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ABSTRACT
The cerebellopontine angle (CPA) is a triangular-shaped space that lies at the junction
of the pons and cerebellum. It contains cranial nerves and the anterior inferior cerebellar
artery (AICA). The anatomical shape and location of the AICA is variable within
the CPA and internal auditory canal (IAC). A possible etiology of idiopathic sudden
sensorineural hearing loss (ISSNHL) is ischemia of the labyrinthine artery, which is a
branch of the AICA. As such, the position of the AICA within the CPA and IAC may
be related to the clinical development of ISSNHL. We adopted two methods to classify
the anatomic position of the AICA, then analyzed whether these classifications affected
the clinical features and prognosis of ISSNHL.We retrospectively reviewed patient data
from January 2015 to March 2018. Two established classification methods designed by
Cahvada and Gorrie et al. were used. Pure tone threshold at four different frequencies
(0.5, 1, 4, and 8 kHz), at two different time points (at initial presentation and three
months after treatment), were analyzed.We compared the affected and unaffected ears,
and investigated whether there were any differences in hearing recovery and symptoms
between the two classification types. There was no difference in AICA types between
ears with and without ISSNHL. Patients who had combined symptoms such as tinnitus
and vertigo did not show a different AICA distribution compared with patients who
did not. There were differences in quantitative hearing improvement between AICA
types, although without statistic significance (p= 0.09–0.13). At two frequencies, 1
and 4 kHz, there were differences in Chavda types between hearing improvement and
no improvement (p< 0.05). Anatomical variances of the AICA loop position did not
affect the incidence of ISSNHL or co-morbid symptoms including tinnitus and vertigo.
In contrast, comparisons of hearing improvement based on Chavda type classification
showed a statistical difference, with a higher proportion of Chavda type 1 showing
improvements in hearing (AICA outside IAC).

Subjects Anatomy and Physiology, Neurology, Otorhinolaryngology, Radiology and Medical
Imaging
Keywords AICA, CPA, Sudden hearing loss, Prognosis

INTRODUCTION
The cerebellopontine angle (CPA) is triangular-shaped space filled with cerebrospinal
fluid, and is located at the junction of the pons and cerebellum. It contains several crucial
structures such as cranial nerves V to VIII, and arteries such as superior cerebellar artery
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(SCA) and anterior inferior cerebellar artery (AICA). The internal auditory canal (IAC),
which is a nerve canal surrounded by bone, rises anterolaterally from the CPA to reach the
peripheral cochleovestibular organs. The IAC contains cranial nerves VII and VIII, which
are ultimately responsible for facial muscle movement, hearing, and balance (Rhoton Jr,
2000).

The AICA is a branch of the basilar artery and courses through the CPA posterolaterally
to supply the anterior to middle parts of the cerebellum and inferolateral pons. It branches
into the labyrinthine artery, which is the sole vascular supply for the labyrinth, cochlea,
and vestibular organs. The anatomical shape and location of the AICA is variable in the
CPA (Kim et al., 1990). In postmortem and imaging studies, it has been found within the
IAC in 15 to 40% of patients (De Carpentier et al., 1996; Mazzoni & Hansen, 1970; Reisser
& Schuknecht, 1991).

Idiopathic sudden sensorineural hearing loss (ISSNHL) is a commonly seen disease in
the otologic clinic. However, there is no known pathophysiology and current treatment
relies on the use of systemic or intra-tympanic steroids. Possible hypotheses include
inflammation, labyrinthine artery occlusion, or damage to the cochlear nerve (Byl Jr, 1984;
Merchant, Adams & Nadol Jr, 2005). Given that the labyrinthine artery is a branch of the
AICA, it is plausible that differences in the anatomical variation of the AICA results in the
clinical findings of ISSNHL.

