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Background: Sweet potato (Ipomoea batatas (L.) Lam) is the seventh most important food
crop in the world. In the present study, a detailed analysis of chloroplast genome in sweet

potato and its ten wild relatives was conducted.

Methods: The total genomic data of the ten wild relatives was generated by next —generation
sequencing and then these data were assembled. We downloaded the chloroplast genome of 1.
batatas ](GenBank accession no.NC026703) and conducted a comparative analysis #-of their

chloroplast genomes structure.

Results: The ten Ipomoea chloroplast genomes ranged from 161,225 bp to 161,721 bp and
displayed the typical circular quadripartite structure, consisting of a pair of inverted repeat
(IR) regions (30,798-30,910 bp each) separated by a large single copy (LSC) region (87,575—
88,004 bp) and a small single copy (SSC) region (12,018-12,051 bp). The average guanine-

cytosine (GC) content is approximately 40.5 % in the IR region, 36.1 % in the LSC, 32.2 % in

the SSC regions, and 37.5 % in total length for all plastomes. The chloroplast genomes
sequences included 87 protein-coding genes, eight duplicated rRNA (rm23, rrn16, rrn5, and
rrn4.5), 37 tRNA, and infA was absent in all these chloroplast genomes.l The boundaries of
SC/IR were highly conserved in the chloroplast genomes of sweet potato and its wild
relatives. NVe also found five relatively high variable regions (rpl32-trnL, ndhH-ndhF, trnH-
psbA, trnC-petN, and ndhA intron), which may be used as markers for future population

genetics research and species identification.

Discussion: The comparative analysis revealed that the chloroplast genomes of these eleven
Ipomoea species were highly conserved both in sequence and structure. Generally, the
detailed analysis of these chloroplast genomes provides valuable information for species

identification and genetic resources in Ipomoea series Batatas.

Keywords: Ipomoea; chloroplast genome; divergence hotspot; genome structure
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Introduction

Sweet potato, Ipomoea batatas (L.) Lam, is one of the most important food crops in the
world, grown in > 100 countries (FAO, 2017). However, the narrow genetic background and
the lack of resistance genes in today’s sweet potato cultivarsl limit its further improvement.
The wild species may play an important role in providing new genes, such as those for
resistance to various diseases and insects (Khoury et al., 2015). Strategies to utilize these wild
Ipomoea germplasms in breeding programs will depend on the understanding genetic

diversity and the relationships between sweet potato and its wild relatives.

Ipomoea batatas belongs to the genus Ipomoea, which is the largest genus in the
Convolvulaceae family, which includes 600-700 species (Austin & Hudman, 1996). Thirteen
species are considered to be closely related to I. batatas, and they form the Ipomoea series
Batatas (Austin, 1987)\. The phylogenetic relationships in series Batatas and the evolutionary
origin of I. batatas have always been one of the research foci. Studies conducted on
morphological characteristics suggest that Ipomoea trifida (H.B.K.) G. Don (2X) and
Ipomoea triloba L. are the most closely related species to I. batatas (Austin, 1987) and maybe
they are the wild ancestors of I. batatas. Molecular markers, such as restriction fragment
length polymorphisms (RFLPs) of genomic DNA (Jarret & Gawel, 1992), random amplified
polymorphic DNAs (RAPDs) (Jarret & Austin, 1994), and inter-simple sequence repeats
(ISSRs) (Huang & Sun, 2000) have been used to investigate phylogenetic relationships of 1.
batatas and its wild relatives. In addition, f-amylase (a nuclear-encoded gene) based method
has also been employed for the phylogenetic analysis in this series (Rajapakse et al., 2004). A
widely used gene in molecular phylogenetic analyses, Waxy, has been applied to series
Batatas, this analysis indicated that I. batatas may be a hybrid between Ipomoea littoralis and
Ipomoea tenuissima (Gao et al., 2011). The latest studies using both nuclear sequence and
chloroplast genome sequence conducted by Mwun™Munoz-Rodr+iguez et al., (2018) suggested
that the sweet potato had a single origin and the most likely ancestral species of sweet potato
is I. trifida. Overall, these molecular approaches effectively improve the accuracy of
phylogenetic research in contrast with morphological analysis and try to reveal the origin and
evolution of sweet potato from different aspects. Although the chloroplast genomes of the
species in the series Batatas have been obtained, the detailed chloroplast genome structure

