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ABSTRACT
Dibutyl phthalate (DBP) poses a severe threat to aquatic ecosystems, introducing
hazards to both aquatic species and human health. The ecotoxic effects of DBP on
aquatic organisms have not been fully investigated. This study investigates acute
toxicity, oxidative damage, and antioxidant enzyme parameters in neonate and adult
Daphnia magna exposed to DBP. The obtained results show comparable DBP toxic
responses in neonates and adults. The median lethal concentrations (LC50) of
DBP in neonates exposed for 24 and 48 h were 3.48 and 2.83 mg/L, respectively.
The LC50 of adults for the same DBP exposure durations were 4.92 and 4.31 mg/L,
respectively. Increased hydrogen peroxide and malondialdehyde were found in
neonates and adults at both 24 and 48 h, while the total antioxidant capacity decreased.
Superoxide dismutase activity increased significantly in neonates and adults exposed to
0.5 mg/L DBP, and subsequently diminished at higher DBP concentrations and
prolonged exposure. Catalase and glutathione S-transferases activities both decreased
markedly in neonates and adults. The changes observed were found to be time and
concentration dependent. Overall, these data indicated that the acute toxic effects
of DBP exposure on neonates were more pronounced than in adults, and oxidative
injury may be the main mechanism of DBP toxicity. These results provide a functional
link for lipid peroxidation, antioxidant capacity, and antioxidant enzyme levels in
the Daphnia magna response to DBP exposure.
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INTRODUCTION
Phthalate esters (PAEs) have been extensively used as plasticizers for polymers, despite their
established action as endocrine-disrupting chemicals and their severe impact on human
health (Daiem et al., 2012; Fernández, Gómara & González, 2012). The annual production
capacity of PAEs exceeds approximately 8 million tons globally (Wittassek et al., 2011). PAEs
can be found in various products, such as toys, personal-care products, pharmaceuticals,
medical tubes and devices, packaging, detergents, and food items. However, since PAEs
are non-covalently bound to polymer matrices, they can easily disperse and contaminate
aquatic ecosystems, via discharges of industrial and agricultural wastewater, sewage
sludge, and incorrect disposal of plastic items (Daiem et al., 2012; Zhang et al., 2018).
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Dibutyl phthalate (DBP) is the most frequently reported PAE pollutant, and has
been detected in a variety of water sources and sediments (Huang, Sun & Song, 1999).
High levels of DBP were reported in the South African Songhua River (3.42–10.2 mg/L)
(Fatoki et al., 2010). In China, DBP concentrations detected in the lakes of urban
Guangzhou range from 0.94 to 3.60 mg/L (Zeng et al., 2009). DBP was also the primary
pollutant that was detected in a water environment survey of the Yangtze River. Especially,
in the Wuhan section, the concentrations of DBP in most of the tested samples
exceeded the national water quality criteria (3.0 mg/L) (Fan, Xia & Sha, 2008;Wang, Xia &
Sha, 2008b). DBP is susceptible to hydrolysis in aquatic ecosystems at a slower rate (Staples
et al., 1997b; Thomsen, Rasmussen & Carlsen, 1999). The photooxidation half-life for
DBP in water has been estimated at 144 days (Staples et al., 1997a). It has been reported
that the biodegradation half-life of DBP in natural surface water is 1–14 days, and the
biodegradation half-life in groundwater is 2–23 days (Staples et al., 1997b; Thomsen,
Rasmussen & Carlsen, 1999). Although the utilization of DBP as a plasticizer has been
banned in the United States, the United Kingdom, and China, it can still be found in
aquatic ecosystems (Lin et al., 2018). The minimum toxic effect concentration of DBP
for aquatic species is 100 mg/L (Staples et al., 1997a). However, monitoring data in specific
areas either reached or exceeded this concentration (Fatoki et al., 2010; Zeng et al., 2009).
Aquatic species are continuously exposed to DBP, which affects the health of aquatic
organisms through various mechanisms and damages aquatic ecosystems (Brown et al.,
1998; Staples et al., 1997a; Gu et al., 2017).

