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Gliomas are a very diverse group of brain tumors that are most commonly primary tumor

and difficult to cure in central nervous system. It’s necessary to distinguish low-grade

tumors from high-grade tumors by understanding the molecular basis of different grades

of glioma, which is an important step in defining new biomarkers and therapeutic

strategies. We have chosen gene expression profile of GSE52009 from GEO database to

detect important differential genes. GSE52009 contains 120 samples, including 60 WHO II

samples and 24 WHO IV samples, were selected in our analysis. We used GEO2R tool to

pick out differently expressed genes (DEGs) between low-grade glioma and high-grade

glioma, and then we used The Database for Annotation, Visualization and Integrated

Discovery (DAVID) to perform gene ontology (GO) analysis and Kyoto Encyclopedia of

Gene and Genome (KEGG) pathway analysis. Furthermore, Cytoscape with Search Tool for

the Retrieval of Interacting Genes (STRING) and Molecular Complex Detection (MCODE)

plug-in were applied to achieve the visualization of protein-protein interaction (PPI). We

selected 15 hub genes with higher degree of connectivity, including TIMP1 and SAA1 and

we used GSE53733 containing 70 glioblastoma samples to conduct Gene Set Enrichment

Analysis on. In conclusion, DEGs and hub genes were demonstrated in our bioinformatics

analysis, that they might be defined as new biomarkers for diagnosis and to guide the

therapeutic strategies of glioblastoma.
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13 Abstract

14

15 Gliomas are a very diverse group of brain tumors that are most commonly primary tumor and 

16 difficult to cure in central nervous system. It’s necessary to distinguish low-grade tumors from 

17 high-grade tumors by understanding the molecular basis of different grades of glioma, which is an 

18 important step in defining new biomarkers and therapeutic strategies. We have chosen gene 

19 expression profile of GSE52009 from GEO database to detect important differential genes. 

20 GSE52009 contains 120 samples, including 60 WHO II samples and 24 WHO IV samples, were 

21 selected in our analysis. We used GEO2R tool to pick out differently expressed genes (DEGs) 

22 between low-grade glioma and high-grade glioma, and then we used The Database for Annotation, 

23 Visualization and Integrated Discovery (DAVID) to perform gene ontology (GO) analysis and 

24 Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis. Furthermore, Cytoscape 

25 with Search Tool for the Retrieval of Interacting Genes (STRING) and Molecular Complex 

26 Detection (MCODE) plug-in were applied to achieve the visualization of protein-protein 

PeerJ reviewing PDF | (2018:10:32184:1:1:NEW 21 Jan 2019)

Manuscript to be reviewed

mailto:chenqx666@whu.edu.cn


27 interaction (PPI). We selected 15 hub genes with higher degree of connectivity, including TIMP1 

28 and SAA1 and we used GSE53733 containing 70 glioblastoma samples to conduct Gene Set 

29 Enrichment Analysis on. In conclusion, DEGs and hub genes were demonstrated in our 

30 bioinformatics analysis, that they might be defined as new biomarkers for diagnosis and to guide 

31 the therapeutic strategies of glioblastoma.

32

33 1. Introduction

34

35 Gliomas are a very diverse group of brain tumors that are most commonly primary tumor and 

36 difficult to cure in central nervous system (Louis et al. 2016; Ostrom et al. 2017). They are 

37 classified according to their clinical and histopathological characteristics in four grades, including 

38 Low-grade gliomas - (1) grade I astrocytomas – pilocytic astrocytomas, (2) grade II diffuse 

39 astrocytomas, and (3) grade II oligodendrogliomas; High-grade gliomas - (1) Grade III anaplastic 

40 astrocytomas, (2) Grade III anaplastic oligodendrogliomas and (3) grade IV glioblastomas 

41 multiforme(GBM) (Sriram & Huse 2015). Low grade gliomas(LGG)  (astrocytomas, 

42 oligodendrogliomas and oligoastrocytomas) are considered relatively benign, well-differentiated 

43 tumors and have 5-year survival rates of 59.9% (Elizabeth & Peter 2010). And GBM is the most 

44 common primary malignant brain tumor in adults(Ramos et al. 2018). Despite the multiple 

45 therapeutic strategies, including surgery, radiation, and chemotherapy, the average survival time 

46 of GBM patients is less than 15 months (Liu et al. 2016). Additionally, approximately 70% of 