analysis between sweet potato and its wild relatives has not been conducted.
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The chloroplast, an organ of photosynthesis in plants, has its own genome. The chloroplast
genome of Nicotiana tabacum was the first chloroplast genome to be sequenced in 1986
(Shinozaki et al., 1986). The length of a chloroplast genome DNA is generally 120 - 165kb
(Raubeson & Jansen, 2005) , carrying a large amount of valuable evolutionary information
(Carbonell-Caballero et al., 2015; Jansen et al., 2007). Chloroplast gnomes are haploid,
maternal inherited, maintain a high conservation in gene content and genome structure, and
have been widely used to study the evolutionary relationships at almost any taxonomic level
in plants (Zhang et al., 2016; Tong et al., 2016; Jansen et al., 2007). Some difficult
phylogenies kan be resolved using the chloroplast genome, such as the bamboo tribe,
Arundinarieae (Ma et al., 2014). In rice and cotton, chloroplast genomes were used to
understand the evolutionary relationships between cultivated species and their wild relatives
(Brozynska et al., 2014; Waters et al., 2012; Sotowa et al., 2013; Xu et al., 2012; Li et al.,
2014). Eserman et al. (2014) recently conducted a phylogenetic analysis of morning glories
based on chloroplast genomes in family Convolvulaceae, providing strong resolution in the
Ipomoeeae (Eserman et al., 2014). Additionally, the chloroplast genome of a sweet potato
named “Xushu 18” was sequenced in 2015 by Yan et al.(Yan et al., 2015). waever,
additional genomic information will be essential to better understand the origin and evolution

of sweet potato and develop DNA markers for accurate species identificationl.

In this study, we sequenced and assembled ten wild Ipomoea chloroplast genomes. Our two
aims were as follows: first, to understand the conservation and diversity of the IJpomoea
chloroplast genome through comparative genomics approaches. Second, to identify
appropriate DNA markers to accurately identify species and for further use in population

genetic studies.
Materials & Methods

Sampling and DNA extraction

Total genomic DNA was extracted from ten species for sequencing (Table 1). Samples-Plants

were grown in the greenhouse of the Xuzhou Sweet potato Research Centre, China. Young
leaves were collected from one plant of each species, subsequently frozen in liquid nitrogen
and stored at -80 °C until further use. Total genomic DNA was extracted using the Takara
miniBEST plant genomic DNA extraction kit (Dalian, China). lThe integrity of genomic was

assessed by performing gel electrophoresis using a 1 % agarose gel. ]

‘ Comentado [A8]: Valuable information for what?

Comentado [A9]: Often maternally inherited, but there are
multiple examples of bi-parental inheritance, also
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Chloroplast genome assembling and annotation

We constructed the-genomic library-libraries using the TruSeq DNA Nano kit with a DNA
insert size of 350 bp. Sequencing was conducted on the [llumina X Ten platform, which
generated at least 21G raw data from each species. Sequence data was discarded if > 10-% of
the base had a quality of < Q20 after removing the adaptor sequences. On-the-basis-ofthis—

S WH ained-elean-data—Sequences were assembled according to the protocol described
by Hahn et al. (Hahn et al., 2013) using the MIRA sequence assembler software with the
ﬁeference genome . trifida (accession number: KF242476.1)|. The services of library
construction, sequencing, and assembly were provided by Macrogen

(http://www.macrogencn.com/sy,Shenzhen, China).