Previous risk assessment reports have focused on the detrimental effects of DBP on
aquatic animals (Brown et al., 1998; Agus et al., 2015; Li et al., 2015) DBP toxicity is
partly a result of its lipophilic nature, resulting in ease of accumulation in animal
tissues (Agus et al., 2015; He et al., 2011). DBP has been found to induce acute and chronic
toxicity in various aquatic species, such as the yellow perch Perca flavescens, the
rainbow trout Oncorhynchus mykiss, the nile tilapia Oreochromis niloticus, the mirror carp
Cyprinus carpio, and the red killi fish (Staples et al., 1997a; Agus et al., 2015; Khalil,
Elhakim & EL-Murr, 2016). A key detrimental physiological effect of DBP exposure in
aquatic organisms is the induction of growth disorders (Janjua et al., 2007), as well as
the disruption of both development (Xu et al., 2015) and reproduction (Lu, Lin & Aitken,
2017). DBP accumulates within organism tissues where it can alter and degrade enzymatic
processes, which may lead to cell death (Zhao, Gao & Qi, 2014). Moreover, DBP has
been found to promote oxidative damage in the dinoflagellate Gymnodinium breve
due to elevated intracellular levels of reactive oxygen species (ROS) (Bie et al., 2012).
Accumulated active oxygen oxidize biomacromolecules include nucleic acids, proteins,
and lipid, and result in metabolic abnormalities in biochemical reactions in vivo
(Hamed et al., 2017). Excessive ROS can subject biological membranes to oxidation,
thus attacking their cellular lipid peroxidation. High DBP concentrations were reported
to cause oxidative injury and elevated malondialdehyde (MDA) levels in the red tide
dinoflagellate Karenia brevis (Li et al., 2015). To maintain the body’s homeostasis and
prevent further oxidative injury induced by toxic substances, many organisms have
evolved antioxidant defenses (Sen et al., 2010). Active oxygen scavenging systems
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play a central role in these protective defense responses. ROS are abolished by superoxide
dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase
(GST), and non-enzymatic scavengers (Xing et al., 2012). These systems protect cells
from oxidative injury caused by a range of stresses, such as exposure to DBP toxicity
(Li et al., 2015; Zhao, Gao & Qi, 2014). A previous publication reported that under DBP
stress conditions, accumulation of SOD results in the scavenging of ROS in Oreochromis
niloticus (Khalil, Elhakim & EL-Murr, 2016). DBP stimulated CAT and GSH activities
in the flounder Paralichthys olivaceus, thus counteracting the oxidative stress (Kang et al.,
2010). A study on the goldfish Carassius auratus (Zhao, Gao & Qi, 2014) showed that
oxidative damage was detected in all investigated tissues after 96 h of DBP exposure.
Oxidation-related biomarkers are currently extensively employed to assess exposure
levels and harmful effects of pollutants on aquatic organisms (Lacroix et al., 2015; Huang,
Li & Yang, 2016).

Daphnia magna is an extensively located zooplankton species and a critical link in
the food webs of freshwater ecosystems. They are a key primary consumer and are a
primary food source for various planktivorous fish species (Galdiero et al., 2017).
Accordingly, Daphnia are not only a commonly used model organism for toxicological
surveys of aquatic ecosystem, but are also considered a valuable indicator species for
environmental pollution assessments (Cui, Chae & An, 2017). A previous evaluation of
the toxicity effects of phthalates showed that diethylhexyl phthalate (DEHP), DBP, and
diethyl phthalate (DEP) had detrimental impacts on the fat metabolism, development,
reproduction and lifespan of Daphnia magna (Seyoum & Pradhan, 2019). Huang et al.
(1998) reported a median lethal concentration (LC50) for Daphnia magna under DBP
treatment at 24 h of 8.0 mg/L. The LC50 of DBP, DEHP, and DEP for Daphnia magna
exposed for 48 h were reported to be 6.78, 0.003, and 90.0 mg/L, respectively (Jonsson &
Baun, 2003). Furthermore, a previous study reported that exposure to 1.8 mg/L of
DBP caused a significant decline in the reproductive rate of Daphnia magna
(Mccarthy & Whitmore, 1985). A recent study also investigated independent and
co-toxicity mechanisms in both bacteria Photobacterium phosphoreum and Daphnia
magna exposed to DBP and copper (Huang, Li & Yang, 2016). We recently reported
that the cat and gst gene expression levels were notably reduced or increased upon
DEHP exposure in Daphnia magna (Wang et al., 2018). Organisms in the early
developmental stages have been reported to be less tolerant to the detrimental effects of
pollutants (Huang, Li & Yang, 2016). Many recent publications showed the teratogenic
nature of DBP, reporting malformations in developing Zebrafish Danio rerio, the
African clawed frog Xenopus laevis, and embryos of the polychaete Galeolaria caespitosa
(Xu et al., 2015; Gardner et al., 2016; Lu, Lin & Aitken, 2017). Environmental exposure
may lead to DBP accumulation during the neonatal stage, which negatively impacts
various future developmental characteristics (Khalil, Elhakim & EL-Murr, 2016).
Until now, little is known regarding the differences in the deleterious effects of DBP on
Daphnia magna in neonatal and adult antioxidant defense systems. Therefore, in
parallel tests, this study assessed the sensitivity of Daphnia magna in neonates and
adults exposed to the toxic pollutant DBP.
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The objectives of the present work are (1) to compare the acute toxicity of Daphnia
magna in neonates and adults exposed to DBP, (2) to establish safe concentration (SC)
of DBP exposure to neonatal and adult Daphnia magna, for the application of risk
evaluations of polluted fresh water, (3) to further investigate the mechanism of DBP
toxicity by determining its effects on lipid peroxidation and oxidative damage in both
neonatal and adult Daphnia magna populations. These data provide a reference for
the further ecological risk evaluation of PAE exposure of aquatic organisms.

