
Systematics of putative euparkeriids (Diapsida: 
Archosauriformes) from the Triassic of China

The South African species Euparkeria capensis is of great importance for understanding 

archosaur evolution and the early radiation of archosauromorphs following the Permo–

Triassic mass extinction, being placed by most phylogenetic analyses as the sister taxon to 

Archosauria (using a crown group definition) within the clade Archosauriformes. Although a 

number of species from Lower–Middle Triassic deposits worldwide have been referred to the 

putative family Euparkeriidae, the monophyly of this taxon is controversial and has yet to be 

demonstrated by quantitative phylogenetic analysis. Three Chinese taxa have been recently 

suggested to be euparkeriids: Halazhaisuchus qiaoensis, ‘Turfanosuchus’ shageduensis, and 

Wangisuchus tzeyii, all three of which were collected from the Middle Triassic Ermaying 

Formation of northern China. Here, we reassess the taxonomy and systematics of these 

taxa. We regard ‘Turfanosuchus’ shageduensis as a junior synonym of Halazhaisuchus 

qiaoensis, because no morphological features distinguish the two putative species and their 

holotypes emerge as sister taxa in a novel phylogenetic analysis. Halazhaisuchus qiaoensis 

is resolved as the sister taxon to Euparkeria capensis, forming a monophyletic Euparkeriidae 

that is in turn sister to Archosauria+Phytosauria. This is the first quantitative phylogenetic 

analysis to recover a non-monospecific, monophyletic Euparkeriidae, but euparkeriid 

monophyly is only weakly supported and will require additional examination. We regard 

Wangisuchus tzeyii as a nomen dubium, because the holotype is undiagnostic and there is 

no convincing evidence that the previously referred additional specimens represent the same 

taxon as the holotype. Our results have important implications for understanding the species 

richness and palaeobiogeographical distribution of early archosauriforms.
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Abstract: The South African species Euparkeria capensis is of great importance for 

understanding archosaur evolution and the early radiation of archosauromorphs following the 

Permo–Triassic mass extinction, being placed by most phylogenetic analyses as the sister taxon 

to Archosauria (using a crown group definition) within the clade Archosauriformes. Although a 

number of species from Lower–Middle Triassic deposits worldwide have been referred to the 

putative family Euparkeriidae, the monophyly of this taxon is controversial and has yet to be 

demonstrated by quantitative phylogenetic analysis. Three Chinese taxa have been recently 

suggested to be euparkeriids: Halazhaisuchus qiaoensis, ‘Turfanosuchus’ shageduensis, and 

Wangisuchus tzeyii, all three of which were collected from the Middle Triassic Ermaying 

Formation of northern China. Here, we reassess the taxonomy and systematics of these taxa. We 

regard ‘Turfanosuchus’ shageduensis as a junior synonym of Halazhaisuchus qiaoensis, because 

no morphological features distinguish the two putative species and their holotypes emerge as 

sister taxa in a novel phylogenetic analysis. Halazhaisuchus qiaoensis is resolved as the sister 

taxon to Euparkeria capensis, forming a monophyletic Euparkeriidae that is in turn sister to 

Archosauria+Phytosauria. This is the first quantitative phylogenetic analysis to recover a non-

monospecific, monophyletic Euparkeriidae, but euparkeriid monophyly is only weakly supported 

and will require additional examination. We regard Wangisuchus tzeyii as a nomen dubium, 

because the holotype is undiagnostic and there is no convincing evidence that the previously 

referred additional specimens represent the same taxon as the holotype. Our results have 

important implications for understanding the species richness and palaeobiogeographical 

distribution of early archosauriforms.  
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Main text:

Introduction

Euparkeria capensis from the early Anisian (Middle Triassic) of South Africa (Ewer 1965; 

Sookias & Butler 2013) is a key species of early archosauriform that is widely regarded as 

approaching the ancestral archosaur body plan (e.g. Romer 1972; Norman & Weishampel 1991; 

Parrish 1997). E. capensis falls immediately outside of or very close to Archosauria in most 

phylogenetic studies (e.g. Gower & Wilkinson 1996; Bennett 1996; Benton 1999; Nesbitt 2011; 

Brusatte et al. 2010; Ezcurra, Lecuona, & Martinelli, 2010), and has been used as an outgroup in 

numerous studies of archosaur phylogeny and morphological evolution (e.g. Perry 1992; Carrier 

and Farmer 2000; Hutchinson 2001a,b; Marugán-Lobón & Buscalioni 2003; Nesbitt 2003; 

Rauhut 2003; Seymour et al. 2004; de Ricqlès et al. 2008; Sullivan 2010; Maidment & Barrett 

2011; Butler, Barrett, & Gower, 2012; Foth and Rauhut 2013). Several other taxa from Lower–

Middle Triassic deposits around the world have historically been assigned to the family 

Euparkeriidae (reviewed by Sookias and Butler 2013; see also Sookias et al. 2014), although no 

cladistic analysis has yet recovered this taxon as a monophyletic, non-monospecific entity. Most 

previous quantitative phylogenetic analyses of basal archosauriforms have not tested the 

monophyly of Euparkeriidae, because they have not included putative euparkeriid species from 

Poland, Russia and China (Sookias and Butler 2013; but see Sookias et al. 2014). The inclusion 

of these putative euparkeriid species in phylogenetic analyses has been hampered by the often 

fragmentary nature of their remains, and an ongoing lack of clarity with regard to their taxonomy 

and anatomy (Gower and Sennikov 2000; Sookias and Butler 2013).  
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Three Chinese taxa from the Anisian Ermaying (see Table S2 names in Chinese 

characters, Pinyin and previously used romanizations) Formation of north central China have 

been recently considered as putative euparkeriids worthy of further investigation (Sookias and 

Butler 2013): Wangisuchus tzeyii Young 1964, Halazhaisuchus qiaoensis Wu 1982, and 

‘Turfanosuchus’ shageduensis Wu 1982. However, the phylogenetic relationships of these 

Chinese putative euparkeriids to each other, and to other archosauriforms, have never previously 

been tested. Given the pivotal phylogenetic position of Euparkeria capensis, testing the affinities 

of these taxa has the potential to clarify the relationships of major clades of early archosauriforms 

and patterns of character evolution during the rise of Archosauria. Here we revise the taxonomy 

and review the anatomy of the Chinese putative euparkeriids. We also conduct a novel 

phylogenetic analysis of early archosauriforms that includes two of these taxa, shedding new 

light on their systematic positions. 

Taxonomic history of the Chinese euparkeriids

The three species discussed here all derive from the Ermaying Formation of China and 

were referred to Euparkeriidae in their original descriptions. Wangisuchus tzeyii from the upper 

Ermaying Formation was described by Young (1964) and referred to Euparkeriidae on the basis 

of supposed similarities in the maxilla and pelvic girdle to Euparkeria capensis. Wangisuchus 

tzeyii has often been subsequently considered to represent a “rauisuchian” or other pseudosuchian 

(i.e. a member of the ‘crocodile-line’ of Archosauria), based primarily on the presence of a 

suchian calcaneum within material questionably referred to this taxon (e.g. Welles and Long, 

1974; Krebs 1976; Parrish 1992; Gower 2000; Gower & Sennikov 2000; Borsuk-Białynicka & 
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Sennikov 2009; Nesbitt 2011; Nesbitt et al. 2013). However, the species has never been 

adequately reassessed (Sookias & Butler 2013) and various authors have continued to consider 

Wangisuchus tzeyii a possible euparkeriid and utilize this referral in biogeographic and 

biostratigraphic analyses (e.g. Sennikov 1989a,b; Shubin and Sues 1991; Lucas 1998, 2001). The 

species was cited as one of the earliest records of any archosaur (as a “rauisuchian”) by Benton & 

Donoghue (2007), and used as evidence for constraining the timing of the crocodile-bird split. 

Halazhaisuchus qiaoensis and ‘Turfanosuchus’ shageduensis were described by Wu 

(1982) and referred to Euparkeriidae based on similarities to Euparkeria capensis, including 

plesiomorphies such as retention of intercentra and a “large coracoid” (Wu 1982, p. 20). Zhen et 

al. (1985) considered Halazhaisuchus qiaoensis to be a “thecodont” relatively closely related to 

the proterosuchid Chasmatosaurus yuani, although no anatomical justification for this was given. 

Sennikov (1989a,b) referred Halazhaisuchus qiaoensis, ‘Turfanosuchus’ shageduensis and 

Wangisuchus tzeyii (as well as Xilousuchus sapingensis; see below) to the euparkeriid subfamily 

Dorosuchinae, along with Dorosuchus neoetus from the Middle Triassic of Russia. The basis for 

the referral was that these taxa were supposedly more robust than Euparkeria capensis. Parrish 

(1993) was apparently confusing Halazhaisuchus qiaoensis with ‘Turfanosuchus’ shageduensis 

when he stated that the latter was a primitive archosauriform distinct from Turfanosuchus 

dabensis based on the presence of vertebral intercentra “and other features” (Parrish 1993, p. 

297), given that intercentra are present in Halazhaisuchus qiaoensis but not in ‘Turfanosuchus’ 

shageduensis. Lucas (2001) considered both Halazhaisuchus qiaoensis and ‘Turfanosuchus’ 

shageduensis as euparkeriids, together with Wangisuchus tzeyii and Euparkeria capensis (see also 

Lucas 1998). Wu and Russell (2001) compared the anatomy of Halazhaisuchus qiaoensis and 

‘Turfanosuchus’ shageduensis to that of Turfanosuchus dabanensis. They noted resemblances in 

humeral and femoral morphology between the first two species and Turfanosuchus dabanensis, 
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but also identified differences including the presence of intercentra in Halazhaisuchus qiaoensis 

and discrepancies in osteoderm morphology between Halazhaisuchus qiaoensis and 

Turfanosuchus dabanensis. Borsuk-Białynicka and Evans (2003) tentatively supported the 

referral of Halazhaisuchus qiaoensis to Euparkeriidae, whilst Borsuk-Białynicka and Evans 

(2009) regarded the euparkeriid affinities of the taxon as doubtful.