The ten chloroplast genome sequences were initially annotated using the online CpGAVAS
(Liu et al., 2012) software with default setting, and then manually corrected using Genious
11.0.5. The circular chloroplast genome maps were constructed using the OrganellarGenome
DRAW tool (Lohse et al., 2007). We also downloaded Ipomoea batatas chloroplast genome
sequences from GenBank (GenBank accession number: NC026703) in order to compare and

analyze the divergence between sweet potato and its wild relatives in chloroplast genome.
Repeat structure analysis

Microsatellites (mono-, di-, tri-, tetra-, penta-, and hexa-nucleotide repeats) were detected
using the MISA-web (a web server for microsatellite prediction) (Beier et al., 2017) with
default settings. REPuter (Kurtz et al., 2001) was used to visualize forward, palindrome,
reverse, and complimentary sequences, with a minimum repeat size of 30 bp and a sequence

identity > 90 %.
Divergence Hotspot Identification

In order to ebservestudy the differences among these genomes, the 11 [pomoea chloroplast

genome sequences were aligned using MAFFT v7.307 (Katoh & Toh, 2010) including whole
chloroplast genomes, and then sliding window analysis was conducted. The step size was set

with to 200 bp, with a 600 bp as a window (Fu et al., 2017).
Phylogenetic Analysis

WVe downloaded 33 chloroplast genomes from GenBank almost cover all of the species in

Comentado [A14]: The authors mention sweet potato

accession NC026703 in the abstract but then use an Ipomoea
trifida accession for genome assembly. Why did they not use
the I. batatas genome as reference? Also, the authors must be
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study, is likely not I. trifida.
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GTRGAMMA model on CPIRES Science Gateway (Miller et al., 2010)

(https://www.phylo.org/).‘ Comentado [A16]: Unclear. Did the authors decide not to

include non-coding regions in their study? If so, why? Please
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Genome sequencing and assembly

At least 21 Gb raw data from each species were generated by Illumina sequencing technology
then through filtering, we obtained 12.58 Gb-17.77Gb clean data. With the /. trifida
(accession number: KF242476.1) genome as a reference, we removed the nuclear genome
components from each species. Finally, there were 0.59 Gb -1.28 Gb base-left and we
assembled the chloroplast genomes of ten known Ipomoea species with these data. The
coverage of chloroplast genome in each species comes from 3664 (in 1. splendor-sylvae) to
7941 (in I cordatotriloba) (Table S1). All ten newly sequenced chloroplast genomes were
submitted to GenBank (accession numbers: MH173252-MH173254; MH173257-
MH173263) (Table 1).

Genome features

Genome size and GC content

The plastomes of species in series Batatas were highly conserved in terms of genomic
structure and size. Nucleotide sequence sizes of the newly sequenced ten Ipomoea chloroplast
genomes ranged from 161,225 bp (l. tabascana; Table2, Fig. 1, Supplementary Figures)
t0161,721 bp (l. splendor-sylvae). The structure of the chloroplast genomes in these Ipomoea
relatives displayed the typical circular quadripartite structure, consisted-consisting of a pair of
IR regions (30,798-30,910 bp) separated by an LSC region (87,575-88,004 bp), and an SSC
region (12,018-12,051 bp). When comparing the proportions of three parts (LSC, SSC, IRs),

Me found that cultivar I. batatas had a relatively high proportion of LSC and SSC. |On the Comentado [A17]: Is this difference statistically

contrary, IRs in I. batatas occupied a comparatively small part. The average GC content is significant?

approximately 40.5 % in the IR region, 36.1 % in the LSC, 32.2 % in the SSC regions, and
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37.5 % in the entire sequence of all plastomes (Table2).

Genes

The chloroplast genomes of ten wild species included 87 protein-coding genes, 8 duplicated
rRNASs (rrn23, rrnl6, rrn5, and rrn4.5), and 37 tRNAs. Based on their predicted functions,
these genes can be divided into four categories, (1) genes related to photosynthesis; (2) genes
related to self-replication; (3) genes related to the biosynthesis of cytochrom, protein, etc., and
(4) functionally unknown ycf genes (Table S2). These 87 protein-coding genes are composed
of 73 single-copy genes located in LSC/SSC regions and 7 two-copy genes in IRs. In the
chloroplast genomes analyzed, there are 16 genes harboring introns. In these genes, 14 genes

have only one intron; ycf3 and clpP have two introns each (Table S3).
Codon usage