MATERIALS AND METHODS
Experimental materials
Daphnia magna were provided by the Key Laboratory of Hydrobiology at Dalian Ocean
University (Liaoning Province, China). Neonates or adults that were synchronously
released from laboratory-cultured clonal line of Daphnia magna were used for the
experiments. The clonal line was initiated with an individual, parthenogenetic female.
The neonates produced by this first female were selected and then cultivated. Experiments
were performed using four to six brooding offspring. The selected neonates or adults
were cultured in dechlorinated water in a 500 mL glass beaker, kept in an illumination
incubator (Thermo Fisher, Dreieich, Germany). The incubation conditions were adjusted
to 22 ± 2 �C on an alternate 12 h light-dark cycle. The light intensity parameter of the
experimental animal culture was set to 2,000 lux. The total hardness, alkalinity, dissolved
oxygen, and pH of culture water, were 7.29 ± 0.1 mmol/L, 12.48 ± 0.4 mmol/L, 7.96 ±
0.3 mg/L, and 7.8 ± 0.2, respectively. Concentrated Scenedesmus sp. cultures were utilized
as food for Daphnia magna at a feeding density of 3 � 105–4 � 105 cell/mL.

Dibutyl phthalate (CAS No: 84-74-2) was bought from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China), and was reconstituted with acetone for toxicity experiments.

Acute toxicity assay
The toxicity of DBP was determined after 24 or 48 h of static exposure via acute toxicity
test published by OECD (2004). Newly hatched neonates (length 0.86 ± 0.08 mm) and
adults (length 2.67 ± 0.05 mm) were used for the acute toxicity test. The test concentrations
of DBP were established based on the data obtained by pre-experimentation and
previously reported literature (Adams et al., 1995). DBP concentrations were set to one,
two, three, four, and five mg/L. Culture media without added DBP and solvent was
used as blank control. A solvent control (0.008% acetone only treatment, v/v) was also
included to determine baseline toxicity. Preliminary experiments and previous literatures
confirmed that acetone at 0.008% had no effect on survival or biochemical responses
in Daphnia magna (Sancho et al., 2009; Zhao, Gao & Qi, 2014). Five replicates were
conducted per treatment concentration (blank control, solvent control, plus DBP
concentrations). For each replicate, 10 Daphnia magna neonates or adults were cultured
in a glass beaker containing 100 mL of DBP solutions or control solutions and 50
organisms were used for each different concentration of DBP. Neither Daphnia magna
neonates nor adults were fed during the test. The movement status of Daphnia magna
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was examined 24 or 48 h post DBP exposure. Daphnia magna were regarded as immobile
if they did not swim 15 s post gentle agitation.

The test compound DBP concentrations were determined by GC/MS mass
spectrometry. Nominal and measured concentrations of DBP are presented in Table S1.
The stability of DBP in different media has been reported previously (Bajt, Mailhot &
Bolte, 2001; Zhou et al., 2005; Wang, Wang & Fan, 2008a). LC50 was defined as the
concentration of a substance that induces mortality in 50% of the test group in a
short-term experiment. The SC of the substance was calculated via Eq. (1) (Sprague, 1971):

SC¼ 24hLC50 � 0:3

24hLC50=48hLC50ð Þ3 (1)

Sublethal toxicity bioassays
After LC50 values were calculated, Daphnia magna were exposed to sublethal toxic
concentrations of DBP to test both MDA content and antioxidant enzyme activity.
Two DBP concentrations (0.5 and 2.0 mg/L) were chosen, and both blank control (no DBP
no acetone) and solvent control (0.008% acetone, v/v) were included to determine the
baseline reads on enzyme activity assays. For each time endpoint (0, 24, and 48 h),
a corresponding control was performed at the same growth stage as the treatment groups.
Each group contained four replicates. For each replicate, 500 neonates were randomly
grouped to a beaker containing five L of test solution, and 300 adults were also placed in a
different five L glass beaker. Both the neonates and adults were exposed under standard
culture conditions without feeding throughout the experiment duration. At 24 or 48 h
post-exposure, 200 living organisms were harvested for analysis as one replicate. The
collected live Daphnia magna were first rinsed with distilled water three times prior to
pooling in centrifuge tubes (1.5 mL). All samples used for MDA and enzyme activity
analysis were either kept on ice throughout the experiment or at -20 �C for long
term storage.

Following DBP exposure, each sample was homogenized at a 10% (w/v) dilution in
1� PBS, and then, the supernatants were obtained after centrifugation at 10,000 r/min for
10 min by Centrifuge 5,804 (Eppendorf, Billerica, Massachusetts, USA). The protein
content, total antioxidant capacity (T-AOC), MDA, hydrogen peroxide (H2O2), and
enzyme activity levels were measured with commercially available kits (Nanjing Jiancheng
Institute, Nanjing, China).