Several other taxa from the Chinese Triassic and Lower Jurassic have historically been 

assigned to Euparkeriidae but are no longer regarded as potential members of the group and are 

not discussed in detail here. Xilousuchus sapingensis Wu 1981 was assigned to Euparkeriidae by 

Sennikov (1989a,b), but recent analyses have reidentified it as a ctenosauriscid poposauroid 

(Butler et al. 2011; Nesbitt 2011; Nesbitt, Liu, & Li 2011). Platyognathus hsui Young 1944 was 

referred to Euparkeriidae by Huene (1956), but this taxon is a crocodyliform (Wu & Sues 1996). 

Turfanosuchus dabanensis Young 1973 was initially assigned to Euparkeriidae, but was regarded 

by Parrish (1993) as a suchian. The species was redescribed by Wu & Russell (2001) as a non-

pseudosuchian not closely related to E. capensis, but was placed in Pseudosuchia by the most 

recent and extensive phylogenetic analysis of Archosauriformes (Nesbitt 2011), and has since 

been identified as a member of the pseudosuchian clade Gracilisuchidae (Butler et al. 2014). 

‘Fukangolepis’ barbaros Young 1978 was mentioned as having been referred to Euparkeriidae by 

Parrish (1986) but presumably this was a lapsus calami given that the holotype of the species is 

an indeterminate dicynodont skull fragment (Lucas & Hunt 1993) assigned by Young (1978) to 

Aetosauria; the fact that Parrish (1986) cites Young (1973) for this assertion indicates Parrish may 

have confused ‘Fukangolepis’ barbaros with Turfanosuchus dabanensis. Finally, Yonghesuchus 

sangbiensis Wu, Liu and Li 2001 was listed without discussion as a euparkeriid by Wu & Sun 

(2008), but this taxon is also a gracilisuchid pseudosuchian (Butler et al. 2014). 
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Geological setting

All of the Chinese putative euparkeriid specimens discussed here are from the Ermaying 

Formation, which was deposited during the Triassic in a meandering fluvial environment with an 

east to west palaeocurrent (Liu et al. 2012). The specimens assigned to Halazhaisuchus qiaoensis  

(IVPP V6027) and ‘Turfanosuchus’ shageduensis (IVPP V6028) are from the sandstones of the 

lower Ermaying Formation. The lower Ermaying formation is made up of yellowish pink, 

yellowish green and greyish white quartz arkose (Yin 2003). The lower Ermaying Formation has 

been considered early Anisian in age as a result of long-range biostratigraphic correlation with 

Subzone B of the Cynognathus Assemblage Zone of South Africa, based primarily on the 

presence of the dicynodont Kannemeyeria (Rubidge 2005; Fröbisch 2009). Dating of Subzone B 

of the Cynognathus Assemblage Zone is itself based on long-range vertebrate biostratigraphy 

(Hancox 2000). Lucas (2001) argued for an Olenekian date for the lower Ermaying based on the 

presence of the dicynodont Shansiodon in the upper Ermaying (see below). Sues and Fraser 

(2010) concurred with this age assessment, based on a proposed correlation of the upper 

Heshanggou Formation of northern China with the lower Ermaying Formation and the presence 

of the typically Olenekian spore-bearing tree Pleuromeia sternbergii in the former. However, 

Butler et al. (2011) noted that Pleuromeia sternbergii extends into the early Anisian in Germany, 

and that at least part of the Heshanggou Formation may be Anisian in age. Using sensitive, high-

resolution ion microprobe (SHRIMP) U-Pb dating, the age of the upper Ermaying Formation 

(Member II) was recently found to be 245.9 ± 3.2 Ma (Liu, Li, & Li, 2013). Although the range 

of error encompasses the entire Anisian (currently dated as 247.2–242 Ma: Cohen, Finney, & 

Gibbard, 2013), this result supports an Anisian date for the upper Ermaying, and by inference an 

early Anisian or late Olenekian date for the lower Ermaying and Heshanggou formations. 
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All material referred to Wangisuchus tzeyii is from the white sandstones and mudstones of 

the upper Ermaying Formation. Hancox et al. (2013) and Rubidge (2005) assigned the upper 

Ermaying Formation to the late Anisian based on the presence of the dicynodont Shansiodon. The 

same genus occurs in Subzone C of the Cynognathus Assemblage Zone of South Africa (Hancox, 

Angielczyk, & Rubidge, 2013), and the shansiodont Vinceria occurs in the Río Mendoza and 

Upper Puesto Viejo formations of Argentina (Renaut and Hancox 2001; Hancox 1998). The 

proposed late Anisian date for Subzone C of the Cynognathus Assemblage Zone is itself based on 

long-range vertebrate biostratigraphy (Hancox 2000). The upper Ermaying Formation was 

referred to the Perovkan land-vertebrate faunochron by Lucas (2010), again based upon 

vertebrate biostratigraphy. As noted above, new SHRIMP analyses have confirmed an Anisian 

date for the upper Ermaying Formation.  

Terminology and methods

We use the limb orientation terminology of Gower (2003), which combines that of Romer 

(1942) and that of Rewcastle (1980). This orientation corresponds to a fully anteriorly extended 

hindlimb (the anterior surfaces of hindlimb bones in descriptions of fully erect taxa such as 

dinosaurs thus correspond to the dorsal surfaces in our terminology), and a forelimb with the 

humerus fully extended posteriorly and the epipodials fully extended anteriorly (the anterior 

surfaces of forelimb bones in fully erect taxa thus correspond to the ventral surface of the 

humerus and to the dorsal surfaces of the radius and ulna here). The scapula is described with the 

shaft held vertically. We use the terminology of Wilson (1999) for vertebral laminae and that of 

Wilson et al. (2011) for vertebral fossae.
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Phylogenetic analyses were carried out using the matrix of Butler et al. (2014), modified 

from Nesbitt (2011), with Halazhaisuchus qiaoensis and ‘Turfanosuchus’ shageduensis (not 

previously included by Nesbitt [2011] or Butler et al. [2014]) included in separate analyses as 

both distinct taxa and as a combined taxon. Additionally, we changed the scoring of osteoderm 

shape in Euparkeria capensis from that used by Nesbitt (2011: character 407) from “square-

shaped, about equal dimensions” to “longer than wide” (see Discussion). The analyses were 

conducted in TNT v. 1.1 (Goloboff, Farris, & Nixon, 2003; 2008). We employed the same 

methodology as Nesbitt (2011), eliminating the same taxa from the dataset prior to analysis, with 

the same characters treated as ordered, and using equally weighted parsimony. An initial search 

using the “New Technology search” option was carried out using sectorial search, ratchet and 

tree-fusing options with default parameters. Minimum tree length was obtained for 1000 separate 

replicates and the trees were stored in RAM. A heuristic tree search was then conducted using the 

stored trees, followed by TBR branch swapping. Standard bootstrap values and Bremer support 

values (decay indices) were calculated for each node using the inbuilt functionality of TNT and 

the BREMER script respectively. 

Institutional abbreviations

IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 

Beijing, China; SAM, Iziko South African Museum, Cape Town, South Africa; SMNS, 

Staatliches Museum für Naturkunde, Stuttgart, Germany; UMZC, University Museum of 

Zoology, Cambridge, UK. 
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Systematic palaeontology

ARCHOSAUROMORPHA von Huene, 1946 sensu Gauthier, Kluge, & Rowe1988

 ARCHOSAURIFORMES Gauthier, Kluge, & Rowe, 1988 sensu Nesbitt, 2011

‘Wangisuchus’ Young, 1964 

[Nomen dubium]

Type and only species. ‘Wangisuchus tzeyii’ Young, 1964.

‘Wangisuchus tzeyii’ Young, 1964

[Nomen dubium]

Holotype. IVPP V2701, an incomplete left maxilla lacking teeth. 

Syntypes. IVPP V2702-V2704, maxillae (paratypes).

Horizon and locality. All specimens assigned to Wangisuchus tzeyii are from the upper Ermaying 

Formation of Shanxi Province (Middle Triassic: Anisian). IVPP V2701 (holotype) and IVPP 

V2702-V2704 (paratypes) are from locality 56173, Xishiwa near Louzeyu Village, Wuxiang 
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County (Fig. 1). This locality has been entered in the Paleobiology Database as number 101059. 

See Geological Setting for further information. 

Remarks. The holotype maxilla, IVPP V2701 (Fig. 2A–B), is fragmentary and undiagnostic, as 

are the paratype specimens. Whilst the presence of alveoli and interdental plates indicates 

thecodont tooth implantation (a synapomorphy of Erythrosuchus+Archosauria: Nesbitt 2011), 

neither a suite of autapomorphies nor a unique combination of character states can be identified 

in the maxilla. The original diagnosis presented by Young (1964) was inadequate for a number of 

reasons: it referred to the “long and low” shape of the maxilla, but the holotype maxilla does not 

differ in this regard from those of most early archosauriforms; the posterior process of the maxilla 

was described as “pointed”, but is in fact incomplete; the anterior margin of the maxilla was 

described as “rounded” but is also incomplete; and teeth and other elements not preserved in the 

holotype were used in the diagnosis, but there is no convincing case for referring these elements 

to the same taxon as the holotype. We therefore consider ‘Wangisuchus tzeyii’ to be a nomen 

dubium. The most exclusive phylogenetic placement that can be reasonably supported for the 

holotype is Archosauriformes indet., based on the inferred presence of thecodont dental 

implantation in the maxilla. As noted above, this feature supports a position crownward of 

Proterosuchus (Nesbitt 2011).

