Energy bin Melanogenesis ANOVA 0.035235651

Energy bin Amino acid metabolism ANOVA 0.037736626

Energy bin Ribosome Biogenesis ANOVA 0.039545196

Energy bin Peroxisome ANOVA 0.040442991

Energy bin Steroid hormone biosynthesis ANOVA 0.041078867

Energy bin Amino sugar and nucleotide sugar
metabolism

ANOVA 0.042902641

Energy bin Phosphotransferase system (PTS) ANOVA 0.043431781

Energy bin Arginine and proline metabolism ANOVA 0.043807314

Energy bin Glycine, serine and threonine
metabolism

ANOVA 0.044386803

Energy bin Riboflavin metabolism ANOVA 0.044908782

Energy bin Metabolism of cofactors
and vitamins

ANOVA 0.04499208

Energy bin Systemic lupus erythematosus ANOVA 0.045791434

Energy bin Biosynthesis of type II polyketide
products

ANOVA 0.047100884

DietType Other glycan degradation ANOVA 0.007486572

DietType N-Glycan biosynthesis ANOVA 0.03160732

DietType Proteasome ANOVA 0.034750295

DietType Prostate cancer ANOVA 0.03926696

DietType Antigen processing and presentation ANOVA 0.039372465

DietType Progesterone-mediated oocyte
maturation

ANOVA 0.039372465

Cooked mRNA surveillance pathway Welch’s T-test 0.006445676

Cooked Cell cycle Welch’s T-test 0.009317081

Cooked Hepatitis C Welch’s T-test 0.009317081

Cooked Measles Welch’s T-test 0.009317081

Cooked mTOR signaling pathway Welch’s T-test 0.009317081

Cooked Phagosome Welch’s T-test 0.009317081

Cooked Transcription machinery Welch’s T-test 0.021347218

Cooked Various types of N-glycan
biosynthesis

Welch’s T-test 0.023199289

Cooked Sporulation Welch’s T-test 0.024693602

Cooked Vibrio cholerae infection Welch’s T-test 0.025037566

Cooked Cytoskeleton proteins Welch’s T-test 0.04573813

Cooked Cytochrome P450 Welch’s T-test 0.049095188

Cholesterol bin Transcription machinery ANOVA 0.007389033

Cholesterol bin Plant-pathogen interaction ANOVA 0.010583548

Cholesterol bin Folate biosynthesis ANOVA 0.012498951

Cholesterol bin Tetracycline biosynthesis ANOVA 0.034405715
(continued on next page)
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Table 8 (continued)
Nutrient/Descriptor KEGG functional category (level 3) Type of test used p-value

Cholesterol bin Other ion-coupled transporters ANOVA 0.036332221

Cholesterol bin Proteasome ANOVA 0.039954688

Cholesterol bin Valine, leucine and isoleucine
biosynthesis

ANOVA 0.040216227

Cholesterol bin General function prediction only ANOVA 0.042978367

Cholesterol bin Prostate cancer ANOVA 0.044525651

Cholesterol bin Antigen processing and presentation ANOVA 0.044753096

Cholesterol bin Progesterone-mediated oocyte
maturation

ANOVA 0.044753096

Cholesterol bin NOD-like receptor signaling pathway ANOVA 0.047390633

SUMMARY
In this study we estimated the total numbers and kinds of microorganisms consumed in

a day by an average American adult. We analyzed meals representing three typical dietary

patterns, including the Average American, USDA recommended, and Vegan diet, and

found that Americans likely consume in the range of 106–109 CFUs microbes per day.

The USDA meal plan included two meals with non-heat treated fermented foods, which

were likely responsible for the 3-fold higher total microbes in this meal plan compared to

the AMERICAN and VEGAN diets. Food preparation techniques such as heating or acid

treatment can kill bacteria, however, these processes affect different bacteria to different

degrees. For example, spore-forming bacteria can survive heat treatment (Stringer, Webb

& Peck, 2011) (also see Fig. 8). Once inside the gastrointestinal tract, the low pH of the

stomach, as well as bile salts also kill some bacteria, but not those that are acid and/or bile

salt resistant. It is unknown what proportion of the microbes we eat make it through the

hostile environment of the gastrointestinal tract. However, a recent study showed that food

microbes consumed as part of fermented foods such as cheese did appear in the stool and

were culturable (David et al., 2013).