Oxidative stress assays (biomarkers)
To analyze the oxidative stress status of Daphnia magna, the contents of MDA and H2O2

were measured. The protein content was detected with the Bradford method using BSA
as protein standard (Bradford, 1976). H2O2 can be reacted with a chromogenic agent
to produce a molybdenic acid-peroxide complex. H2O2 was detected by measuring the
absorbance of the molybdenic acid-peroxide complex at 405 nm using a H2O2 assay
kit (Jiang, Woollard & Wolff, 1990). MDA as the final lipid peroxidation product was
determined based on the formation of a MDA/thiobarbituric acid (TBA) complex
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(Dhindsa, Plumbdhindsa & Thorpe, 1981). A total of 1.5 mL of Daphnia magna was
homogenized with an Ultra-Turrax (IKA) in one ml 0.02% butylhydroxytoluene
methanol solution in Milli-Q water. Then, three ml of 1% phosphoric acid and one ml of
1% TBA solution were added. Mixtures were mixed, incubated for 30 min at 100 �C,
and then cooled on ice for 10 min before addition of five ml butanol. Separation of the
organic phase was performed by centrifugation at 10,000 rpm for 15 min at 4 �C. The
supernatant was taken and measured at 532 nm. The obtained results were presented as
nmol/mg protein. Absorbance values were assessed by spectrophotometer (Thermo
Fisher Instruments Inc., Vantaa, Finland).

Measurements of antioxidant parameters
Total antioxidant capacity was measured as the deoxidation ability of Fe3+ to Fe2+

following the principles reported by Opara et al. (1999) and were quantified as U/mg
protein (each U equals the nmol Fe3+ deoxidated per min per mg protein).

Superoxide dismutase (EC 1.15.1.1) activity was calculated via the ability to inhibit
cytochrome c reduction (Manduzio et al., 2003). Reduced cytochrome c by O2

- caused
an increased absorbance at 550 nm, which was used to measure SOD activity. Each one mL
of the reaction mixture contains 50 mM hypoxanthine, 5.6 mU xanthine oxidase, 10 mM
cytochrome c, 50 mM phosphate buffer, and 0.1 mM EDTA. The enzyme activity was
quantified as U/mg protein. Each SOD unit equals the amount of sample that can
inhibit the rate of reduction of cytochrome c by 50%.

Catalase (EC 1.11.1.6) activity was assessed following the Aebi method (Aebi, 1984).
Briefly, eight mL of extracted protein sample was mixed with 792 mL of reaction buffer
(PBS 10 mM, H2O2 10 mM) in a measuring cuvette and the absorbance was measured
at 240 nm for 1.5 min. The values from CAT enzymatic assay were quantified as units of
CAT activity per mg of protein (U/mg protein). Each unit of CAT was determined as
the amount of enzyme decomposing one mmol of H2O2 per second.

Glutathione S-transferase (EC 2.5.1.18) activity was detected by the conjugation of
GSH (Habig, Pabst & Jakoby, 1974) using 1-chloro-2, 4-dinitrobenzene (CDNB) (Sigma,
St. Louis, MO, USA) as substrate. Briefly, 15 mL of the extracted protein sample was mixed
with 200 mL of reaction buffer, containing 200 mM PBS buffer at pH = 7.5, l-glutathione
reduced one mM, and CDNB one mM. The absorbance value was measured at 340 nm.
One unit of GST was determined as the amount of enzyme capable of catalyzing one mM
of CDNB per minute. The GST activity was quantified as mmol/min/mg/protein.

Statistical analysis
Statistical analyses were conducted using SPSS 21. Statistical data were presented as
mean values ±standard deviation in all studies if not otherwise specified. The LC50 and the
95% confidence limits were calculated using Probit. The significance of the various
parameters was tested using two-way analysis of variance (ANOVA). A p-value of 0.05
was used as cutoff for statistical significance, while a p-value of 0.01 for used to indicate
high significance. Duncan’s multiple range test was used to compare significant
differences among treatments.

Shen et al. (2019), PeerJ, DOI 10.7717/peerj.6584 6/19

http://dx.doi.org/10.7717/peerj.6584
https://peerj.com/


RESULTS
Acute toxic effects of DBP on Daphnia magna
No neonatal and adult mortality were present in controls (deionized water and acetone)
after 48-h of testing. Increasing toxicity was observed in neonatal and adult Daphnia
magna, with incremental increases in DBP concentration. As shown in Table 1, a
notable correlation was found between the logarithm of DBP concentration and Daphnia
magna mortality. Under these experimental conditions, the 24 and 48 h-LC50 values
for DBP exposure of adult Daphnia magna (4.92 and 4.31 mg/L) were higher than
those for neonatal Daphnia magna (3.48 and 2.83 mg/L). This data suggests that DBP
exposure was more toxic to neonates than to adults.