Chloroplast genomes of the ten Ipomoea species we studied contain totally 23,766-23,804
codons, possessing similar codon usage distribution, and AUU (lle) was the most abundant
codon in all samples (Table S4). The relative synonymous codon usage of the third position

showed that the average frequency of GC codons was three times greater than AT.
Boundary between LSC/SSC and IRs

The junctions of LSC/IRa, SSC/IRa, and LSC/IRb are located in the IGS region between
rpl23 and trnl; ndhH and ndhF; and trnl and trnH, respectively and the location of SSC/IRb
junction within the coding region of ndhA gene which made a pseudegenespseudogene of
ndhA gene sizing 454 bp (Fig. 2). The distance from ndhH to IRA/SSC boundary and the
length of ndhA gene located in the IRB in the eleven species is the same, whereas, the gaps of
boundaries of LSC/IRA, IRB/LSC with the nearby gene were less than 25 bp. \

Repetitive Sequences Analysis

Repeat motifs are thought to have a significant impact on genome phylogeny and
rearrangement (Yue et al., 2008). REPuter identified a total of 89 pairs of repeats (30 bp or
longer) in ken newly sequenced Ipomoea species chloroplast genome#, including 41-46
palindromic repeats and 43-48 forward repeats (Table S5). The lengths of these repeats
ranged from 41 to 193 bp, and copy lengths of 40-59 bp are most common while those with >

140 bp were least abundant (Fig. 3A). However, when compared to |. batatas, the chloroplast

Comentado [A18]: Is this relevant, for example for
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genomes of these ten Ipomoea species chloroplast genomes contain less 60-79 bp repeats
(Fig. 3A). Except for six repeats of the accD gene located in the LSC region of I. splendor-
sylvae, all other repeats could be found in the IR regions, mostly distributed in the ycfl gene
region and the intergenic regions between trnN-GUU and ycfl or trnl-CAU and ycf2. (Table
S5).

Simple sequence repeats (SSRs) are tandemly repeated nucleotides in DNA sequences. We
found that ten Ipomoea chloroplast genome contained 47-54 SSRs that were apparently more
than those identified in the I. batatas chloroplast genome (Fig. 3B). These ten wild relatives
shared 28 SSRs, however, there were only 16 common SSRs between them and sweet potato.
Among these SSRs, the majority consisted of mono-nucleotide repeats that contribute to

65 %-78 % of the SSRs in the newly sequenced Ipomoea chloroplast genomes, and the
percentage even increased up to 92 % in the I. batatas chloroplast genome (Table S6). Most
mono-nucleotide repeat sequences comprised A/T repeats. This is consistent with the
previous findings suggest that chloroplast SSRs generally comprise short polyA or polyT
repeats and rarely contain tandem G or C repeats (Kuang et al., 2011). Interestingly, almost
no di- and tri-nucleotide repeat sequences exist across the compared Ipomoea chloroplast
genomes. SSRs are different from the repetitive sequences identified by REPuter; they are

almost all located in LSC regions (Table S6).
Divergence hotspot regions

The percentage of identical sites among these eleven species is 97.9 % showed highly
consistent sequences. Sliding window analysis showed the mean value of the variation is
0.554 % and five relatively high variability regions with the variation rate > 2.5 % were
detected, including rpl32-trnL, ndhH-ndhF, trnH-psbA, trnC-petN, and ndhA intron (Fig. 5).
One is located on the IRa/SSC boundary (ndhH-ndhF), two of them are in the SSC region
(rpl32-trnL, ndhA intron) and the remaining two are in the LSC region (trnH-psbA, trnC-
petN). They are all from non-coding regions and these could be useful DNA markers for

population genetic studies and species identification.
Phylogenetic Analysis

Using maximum likelihood (ML) analyses, we generated the topology that included the ten