A number of studies have shown cases of hearing loss with an AICA located within the
IAC, (Moosa et al., 2015) and have correlated various AICA locations with audio-vestibular
symptoms (Chadha & Weiner, 2008; De Carpentier et al., 1996; Gorrie et al., 2010; Kazawa,
Togashi & Ito, 2013). However, none of these studies has focused on ISSNHL, which
could have a different pathophysiology given the vast differences in clinical features and
diagnostic criteria. As such, in the present study, we used two previously reported methods
of classification to reveal the correlation of distance of AICA loop and IAC (Chavda type)
or contact of nerves and vessel (Gorrie type) to hearing status. We then analyzed whether
these classifications affected the clinical features and prognosis of ISSNHL.

MATERIALS AND METHODS
Subjects and design
We retrospectively reviewed patient data from January 2015 to March 2018. This study
was approved by the institutional review board of Dankook University Hospital (Ethical
Application Ref: 2017-08-003). All patients who were admitted for ISSNHL were enrolled
in the study. Verbal informed consents from participants were received. ISSNHL was
diagnosed according to traditional criteria, which is defined as a threshold shift of
greater than 30 dB in three consecutive frequencies, or if the patient has new hearing
loss in a duration less than 3 days (Anderson & Meyerhoff, 1983; Mattox & Simmons, 1977;
Schuknecht & Donovan, 1986). Demographic data are shown in Table 1. The vestibular
involvement was relatively higher in our experimental group compared to previous reports
(Moskowitz, Lee & Smith, 1984; Park, Jung & Rhee, 2001; Shaia & Sheehy, 1976). This could
be related to subjects who were enrolled in this study, since the MRI is not a routine study
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Table 1 Demographic data of patients in present study.

Demographics

Mean age (±Standard deviation) 45.0 (±15.3)
Hospital day of MR imaging (±Standard deviation) 3.7 (±2.2)
Gender M 59% vs F 41%
Patients with accompanying symptom
Vertigo (%) 31 (63.3)
Tinnitus (%) 31 (63.3)

for hearing loss in our health system. Patients with MRI imaging of the IAC with no signs
of vestibular schwannoma were included in the study. Patients were classified according to
the anatomical location of the AICA and cranial nerves within the IAC. Two established
classification methods designed by Chavda (McDermott et al., 2003) and Gorrie (Gorrie et
al., 2010) were used. Pure tone threshold at four different frequencies (0.5, 1, 4, and 8 kHz),
at two different time points (at time of initial presentation, and three months after initial
treatment), were analyzed. All patients were given anti-viral agent, systemic high dose
steroid therapy (48 mg at day time, 12 mg at night time, total 60 mg of methylprednisolone
for 7 days) and non-systemic steroid responsive (mean recovery average less than 10 dB
HL) subjects had additional intra-tympanic steroid injections. We compared the affected
and unaffected ears with two different classification systems, and investigated whether there
were differences in hearing recovery and symptoms. Hearing improvement was assessed
by Siegel’s criteria (average of 0.5, 1, 2 and 4 kHz) (Siegel, 1975) and measuring the first
threshold shift between time points at each frequency, and documenting the proportion of
patients with improved hearing (>10 dB HL) at each separate frequency.

MRI protocol
All MRI test were conducted using a 3 T scanner (signa HDxt, GE Medical system,
Milwaukee, WI) with an eight channel head coil. Among the routine IAC MR imaging
protocol, 3D T2 VISTA images were selected for analyzing the anatomical configurations
of IAC vessel and cranial nerves. Two classification systems were adopted. The first was the
Chavda classification published by McDermott et al. (2003). This system classifies AICA
types as follows: type 1 is an AICA loop within the CPA but outside the IAC; type 2 is an
AICA loop extending into the IAC but is less than 50% the length of the IAC; type 3 is an
AICA loop with greater than 50% extension into the IAC (Fig. 1). The second classification
system used was the Gorrie type, which is based on the amount of contact of between the
AICA and adjacent cranial nerves. Type 1 is an AICA loop without contact to adjacent
nerves; type 2 is an AICA loop that runs adjacent to the nerves; type 3 is an AICA loop
that physically displaces the 8th cranial nerve; type 4 is an AICA loop that courses between
the 7th and 8th cranial nerves (Fig. 2). All MR images were analyzed and classified by a
radiologist who is co-author of our manuscript (SYK).
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Figure 1 Chavda classification of AICA loop. (A) AICA loop (arrow) observed in cerbellopontine angle
(CPA) outside the internal auditory canal (IAC) which is type 1. (B) Type 2 in which AICA loop (arrow) is
occupying no more than 50% of IAC. (C) Type 3 in which AICA loop (arrow) leaches more than 50% of
total length of IAC.