Young (1964) referred many isolated and poorly preserved postcranial elements from the 

type locality and other localities in the same region to ‘Wangisuchus tzeyii’, but first-hand 

inspection of much of this material revealed it to be undiagnostic. Furthermore, there are no 

compelling similarities to justify regarding even the two relatively complete paratype maxillae 

(IVPP V2703, V2704) as necessarily conspecific with the holotype, and in fact both of these 

paratype maxillae appear to differ from the holotype in having a convex rather than straight 
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anterodorsal margin. As discussed by several authors (Kuhn 1976; Parrish 1993; Gower and 

Sennikov 2000; Nesbitt 2011), an unnumbered calcaneum within this previously referred material 

demonstrably belongs to a suchian archosaur, but there is no evidence to support the referral of 

this calcaneum to ‘Wangisuchus tzeyii’.   

EUPARKERIIDAE von Huene, 1920 sensu Sookias and Butler 2013

Halazhaisuchus Wu, 1982

Type and only species. Halazhaisuchus qiaoensis Wu, 1982.

 

Halazhaisuchus qiaoensis Wu, 1982

Synonymy. Turfanosuchus shageduensis Wu, 1982 (junior subjective synonym).

Holotype. IVPP V6027, posterior three cervical and anterior three dorsal vertebrae in articulation 

with osteoderms and incomplete ribs (V6027-1), seven dorsal vertebrae in articulation with 

osteoderms (V6027-2), left (V6027-3) and right (V6027-4) scapulae, left (V6027-3) and partial 

right (V6027-4) coracoids, right humerus (V6027-5), ulna (V6027-6), and radius (V6027-7), an 
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isolated left cervical rib (V6027-8), and an isolated median osteoderm (V6027-9). All material 

probably pertains to a single individual. 

Referred specimen. IVPP V6028 (holotype of Turfanosuchus shageduensis Wu, 1982), mostly 

complete right mandible (V6028-1), six cervical vertebrae missing upper neural arches and neural 

spines (V6028-2), right scapula (V6028-3), coracoid (V6028-3), humerus (V6028-4), radius 

(V6028-7/8/9; note that the correct subnumbers for the radius, ulna and fibula are uncertain), ulna 

(V6028-7/8/9), femur (V6028-5), tibia (V6028-6) and fibula (V6028-7/8/9). All material 

probably pertains to a single individual. 

Horizon and locality. IVPP V6027 is from Fugu County, Shaanxi Province, China (Fig. 1), and 

IVPP V6028 is from Jungar Banner, Nei Mongol Autonomous Region, China (Fig. 1). Both are 

from the lower Ermaying Formation (Lower or Middle Triassic: late Olenekian or early Anisian). 

Both localities have been entered into the Paleobiology Database, as locality numbers 100138 

and 92436. See Geological Setting for further information. 

Original diagnosis. Relatively small pseudosuchian. Pectoral girdle well developed. Scapula 

exceptionally elongated and strongly expanded at both ends; ratio of scapula to humerus over 

1.15:1; oval muscle-attachment area above glenoid with notably projecting ridge. Coracoid very 

large, forming two thirds of glenoid. Humerus robust, terminating in triangularly expanded apex 

proximally due to well-developed deltopectoral crest along proximal quarter of shaft. Radius and 

ulna slender, ulna with well-developed olecranon process. Vertebrae slightly amphicoelous, with 

elongated centra and low neural spines expanded distally; presacral vertebrae with intercentra. 

Cervical and anterior dorsal ribs three-headed. Row of dorsal scutes on either side of midline, 
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scutes overlap one another and are leaf-like in outline; posterior ends of scutes grooved ventrally; 

in cervical and anterior dorsal regions scutes from both sides are sutured together firmly 

(paraphrased from Wu 1982).

Revised diagnosis. Relatively small (femur length 127 mm) archosauriform diagnosable on the 

basis of two autapomorphies: (1) strongly pronounced tuber on the scapula, for attachment of the 

scapular head of the m. triceps, that is circular in outline when the scapula is in lateral view, with 

the apex of the tuber slightly depressed; (2) pronounced muscle attachment scar on the scapula in 

the form of a depressed strip on the lateral surface of the blade running from anterodorsal to 

posteroventral, beginning at an abrupt kink in the anterior margin at around midlength of the 

blade. The species is further diagnosable on the basis of the following unique combination of 

characters: two rows of paramedian scutes that are longer than wide, taper to an anterior process 

anteriorly and are broad and rounded posteriorly, with a longitudinal keel closer to the medial 

margin than the lateral one; large flattened flange projecting from the proximal part of the 

anterior margin of each cervical rib; presence of a tuber on the scapula for attachment of the 

scapular head of the m. triceps; presence of dorsal intercentra. 

Remarks. IVPP V6028 was designated by Wu (1982) as the holotype of a putative new species of 

the genus Turfanosuchus, ‘T.’shageduensis. The type species of Turfanosuchus, Turfanosuchus 

dabanensis, is from the Kelamayi Formation (Middle Triassic) of Xinjiang, China. Subsequently 

Gower & Sennikov (2000) expressed doubts that ‘Turfanosuchus’ shageduensis and 

Turfanosuchus dabanensis were congeneric, and noted instead the strong similarities of 

‘Turfanosuchus’ shageduensis to Halazhaisuchus qiaoensis from the same formation. We 

synonymize Halazhaisuchus qiaoensis and ‘Turfanosuchus’ shageduensis on the basis that there 
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are no morphological features that distinguish the two nominal species with certainty (all possible 

differences are minor and can be ascribed to preservation and/or intraspecific variation) and that 

the two nominal species group as sister taxa just outside Archosauria in a phylogenetic analysis. 

Turfanosuchus dabanensis is by contrast placed phylogenetically distant from Halazhaisuchus 

qiaoensis and ‘Turfanosuchus’ shageduensis as part of Archosauria (see below). Halazhaisuchus 

qiaoensis and ‘Turfanosuchus’ shageduensis were originally named in the same paper (Wu 1982), 

and we consider Halazhaisuchus qiaoensis to be the valid senior subjective synonym based on 

page priority. Wu (1982) distinguished the two nominal species primarily based on the presence 

of intercentra and dorsal osteoderms in Halazhaisuchus qiaoensis, in contrast with the supposed 

absence of these features in ‘Turfanosuchus’ shageduensis. However, both osteoderms and 

intercentra can easily be lost during preservation, and the highly incomplete and poorly preserved 

nature of IVPP V6028 (‘Turfanosuchus’ shageduensis) suggests that taphonomic removal is a 

particularly likely possibility in this case. IVPP V6028 has even suffered post-mortem loss of the 

dorsal portions of the preserved vertebrae, above which any osteoderms would have lain. 

Moreover, intercentra are absent in the cervical vertebrae of IVPP V6027 (Halazhaisuchus 

qiaoensis), and the only vertebrae that are preserved in IVPP V6028 are from the cervical region. 

The strata bearing both taxa are of the same age and are not widely separated 

palaeogeographically, making synonymization even more parsimonious as an alternative to 

retaining ‘Turfanosuchus’ shageduensis as a separate species. 

The original differential diagnosis of Halazhaisuchus qiaoensis was insufficient because it 

did not adequately distinguish the taxon from other stem- and early archosaurs. Many features 

listed (e.g. “pectoral girdle well-developed”) were not sufficiently clear or distinct to be effective 

in diagnosing the taxon. Other features are shared with other taxa:leaf-shaped osteoderms and 

presacral intercentra are shared with Euparkeria capensis (Ewer 1965), and the vertebral features 
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listed in the original diagnosis are essentially also shared with Euparkeria capensis (Ewer 1965; 

UMZC T.692). 

However, the exact shape of the m. triceps attachment tuber is identified here as 

autapomorphic, because although corresponding tubera are present in other basal archosauriform 

taxa (e.g. Batrachotomus kupferzellensis, Gower and Schoch 2009), they differ in form. 

Similarly, the muscle attachment scar on the blade of the scapula described here as 

autapomorphic in form is much more pronounced than in any other early archosauriform that we 

have examined. We have also identified a combination of features present in Halazhaisuchus that 

distinguishes it from other taxa. For example, although Euparkeria capensis possesses similarly-

shaped osteoderms, it lacks an m. triceps tuber (Ewer 1965). Osteoderm morphology 

distinguishes Halazhaisuchus qiaoensis from many other taxa (e.g. Batrachotomus 

kupferzellensis, in which the osteoderms are blunter anteriorly), and the presence of anterior 

flanges on the cervical ribs differentiates Halazhaisuchus qiaoensis from some other non-

archosaurian archosauriforms such as Chanaresuchus bonapartei (Romer 1972) and 

Erythrosuchus africanus (Gower 2003). 

Description

Mandible. IVPP V6028-1 (Fig. 3; measurements for this and all other elements given in Table S1) 

is a poorly preserved right mandibular ramus lacking the posteriormost part. Extensive cracking 

and damage to the external surfaces of most elements prevents accurate identification of sutures. 

The mandible is ventrally convex in lateral view. The ramus is long anteroposteriorly and shallow 
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dorsoventrally, but the heavily damaged and compressed posterior end of the ramus was probably 

deeper in life. A mandibular fenestra cannot be identified with certainty due to poor preservation. 

At least five teeth (Fig. 3, t) and three additional empty alveoli can be identified, and the dentary 

appears to be long enough to accommodate around 12 teeth in total, but the exact posterior extent 

of the dentary is unclear. The teeth are close to circular in cross-section, but further details of 

their morphology cannot be discerned. The prearticular (Fig. 3, pra) can be identified posteriorly 

on the medial side, expanding in dorsoventral depth towards its posterior end. The prearticular is 

mediolaterally thin and dorsoventrally deep with an almost flat (very slightly medially convex in 

posterior view) and smooth medial surface. An abrupt, approximately longitudinal step (Fig. 3, 

step) demarcates a slightly inset ventral portion of the medial surface of the prearticular that 

would have been covered by the angular in the intact mandible.