47 LGG patients develop to GBM within 5–10 years as ending (Furnari et al. 2007). With the 

48 development of molecular pathology in gliomas, several biomarkers routinely applied to evaluate 

49 gliomas include MGMT promoter methylation, EGFR alterations, IDH1 or IDH2 mutations, and 

50 1p19q co-deletion and many of these markers have become standard of care for molecular testing 

51 and prerequisites for clinical trial enrollment(Rodriguez et al. 2016). Therefore, it’s necessary to 

52 differentiate LGG to GBM by understanding the molecular basis of different grades of glioma, 

53 which is an important step in defining new biomarkers and therapeutic strategies.
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54 Gene expression profiling analysis is a useful method with broad clinical application for 

55 identifying tumor-related genes in various types of cancer, from molecular diagnosis to 

56 pathological classification, from therapeutic evaluation to prognosis prediction, and from drug 

57 sensitivity to neoplasm recurrence(De Preter et al. 2010; Freije et al. 2004; Kim et al. 2011; 

58 Kulasingam & Diamandis 2008). In recent years, large scales of gene profiling have been made to 

59 identify the overwhelming number of genes by the use of microarrays in clinical practice, and 

60 complicated and systemic statistical analyses should be made to provide both repeatability and 

61 independent validation (Cheng et al. 2016). 

62 In this analysis, GEO2R online tool was applied to look for the differentially expressed genes 

63 (DEGs) according to GSE52009 from Gene Expression Omnibus (GEO). Followed by, we 

64 produced a heatmap and picked out 15 genes with higher degree of connectivity from the DEGs 

65 selected. Furthermore, we analyzed cellular component (CC), biological process (BP), molecular 

66 function (MF) and KEGG pathways of the DEGs. In addition, the overall survival (OS) analysis 

67 and expression of these hub genes were mad e online. Then, we established PPI network of the 

68 DEGs and managed a GSEA using GBM patient gene profiling data (GSE53733).

69

70 2. Materials and Methods

71

72 2.1. Data of Microarray. Gene expression profile of GSE52009, GSE53733 and GSE4290 were 

73 downloaded from GEO database, which is a public and freely accessible database. Based on 

74 Agilent GPL6480 platform (Agilent-014850 Whole Human Genome Microarray 4x44K G4112F), 

75 GSE52009 dataset included 120 samples, containing 60 WHO II samples and 24 WHO IV 

76 samples. And GSE53733 was based on GPL570 platform ([HG-U133_Plus_2] Affymetrix Human 

77 Genome U133 Plus 2.0 Array), which contained 70 GBM samples. And GSE4290 was based on 

78 GPL570 platform ([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array), which 

79 included 180 samples, containing 76 WHO II samples and 81 WHO IV samples.

80
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81 2.2. Screen Genes of Differential Expression. Differentially expressed genes between low grade 

82 glioma and high-grade glioma was detected by GEO2R, which was an online analysis tool based 

83 on R language (Davis & Meltzer 2007). We set the adjust P value < 0.05 and |logFC| ≥ 2 as the 

84 selection criteria to decrease the false positive rate and false discovery rate. Furthermore, the top 

85 15 genes with higher degree of connectivity were selected as hub genes among the 133 discovered 

86 DEGs which includes 56 down-regulated genes and 77 up-regulated genes. In addition, we used 

87 visual hierarchical cluster analysis to show the two groups by Morpheus online analysis software 

88 (https://software.broadinstitute.org/morpheus/) and volcano plot of two groups by ImageGP 

89 (http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html) after the relative raw data 

90 of TXT files were downloaded.

91

92 2.3. Gene Ontology and KEGG Pathway Analysis of DEGs. With functions including molecular 

93 function, biological pathways, and cellular component, gene ontology (GO) analysis we annotated 

94 genes and gene products (2006). KEGG. comprises a set of genome and enzymatic approaches 

95 and abiological chemical energy online database (Kanehisa & Goto 2000). It is a resource for 

96 systematic analysis of gene function and related high-level genome functional information. 

97 DAVID (https://david.ncifcrf.gov/) can provide systematic and comprehensive biological function 

98 annotation information for high-throughput gene expression (Dennis et al. 2003). Therefore, we 

99 applied GO and KEGG pathway analyses to the DEGs by using DAVID online tools at functional 

100 level. We considered P < 0.05 had significant differences. In addition, we used visual analysis to 

101 show GO Enrichment plot of two groups by ImageGP 

102 (http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html) after the relative raw data 

103 of TXT files were downloaded (Geng et al. 2018).