Full-size DOI: 10.7717/peerj.6582/fig-1

Figure 2 Gorrie classification of AICA loop. (A) AICA loop (arrow) running separate from cranial nerve
which is type 1. (B) Type 2 in which the AICA loop (arrow) is running adjacent to the cranial nerve. (C)
Type 3 in which the AICA loop (arrow) deflects the 8th cranial neve and (D) Type 4 in which the AICA
loop (arrow) runs between the 7th and 8th cranial nerve.

Full-size DOI: 10.7717/peerj.6582/fig-2
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Table 2 Chavda type and Gorrie type distributions in ISSNHL and contralateral ear.

Ipsilateral ear (%) Contralateral ear (%) p-value

Chavda type I 25 (51.0%) 29 (59.2%)
Chavda type II 22 (44.9%) 19 (38.8%)
Chavda type III 2 (4.1%) 1 (2.0%)

0.651

Gorrie type I 7 (14.3%) 10 (20.4%)
Gorrie type II 9 (18.4%) 8 (16.3%)
Gorrie type III 29 (59.2%) 24 (49.0%)
Gorrie type IV 4 (8.1%) 7 (14.3%)

0.598

Statistical analysis
All data were analyzed by GraphPad Prism (GraphPad Software, La Jolla, CA, USA) or
SPSS (IBM SPSS statistics, Armonk, NY, USA) software. A Shapiro–Wilk normality test
was used to determine whether the data were parametric or non-parametric. Significant
differences between groups were statistically analyzed using t -test in cases of a parametric
distribution, and Mann–Whitney U test in cases of a nonparametric distribution. Fischer’s
exact test was used for the cross-table analysis. A p-value less than 0.05 was considered
statistically significant.

RESULTS
Pure tone averages of ears with ISSNHL were 73.6, 76.9, 78.1, and 77.1 at 0.5, 1, 4 and
8 kHz respectively, and those of the contralateral side were 11.5, 12.3, 23.3, and 29.7 at
0.5, 1, 4 and 8 kHz respectively. The average threshold shift of the contralateral ear at
each frequency was no greater than 30 dB HL, suggesting near normal hearing function.
We compared the anatomical position of the AICA loop between ears with ISSNHL and
the unaffected contralateral ear. The types of anatomical variations of the AICA were not
different between the affected side and the contralateral side (Table 2) (p> 0.05, Fisher’s
exact test). With regard to the Chavda classification, Chavda type I was the most common,
followed by type II, and type III. For the Gorrie classification, the Gorrie type III was the
most common (Table 2).

We also analyzed symptoms such as vertigo and tinnitus. The relationship between
AICA and symptoms were classified as Tables 3 and 4. As a result, the anatomic variations
of AICA was not different according to vertigo and tinnitus, respectively (p> 0.05).

We compared the threshold shift from the start of the treatment and at 3 months. In all
four frequencies, Chavda type 1 showed the largest threshold improvement but was not
statistically significant (Fig. 3) (500Hz: Kruskal–Wallis test, KW statistics= 4.091, p= 0.13;
1 kHz: Kruskal–Wallis test, KW statistics= 4.719, p= 0.09; 4 kHz: Kruskal–Wallis test, KW
statistics= 4.789, p= 0.09; 8 kHz: Kruskal–Wallis test, KW statistics 3.336, p= 0.19, mean
hearing level: Kruskal–Wallis test, KW statistics 3.381, p= 0.18). At lower frequencies (500
Hz, 1 kHz), hearing improvements were found in type 2 and type 3 Gorrie configurations.
Higher frequencies (4 kHz, 8 kHz) did not yield any significant differences in hearing
improvements, with a Gorrie type 4 at 4 kHz improving the least. These differences were
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Table 3 Chavda type and Gorrie type distributions in ISSNHL with vertigo and without vertigo.