Contributing to the anterior portion of the ramus are fragments of bone, which based on 

their positions probably represent parts of the splenial (Fig. 3, sp) and coronoid (Fig. 3, c); the 

part of the ramus formed by these elements is medially convex in posterior view. The possible 

coronoid medial to the tooth row is transversely wider in dorsal view than is the part of the 

dentary lateral to the tooth row. The ventrolateral edge of the dentary (Fig. 3, d) is convex in 

anterior view. Ventrally, the dentary and splenial (Fig. 3, sp) are separated by a narrow gap, but 

this may be due to post-mortem damage. The dorsolateral edge of the area of the mandibular 

ramus that is likely formed by the surangular (Fig. 3, sa) is convex in anterior view, and was 

clearly dorsally convex in lateral view when intact. The area of the mandibular ramus that is 

likely formed by the angular (Fig. 3, a) forms the ventralmost point of the jaw. The lateral surface 

of the angular is dorsoventrally convex, and the angular tapers posteriorly in lateral view. 
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Cervical vertebrae. IVPP V6027-1 (Fig. 4A–E) includes what we identify as the articulated 

posterior three cervical vertebrae (in articulation with what we identify as the anterior three 

dorsals; the exact point of the cervical-dorsal transition is hard to pinpoint with certainty) and 

IVPP V6028-2 (Fig. 4K–O) consists of six very poorly preserved, articulated cervical vertebrae, 

all of which lack the dorsal part of the neural arch including the neural spine. The neurocentral 

sutures are fused. The centra of the cervical vertebrae are spool-shaped and longer than tall, with 

a low ventral keel. In the anterior cervicals the diapophysis (Fig. 4A–K, di) is placed near the 

anterodorsal corner of the centrum, and the parapophysis (Fig. 4A–K, pa) is placed near the 

anteroventral corner; posteriorly along the column the diapophysis moves posterodorsally, the 

parapophysis moves dorsally to approximately halfway up the centrum, and the two become 

connected by a variably developed paradiapophyseal lamina (Fig. 4A, ppdl). A thick, rounded 

prezygadiapophyseal lamina (Fig. 4A, prdl) connects the prezygapophysis and the diapophysis. A 

shallow spinodiapophyseal fossa (Fig. 4A, sdf) is present immediately dorsal to the diapophysis. 

The anterior and posterior articular facets of the centra are gently concave and subcircular. Some 

of the postzygapophyses bear epipophyses (Fig. 4A, ep), but these do not extend posteriorly 

beyond the postzygapophyseal articular surfaces. The neural spines (Fig. 4A–B, ns) widen 

transversely towards their distal ends to form broad, flat spine tables, each of which attains its 

maximum transverse width at a point slightly anterior to the midlength. No intercentra can be 

identified between the cervical vertebrae, although their absence could be preservational. The 

vertebrae of IVPP V6028-2 are slightly longer and lower in their proportions than those of IVPP 

V6027-1, but this appears to be due to post-mortem compression of the former given that their 

ventral surfaces are flattened; thus no differences in cervical vertebral morphology separate the 

two individuals.
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Cervical ribs. IVPP V6027-1 (Fig. 4A–E) includes three partial cervical ribs in articulation with 

vertebrae and IVPP V6027-8 (Fig. 5A–B) consists of a single left cervical rib. The cervical ribs 

are two-headed and their shafts extend posteriorly, ventrally and laterally and are gently curved 

posteriorly, especially towards their distal ends. The tuberculum is longer than the capitulum (Fig. 

5, tub, cap) and is directed medially whereas the capitulum is directed anteromedially. A 

dorsoventrally thin flange (Fig. 5, fl), which widens transversely as it continues proximally, 

extends along the anterolateral margin of each rib. A similar structure is present in several other 

archosauriforms, including Batrachotomus kupferzellensis (Gower & Schoch 2009, fig. 2M; 

SMNS 91046), Gracilisuchus stipanicicorum (Romer 1972, fig. 7), and Smilosuchus gregorii 

(Nesbitt 2011, fig. 28J). 

Dorsal vertebrae. IVPP V6027-1 (Fig. 4A–E) includes what are probably the anteriormost three 

dorsal vertebrae in articulation, and IVPP V6027-2 (Fig. 4F–J) consists of seven mid to posterior 

dorsal vertebrae. The dia- and parapophyses (Fig. 4A,F, di, pa) are close together in the 

anteriormost vertebra of IVPP V6027-2, indicating that this vertebra is already a mid- or posterior 

dorsal. In the posteriormost vertebra of IVPP V6027-1, by contrast, the dia- and parapophyses are 

relatively well-separated, and at least the posterior two dorsal vertebrae (what we regard here as 

the anteriormost dorsal may in fact be the posteriormost cervical – identification of the exact 

point of transition is difficult) preserved in this specimen can be unequivocally identified as 

anterior dorsals because they are in articulation with the posteriormost cervicals. Accordingly, 

IVPP V6027-1 and V6027-2 cannot be combined to form a continuous dorsal series.

The anterior dorsal vertebrae are generally similar to the cervical vertebrae described 

above, but differ in that the diapophyses are longer and dorsoventrally compressed, and are 

situated higher and further back on the centrum, on the suture with the neural arch. These 

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

PeerJ reviewing PDF | (v2014:06:2292:0:1:NEW 20 Jun 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



differences with respect to the cervical vertebrae become more pronounced posteriorly along the 

dorsal column. In successively more posterior presacral vertebrae the diapophysis and 

parapophysis become gradually joined, first being connected by a paradiapophyseal lamina (Fig. 

4 A, F, ppdl; already present in the more posterior cervical vertebrae) and then fusing entirely to 

form a single apophysis. The latter condition is present by the fourth vertebra in IVPP V6027-2, 

although in this vertebra the parapophysis and diapophysis remain distinguishable as components 

of the apophysis. The diapophysis and parapophysis are indistinguishable from the fifth vertebra 

of IVPP V6027-2 onwards. A low anterior centroparapophyseal lamina (Fig. 4A,F, acpl) connects 

the parapophysis (and in more posterior vertebrae, the single fused apophysis) to the anterior 

margin of the centrum. A thick, rounded prezygadiapophyseal lamina (Fig. 4A,F, prdl) connects 

the prezygapophysis and the diapophysis. A spinodiapophyseal fossa (Fig. 4F, sdf) is present 

dorsal to the diapophysis in the third and fifth preserved vertebrae, but the presence of this 

structure in other vertebrae is difficult to assess due to damage. The plane of articulation between 

the zygapophyses is roughly horizontal, rather than inclined as in the cervical vertebrae. 

Intercentra (Fig. 4F,H, ic) are preserved in apparent articulation posterior to the fourth, fifth and 

sixth vertebrae of IVPP V6027-2; they are mediolaterally elongated ovals in ventral view, and 

their lateral tips curve dorsally which would have made them crescentic in anterior or posterior 

view. The dorsal ends of the neural spines (Fig. 4F,G, ns) are expanded into anteroposteriorly 

elongated oval spine tables that are covered in rugosities. 

Scapula. IVPP V6027-3 (Fig. 6A–B) is a left scapula in articulation with the coracoid, and IVPP 

V6027-4 is a right scapula (Fig. 6C–D). IVPP V6028-3 is a right scapula in articulation with a 

partial coracoid (Fig. 6E–F). The scapula is long and bladelike, and the shaft is waisted at its 

dorsoventral midpoint in lateral view. In posterior view the shaft of the scapula arcs in a medially 
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concave curve. The scapulae of IVPP V6027 each possess a pronounced posterolaterally directed 

tuber placed immediately dorsal to the glenoid along the posterior margin of the bone (Fig. 6A–

D, tu; the tuber on the left scapula is damaged). This tuber is for attachment of the scapular head 

of the m. triceps, and has a depressed lateral surface that is circular in outline in lateral view. The 

acromion process (Fig. 6C–F, acr) is larger and more prominent than in Euparkeria capensis 

(SAM-PK-5867). The lateral surface of the scapula bears a muscle attachment area (Fig. 6A,C, 

mar) in the form of a parallel ridge and groove. The groove is situated just anteroventral to the 

ridge, and both extend posteroventrally from a point on the anterior margin of the scapula that 

lies about two thirds of the way down from the dorsal end and coincides with the level at which 

the shaft is anteroposteriorly narrowest. On the medial surface a similarly oriented muscle 

attachment ridge (Fig. 6B,D, mar) begins on the anterior margin around two thirds of the way up 

from the ventral end, and terminates at the anteroposteriorly narrowest point of the shaft just 

anterior to the posterior margin. The posterior part of the shaft is substantially thicker 

transversely than the anterior part. The proximal end of the shaft is strongly thickened 

transversely in the glenoid region, which articulates with a similarly thickened part of the 

coracoid.

The scapula of IVPP V6028-3 is poorly preserved. The margin of the bone is broken in 

the region in which the tuber for the m. triceps would have been placed, but there is a swelling in 

this position that probably represents what remains of the tuber after post-mortem damage. The 

muscle attachment ridges identified in IVPP V6027 are not visible in IVPP V6028-3, but this is 

almost certainly due to the poor preservation of the surface of the scapula. The scapula of IVPP 

V6028-3 has a mediolaterally thinner and slightly anteroposteriorly wider shaft than either 

scapula of IVPP V6027. This almost certainly is in part due to damage to the scapular shaft of 

IVPP V6028-3, which has been mediolaterally compressed, but may also represent slight 
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biological variation; however, this variation is minor, and can be regarded as intraspecific given 

the lack of striking morphological differences between IVPP V6027 and IVPP V6028. The 

scapula-coracoid suture is gently dorsally convex, with the point of maximum curvature lying 

around halfway along its length. The suture is clear, though the elements appear to have been 

firmly attached to one another. 