104

105 2.4. PPI network and module analysis. The online tool, Search Tool for the Retrieval of Interacting 

106 Genes (STRING), is designed to demonstrate the interaction between different 

107 proteins(Szklarczyk et al. 2015). STRING in Cytoscape was applied and mapped the DEGs into 
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108 STRING to detect the possible relationship among the selected DEGs. We set the confidence score 

109 ≥ 0.4, maximum number of interactors = 0 as the selection criteria. In addition, the Molecular 

110 Complex Detection (MCODE) was used to screen modules of PPI network in Cytoscape with 

111 degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and max. depth = 100. DAVID was used to 

112 perform the signal pathway analysis of genes in the module. 15 hub genes were also mapped into 

113 STRING with confidence score ≥ 0.4, maximum number of interactors ≤ 5. The potential 

114 information was explored through GO and KEGG pathway analysis.

115

116 2.5. Comparing the expression level of the hub genes. The GlioVis (http://gliovis.bioinfo.cnio.es/) 

117 is a user-friendly web application for data visualization and analysis to explore brain tumors 

118 expression datasets, which was used to analyze the gene expression data of brain tumors and 

119 normal samples based on the TCGA datasets. (Bowman et al. 2017). The customizable functions 

120 are provided such as analyzing the differences of expression levels between glioblastoma and low-

121 grade glioma, so the expression of these genes was demonstrated. And the relationship could be 

122 visualized through the boxplot. All values are presented as the mean±SD. All statistical analyses 

123 were performed by SPSS 19.0 software. A difference of P < 0.05 was considered statistically 

124 significant.

125

126 2.6. Gene expression profile and gene set enrichment analysis. The expression profiles of 

127 GSE53733 was downloaded from the Gene Expression Omnibus (GEO). And we used gene set 

128 enrichment analysis (GSEA) (http://www.broadinstitute.org/gsea) to detect the potential genes 

129 influenced by SAA1 and TIMP1 through the Java programming. According to their hub genes 

130 expression level (top 50%: high vs bottom 50%: low), we divided the patients into two groups and 

131 GSEA was conducted to analyze the effects of selected genes expression level on different 

132 biological process. And we set P value of <0.05 and false discovery rates of <0.25 as selection 

133 criteria to confirm significant gene sets.

134
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135 2.7. Human tissue samples. LGG and GBM tissues were collected from the Department of 

136 Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China. And the clinical glioma 

137 specimens were examined and diagnosed by pathologists at Renmin Hospital of Wuhan 

138 University. This study was approved by the Institutional Ethics Committee of the Faculty of 

139 Medicine at Renmin Hospital of Wuhan University (approval number: 2012LKSZ (010) H). 

140 Informed consent was obtained from all patients whose tissues were used. 

141

142 2.8. RNA extraction and quantitative real-time PCR. Total RNA from cancer tissues was 

143 prepared using Trizol reagent (Invitrogen, USA), and cDNA was synthesized using a Pri

144 meScript RT Reagent Kit with gDNA Eraser (RR047A, Takara, Japan). Quantitative real-

145 time PCR (qPCR) for SAA1 and TIMP1 mRNA levels were performed using SYBR Pre

146 mix Ex Taq II (RR820A, Takara) according to the manufacturer's instructions and perfor

147 med in Bio-Rad CFX Manager 2.1 real-time PCR Systems (Bio-Rad, USA). GAPDH was 

148 used as internal controls. The data were analyzed by the relative Ct method and expresse

149 d as a fold change compared with the control. The primer sequences included the follow

150 ing: GAPDH 5’-GGAGCGAGATCCCTCCAAAAT-3’(Forward), 5’-GGCTGTTGTCATACT

151 TCTCATGG-3’(Reverse); SAA1 5’-CCTGGGCTGCAGAAGTGATCAGCGA-3’(Forward),5’

152 -AGTCCTCCGCACCATGGCCAAAGAA-3’(Reverse); TIMP1 5’-CTTCTGCAATTCCGAC

153 CTCGT-3’(Forward),5’-ACGCTGGTATAAGGTGGTCTG-3’(Reverse).

154

155 3. Results

156

157 3.1. Identification of DEGs and hub genes. 60 WHO II samples and 24 WHO IV samples from 

158 GSE52009 were selected in this study. DEGs were detected by applying the GEO2R online 

159 analysis tool, setting adjust P value < 0.05 and |logFC| ≥ 2 as selection criteria. 133 differential 

160 expressed genes, containing 77 up-regulated genes and 56 down-regulated genes, were detected 

161 after the analysis of GSE52009. In addition, we selected 15 hub genes with higher degree of 
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162 connectivity (Table 1). The results were validated with a DEG expression heatmap and volcano 

163 plot of the all downregulated genes and upregulated genes (Figure 1).