With vertigo (%) Without vertigo (%) p-value

Chavda type I 15 (48.4%) 10 (55.6%)
Chavda type II 14 (45.2%) 8 (44.4%)
Chavda type III 2 (6.4%) 0 (0.0%)

0.528

Gorrie type I 5 (16.1%) 2 (11.1%)
Gorrie type II 6 (19.4%) 3 (16.7%)
Gorrie type III 17 (54.8%) 12 (66.7%)
Gorrie type IV 3 (9.7%) 1 (5.5%)

0.861

Table 4 Chavda type and Gorrie type distributions in ISSNHL with and without tinnitus.

With tinnitus (%) Without tinnitus (%) p-value

Chavda type I 21 (55.3%) 4 (36.4%)
Chavda type II 16 (42.1%) 6 (54.5%)
Chavda type III 1 (2.6%) 1 (9.1%)

0.414

Gorrie type I 5 (13.2%) 2 (18.2%)
Gorrie type II 9 (23.7%) 0 (0.0%)
Gorrie type III 22 (57.9%) 7 (63.6%)
Gorrie type IV 2 (5.2%) 2 (18.2%)

0.208

not statistically significant (Fig. 4) (500 Hz: Kruskal–Wallis test, KW statistics = 2.770,
p= 0.43; 1 kHz: Kruskal–Wallis test, KW statistics = 3.811, p= 0.28; 4 kHz: Kruskal–
Wallis test, KW statistics = 3.609, p= 0.31; 8 kHz: Kruskal–Wallis test, KW statistics
0.2900, p= 0.96, mean hearing level: Kruskal–Wallis test, KW statistics 3.277, p= 0.35).
According to the classification of Siegel’s criteria, it was found that improved groups, from
slight to complete recovery, showed higher Chavda type 1 proportion (>50%) compared
to no recovery (Chavda type 1 < 30%) but it failed to reveal statistical significance (Fischer
exact test, p= 0.50). As hearing improved across both classifications, all Chavda types had
a significant difference at 1 kHz and 4 kHz (Fischer exact test, 1 kHz: p= 0.03, 4 kHz:
p= 0.01). There was no statistical significance at other frequencies in Chavda or Gorrie
type configurations (Chavda type; Fischer exact test, 500 Hz: p= 0.17, 8 kHz: p= 0.14)
(Gorrie type; Fischer exact test, 500 Hz: p= 0.47, 1 kHz: p= 0.36, 4 kHz: p= 0.11, 8 kHz:
p= 0.92) (Tables 5 and 6).

DISCUSSION
In the present study, there were no differences in AICA types in ears with or without
ISSNHL. Patients who had combined symptoms such as tinnitus and vertigo did not
show a different distribution of AICA type compared to patients without symptoms. This
suggests that AICA type does not affect the incidence of ISSNHL and concurrent symptoms.
There were some differences in quantitative hearing improvement between types, although
without statistical significance (p values between 0.09 and 0.13). At two frequencies, 1 and
4 kHz, there was a difference in Chavda types between patients who experienced hearing
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Figure 3 Hearing threshold improvement across different Chavda types. At all frequencies (A–D),
highest threshold improvements were observed in Chavda type 1. At lowest frequency (500 Hz, (A)), sim-
ilar hearing improvement were observed in Chavda type 2 and 3. At 1 kHz, Chavda type 3 showed higher
improvement (B). In contrast, both in 4 kHz (C) and 8 kHz (D), Chavda type 2 showed higher improve-
ment. Average of 0.5, 1, 2 and 4 kHz was compared and revealed high improvement in Chavda type 1 (E).
In Siegel’s criteria (F), proportion of Chavda type 1 was small in no improvement group. Nevertheless, all
of these comparisons among Chavda types failed to reveal statistical significance (see the results for de-
tailed statistics). The number in center of each bar means each mean hearing threshold improvement (dB
HL). Error bar indicates standard deviation.