Coracoid. IVPP V6027-3 (Fig. 6A–B) includes a left coracoid and IVPP V6028-3 (Fig. 6E–F) 

includes a partial right coracoid, both preserved in articulation with the corresponding scapulae. 

The coracoid is suboval with a single coracoid foramen (Fig. 6A–B, cof) near the dorsal margin, 

close to the anteroposterior midpoint of the bone. The coracoid grows mediolaterally thicker 

towards its contribution to the glenoid (becoming at least five times thicker than at the 

anteroventral corner, where the bone is thinnest), and also immediately dorsal to the coracoid 

foramen. The lateral surface of the coracoid immediately ventral to the glenoid is depressed. 

There are no notable differences between the coracoids of IVPP V6027-3 and IVPP V6028-3, 

other than those caused by damage. 

Humerus. IVPP V6027-5 (Fig.7A–F) and IVPP V6028-4 (Fig. 7G–L) are both right humeri. The 

angle in distal view between the deltopectoral crest and the main shaft is smaller in IVPP V6027-

5 (Fig. 7E, dpc) than in Euparkeria capensis (SAM-PK-5867), indicating that the crest protrudes 

ventrally rather than ventrolaterally in the former. The crest is broken in IVPP V6028-4; it 

appears to be slightly more laterally directed than in IVPP V6027-5, but this is probably at least 

in part due to mediolateral compression of the entire proximal end of IVPP V6027-5, as 

evidenced by extensive cracks across the surface of the bone. The position of the crest on the 
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humeral shaft does not differ noticeably from that seen in Euparkeria capensis (SAM-PK-5867), 

contra Wu (1982). In lateral view (Fig. 7C) the deltopectoral crest projects ventrally as a broad 

triangular flange and extends to around half of the way distally along the shaft. The internal 

tuberosity (Fig. 7 G–L, it) is visible as a rounded medial projection from near the proximal 

margin in ventral view in IVPP V6027-4, but appears to be less prominent in IVPP V6027-5; 

however, this difference is also likely to at least partly reflect mediolateral compression of the 

proximal end of IVPP V6027-5. The humerus lacks a distinct trochlea (=radial/lateral condyle) 

and capitellum (=ulnar/medial condyle); in ventral view the distal end is expanded, with a 

concave distal margin separating distally convex ect- and entepicondyles (Fig. 7D, ect, ent). The 

rugose and unfinished surface between these epicondyles would probably have borne a strip of 

cartilage connecting and covering the ect- and entepicondyles as in Caiman (see Romer 1956, 

Figs. 166–167), possibly with a small trochlea and capitellum formed by this cartilage. The 

supinator process (Fig. 7B, sup) is a low, rounded ridge extending proximally along the 

ventrolateral edge of the shaft from the distal end. The distal part of the supinator process may 

have been more prominent in life, but the surface appears to be damaged in both IVPP V6027-5 

and IVPP V6028-4. Dorsal to the supinator process there is no clear ectepicondylar groove, 

unlike in Erythrosuchus africanus (Gower 2003), but this part of the surface of the humeral shaft 

is gently concave (Fig. 7B, ectg). It is possible that a more pronounced groove was once present 

distally, but is now obscured by post-mortem damage. The angle between the long axes of the 

distal and proximal ends of the humerus is around 20°. Whilst the deltopectoral crest and internal 

tuberosity may differ slightly between the specimens in terms of their direction and development 

respectively, there are no differences that cannot be convincingly ascribed to a combination of 

post-mortem damage and intraspecific variation.
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Ulna. IVPP V6027-6 (Fig. 8A–F) consists of a right ulna, and IVPP V6028 includes a right ulna 

(Fig. 8G–L) that is either IVPP V6028-7, IVPP 6028-8 or IVPP V6028-9 (it is unclear which of 

these numbers refers to the ulna of IVPP V6028, and which ones to the radius and fibula). The 

olecranon (Fig. 8A–L, ol) is better developed than in Euparkeria capensis (SAM-PK-6047) and 

is rounded proximally. The proximal surface is convex dorsoventrally. The entire proximal end, 

including most of the olecranon, has an unfinished surface texture and was seemingly not fully 

ossified. The proximal end is suboval in proximal view, tapering dorsally and flattened medially. 

The shaft is slightly twisted along its length, and has the cross-sectional shape of a dorsoventrally 

elongated oval with a flattened medial edge. A rounded fossa midway between the dorsal and 

ventral edges on the medial side of the shaft, near the proximal end, in IVPP V6027-6 (Fig. 8B, 

fos) is probably an artefact of preparation rather than a genuine feature not present in the ulna of 

IVPP V6028. The distal end is convex in lateral or medial view and straight in dorsal and ventral 

view. In distal view the distal end is a dorsoventrally elongated oval. There is a slightly raised 

area on the lateral surface at the proximal end of the bone (Fig. 8D–E, ra), although this swelling 

is too poorly developed to be considered a true radial tuber. A ridge (Fig. 8D–E, ri) extends 

distally along the shaft, beginning around 20% of the way from the proximal end and extending 

nearly to the distal end. Ventral and parallel to this ridge runs a groove, which becomes narrower 

distally. Bounding this groove ventrally is a second ridge, less well developed than the first, 

which angles dorsally as it extends distally. The ridges and groove are not preserved in IVPP 

V6028, a difference almost certainly reflecting the poor preservation of that specimen rather than 

biological variation. 

Radius. IVPP V6027-7 (Fig. 8C–R) is a right radius, and IVPP V6028 includes a poorly 

preserved right radius (Fig. 8S–X; either IVPP V6028-7, IVPP V6028–8, or IVPP V6028-9, see 
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above). The proximal and distal ends of the shaft are formed of unfinished bone (Fig. 8M,O), and 

their outlines are mediolaterally expanded ovals. The proximal end is expanded further laterally 

than medially, and the centre of the proximal surface is depressed. The ventral surface bears a 

groove that extends along some 80% of the length of the bone (Fig. 8R, gr), and begins and ends 

roughly equidistant from each end of the radius. The dorsal surface of the radius (Fig. 8Q) is 

flattened along about 60% of the length of the shaft, beginning near the proximal end; this 

flattened area is bordered both medially and laterally by an abrupt break of slope and low ridge. 

The ventral part of the distal end of the radius is slightly bevelled (Fig. 8R, bev) and rugose. The 

distal end is convex. The radius of IVPP V6028 appears to be slightly more slender than that of 

IVPP V6027-7, especially distally, but this difference is largely accounted for by the smaller size 

of the former combined with damage to its distal end. 

Femur. IVPP V6028-5 (Fig. 9) is a right femur. The shaft is sigmoidal. In distal view, the angle of 

offset between the long axes of the distal and proximal ends (40–50°) is greater than the 

corresponding angle in Euparkeria capensis (SAM-PK-6047B). The proximal end is a 

dorsomedially-ventrolaterally elongated oval in proximal view (Fig. 9A); the bone surface is 

rugose and slightly concave, indicating the presence of a large cartilaginous epiphysis in life. A 

low ridge (=medial tuber of Nesbitt 2011) extends distally along the ventral surface of the femur, 

beginning at the proximal margin then subsequently nearly merging indistinguishably with the 

bone surface, before redeveloping into a clear fourth trochanter (Fig. 9D–F, 4t). The fourth 

trochanter forms a laterally convex arc in ventral view. The apex of the trochanter is halfway 

between the proximal and distal ends of this structure and situated closer to the medial margin of 

the femur than to the lateral margin; the trochanter is mediolaterally widest at this point. A raised 

ring of bone surrounding a rugose depression that is placed lateral to the proximal end of the 
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trochanter (Fig. 9E, cfb) may be the area of insertion for the m. caudofemoralis brevis, and the 

trochanter itself in addition to a proximomedially adjacent rugose area (Fig. 9E, cfl) may 

represent the area of insertion for the m. caudofemoralis longus (see Romer, 1923; Hutchinson, 

2001b; Schachner, Manning, & Dodson, 2011). A rounded and raised area on the lateral surface 

of the femur (Fig. 9B, fte), about one third of the shaft length from the proximal end, may mark 

the proximal part of the area of origin of the m. femorotibialis externus (Romer, 1923; 

Hutchinson, 2001b; Schachner, Manning, & Dodson, 2011). This raised area is adjacent to a 

slight bulge on the ventrolateral margin of the femur, referred to here as the ventral eminence 

(Fig. 9B, ve).The shaft has an egg-shaped cross-section, in that the ventral margin of the shaft is 

narrower mediolaterally than the dorsal margin and narrows further to form the adductor crest 

(Fig. 9D, ac) as it passes distally. The distal end of the femur is divided into lateral and medial 

condyles (Fig. 9E, lc, mc) that are separated by an intercondylar groove distally (Fig. 9 C, ig) and 

dorsally, and by a shallowly depressed popliteal space ventrally (Fig.9E, ps). The lateral condyle 

bears a tapered, ventrally projecting crista tibiofibularis (Fig. 9E, ct). The bone surface of the 

distal end (Fig. 9 C) is rugose, indicating a large cartilaginous epiphysis in life.

Tibia. IVPP V6028-6 (Fig. 10A–F) is a right tibia. The proximal end of the tibia is around twice 

as expanded dorsoventrally and mediolaterally as the distal end. The proximal end has relatively 

straight dorsomedial, dorsolateral and ventrolateral edges and a convexly curved ventromedial 

edge in proximal view (Fig. 10A). The dorsal margin of the proximal end is expanded to form a 

cnemial crest (Fig. 10A,D, cn), whereas the ventrolateral corner of the proximal end is very 

slightly expanded to form an indistinct posterior condyle (Fig. 10A, pc). The proximal surface of 

the tibia is convex overall, but is interrupted by a dorsoventrally elongated concavity that is 

closer to the lateral margin of the proximal surface than the medial margin. The shaft of the tibia 
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displays a dorsally convex curvature in lateral view (Fig. 10D). The cross-sectional shape of the 

shaft is a mediolaterally compressed ellipse. As preserved, the distal end of the tibia has the 

outline of an oval elongated along a ventrolateral-to-dorsomedial axis (Fig. 10C), and is slightly 

concave to flat. No definite attachment site for the m. puboischiotibialis can be identified (unlike 

the condition in Erythrosuchus africanus, Gower 2003). There is a step (Fig. 10F, step) on the 

medial surface of the tibia, beginning around one quarter of the way down the shaft. This step 

separates the more prominent ventral part of the medial surface of the tibia from the more 

subdued dorsal part.