Ipomoea chloroplast genomes and 33 published Convolvulaceae chloroplast genomes, 29 of
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which were of Ipomoea (Eserman et al., 2014; Yan et al., 2015). Cuscuta exaltata was
included in the analysis as the outgroup taxa to perform these phylogenetic analyses. To
conduct the ML analysis, 65 one-to-one protein-coding genes were extracted and aligned
from among all the 43 chloroplast genomes. After elimination of poorly aligned positions and
divergent regions of alignment, a super-alignment (62,522 bp long) was constructed and used
for ML analysis (Figure 5). These 42 ingroups were divided into seven small groups,
including Batatas, Murucoides, Pes-caprae, Quamoclit, Cairica, Obscura, and Pes-
tigridis(Eserman et al., 2014). Our ten Ipomoea chloroplast genomes all clustered with I.

batatas belonging to Batatas (Fig. 5).
Discussion
Variations among the eleven Ipomoea species

In the present study, ten chloroplast genomes of Ipomoea species were assembled. They
displayes the typical quadripartite structure and the length of the chloroplast genome
sequence in the ten wild species and |. batatas ranged from 161,225 to 161721 bp. The border
regions of SC/IR was thought to be the main reason for the divergences in chloroplast genome
size (Ravi et al., 2008). In wild species and I. batatas, the LSC/IRa/SSC/IRb boundary genes
are highly conserved with slight structural variations and there is no significant
extension/contraction of IRs between sweet potato and its wild relatives. The Ipomoea
chloroplast genomes contained 132 genes. According to the statistic got by Gitzendanner et
al. (Gitzendanner et al., 2018) some genes are often lost in plants including accD, infA, petG,
petL, psal, psaJd, psh, rpl32, rpl36, ycfl, and ycf2. All of these genes were presented in our
chloroplast genomes except infA, which has been lost from all the eleven analyzed chloroplast
genomes. InfA gene codes for translation initiation factor, almost lost in all rosid species and

it also the most mobile chloroplast gene known in plants (Millen et al., 2001).

Larger and more complex repeat sequences may play an important role in the rearrangement
of chloroplast genomes and sequence divergence (Timme et al., 2007; Weng et al., 2014). We,
therefore, investigated and compared the numbers and distributions of dispersed, palindromic,
and SSRs across the ten Ipomoea species and I. batatas. We found that dispersed and
palindromic repeats in different species were usually located in the same ycf7 and ycf2 genes,
or between trnN-GUU/ ycfI genes and trnl-CAU/ycf2 genes. However, the SSRs were

distributed more widely throughout these chloroplast genomes and usually located between or
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poses extraordinary challenges in phylogenetic analysis
because of their parasitic behavior. Is this the best choice as

outgroup?

Comentado [A21]: Why did the authors not use the non-
coding regions, despite explaining previously that those

regions could be useful for phylogenetic analysis?




254
255
256
257
258
259

260
261
262
263
264
265
266
267
268

269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

within various trn, atp, clp, and rpo genes. Most of the SSRs were located in non-coding
regions, however, for these lied in the genes which have no introns, they were located in the

coding regions (e.x. rpoC2, rpoB, atpB, ycfl, ycf2, and ndhF). Because of their high

polymorphism in the chloroplast genome, SSRs are possibly important molecular markers in
the analysis of plant population genetics, evolutionary, and ecological studies (Xue et al.,

2012).

In addition, nucleotide substitution (SNVs, indels, and proportions of variability) may play a

critical role in the plant evolutionary processes. Our results demonstrate that nucleotide

substitution rates in these chloroplast genomes are very low, suggesting that nucleotide
substitution does not dominate the evolution of chloroplast genomes of the Batatas groupl. We
found }that IR regions were more conserved than the SC regions and that the variation was
principally observed in the intergenic regions. Consistent with other angiosperms, the IR
region of these species is more conserved than the LSC and SSC regions(Liu et al., 2017),
possibly because of copy correction between IR sequences by gene conversion(Khakhlova &