Full-size DOI: 10.7717/peerj.6582/fig-3

improvement and patients who did not. In groups that had improvements in hearing,
we found a higher proportion of Chavda type 1 configurations (AICA locating outside
the IAC). These results suggest that the anatomic location of the AICA loop may help
prognosticate hearing outcomes in ISSNHL patients.

Currently, there is no clear etiology of AICA loop formation and anatomical variances
seen in AICA positions. Hypotheses include senile elongation of the artery, arteriosclerosis,
and arachnoid adhesions between nerves and vessels (Applebaum & Valvassori, 1984). The
prevalence of AICA loops inside the IAC is thought to be approximately 13 to 40% in
cadaveric dissections (Mazzoni & Hansen, 1970; Reisser & Schuknecht, 1991) and 14 to 34%
in imaging studies using MRI (De Carpentier et al., 1996; Sirikci et al., 2005). In the current
study the percentage of patients found to have a Chavda type 1 configuration was 51%
(59% in control side), which is a smaller than results from previous studies (60 to 87%).
This difference may be attributable to variations in study number, age, or sex. Future
studies that match healthy controls with subjects may be useful in further evaluating the
relationship between ISSNHL incidence and AICA loop location.

Microvascular compression is thought to be responsible for certain cases of hearing loss,
tinnitus, vertigo, and hemifacial spasm (Jannetta, 1980). The results of our study are in line
with previous findings, with no differences being found in the relationship between AICA
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Figure 4 Hearing threshold improvement across different Gorrie types. At 500 Hz (A) and 1 kHz (B),
Gorrie type 2 and 3 showed higher threshold improvement. At 4 kHz (C) Gorrie type 4 showed least im-
provement of hearing. At 8 kHz (D), threshold improvement across Gorrie types were similar. Average of
0.5, 1, 2 and 4 kHz was compared and showed similar Gorrie type distribution to 500 Hz and 1 kHz (E). In
Siegel’s criteria (F), proportion of Gorrie types was not different among groups. Nevertheless, all of these
comparisons among Gorrie types failed to reveal statistical significance (see the results for detailed statis-
tics). The number in center of each bar means each mean hearing threshold improvement (dB HL). Error
bar indicates standard deviation.

Full-size DOI: 10.7717/peerj.6582/fig-4

Table 5 Chavda type proportion of hearing improved cases at each frequencies.

Cahvada type I
(n= 25)

Cahvada type 2
(n= 22)

Cahvada type 3
(n= 2)

p-value

500 Hz (%) 17 (68.0%) 9 (40.9%) 1 (50.0%) 0.174
1 kHz (%) 19 (76.0%) 9 (40.9%) 1 (50.0%) 0.049
4 kHz (%) 19 (76.0%) 9 (40.9%) 0 (0.0%) 0.013
8 kHz (%) 13 (52.0%) 6 (27.2%) 0 (0.0%) 0.114

Notes.
Bold: statistically significant.

Table 6 Gorrie type proportion of hearing improved cases at each frequencies.

Gorrie type 1
(n= 7)

Gorrie type 2
(n= 9)

Gorrie type 3
(n= 29)