Fibula. IVPP V6028 includes a right fibula (Fig. 10G–L; either IVPP V6028-7, IVPP V6028–8, 

or IVPP V6028-9, see above). The fibula is long and slender (ratio of shaft diameter to shaft 

length is lower than in, e.g., Batrachotomus kupferzellensis: Gower and Schoch 2009, fig. 6K–

N), relatively straight, and flattened mediolaterally. The proximal end of the fibula is missing, but 

the proximalmost preserved part of the bone bears an eminence on the lateral surface (Fig. 10J, 

m.if) that was interpreted by Wu (1982) as the insertion site for the m. iliofibularis 

(corresponding to the anterior trochanter of e.g. Borsuk-Białynicka & Sennikov 2009). This 

interpretation is plausible, but the attachment would then be more proximally positioned than in 

most stem and early archosaurs (e.g., Nesbitt 2011: fig. 41). A possible exception is Osmolskina 

(Borsuk-Białynicka & Sennikov 2009), but no fibula has been assigned to this taxon with more 

than tentative certainty. However, a proximally placed m. iliofibularis insertion is characteristic of 

derived pseudosuchians (e.g. Crocodylus niloticus: Borsuk-Białynicka & Sennikov 2009). The 

shaft tapers mediolaterally and dorsoventrally for more than half of its preserved length before 

reexpanding distally. The long axes of the distal part of the shaft and the proximalmost preserved 

part are offset by around 75°. The shaft is oval in cross-section, but the dorsal surface is pinched 

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

PeerJ reviewing PDF | (v2014:06:2292:0:1:NEW 20 Jun 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



to form an elongated ridge (Fig. 10G, ri). The distal end of the shaft is strongly expanded 

ventrolaterally to dorsomedially, and the ventrolateral margin of the distal end is much wider in 

distal view than the dorsomedial margin. A small groove (Fig. 10K, ?gr) runs proximodistally 

along the ventral surface of the fibula near the distal end, though this may be an artefact of poor 

preservation. In lateral view, the distal margin of the fibula is embayed between dorsal and 

ventral rounded convexities. The lateral surface of the distal end is depressed at its dorsoventral 

midpoint. 

Median osteoderms. IVPP V6027-1 (Fig.4A–E) and IVPP V6027-2 (Fig. 4F–J) include median 

osteoderms in articulation with cervicodorsal and dorsal vertebrae, respectively, and IVPP 

V6027-9 (Fig. 5E–F) is an isolated median osteoderm. The osteoderms form two parallel rows 

that contact one another along the midline (Fig. 4B,G). The osteoderms are similar to those of 

Euparkeria capensis (UMZC T.692; Fig. 5G–H) in each possessing a medially offset longitudinal 

keel (Fig. 5E,K), in being leaf shaped, and in that each osteoderm dorsally overlaps the 

immediately more posterior one in the same row. Each osteoderm is around twice as long 

anteroposteriorly as it is wide mediolaterally. Each osteoderm overlaps the neural spines of two 

vertebrae (Fig. 4B,G), covering the anterior third of the spine of the more posterior vertebra and 

the posterior two thirds of the spine of the more anterior vertebra. Adjacent left and right 

osteoderms are, as in Euparkeria capensis (SAM-PK-13666) level with each other 

anteroposteriorly rather than staggered. 

Phylogenetic relationships of Halazhaisuchus qiaoensis and ‘Turfanosuchus’ shageduensis
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Our initial phylogenetic analysis (Fig. 11) including Halazhaisuchus qiaoensis and 

‘Turfanosuchus’ shageduensis as separate taxa yielded 810 most parsimonious trees (MPTs) of 

1257 steps with a consistency index (CI) of 0.384 and a retention index (RI) of 0.793. 

Halazhaisuchus qiaoensis and ‘Turfanosuchus’ shageduensis were found to be sister taxa, 

forming a clade that was in turn placed as sister to Euparkeria capensis. This result is consistent 

with our recognition of ‘Turfanosuchus’ shageduensis as a junior subjective synonym of 

Halazhaisuchus qiaoensis. It also supports a monophyletic Euparkeriidae, consisting of 

Euparkeria capensis and Halazhaisuchus qiaoensis, that forms the sister clade to 

Archosauria+Phytosauria. However, Euparkeriidae is supported only by one local apomorphy: 

character 407, presacral osteoderms that are longer than wide. The sister grouping of 

Halazhaisuchus qiaoensis and ‘Turfanosuchus’ shageduensis is also supported by a single local 

apomorphy: 219, teardrop-shaped tuber on posterior edge of scapula present (following the 

wording of Nesbitt 2011 – the tuber is in fact circular, but is almost certainly homologous with 

the teardrop shaped tubera of other taxa). Bootstrap support for the node 

Archosauria+Phytosauria is >50%, with a Bremer support of three, but bootstrap support for 

Euparkeriidae and for Halazhaisuchus qiaoensis+‘Turfanosuchus’ shageduensis is <50% and 

Bremer support for both nodes is one. Seven extra steps were required to find a monophyletic 

clade composed of ‘Turfanosuchus’ shageduensis, Halazhaisuchus qiaoensis and Turfanosuchus 

dabanensis (whether or not ‘Turfanosuchus’ shageduensis and Halazhaisuchus qiaoensis were 

constrained to be sister taxa). Nineteen extra steps were required to recover a monophyletic 

Euparkeriidae composed of a combined Halazhaisuchus qiaoensis, ‘Turfanosuchus’ 

shageduensis, Turfanosuchus dabanensis and Euparkeria capensis (whether or not 

‘Turfanosuchus’ shageduensis and Halazhaisuchus qiaoensis were constrained to be sister taxa).
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The topology (excepting of course the sister group relationship of the two taxa in 

question) and character optimization were identical when Halazhaisuchus qiaoensis and 

‘Turfanosuchus’ shageduensis were combined as a single taxon, and support values differed only 

slightly (Bremer support of four for Archosauria+Phytosauria). This analysis recovered 270 

MPTs of 1276 steps with a CI of 0.379 and an RI of 0.787. Turfanosuchus dabanensis was placed 

as the sister taxon of Gracilisuchus+Yonghesuchus within Pseudosuchia, as found by Butler et al. 

(2014). Seven extra steps were required to place Turfanosuchus dabanensis as the sister taxon to 

the combined Halazhaisuchus qiaoensis. Nineteen extra steps were required to recover a 

monophyletic Euparkeriidae composed of a combined Halazhaisuchus qiaoensis OTU, 

Turfanosuchus dabanensis and Euparkeria capensis. 

Discussion

We consider Wangisuchus tzeyii to be a nomen dubium due to the undiagnostic nature of the 

holotype material. Whilst some of the material currently assigned to the taxon may indeed pertain 

to a euparkeriid or euparkeriid-grade species, the specimens are too fragmentary and poorly 

preserved for a reasonable assessment of their systematic position to be made. The problem is 

compounded by the lack of convincing evidence that any of the different specimens pertain to the 

same individual or taxon, especially given that other archosauromorphs (e.g. Shansisuchus 

shansisuchus) were collected from the same localities and strata. 

Although the fragmentary nature of the material complicates taxonomic reassessment, the 

type specimens of Halazhaisuchus qiaoensis and ‘Turfanosuchus’ shageduensis are not 

sufficiently morphologically distinct to justify maintaining both taxa, and we consider them 
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synonymous. This synonymy is supported by our numerical cladistic analysis which places the 

two putative species as sister taxa, and by the similar size and stratigraphic position of the taxa. 

However, it must be stressed that there are limited numbers of overlapping elements between the 

taxa showing sufficiently good preservation to draw conclusions, and that the holotypes are from 

different sites - future discoveries of better preserved material from the lower Ermaying could 

thus potentially refute this synonymization. It must also be noted that only a single 

synapomorphy, the presence of a tuber for muscle attachment on the posterior edge of the 

scapula, currently supports the sister group relationship between the synonymized taxa when they 

are treated as separate OTUs. This tuber is clearly present in the holotype of Halazhaisuchus 

qiaoensis and appears to be present in the holotype of ‘Turfanosuchus’ shageduensis, but is not 

well preserved in the latter. Despite the limited extent of the evidence for synonymy, we believe 

that the lack of countervailing evidence means that it remains the more parsimonious hypothesis. 

Even were synonymy to be subsequently refuted, given their generally similar morphology, size 

and stratigraphic position it can be safely concluded that both taxa are stem archosaurs of a 

similar “ancestral-archosaur” grade.

Our phylogenetic analysis constitutes only the third test of the existence of a 

monophyletic, non-monospecific Euparkeriidae, the first being an analysis by Ezcurra, Lecuona, 

& Martinelli (2010) that included the putative euparkeriids Osmolskina czatkowicensis and 

Euparkeria capensis but did not find them to be sister taxa, and the second being an analysis by 

Sookias et al. (2014) that included the putative euparkeriids Dorosuchus neoetus and Euparkeria 

capensis but did not find them to be sister taxa. As a result, our analysis is the first to recover a 

monophyletic, non-monospecific euparkeriid clade. Our ongoing work is focused on developing a 

more extensive dataset to simultaneously test the positions of Euparkeria capensis, Dorosuchus 
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neoetus, Halazhaisuchus qiaoensis, and Osmolskina czatkowicensis, but this is beyond the scope 

of the current paper.  