The influence of DBP on H2O2 content in Daphnia magna
The obtained data showed that DBP was associated with obvious upregulation of H2O2

content in both neonates and adults. H2O2 content in neonates exposed to 0.5 mg/L DBP
was significantly increased at both 24 and 48 h (17.7 ± 1.7, 17.5 ± 1.1, p < 0.01). Exposure
to 2.0 mg/L DBP resulted in elevated H2O2 content at 24 h (8.5 ± 1.1), followed by a
notable increase at 48 h compared to controls (19.8 ± 0.8, p < 0.01, Fig. 1A). Following
0.5 or 2.0 mg/L DBP exposure treatment of Daphnia magna, in adults, the (24 and 48 h)
H2O2 contents increased significantly compared to controls (p < 0.05, Fig. 1B).
The induction and accumulation of H2O2 was related to the concentration and
treatment time of external DBP.

The influence of DBP on lipid peroxidation in Daphnia magna
Malondialdehyde levels in neonatal Daphnia magna exposed to 0.5 mg/L DBP were
notably elevated at 24 and 48 h (15.6 ± 4.7 and 10.9 ± 4.8), compared to controls (7.1 ± 1.2,
2.6 ± 0.6, p < 0.01, Fig. 2A). The treatment of neonates with 2.0 mg/L DBP after 24 and 48 h
caused 7.8-fold and 25.6-fold increases in MDA levels, respectively (p < 0.01, Fig. 2A).
The impact of DBP exposure on MDA content in adult Daphnia magna is shown in
Fig. 2B. Adults exposed to 0.5 mg/L DBP for 24 h showed no change in MDA levels,
while exposure for 48 h notably increased levels compared to control (4.9 ± 0.8 vs 2.2 ± 0.4,
p < 0.05). Treatment with 2.0 mg/L DBP significantly elevated adult Daphnia magna
MDA levels at 24 and 48 h (8.5 ± 1.1 and 8.7 ± 0.3, p < 0.05).

Table 1 Acute toxicity responses of neonate and adult D. magna exposed to DBP.

Age group Time (h) Regression equation Correlation
coefficient R2

LC50 (mg/L) 95% Confidence
interval

Safe concentration
(mg/L)

Replicates/trials

Neonate 24 y = -1.819 + 3.361x 0.998 3.48 3.09–3.99 0.56 5/2

48 y = -1.414 + 2.523x 0.992 2.83 2.42–3.33 5/2

Adult 24 y = -2.185 + 3.008x 0.991 4.92 4.22–6.32 0.98 5/2

48 y = -1.254 + 1.798x 0.972 4.31 3.50–6.03 5/2

Note:
Accumulated mortality (%) of neonatal and adult D. magna exposed to various DBP concentrations for 24 and 48 h and the LC50 with 95% confidence limits,
were calculated by Probit analysis using SPSS 21. In the regression equation, the logarithm of concentration was indicated by X and the mortality of D. magna
was indicated by Y.
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The influence of DBP on T-AOC in Daphnia magna
Following exposure to 0.5 mg/L DBP, T-AOC levels were significantly reduced in
neonates both at 24 and 48 h compared to control (p < 0.05 and p < 0.01, respectively),
while T-AOC were notably decreased after exposure to 2.0 mg/L DBP for 24 and 48 h
compared to control (p < 0.01, Fig. 3A). The effect of DBP on T-AOC in adult Daphnia
magna is shown in Fig. 3B. Following 0.5 and 2.0 mg/L DBP treatments, T-AOC levels
significantly decreased both at 24 and 48 h (p < 0.01).

Figure 1 DBP induced change in D. magna H2O2 concentrations. (A) neonates and (B) adults, fol-
lowing exposure to 0.5 and 2.0 mg/L DBP for 24 and 48 h. Capital letters (A/B/C) indicate the difference
between the 0, 0.5, and 2.0 mg/L DBP treatment groups at 48 h. Lowercase letters (a/b/c) indicate the
difference between the 0, 0.5, and 2.0 mg/L DBP treatment groups at 24 h. Different letters indicate
significant differences between the DBP treatments. The error bars are standard deviation (n = 4).

Full-size DOI: 10.7717/peerj.6584/fig-1

Figure 2 DBP induced lipid peroxidation in D. magna. (A) neonates and (B) adults, following
exposure to 0.5 and 2.0 mg/L DBP for 24 and 48 h. Capital letters (A/B/C) indicate the difference between
the 0, 0.5, and 2.0 mg/L DBP treatment groups at 48 h. Lowercase letters (a/b/c) indicate the difference
between the 0, 0.5, and 2.0 mg/L DBP treatment groups at 24 h. Different letters indicate significant
differences between the DBP treatments. The error bars are standard deviation (n = 4).