We also used PICRUSt to predict the functional potential of the microbiota associated

with each meal in this study. Of course, this is not a perfect substitute for metagenomic

sequencing or experimental studies, but it does allow one to develop some initial

hypotheses related to the function of a microbial community. For example, between

diet types, the most significant difference in KEGG functional categories was for “other

N-glycan degradation”. This function was over-represented in the Vegan diet, which is

perhaps not surprising given that cellulose is a glycan, and the Vegan diet is significantly

higher in cellulose than the others. This suggests that when one consumes a diet that is high

in cellulose, one also consumes a population of microbes that is well equipped to digest

cellulose.

Caveats
It is important to point out some caveats with regard to this study. First, the scale of

this study was limited. Our objective with this preliminary study was to explore the

possibility that the microbes in our food may be meaningful contributors to the ecosystem
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of our gut microbiota. The current paradigm is that the harsh conditions of the human

gastrointestinal tract (i.e., high acidity in the stomach, presence of bile acids and digestive

enzymes in the small intestine) preclude most microbes present in and on food from

playing significant roles in the gastrointestinal microbial ecosystem because they do not

survive intact. Yet recent reports show that there are microbial blooms within 24 h of

large shifts in the diet (Wu et al., 2011; Walker et al., 2011), attributed to changes in the

available fermentable substrate, which in turn promoted the growth of specific bacteria

already present in the gut. The possibility remains that microbes present on the food

itself contributed at least in part to these observed transient blooms or shifts. Very little

is known about how different food matrices may promote the survival of food bacteria

despite their lack of acid and bile acid resistance in vitro. Transient shifts in gut microbiome

composition caused by dietary factors may be unimportant when the gut microbiome

rebounds to its initial state. However, it is possible that under certain conditions, such

perturbations could lead to functional and long-lasting changes. The goal of this study

was not to explore the explicit effects of ingesting food microbes on changes in the gut

microbiota but simply to provide preliminary data on the composition and numbers of

bacteria in typical American dietary patterns.

Second, the study did not aim to be exhaustive in its exploration of diets. We did not

aim to produce statistically significant differences in microbial composition and quantity

in replicates across multiple days of a particular dietary pattern. Instead, the aim was to

generate hypotheses about dietary microbes and their variation across meals and diets that

can now be followed up with more rigorous studies. Because the purpose of this study was

to generate hypotheses rather than test specific hypotheses, multiple testing corrections

were not applied in our statistical analyses.

Third, the microbial counts reported here are rough estimates of the total amount of

microbes consumed in a day by an average American eating meals described here. It is

important to note that inherent to the plate count techniques used, not every microbe will

grow under these culture conditions, and the plate counts are only estimates.

Future directions
It is possible that part of the high variation in gut microbiota composition observed among

individuals is due to the specific and complex differences in diet beyond the nutrient

composition that can be estimated from dietary records and recalls. This study begs

the question: do the microbes we eat as part of our normal daily diets contribute to the

composition and function of our gut microbiota? There are many questions that remain to

be answered. Under what circumstances do microbes consumed as part of meals remain in

the gastrointestinal tract transiently versus persistently following a meal? Do the microbes

we eat affect the function of the resident gut microbiota, even if they do not affect its

composition, as has been suggested by some yogurt feeding studies (McNulty et al., 2011)?

How do different cooking and preparation methods affect the microbial composition of

meals and the survival characteristics of individual microbes through the gastrointestinal

tract? How do specific factors such as length of transport or provenance of individual
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ingredients (e.g., imported vs. domestic), packaging materials, and handling of ingredients

in homes alter the microbial composition of foods? The findings of this study suggest

that the microbes we eat as part of normal diets vary in absolute abundance, community

composition, and functional potential. This variation depends on the specific ingredients

in the meals, whether and how the foods are prepared and processed, and other potential

factors, not explored here, including the provenance of ingredients. The significance of

this variation on the gut microbiota composition and function, and its impact on human

health remains to be elucidated. In addition, much as certain gut microbes can transform

and modify dietary constituents and nutrients such as polyphenolic compounds and

vitamins in the gut (Tuohy et al., 2012), it is possible that food microbes similarly modify

nutritive molecules. Future studies need to explore these questions in rigorous study

designs aimed at addressing key questions about the composition and content of food

microbes and how these vary across diets and meals, and their impacts on the short term

and long term composition and function of the gut microbiota.
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