Whilst Halazhaisuchus qiaoensis and Euparkeria capensis form a clade in our analysis, 

this result must be considered provisional as only two of the putative euparkeriid taxa were 

included in the analysis and support for the clade was low, with osteoderm shape constituting the 

only synapomorphy of the clade. The osteoderms of Halazhaisuchus qiaoensis and Euparkeria 

capensis are indeed very similar, being leaf-shaped and possessing medially offset longitudinal 

keels. Moreover, the osteoderms are arranged almost identically in the two taxa, forming in each 

case two paramedian rows slightly out of step with the spine tables below them. However, 

Euparkeria capensis differs from Halazhaisuchus qiaoensis in lacking the pronounced scapular 

tuber for muscle attachment that is an apparent autapomorphy of the latter taxon, and in more 

subtle aspects of shape in several elements (e.g. Euparkeria capensis has a less well developed 

olecranon process of the ulna, and a slightly less strongly expanded distal end of the scapula). It 

should also be noted that our scoring for osteoderm shape differs from that of Nesbitt (2011: 

character 407), who scored the osteoderms of Euparkeria capensis as “square-shaped, about 

equal dimensions” rather than “longer than wide”. We disagree with this scoring as the maximum 

width to maximum length ratio of the paramedian osteoderms of Euparkeria capensis is 0.43 

(UMZC T.692j). This is similar to the value for Batrachotomus kupferzellensis (0.46, SMNS 

90018), which Nesbitt (2011) scored as having elongated osteoderms, but strikingly different 

from that for Hesperosuchus agilis (0.72, AMNH FR 6758, measured from fig. 50 in Nesbitt 

2011) which Nesbitt (2011) scored as having square-shaped osteoderms. The width to length ratio 

is 0.47 in Halazhaisuchus qiaoensis (IVPP V6027-8), again more similar to the condition in 

Batrachotomus kupferzellensis than that in Hesperosuchus agilis. 
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The incomplete nature of the material of Halazhaisuchus qiaoensis makes ecological 

inferences difficult. The animal can be estimated to have been around 1.5 m in length, based on 

length estimates for Euparkeria capensis (Ewer 1965; Botha-Brink and Smith 2011; Remes 

2007) scaled according to the length ratio between the single femur referred to Halazhaisuchus 

qiaoensis (127 mm) and the longest femur of Euparkeria capensis (78 mm, SAM-PK-10671). 

Halazhaisuchus qiaoensis was also probably carnivorous, based on the apparently cylindrical 

shape of the preserved teeth, though no details of dental morphology can be discerned. Similar 

locomotor ability as has been posited for Euparkeria capensis, namely quadrupedal locomotion 

and possibly facultative bipedality at speed (Ewer 1965; Santi 1993), can be tentatively ascribed 

to Halazhaisuchus qiaoensis: the humerus/femur ratio (1.51 for IVPP V6028), femoral length as 

percentage of femur+tibia length (55% for IVPP V6028), and humerus+ulna length as a 

percentage of femur+tibia length (69% for IVPP V6028) are similar to the corresponding values 

for Euparkeria capensis (1.40, approximately 63%, and 67%, respectively; Gauthier et al. 2011, 

Ewer 1965). Femoral morphology is also similar, though the tibia is less symmetrical 

mediolaterally than that of Euparkeria capensis. Lack of preservation of the pelvic girdle 

precludes further conclusions regarding locomotor ability.

Our reassessment of the putative Chinese Euparkeriidae helps to shed light on character 

evolution leading up to the origin of archosaurs. Together with Euparkeria capensis, the 

morphology of Halazhaisuchus qiaoensis probably approaches that of the common ancestor of 

Phytosauria+Archosauria. Whilst the locomotor apparatus of Euparkeria capensis and 

Halazhaisuchus qiaoensis is not specialized for fully upright or bipedal locomotion, unlike that of 

early dinosauriforms and pseudosuchians (see Gauthier et al. 2011), it departs from that of more 

sprawling taxa, with reduction and ventral displacement of the fourth trochanter. Based on 

Halazhaisuchus qiaoensis and Euparkeria capensis, the ancestor of Archosauria and phytosaurs 
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can also be hypothesised to have been relatively small and gracile, terrestrial, and probably 

carnivorous. The vertebrae of Halazhaisuchus qiaoensis show some structures that correspond to 

the extensive laminae and fossae of Archosauria and phytosaurs, features that have often, but 

controversially, been considered to indicate the presence of pneumatic diverticula (see Butler, 

Barrett, & Gower 2012), but in Halazhaisuchus qiaoensis these structures are not particularly 

well developed. Halazhaisuchus qiaoensis, along with Euparkeria capensis, is intermediate in 

development of vertebral laminae and fossae between the archosaurs and phytosaurs on the one 

hand and more basal taxa such as Proterosuchus fergusi on the other. However, laminae and 

fossae are better developed in Erythrosuchus africanus than in Euparkeriidae (Gower 2003; 

Butler, Barrett, & Gower 2012) despite the more crownward placement of the latter, implying 

that the elaboration of laminae and fossae in archosauriform evolution (whether related to 

pneumaticity or not) did not follow a simple trend. 
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Figure 1. Localities of the putative Chinese euparkeriids. Map showing the localities where 

the holotype specimens of the three Chinese putative euparkeriid taxa reassessed in this paper 

were collected. Pale grey=People’s Republic of China; darker grey=other countries; cross-

hatched light and darker grey=disputed regions; dark grey=ocean; thick grey lines=national 

borders; thin grey lines=province borders; stars=localities.

Figure 2. Holotype and paratypes of “Wangisuchus tzeyii” nomen dubium. Holotype IVPP 

V2701, left maxilla, in medial (A) and lateral (B) views. Paratypes, right maxillae, in lateral 

views: IVPP V2702 (C); IVPP V2703 (D); IVPP V2704 (E). al, alveolus, aofo, antorbital fossa, 

idp, interdental plate, mas, ascending process of the maxilla, t, tooth.

Figure 3. Mandible of Halazhaisuchus. Right mandible of Halazhaisuchus qiaoensis, IVPP 

V6028-1 (holotype of ‘Turfanosuchus’ shageduensis) in lateral (A), medial (B) and dorsal (C) 

views. a, angular, c, coronoid, d, dentary, pa, prearticular, sa, surangular, sp, splenial, step, step 

between more dorsal and more ventral sections of prearticular, t, teeth. 

Figure 4. Cervical and dorsal vertebrae of Halazhaisuchus qiaoensis. Posterior three cervical 

and anterior three dorsal vertebrae IVPP V6027-1 in right lateral (A), dorsal (B; osteoderms 

visible), ventral (C), anterior (D) and posterior (E) views; series of dorsal vertebrae IVPP V6027-

2 in right lateral (F), dorsal (G; osteoderms visible), ventral (H), anterior (I) and posterior (J) 

views; cervical vertebrae of IVPP V6028-2 (holotype of ‘Turfanosuchus’ shageduensis) in right 

lateral (K; broken segments disarticulated), ventral (L), dorsal (M), anterior (N) and posterior (O) 

views. acpl, anterior centroparapophyseal lamina, di, diapophysis, ep, epipophysis, ic, 

intercentrum, ns, neural spine, ost, osteoderm, pa, parapophysis, ppdl, paradiapophyseal lamina, 
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prdl, prezygodiapophyseal lamina, sdf, spinodiapophyseal fossa, tp, transverse process. 

Figure 5. Ribs and osteoderms of Halazhaisuchus compared with other taxa. Right cervical 

rib of Halazhaisuchus qiaoensis IVPP V6027-9 in dorsal (A) and ventral (B) views; left cervical 

rib (image mirrored for comparison) of Batrachotomus kupferzellensis SMNS 91046 in dorsal 

(C) and ventral (D) views; right paramedian osteoderm of Halazhaisuchus qiaoensis IVPP 

V6027-8 in dorsal (E) and ventral (F) views; right paramedian osteoderm of Euparkeria capensis  

UMZC T692j in dorsal (G) and ventral (H) views. cap, capitulum, fl, flange, k, keel, tub, 

tuberculum.

Figure 6. Scapulae and coracoids of Halazhaisuchus qiaoensis. Left scapula and coracoid IVPP 

V6027-3 in lateral (A) and medial (B) views, right scapula and partial coracoid IVPP V6027-4 in 

lateral (C) and medial (D) views, and left scapula and coracoid IVPP V6028-3 (holotype of 

‘Turfanosuchus’ shageduensis) in lateral (E) and medial (F) views. acr, acromion process, cof, 

coracoid foramen, gl, glenoid, mar, muscle attachment ridge, tu, tuber.

Figure 7. Right humeri of Halazhaisuchus qiaoensis. IVPP V6027-5 in proximal (A), dorsal 

(B), lateral (C), ventral (D), distal (E) and medial (F) views, and IVPP V6028-4 (holotype of 

‘Turfanosuchus’ shageduensis) in proximal (G), dorsal (H), lateral (I), ventral (j), distal (K) and 

medial (L) views. Arrows indicate dorsal direction. ectg, ectepicondylar groove, ect, 

ectepicondyle, ent, entepicondyle, dpc, deltopectoral crest, it, internal tuberosity. 

Figure 8. Right forelimb epipodials of Halazhaisuchus qiaoensis. Ulna IVPP V6027-6 in 

proximal (A), medial (B), distal (C), lateral (D), dorsal (E), and ventral (F) views; ulna of IVPP 

V6028 (holotype of ‘Turfanosuchus’ shageduensis) in proximal (G), medial (H), distal (I), lateral 
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(J), dorsal (K), and ventral (L) views; radius IVPP V6027-7 in proximal (M), medial (N), distal 

(O), lateral (P), dorsal (Q), and ventral (R) views; radius of IVPP V6028 (holotype of 

‘Turfanosuchus’ shageduensis) in proximal (S), medial (T), distal (U), lateral (V), dorsal (W), 

and ventral (X) views. Arrows indicate dorsal direction. bev, bevelled surface, fos, fossa, gr, 

groove, ol, olecranon, ra, raised area, ri, ridge. 