Full-size DOI: 10.7717/peerj.6584/fig-2
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DBP induced activity changes of antioxidant enzyme in Daphnia
magna
The influence of DBP on SOD activity in neonate Daphnia magna is shown in Fig. 4A,
where neonates exposed to 0.5 mg/L DBP exhibited a notably increased SOD activity at 24 h
(11.9 ± 0.2), which then significantly decreased at 48 h (4.3 ± 0.2, p < 0.01). Exposure of
neonates to 2.0 mg/L DBP for 24 and 48 h resulted in a significant decrease in SOD activity

Figure 3 DBP induced changes of T-AOC in D. magna. (A) neonates and (B) adults, following
exposure to 0.5 and 2.0 mg/L DBP for 24 and 48 h. Capital letters (A/B) indicate the difference between
the 0, 0.5, and 2.0 mg/L DBP treatment groups at 48 h. Lowercase letters (a/b) indicate the difference
between the 0, 0.5, and 2.0 mg/L DBP treatment groups at 24 h. Different letters indicate significant
differences between the DBP treatments. The error bars are standard deviation (n = 4).

Full-size DOI: 10.7717/peerj.6584/fig-3

Figure 4 DBP induced changes in SOD activity in D. magna. (A) neonates and (B) adults, following
exposure to 0.5 and 2.0 mg/L DBP for 24 and 48 h. Capital letters (A/B/C) indicate the difference between
the 0, 0.5, and 2.0 mg/L DBP treatment groups at 48 h. Lowercase letters (a/b/c) indicate the difference
between the 0, 0.5, and 2.0 mg/L DBP treatment groups at 24 h. Different letters indicate significant
differences between the DBP treatments. The error bars are standard deviation (n = 4).

Full-size DOI: 10.7717/peerj.6584/fig-4
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(p < 0.01). The influence of DBP on SOD activity in adult Daphnia magna is shown in
Fig. 4B, where exposure to 0.5 mg/L DBP led to a notable elevation in adult Daphnia magna
(24 h) SOD activity (p < 0.01). However, by 48 h SOD activity was notably lower compared
to controls (p < 0.01). Exposure of adult Daphnia magna (24 and 48 h) to 2.0 mg/L
DBP led to a notable reduction in SOD activity compared to control (p < 0.05).

Following exposure to 0.5 mg/L DBP, neonates showed significantly decreased CAT
activity at 24 and 48 h compared to control (p < 0.01, Fig. 5A). Following 2.0 mg/L
DBP exposure treatment on Daphnia magna, neonates (24 h) CAT activity was notably
reduced (p < 0.01). However, CAT activity increased in the 48-h exposure group (p < 0.01).
The impact of DBP stress on CAT activity for adult Daphnia magna is shown in Fig. 5B.
In all adult groups exposed to 0.5 or 2.0 mg/L DBP (24 and 48 h), the levels of CAT
decreased in comparison to the controls (p < 0.01, respectively).

Following 0.5 mg/L DBP treatment, neonates showed significant increase in levels of
GST activity at 24 h, which then significantly decreased in response to prolonged exposure
(48 h) in comparison to control (p < 0.01, Fig. 6A). Following exposure to 2.0 mg/L DBP,
CAT activity in neonates was clearly reduced at 24 h compared to controls (p < 0.01).
No change was found in other neonatal Daphnia magna exposure groups. The impact
of DBP stress on GST activity in adult Daphnia magna is shown in Fig. 6B. Following
treatment with 0.5 and 2.0 mg/L DBP, adult Daphnia magna (24 and 48 h) GST
activities were all significantly reduced compared to control (p < 0.01).

DISCUSSION
Dibutyl phthalate is a unique anthropogenic contaminant that has been listed as a priority
pollutant to the environment according to various international organizations; it is

Figure 5 DBP induced changes in CAT activity in D. magna. (A) neonates and (B) adults, following
exposure to 0.5 and 2.0 mg/L DBP for 24 and 48 h. Capital letters (A/B/C) indicate the difference between
the 0, 0.5, and 2.0 mg/L DBP treatment groups at 48 h. Lowercase letters (a/b/c) indicate the difference
between the 0, 0.5, and 2.0 mg/L DBP treatment groups at 24 h. Different letters indicate significant
differences between the DBP treatments. The error bars are standard deviation (n = 4).

Full-size DOI: 10.7717/peerj.6584/fig-5
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particularly toxic to aquatic ecosystems (Agus et al., 2015; Xu et al., 2015). Aquatic
species in the early stages of development are more susceptible to the detrimental impacts
of pollutants. In invertebrates, DBP has been found to exert toxic effects, inhibiting
animal survival and fertility in Daphnia Moina macrocopa (Wang et al., 2011b), altering
embryogenesis and larval development in Danio rerio (Xu et al., 2015), affecting
survival rates and enzyme activities in the goldfish Carassius auratus (Qu et al., 2015),
and damaging the defense mechanisms in the giant freshwater prawn Macrobrachium
rosenbergii (Sung, Kao & Su, 2003). However, studies that assess the impact of DBP stress
on neonatal and adult Daphnia magna survival and antioxidant systems have not been
reported. The objectives of the present work were to analyze the acute toxicity and the
oxidative stress responses of Daphnia magna neonates and adults exposed to DBP.