164

165 3.2. GO function and KEGG pathway enrichment analysis. To explore more particular knowledge 

166 of the selected DEGs, we used DAVID to gain the results of GO function and KEGG pathway 

167 enrichment analysis. All DEGs were imported to DAVID software and GO analysis results 

168 demonstrated that up-regulated and down-regulated DEGs were particularly enriched in the 

169 following biological processes (BP): cell migration, locomotion and leukocyte migration, cell 

170 motility for up-regulated DEGs, and for downregulated DEGs nervous system development, brain 

171 development and regulation of cell projection organization (Table 2, Figure2a, Figure2b). The 

172 upregulated DEGs were enriched in phospholipase A2 inhibitor activity, growth factor binding, 

173 extracellular matrix structural construction, receptor binding, and the down-regulated DEGs were 

174 enriched in calcium ion binding, structural construction of myelin sheath, and protein complex 

175 binding for molecular function (MF) (Table 2, Figure2). Moreover, GO cell component (CC) 

176 analysis showed that the up-regulated DEGs were enriched in the proteinaceous extracellular 

177 matrix, extracellular matrix and cytoplasmic membrane-bounded vesicle lumen, and down-

178 regulated DEGs enriched in neuron part, myelin sheath, and internode region of axon (Table 2, 

179 Figure2a, Figure2b).       

180 Interestingly, the most significantly enriched of KEGG pathway only showed in up-regulated 

181 pathway, including adhesion, ECM-receptor interaction, amoebiasis and PI3K-Akt signaling 

182 pathway (Table3, Figure2c).

183

184 3.3. Hub Genes and Module Screening from PPI Network. PPI network of the top 15 hub genes 

185 with higher degree of connectivity was made based on the information in the STRING protein 

186 query from public databases (Figure 3A). The top module was selected by using MCODE plug-in 

187 in the PPI network. (Figure 3B).

188
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189 3.4. The Kaplan-Meier Plotter of hub genes. The website, http:// gepia.cancer-pku.cn/, freely 

190 provides the prognostic data of the hub genes. It was found that expression of VEGFA (HR 4.2, 

191 p<0.001) was associated with worse overall survival (OS) for glioblastoma patients, as well as 

192 NDC80 (HR 5.8, p<0.001), CENPA (HR 5.3, p<0.001), CENPF (HR 3.9, p<0.001), NCAPG (HR 

193 5.6, p<0.001), ASPM (HR 5, p<0.001), ITGA2 (HR 3, p<0.001), TIMP1 (HR 7, p<0.001)and 

194 SAA1 (HR 4.8, p<0.001). (Figure4). 

195

196 3.5. Expression Level and relationship with molecular pathologic diagnosis of Hub genes. We 

197 used data from GlioVis to detect the hub gene expression level between GBM and LGG including 

198 astrocytoma, oligodendroglioma and oligoastrocytoma, the expression level of SAA1 and TIMP1 

199 significantly increased in GBM (Figure 5A, 5C). And the expression level of SAA1 have no 

200 significant difference in three kinds LGG (Figure 5B). However, the expression level of TIMP1 is 

201 significantly higher in astrocytoma than oligodendroglioma and oligoastrocytoma (Figure 5D). We 

202 further verified our finding in GSE4290 dataset and got consistent result (FigureS1). Then we 

203 detected the sample collected in our hospital and found both SAA1 and TIMP1 are significantly 

204 increased in GBMs compared with LGG (FigureS2, TableS1). We also detect the relationship 

205 between expression level and molecular pathologic diagnosis of hub genes. We found both SAA1 

206 and TIMP1 increase in both IDH mutant IDH wild type. The same results were found in MGMT 

207 promoter and non-deletion of chromosome 1p.19q. Because of the limited samples in the datasets, 

208 we didn’t the result of co-deletion of chromosome 1p.19q. (Figure 5E,5F) What’s more, we also 

209 found that both SAA1 and TIMP1 played important roles in MES-like in the IDH wild type. 