Figure 9. Femur of Halazhaisuchus. Right femur of Halazhaisuchus qiaoensis IVPP V6028-5 

(holotype of ‘Turfanosuchus’ shageduensis) in dorsal (A), proximal (B), lateral (C), ventral (D), 

medial (E) and distal (F) views. Arrows indicate dorsal direction. ac, adductor crest, cfb, m. 

caudofemoralis brevis attachment, cfl, m. caudofemoralis longus attachment, ct, crista 

tibiofibularis, fte, m. femorotibialis externus attachment, h, head, ig, intercondylar groove, lc, 

lateral condyle, mc, medial condyle, ps, popliteal space, ve, ventral eminence, 4t, fourth 

trochanter.

Figure 10. Right hind limb epipodials of Halazhaisuchus qiaoensis. Tibia IVPP V6028-6 

(holotype of ‘Turfanosuchus’ shageduensis) in proximal (A), dorsal (B), distal (C), lateral (D), 

ventral (E) and medial (F) views; fibula of IVPP V6028 (holotype of ‘Turfanosuchus’ 

shageduensis) in dorsal (G), distal (H), proximal (I), lateral (J), ventral (K) and medial (L) views. 

Arrows indicate dorsal direction. cn, cnemial crest, lc, lateral condyle, m.if, m. iliofibularis 

attachment, pc, posterior condyle, ri, ridge, step, step between more medial and more lateral 

surfaces, ?gr, possible groove. 

Figure 11. Phylogenetic position of Halazhaisuchus. Strict consensus of 810 most parsimonious 

trees of length 1257 steps, showing the phylogenetic positions of Halazhaisuchus qiaoensis and 
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‘Turfanosuchus’ shageduensis. Consistency index=0.384; retention index=0.793. Numbers below 

nodes are bootstrap values (before the slash) and decay indices (after the slash) for the nodes in 

question.

SI Captions

Table S1. Supplementary table of measurements. Measurements of specimens referred to 

Halazhaisuchus qiaoensis and of holotype and paratypes of “Wangisuchus tzeyii”. 

Table S2. Supplementary table of Chinese names. Names of localities, towns, administrative 

divisions and formations used in this article, showing their equivalents in simplified Chinese, 

Pinyin, and previously published romanizations and translations.

Matrix S1. Character matrix. Matrix based on that of Butler et al. (2014) with scores for 

Halazhaisuchus qiaoensis and ‘Turfanosuchus’ shageduensis, as well as for a single 

Halazhaisuchus OTU (incorporating ‘Turfanosuchus’ shageduensis as a junior subjective 

synonym). 
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Figure 1

Localities of the putative Chinese euparkeriids.

Map showing the localities where the holotype specimens of the three Chinese putative 

euparkeriid taxa reassessed in this paper were collected. Pale grey=People’s Republic of 

China; darker grey=other countries; cross-hatched light and darker grey=disputed regions; 

dark grey=ocean; thick grey lines=national borders; thin grey lines=province borders; 

stars=localities.
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Figure 2

Holotype and paratypes of “Wangisuchus tzeyii” nomen dubium.

Holotype IVPP V2701, left maxilla, in medial (A) and lateral (B) views. Paratypes, right 

maxillae, in lateral views: IVPP V2702 (C); IVPP V2703 (D); IVPP V2704 (E). al, alveolus, 

aofo, antorbital fossa, idp, interdental plate, mas, ascending process of the maxilla, t, tooth.
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Figure 3

Mandible of Halazhaisuchus qiaoensis.

Right mandible of Halazhaisuchus qiaoensis, IVPP V6028-1 (holotype of ‘Turfanosuchus’ 

shageduensis) in lateral (A), medial (B) and dorsal (C) views. a, angular, c, coronoid, d, 

dentary, pa, prearticular, sa, surangular, sp, splenial, step, step between more dorsal and 

more ventral sections of prearticular, t, teeth.
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Figure 4

Cervical and dorsal vertebrae of Halazhaisuchus qiaoensis.

Posterior three cervical and anterior three dorsal vertebrae IVPP V6027-1 in right lateral (A), 

dorsal (B; osteoderms visible), ventral (C), anterior (D) and posterior (E) views; series of 

dorsal vertebrae IVPP V6027-2 in right lateral (F), dorsal (G; osteoderms visible), ventral (H), 

anterior (I) and posterior (J) views; cervical vertebrae of IVPP V6028-2 (holotype of 

‘Turfanosuchus’ shageduensis) in right lateral (K; broken segments disarticulated), ventral 

(L), dorsal (M), anterior (N) and posterior (O) views. acpl, anterior centroparapophyseal 

lamina, di, diapophysis, ep, epipophysis, ic, intercentrum, ns, neural spine, ost, osteoderm, 

pa, parapophysis, ppdl, paradiapophyseal lamina, prdl, prezygodiapophyseal lamina, sdf, 

spinodiapophyseal fossa, tp, transverse process.
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Figure 5

Rib and osteoderm of Halazhaisuchus qiaoensis compared with other taxa.

Right cervical rib of Halazhaisuchus qiaoensis IVPP V6027-9 in dorsal (A) and ventral (B) 

views; left cervical rib (image mirrored for comparison) of Batrachotomus kupferzellensis 

SMNS 91046 in dorsal (C) and ventral (D) views; right paramedian osteoderm of 

Halazhaisuchus qiaoensis IVPP V6027-8 in dorsal (E) and ventral (F) views; right 

paramedian osteoderm of Euparkeria capensis UMZC T692j in dorsal (G) and ventral (H) 

views. cap, capitulum, fl, flange, k, keel, tub, tuberculum.
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Figure 6

Scapulae and coracoids of Halazhaisuchus qiaoensis.

Left scapula and coracoid IVPP V6027-3 in lateral (A) and medial (B) views, right scapula 

and partial coracoid IVPP V6027-4 in lateral (C) and medial (D) views, and left scapula and 

coracoid IVPP V6028-3 (holotype of ‘Turfanosuchus’ shageduensis) in lateral (E) and medial 

(F) views. acr, acromion process, cof, coracoid foramen, gl, glenoid, mar, muscle attachment 

ridge, tu, tuber.
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Figure 7

Right humeri of Halazhaisuchus qiaoensis.

IVPP V6027-5 in proximal (A), dorsal (B), lateral (C), ventral (D), distal (E) and medial (F) 

views, and IVPP V6028-4 (holotype of ‘Turfanosuchus’ shageduensis) in proximal (G), dorsal 

(H), lateral (I), ventral (j), distal (K) and medial (L) views. Arrows indicate dorsal direction. 

ectg, ectepicondylar groove, ect, ectepicondyle, ent, entepicondyle, dpc, deltopectoral crest, 

it, internal tuberosity

PeerJ reviewing PDF | (v2014:06:2292:0:1:NEW 20 Jun 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



PeerJ reviewing PDF | (v2014:06:2292:0:1:NEW 20 Jun 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



Figure 8

Right forelimb epipodials of Halazhaisuchus qiaoensis.

Ulna IVPP V6027-6 in proximal (A), medial (B), distal (C), lateral (D), dorsal (E), and ventral 

(F) views; ulna of IVPP V6028 (holotype of ‘Turfanosuchus’ shageduensis) in proximal (G), 

medial (H), distal (I), lateral (J), dorsal (K), and ventral (L) views; radius IVPP V6027-7 in 

proximal (M), medial (N), distal (O), lateral (P), dorsal (Q), and ventral (R) views; radius of 

IVPP V6028 (holotype of ‘Turfanosuchus’ shageduensis) in proximal (S), medial (T), distal 

(U), lateral (V), dorsal (W), and ventral (X) views. Arrows indicate dorsal direction. bev, 

bevelled surface, fos, fossa, gr, groove, ol, olecranon, ra, raised area, ri, ridge.
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Figure 9

Femur of Halazhaisuchus qiaoensis.

Right femur of Halazhaisuchus qiaoensis IVPP V6028-5 (holotype of ‘Turfanosuchus’ 

shageduensis) in dorsal (A), proximal (B), lateral (C), ventral (D), medial (E) and distal (F) 

views. Arrows indicate dorsal direction. ac, adductor crest, cfb, m. caudofemoralis brevis 

attachment, cfl, m. caudofemoralis longus attachment, ct, crista tibiofibularis, fte, m. 

femorotibialis externus attachment, h, head, ig, intercondylar groove, lc, lateral condyle, mc, 

medial condyle, ps, popliteal space, ve, ventral eminence, 4t, fourth trochanter.
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Figure 10

Right hind limb epipodials of Halazhaisuchus qiaoensis.

Tibia IVPP V6028-6 (holotype of ‘Turfanosuchus’ shageduensis) in proximal (A), dorsal (B), 

distal (C), lateral (D), ventral (E) and medial (F) views; fibula of IVPP V6028 (holotype of 

‘Turfanosuchus’ shageduensis) in dorsal (G), distal (H), proximal (I), lateral (J), ventral (K) 

and medial (L) views. Arrows indicate dorsal direction. cn, cnemial crest, lc, lateral condyle, 

m.if, m. iliofibularis attachment, pc, posterior condyle, ri, ridge, step, step between more 

medial and more lateral surfaces, ?gr, possible groove.
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Figure 11

Phylogenetic position of Halazhaisuchus qiaoensis.

Strict consensus of 810 most parsimonious trees of length 1257 steps, showing the 

phylogenetic positions of Halazhaisuchus qiaoensis and ‘Turfanosuchus’ shageduensis. 

Consistency index=0.384; retention index=0.793. Numbers below nodes are bootstrap values 

(before the slash) and decay indices (after the slash) for the nodes in question.
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