Acute toxicity of DBP exposure to neonate and adult ofDaphnia magna
Dibutyl phthalate is a commonly detected persistent organic pollutant with detrimental
effects on numerous organisms in aquatic environments (Daiem et al., 2012; Gu et al., 2017).
Previous reports reported that the harmful impacts of PAEs on juveniles showed age-
dependent sensitivities. The statistical changes were often significant and adults were less
sensitive than youth (Hutchinson, Solbe & Kloepper-Sams, 1998; Tonk et al., 2012). The LC50

of DBP in neonates were 3.48 and 2.83 mg/L in response to exposure for 24 and 48 h, and
the LC50 of DBP in adults were 4.92 and 4.31 mg/L after the same stress duration,
respectively (Table 1). The data suggests that DBP was more toxic for neonate Daphnia
magna than for adults, which was consistent with the previously reported results. The
96 h LC50 value for DBP exposed to Oreochromis niloticus, was 50 mg/L in adults (Benli,
Erkmen & Erkoç, 2016) and 11.8 mg/L in neonates (Khalil, Elhakim & EL-Murr, 2016).
Exposures to DBP in aquatic organisms ranged from 24 to 96 h and comprised a relatively

Figure 6 DBP induced change in GST in D. magna. (A) neonates and (B) adults, following exposure to
0.5 and 2.0 mg/L DBP for 24 and 48 h. Capital letters (A/B/C) indicate the difference between the 0, 0.5,
and 2.0 mg/L DBP treatment groups at 48 h. Lowercase letters (a/b/c) indicate the difference between the
0, 0.5, and 2.0 mg/L DBP treatment groups at 24 h. Different letters indicate significant differences
between the DBP treatments. The error bars are standard deviation (n = 4).

Full-size DOI: 10.7717/peerj.6584/fig-6
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wide range of LC50 values (10
2–105 mg/L). The negative impacts of DBP on aquatic

organisms appear to be species-dependent. The findings of the current study differ to
data reported for Oreochromis niloticus exposed to DBP, where the LC50 was 50 mg/L for
96 h of exposure (Benli, Erkmen & Erkoç, 2016). Exposure to a mixture of DBP and
Cu(II) increased the toxicity in Daphnia magna by practically two orders of magnitude in
Photobacterium phosphoreum (Huang, Li & Yang, 2016). This notable difference may
be the result of variations in species, the development stages of the experimental animals,
or other abiotic factors such as dissolved oxygen, salinity, light intensity, and temperature.

Oxidative stress in DBP exposed Daphnia magna
Malondialdehyde, ROS, and T-AOC, are widely used as biomarkers to study the harmful
effects of environmental pollutants in aquatic organisms (Li et al., 2015; Xing et al., 2012).
The increase in H2O2 was induced via exposure to 0.5 mg/L DBP in neonates, and
significant H2O2 overproduction was induced by 2.0 mg/L DBP in neonates and 0.5 mg/L
DBP in adults for 24 h (Fig. 1). Previous research confirmed ROS production as one of
the consequences of toxic response to PAEs (Zheng, Feng & Dai, 2013). The H2O2

content was increased after DBP exposure (Fig. 1), indicating ROS production and severe
oxidative stress in neonates and adults. Monitoring T-AOC responses provides a more
general indication of the antioxidative-oxidative status of an organism, than measurement
of separate oxidants and/or antioxidants. The obtained results showed that T-AOC
levels were notably decreased following DBP stress both in neonates and adults (Fig. 3).
Increased ROS may oxidize cellular biomacromolecules (nucleotide, protein, and lipids),
resulting in oxidative injury in organisms. Previous publications have confirmed DBP
induced lipid peroxidation in Cyprinus carpio, Danio rerio embryos, and Cyprinus carpio,
where DBP stimulated lipoxygenase activity and consequently increased lipid peroxidation
(Agus et al., 2015; Dong et al., 2018; Zhao, Gao & Qi, 2014). This study analyzed the
degree of lipid peroxidation in Daphnia magna by assessing the levels of MDA. Increased
MDA levels in neonate Daphnia magna following exposure to 0.5 and 2.0 mg/L DBP for
24 and 48 h, and adult Daphnia magna following exposure to 0.5 mg/L DBP (48 h)
and 2.0 mg/L DBP (24 and 48 h), suggests the induction of lipid peroxidation (Fig. 2). The
observed increase inMDA levels indicates that the inducible antioxidant capacity in vivo were
insufficient to eliminate excessive oxygen radicals, which is supported by the findings of a
previously reported study (Agus et al., 2015). The data obtained in this study showed that after
24 and 48 h of DBP exposure, the accumulation of H2O2 and MDA in neonates was
significantly higher than in adults. The elevation of MDA was not found in adults following
0.5 mg/L DBP exposure for 24 h (Fig. 2B), suggesting that mature antioxidant systems
provide effective protection against low DBP stress. Therefore, this implies that DBP induced
different effects due to oxidative injury in neonate and adult Daphnia magna, where neonate
Daphnia magna exhibited higher levels of oxidative damage.