Bock, 2006).
Phylogenetic relationships

Determination of taxonomy and species in Batatas is particularly difficult because individuals
often exhibit intermediate morphologies between descriptions of named species (Mcdonald
JA, 1990; Austin, 1978), and several species may be of hybrid origin (Diaz et al., 1996).
f[’hylogenetic analysis in series Batatas has been performed using DNA markers, such as
RFLP, RAPD, ISSR, chloroplast restriction site variation, gene sequences, and morphological
analyses (Rajapakse et al., 2004; Huang & Sun, 2000; Jarret & Austin, 1994; Jarret & Gawel,
1992). These studies have indicated the phylogenetic relationships between sweet potato and
its wild relatives, however, the support values were lowf. Constructing the phylogenetic tree
from the chloroplast genome sequences has been applied in pomoea (Eserman et al.,
2014;(Mufioz-Rodriguez et al., 2018). Our tree presented different positions of some species
in contrast with Mun™ o0z-Rodri’guez et al. The newly sequenced /. trifida (P1460377) and I
trifida (P1 618966) are the closest sister species to /. batatas and 1. tabascana, whereas
another /. trifida (REM 753) was clustered with 1. triloba. This is different from Mun™ oz-
Rodri'guez et al. whose studies showed that I. trifida was only close to I. batatas. In the study
conducted by Eserman et al., (2014) showed that /. trifida (REM 753) was close to 1.

Comentado [A22]: SSRs have been used for population
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cordatotriloba, but their study didn’t include 1. triloba. I. cordatotriloba was also located in
two different positions on the phylogenetic tree[. The different positions of /. trifida and I.
cordatotriloba can be explanied by their non-monphyletic origins I(Eserman et al., 2014; Mun~
0z-Rodri’guez et al., 2018). Besides, . ramosissima was clustered with 1. cynanchifolia in our
study, however, it was grouped with I. splendor-sylvae by Mun™ oz-Rodr1’guez et al. at a
relative basal position. The difference may be due to the different accessions we used just as

the I. trifida (REM 753) showed very different positions from the other I. trifida accessions.

These phylogenetic relationships derived in the current study support that /. #rifida and 1.
tabascana are the two sister species closest to /. batatas in the Batatas group (Rajapakse et
al., 2004; Huang & Sun, 2000; Jarret & Austin, 1994). RFLP (Jarret & Gawel, 1992) and
RAPD analyses (Jarret & Austin, 1994) indicate that I. tabascana is more similar to 1. batatas
than I trifida. Conversely, a more recent study, based on analysis of a nuclear gene (/-
amylase) supported that I. trifida as the species most closely to I. batatas based on exon
analysis, whereas the intron analysis indicated that /. fabascana is more closely related to 1.
batatas (Rajapakse et al., 2004). Ipomoea tabascana was clustered with I. batatas in our
study which indicated that . fabascana is closer to I. batatas than 1. trifida and this result is

consistent with Mun™ oz-Rodri"guez et al., (2018).
Conclusions

In this study, we sequenced and assembled ten chloroplast genomes from wild relatives of /.
batatas with high coverage. Based on whole -chloroplast genome sequencing, phylogenetic
analysis of the series Batatas were conducted. Our results showed the chloroplast genome of
L batatas and its wild relatives is highly consistent in sequence and structure and we also
identified five valuable genetic markers for investigating the population genetics and

biogeography of closely related Ipomoea species.
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Figure legends

Fig.1. Chloroplast genome map of Ipomoea tabascana. The inside genes of the outer circle
are transcribed counterclockwise while the genes outside are transcribed clockwise. LSC:

large single copy; SSC: short single copy; IR: inverted repeats.

Fig.2. Comparison of the boundary between LSC/SSC and IR regions among the eleven

Ipomoea chloroplast genomes.

Fig.3. Repeated sequences in eleven [pomoea chloroplast genomes. A. Number of the five

repeat types; B. Number of different SSR types.

Fig.4. Percentages of variable sites in homologous regions among the eleven [pomoea

chloroplast genomes.

Fig. 5. Phylogenetic tree reconstruction of ten new sequenced cp genomes and 33 previous

sequenced chloroplast genomes based on 65 protein sequences.