210 (Figure 5G,5H)

211

212 3.6. Gene expression profile and gene set enrichment analysis. We managed a GSEA by using 

213 GBM patient gene profiling data (GSE53733), and showed in figure 5, gene set differences in 

214 SAA1 in low versus high glioma patients indicated that SAA1 regulates biology process mainly 

215 associated with inflammatory response processes (P<0.001 FDR=0.012) and cytokine mediated 
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216 signaling pathway (P<0.001 FDR=0.012) (Figure5I, 5J). We considered that SAA1 may 

217 negatively regulate inflammatory response and might promote the survival of cancer cells. 

218 Seemingly we concluded that TIMP1 might negatively regulates adaptive immune response based 

219 on somatic recombination of immune receptors built from leucine-rich (P<0.001 FDR=0.021) and 

220 response to interferon (P<0.001 FDR=0.027) may promote the survival of cancer cells. (Figure5K, 

221 5L)

222

223 4. Discussion

224

225 In this study, we identified 15 DEGs between GBM and LGG and used a series of 

226 bioinformatics analyses to screen the key genes and pathways associated with glioma. GSE52009 

227 dataset contains 60 WHO II samples and 24 WHO IV samples. In order to improve the statistical 

228 power of DEGs, we defined that the absolute value of the logarithm (base 2) fold change (logFC) 

229 greater than 2 and 133 DEGs were obtained. Bioinformatics analysis on DEGs, including GO 

230 enrichment, KEGG pathway, PPI network, and survival analysis, expression level, gene set 

231 enrichment analysis, found GBM related genes and pathways that play important roles in glioma 

232 development.

233 The GO analysis showed that the up-regulated DEGs were mainly associated with cell 

234 migration, extracellular matrix structural construction, cell motility and down-regulated DEGs 

235 were involved central nervous system development, calcium ion binding and internode region of 

236 axon. Additionally, the KEGG pathways of up-regulated DEGs regulate focal adhesion, ECM-

237 receptor interaction, PI3K-Akt signaling pathway. Among these DEGs, we selected 15 hub genes 

238 with higher degree of connectivity. In addition, we found several hub genes with worse overall 

239 survival (OS) and higher expression level in glioma patients, including VEGFA, NDC80, TIMP1, 

240 SAA1, CENPA, CENPF and NCAPG and we firstly found relationship of SAA1, TIMP1 and 

241 molecular pathology in GBM. We could hypothesize that these genes might contribute to the 

242 malignance of glioma and SAA1 and TIMP-1 may be biomarkers in GBM.

PeerJ reviewing PDF | (2018:10:32184:1:1:NEW 21 Jan 2019)

Manuscript to be reviewed



243 GBMs are highly vascularized cancers with high levels of VEGF and VEGF-A seems to be 

244 the most critical one, mainly operating in the activation of quiescent endothelial cells and 

245 promoting cell migration and proliferation (Plate & Dumont 2012). NDC80 is a mitotic regulator 

246 and a major element of outer kinetochore which has been reported to drive functions in assembly 

247 checkpoint and chromosome segregation of mitosis regulation. NDC80 was mainly enriched in 

248 proliferation and procession of cancer in previous studies(Suzuki et al. 2015). Addition, a recently 

249 study demonstrated that the expression of NDC80 in HEB was significantly lower than in GBM 

250 cell lines and had a negative correlation with the prognosis of patients (Zhong et al. 2018). 

251 Interleukin (IL)-8 is a chemokine which was upregulated by NF-κB in GBMs and promotes a more 

252 aggressive phenotype mostly through the enhancement of angiogenesis and cell migration. And 

253 more and more evidence demonstrated that the IL-8 molecular pathways will allow the generation 

254 of both novel therapeutic approaches and diagnostic tools(Kosmopoulos et al. 2017). Non-SMC 

255 condensin I complex subunit G (NCAPG)8 is a novel mitotic gene for cell proliferation and 

256 migration, which has been less well studied in cancers, and a recently study demonstrated that 

257 NCAPG over expressed in GBMs and promote cell proliferation(Liang et al. 2016).

258 Serum amyloid A1 (SAA1) which was secreted by liver is an acute-phase high density lipo-

259 protein in immune response. Injury, inflammation, and brain trauma can elevate the plasma levels 

260 of SAA1 (Lu et al. 2014; Villapol et al. 2015). What’s more, it has long been suspected that SAA1 

261 might be a prognostic marker and predictor of cancer risk. Elevated levels of SAA1 in the serum 

262 of cancer patients directly correlate with poor prognosis and tumor aggressiveness in various types 

263 of cancer, including lung cancer(Cho et al. 2010), cell renal carcinoma(Kosari et al. 2005), 

264 melanomas(Findeisen et al. 2009) and so on. Normal brain does not express SAA1(Liang et al. 