Gorrie type 4
(n= 4)

p-value

500 Hz (%) 3 (42.8%) 6 (66.6%) 17 (58.6%) 1 (25.0%) 0.472
1 kHz (%) 4 (57.2%) 7 (77.7%) 17 (58.6%) 1 (25.0%) 0.356
4 kHz (%) 4 (57.2%) 6 (66.6%) 18 (62.0%) 0 (0.0%) 0.114
8 kHz (%) 3 (42.8%) 4 (44.4%) 11 (37.9%) 1 (25.0%) 0.919
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loop distribution and symptomatic/non-symptomatic patients (De Carpentier et al., 1996;
Gorrie et al., 2010; Sirikci et al., 2005). We also did not find a higher incidence of Gorrie
type 3 and 4 configurations in patients with tinnitus, thereby decreasing the likelihood that
symptoms could be due to contact of the AICA loop with the cochlear nerve. However,
given the low percentage of pulsatile tinnitus compared to subjective tinnitus patients in
our study, we believe that our current data are insufficient to comment further on the
previously studied (Chadha & Weiner, 2008; De Ridder et al., 2005) relationship between
tinnitus (vascular and non-vascular) and AICA loop position in ISSNHL patients.

Quantitative hearing improvement failed to reveal significant differences, although the
patient group that had hearing improvement showed different Chavda type proportions.
This finding may be due to chance or to low sample sizes. Nevertheless, a plausible
explanation for the improved prognosis of Chavda type 1 configurations is necessary.
Among many possible etiologies of ISSNHL, two most highly adopted theories are
viral inflammation and ischemia. Inflammation of cochlear nerve can be due to a
variety of infectious causes, and results in reversible axonal swelling and degeneration.
Most cases retain a good prognosis with appropriate therapeutic management with
appropriate management such as steroid (to reduced secondary damage due to edema)
and antiviral agent. In contrast, ischemic attack results in irreversible cochlear damage
due to sensorineural cell death, (Izumikawa et al., 2005) leading to poorer outcomes.
Given that the pathophysiology of ISSNL is thought to be multifactorial, the group that
experienced less hearing improvements (Chavda type 2 or 3) may have had a higher rate of
vascular etiologies compared to patients with a Chavda type 1 configuration. Unlike Gorrie
classification which is classified by the contact of vessel and nerves, Chavda classification
divides groups by distance of AICA loop and IAC. In case of Chavda type 2 and 3, AICA
loop is located within the narrow IAC which in many case leads to smaller diameter of
AICA loop and sudden rotation. On the contrary, in the Chavda type 1, AICA loop is
formed in CPA outside of IAC which has relatively larger space, abrupt rotation of the loop
is not always necessary in this case. The turbulence, which is relevant factor in thrombus
formation within the AICA loop (Bluestein et al., 1997; Deusebio et al., 2014), may occur
at a higher rate in Chavda type 2 or 3 patients (small diameter IAC loop and narrow
space), and supports the notion that labyrinthine artery ischemia is more common in these
patients, resulting in a higher rate of no-improvement hearing outcome from ISSNHL.
Furthermore, outcome variabilities among different frequencies are another evidence to
speculate the pathophysiology. The statistical group difference was observed in 1, 4 kHz
not in 500 Hz and 8 kHz. The possible reason for no group difference in 8 kHz might
be related to small hearing improvements, as observed in Figs. 3 and 4. On the other
hand, 500 Hz hearing improvement was relatively similar to other frequencies (Figs. 3
and 4) and there should be an alternate plausible theory. Considering the tonotopicity
of cochlear nerve (Muller, 1991), the frequencies which showed group differences (better
improvement in Chavda type 1) would be the peripheral part of cochlear nerve (except
the highest frequency). In treatment responsive population which had high proportion of
Chavda type 1 (could be viral origin); damage of cochlear nerve fiber could be focused
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in peripheral axons which are close to the nerve sheath and susceptible to the pressure
increase.

On the other hand, it is possible to argue that in Chavda type 1 response to treatment
was better compared to other types. Systemically delivered steroid and antiviral agent could
reach the target organ faster in case of lesser complicated anatomical positioning of AICA,
such as Chavda type 1, studies comparing outcomes and AICA classifications of the local
and systemic treatment would help better understanding considering this point.

CONCLUSION
Anatomical variances in AICA loop position did not affect the incidence of ISSNHL or
co-morbid symptoms. In contrast, comparisons between groups with improvements in
hearing and those without revealed that a higher proportion of Chavda type 1 (AICA
outside IAC) patients had better prognostic outcomes.
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