Antioxidant parameters in response to DBP stress in Daphnia magna
To eliminate the increased H2O2 and MDA levels and mitigate oxidative injury due to
free radicals, organisms initiate emergency mechanisms such as increasing their cellular
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levels of antioxidant parameters, such as SOD, CAT, and GST, and reducing endogenous
antioxidants (Sen et al., 2010). SOD can catalyze the disproportionation reaction to
form O2

- into H2O2, which is a precursor of the OH radical. SOD activity is commonly
classified as the main defense mechanism against oxidative damage in cells caused by
increased ROS and lipid peroxidation (Khan, Khan & Sahreen, 2012). SOD activity was
elevated in brains of carp and the neotropical fish Hoplias malabaricus induced by heavy
metals, synthetic organic pollutants, and biotoxins (Da Silva et al., 2011; Xing et al., 2012).
In the present work, DBP exposure (0.5 mg/L) notably increased SOD activity compared to
control. Increased SOD activity could be an adaptive response of organisms to
environmental stress with the aim to reduce cell damage in Daphnia magna. By using
active oxygen scavenging enzymes as defense system, organisms can resist increased
levels of O2

-. Therefore, increased SOD activity following DBP exposure, may be attributed
to the cell’s adaptive defense mechanism to eliminate surplus O2

-. CAT is a key
enzymatic antioxidant system, which can eliminate H2O2 produced from ROS, catalyzed
by SOD, and thus alleviate cell damage (Zhao, Gao & Qi, 2014). Many environmental
pollutants, such as DBP, heavy metals, and organic pesticides, induced elevated levels
of CAT activity in Cyprinus carpio, carp, and blue mussels (Xing et al., 2012; Zhao, Gao &
Qi, 2014; Lacroix et al., 2015). This study showed that the CAT activity in neonates and
adults of Daphnia magna significantly reduced in DBP exposure groups. Increased CAT
activity is beneficial for the elimination of excess H2O2 and to reduce the oxidative
damage to cells (Gehringer et al., 2004). However, when the CAT H2O2 elimination
capacity was saturated, excess H2O2 accumulated and CAT activity was restrained, which
resulted in cell damage. This study showed that Daphnia magna under DBP stress
reduced CAT activity, and significantly increased SOD activity. The activity of CAT was
limited by the intracellular excess of O2

-, and the presence of H2O2 inhibited the action
of SOD (Xiang et al., 2017). Thus, DBP exposure may produce O2

-, resulting in the
inhibition of CAT activity, which was also found here.

Glutathione S-transferase was found to play a primary regulatory role in the redox
biochemical reaction cycle of cells; in particular, its antioxidant activity is mainly
deactivated by ROS or peroxidation products. The intracellular free radical H2O2 can
be converted into water and molecular oxygen via the synergistic action of the two
antioxidant enzymes CAT and GST (Wang et al., 2011a). In this study, GST activity
was suppressed in DBP-stressed Daphnia magna. GST activity in Oreochromis niloticus
under heavy metal Cu stress was also notably reduced (Atli & Canli, 2010). A possible
explanation is that excessive ROS or severe oxidative injury may lead to GSH depletion
and/or disrupted synthesis and inhibition of GST activity. The data suggest that
oxidative stress was created in DBP exposed Daphnia magna. The MDA content and
the levels of antioxidant parameters depended on both the level of DBP-induced stress
and contact time. Under a severe stress environment, ROS exceeded the cellular
antioxidant defense capacity, resulting in decreased activity levels of antioxidant enzyme.
DBP exposure treatment led to the failure of the antioxidant defense system with
changes in lipid peroxidation, which is consistent to previous findings (Oliveira
et al., 2012).

Shen et al. (2019), PeerJ, DOI 10.7717/peerj.6584 13/19

http://dx.doi.org/10.7717/peerj.6584
https://peerj.com/


CONCLUSIONS
Acute toxicity assays and biochemical analyses were performed to establish the role of
oxidative injury in response to DBP stress in neonate and adult Daphnia magna. The
data from acute toxic assays indicates that DBP exposure was more toxic to neonates
than to adults, and Daphnia magna in the neonatal stage were less tolerant to the impacts
of DBP. Increased MDA production levels and decreased T-AOC levels were observed,
suggesting that ROS-induced oxidative damage was a main toxic effect of DBP. All
observed indicators in response to contamination stress were time and concentration
dependent. The observation of deleterious impacts of DBP exposure at low concentrations,
poses a significant potential risk to the global environmental health.
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