265 1997), though an in vitro study demonstrated that microglia and astrocytes are responsive to SAA 

266 (Yu et al. 2014). Recently, it has been reported that SAA1 the expression levels in GBM patients 

267 are upregulated on both mRNA and protein in human GBMs, and SAA1 involves in angiogenesis 

268 via HIF-1α and tumor associated macrophages. And serum levels of SAA1 were associated with 

269 the grades of gliomas but did not affect the clinical outcomes of patients with GBM(Knebel et al. 

PeerJ reviewing PDF | (2018:10:32184:1:1:NEW 21 Jan 2019)

Manuscript to be reviewed



270 2017). Consistently, SAA1 has been reported as a molecular/metabolic signature that can help 

271 identify patients are at high risk of malignant GBM and promotes glioma cells migration and 

272 invasion through integrin aVb3(Lin et al. 2018). What’s more, although it’s unknown why SAA1 

273 upregulated in GBM and other malignant cancers, it has been speculated that SAA proteins play a 

274 primary role in the regulation of immunity and invasion processes (Moshkovskii 2012), which is 

275 consistent with the result of our study. Thus, we hypothesis SAA1 could be a biomarker of GBM 

276 and predict the prognosis of GBM patients. And the mechanism of SAA1 regulate in GBM need 

277 further research.

278 The tissue inhibitors of metalloproteinases (TIMPs, including TIMP-1, TIMP-2, TIMP-3, 

279 TIMP-4) are well known play critical roles in both metastasis and invasion through extracellular 

280 matrix remodeling which are controlled by the activity of matrix metalloproteinases (MMPs) 

281 (Jackson et al. 2017; Ries 2014). Among the four well-known TIMPs characterized so far, most 

282 focus has been on TIMP-1 defined as a naturally occurring inhibitor of most MMPs, a family of 

283 zinc dependent endopeptidases essential for degrading components of the ECM(Aaberg-Jessen et 

284 al. 2009). In addition, TIMP1 shows protease-independent function including anti-apoptotic, 

285 antiangiogenic, and differentiation activities in cells (Bridoux et al. 2013; Mandel et al. 2017). 

286 Over the past year, more and more studies focus on the influence of TIMP1 in cancers. Serum or 

287 urine levels of TIMP1 are also considered as a diagnostic predictor in pancreatic ductal carcinomas 

288 containing extensive desmoplasia(Jenkinson et al. 2015; Roy et al. 2014). Increased levels of 

289 cytosolic TIMP1 in pretreatment tumor tissue is associated with a significantly shorter overall 

290 survival in patients with breast cancer receiving standard adjuvant chemotherapy(Dechaphunkul 

291 et al. 2012). And it has been reported that low expression of TIMP-1 in glioblastoma patient 

292 predicts longer survival. The shorter survival of glioblastoma patients with a high tumor TIMP-1 

293 level may be explained by the antiapoptotic effect of TIMP-1 preventing apoptosis induced by 

294 radiation and chemotherapy(Aaberg-Jessen et al. 2009). More recently, Aaberg-Jessen C et al 

295 demonstrated that Co-expression of TIMP-1 and CD63 might have effects in glioblastoma 

296 stemness and may predict the poor prognosis of patients through influencing tumor aggressiveness 
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297 and resistance of therapy(Aaberg-Jessen et al. 2018). We consider TIMP-1 can be identified as a 

298 future biomarker for prognosis or monitoring patients’ treatment response. However, all these 

299 studies didn’t demonstrate the specific mechanism, which is the direction for further researches.

300 Additionally, large-scale efforts aimed at characterizing the genomic alterations in human 

301 glioblastoma, however, these efforts helped to clarify the role of genomic alterations in the 

302 pathogenesis of glioblastoma but were not designed to address intratumor heterogeneity. Recently, 

303 Ralph B. et al. described the Ivy Glioblastoma Atlas in which we have assigned key genomic 

304 alterations and gene expression profiles to the tumor’s anatomic features(Puchalski et al. 2018). 

305 The anatomic feature included the leading edge (LE), infiltrating tumor (IT), cellular tumor (CT). 

306 And we found the expression levels of SAA1 and TIPM-1 were higher in IT and CT than LE from 

307 the atlas. However, the specific mechanisms of these differences aren’t clear now, we need to do 

308 further research in the future. 

309

310 5. Conclusion

311

312 We presumed these key genes identified by a series of bioinformatics analyses on DEGs 

313 between glioblastoma samples and low-grade glioma samples, probably related to the development 

314 of glioma. These hub genes could also affect the survival time of glioma patients. These identified 

315 genes and pathways provide a more detailed molecular mechanism for underlying glioma initiation 

316 and development. According to the study, SAA1 and TIMP1 can be considered as biomarkers or 

317 therapeutic targets or monitoring patients’ treatment response for glioblastoma. However, further 

318 molecular and biological experiments are required to confirm the functions of the key genes in 

319 glioblastoma.

320
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Figure 1

Differentially expressed gene expression heat map and volcano plot of glioma.

(A) Differentially expressed gene expression heat map of glioma (all upregulated and downregulated

genes). (B) Differentially expressed genes were selected by volcano plot filtering (fold change ≥ 1 and p

value ≤ 0.05). The blue point in the plot represents the differentially expressed genes with statistical

significance.
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Figure 2(on next page)

GOanalysis results showed that upregulated DEGs

(A) and downregulated DEGs (B) were particularly enriched in BP, MF, and CC. (C) The most

significantly enriched KEGG pathway of the upregulated DEGs. GO: gene ontology; BP:

biological process; MF: molecular function; CC: cell component; KEGG: Kyoto Encyclopedia of

Genes and Genomes.
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Table 1(on next page)

Gene ontology analysis ofdifferentially expressed genes associated with LGG

and HGG
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1 Table 2: Gene ontology analysis of differentially expressed genes associated with LGG and HGG

Expression Category Term Count % PValue FDR

GOTERM_BP_FAT GO:0016477~cell migration 13 22.80702 3.95E-05 0.067618

GOTERM_BP_FAT GO:0050900~leukocyte migration 8 14.03509 5.28E-05 0.090452

GOTERM_BP_FAT GO:0040011~locomotion 14 24.5614 1.09E-04 0.185762

GOTERM_BP_FAT GO:0051674~localization of cell 13 22.80702 1.22E-04 0.208673

GOTERM_BP_FAT GO:0048870~cell motility 13 22.80702 1.22E-04 0.208673

GOTERM_MF_FA

T
GO:0019838~growth factor binding 4 7.017544 0.004366 5.428929

GOTERM_MF_FA

T
GO:0019834~phospholipase A2 inhibitor activity 2 3.508772 0.010298 12.37092

GOTERM_MF_FA

T
GO:0005102~receptor binding 10 17.54386 0.010815 12.95228

GOTERM_MF_FA

T
GO:0005201~extracellular matrix structural constituent 3 5.263158 0.018986 21.69308

GOTERM_MF_FA

T
GO:0005125~cytokine activity 4 7.017544 0.019477 22.19193

Up-regulated

GOTERM_CC_FA

T
GO:0005615~extracellular space 16 28.07018 3.09E-06 0.003877
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GOTERM_CC_FA

T
GO:0005578~proteinaceous extracellular matrix 7 12.2807 4.24E-04 0.531176

GOTERM_CC_FA

T
GO:0031012~extracellular matrix 8 14.03509 5.41E-04 0.676623

GOTERM_CC_FA

T

GO:0060205~cytoplasmic membrane-bounded vesicle 

lumen
4 7.017544 0.002985 3.680925

GOTERM_CC_FA

T
GO:0031983~vesicle lumen 4 7.017544 0.003066 3.779192

GOTERM_BP_FAT GO:0007399~nervous system development 15 31.91489 3.29E-04 0.533895

GOTERM_BP_FAT GO:0007420~brain development 7 14.89362 0.00548 8.553316

GOTERM_BP_FAT GO:0060322~head development 7 14.89362 0.007003 10.80691

GOTERM_BP_FAT GO:0031344~regulation of cell projection organization 6 12.76596 0.011466 17.11031

GOTERM_BP_FAT GO:0007417~central nervous system development 7 14.89362 0.019918 27.91963

GOTERM_MF_FA

T
GO:0005509~calcium ion binding 6 12.76596 0.021579 24.70502

GOTERM_MF_FA

T
GO:0019911~structural constituent of myelin sheath 2 4.255319 0.02239 25.5132

GOTERM_MF_FA

T
GO:0032403~protein complex binding 5 10.6383 0.092825 71.83703

Down-

regulated

GOTERM_CC_FA GO:0097458~neuron part 15 31.91489 6.61E-06 0.007993
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T

GOTERM_CC_FA

T
GO:0045202~synapse 9 19.14894 8.96E-04 1.078808

GOTERM_CC_FA

T
GO:0043005~neuron projection 9 19.14894 0.00424 5.011629

GOTERM_CC_FA

T
GO:0033269~internode region of axon 2 4.255319 0.01097 12.49482

GOTERM_CC_FA

T
GO:0043209~myelin sheath 4 8.510638 0.01206 13.65505

2
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Figure 3(on next page)

protein-proteininteraction network and top module of hub genes

(A) The protein-protein interaction network of top 15 hub genes. (B) Top module from the protein-protein

interaction network.
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Table 2(on next page)

Top 15 hub genes with higher degree ofconnectivity
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1 Table1. 

2 Top 15 

3 hub 

4 genes 

5 with 

6 higher 

7 degree 

8 of 

9 connecti

10 vity

Gene Degree P-value

VEGFA 13 7.55E-07

NDC80 8 7.16E-09

IL8 8 5.15E-07

CENPA 7 3.31E-09

CENPF 7 6.06E-10

NCAPG 7 9.09E-10

ASPM 7 1.86E-08

RRM2 7 1.13E-09

ITGA2 6 2.45E-09

ANXA1 6 6.32E-08

CDCA2 6 6.42E-09

PLAT 5 2.64E-08

PARPBP 5 6.34E-15

TIMP1 4 2.06E-06

SAA1 4 2.40E-06
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Figure 4(on next page)

Prognosticvalue of hub genes in glioma patients.

Prognostic value of hub genes (VEGFA, NDC80, CENPA, CENPF, NCAPG, ASPM, ITGA2, TIMP1, and SAA1) in

glioma patients. HR: hazard ratio.
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Table 3(on next page)

KEGG pathway analysis ofdifferentially expressed genes associated with HGG
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1 Table 3: KEGG pathway analysis of differentially expressed genes associated with HGG

Expression Category Term Count % P Value Genes FDR

KEGG_PATHWAY
hsa04510: Focal 

adhesion
4 7.017544 0.007454

LAMB1, VEGFA, ITGA2, 

COL1A1,
7.094772

KEGG_PATHWAY
hsa04512:ECM-

receptor interaction
3 5.263158 0.012926 LAMB1, ITGA2, COL1A1 12.01164

KEGG_PATHWAY hsa05146:Amoebiasis 3 5.263158 0.018811 LAMB1, CXCL8, COL1A1 17.03775

KEGG_PATHWAY
hsa04151:PI3K-Akt 

signaling pathway
4 7.017544 0.02979

LAMB1, VEGFA, ITGA2, 

COL1A1
25.72978

Up-

regulated

KEGG_PATHWAY
hsa05200:Pathways in 

cancer
4 7.017544 0.041599

LAMB1, VEGFA, ITGA2, 

CXCL8
34.15806

2

PeerJ reviewing PDF | (2018:10:32184:1:1:NEW 21 Jan 2019)

Manuscript to be reviewed



Figure 5(on next page)

The expression level and potential function of SAA1 and TIMP1

(A) SAA1 significantly increased in glioblastomas; (B) The expression level of SAA1 have no significant

difference in LGG; (C) TIMP1 significantly increased in glioblastomas; (D) TIMP1 is significantly higher in

astrocytoma than oligodendroglioma and oligoastrocytoma; (E, F) SAA1 and TIMP1 increase in both IDH

mutant IDH wild type. The same results were found in MGMT promoter and non-deletion of chromosome

1p.19q; G, H. SAA1 and TIMP1 played important roles in MES-like in the IDH wild type; (I, J) SAA1 regulates

biology process associated with inflammatory response processes and cytokine mediated signaling

pathway; (K, L). TIMP1 negatively regulates adaptive immune response based on somatic recombination of

immune receptors built from leucine-rich and response to interferons.
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