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Interactions between amino acids that are close in the spatial structure, but not

necessarily in the sequence, play important structural and functional roles in proteins.

These non-local interactions ought to be taken into account when modeling collections of

proteins. Yet, the most popular representations of sets of related protein sequences

remain the profile Hidden Markov Models. By modeling independently the distributions of

the conserved columns from an underlying multiple sequence alignment of the proteins,

these models are unable to capture dependencies between the protein residues. Non-local

interactions can be represented by using more expressive grammatical models. However,

learning such grammars is difficult. In this work, we propose to use information on protein

contacts to facilitate the training of probabilistic context-free grammars representing

families of protein sequences. We develop the theory behind the introduction of contact

constraints in maximum-likelihood and contrastive estimation schemes and implement it in

a machine learning framework for protein grammars. The proposed framework is tested on

samples of protein motifs in comparison with learning without contact constraints. The

evaluation shows high fidelity of grammatical descriptors to protein structures and

improved precision in recognizing sequences. Finally, we present an example of using our

method in a practical setting and demonstrate its potential beyond the current state of the

art by creating a grammatical model of a meta-family of protein motifs. We conclude that

the current piece of research is a significant step towards more flexible and accurate

modeling of collections of protein sequences. The software package is made available to

the community.
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1 Introduction29

1.1 Grammatical modeling of proteins30

The essential biopolymers of life, nucleic acids and proteins, share the basic characteristic of the31

languages: an enormous number of sequences can be expressed with a finite number of monomers.32

In the case of proteins, merely 20 amino acid species (letters) build millions of sequences (words33

or sentences) folded in thousands of different spatial structures playing various functions in living34

organisms (semantics). Physically, the protein sequence is a chain of amino acids linked by pep-35

tide bonds. The physicochemical properties of amino acids and their interactions across different36

parts of the sequence define its spatial structure, which in turn determines biological function to37

great extent. Similarly to words in natural languages, protein sequences may be ambiguous (the38

same amino acid sequence folds into different structures depending on the environment), and often39

include non-local dependencies and recursive structures [Searls, 2013].40

Not surprisingly the concept of protein language dates back to at least the 1960s [Pawlak, 1965],41

and since early applied works in the 1980s [Brendel and Busse, 1984, Jimenez-Montano, 1984] for-42

mal grammatical models have gradually gained importance in bioinformatics [Searls, 2002, 2013,43

Coste, 2016]. Most notably, profile Hidden Markov Models (HMM), which are weakly equiva-44

lent to a subclass of probabilistic regular grammars, became the main tool of protein sequence45

analysis. Profile HMMs are commonly used for defining protein families [Sonnhammer et al.,46

1998, Finn et al., 2016] and for searching similar sequences [Eddy, 1998, 2011, Soeding, 2005,47

Remmert et al., 2012]. The architecture of a profile HMM corresponds to the underlying multiple48

sequence alignment (MSA). Thus, the model perfectly suits modeling single-point mutations and49

supports insertions and deletions, but cannot account for interdependence between positions in the50

MSA. Pairwise correlations in a MSA can be statistically modeled by a Potts model (a type of51

Markov Random Field or, more generally, of undirected graphical model). This has been highly52

successful to predict 3D contact between residues of a protein [Hopf et al., 2017], but computing53

the probability of new (unaligned) sequences with such model is untractable [Lathrop, 1994]. An54

alternative to MSA-based modeling, is to use formal grammars. Protomata [Coste and Kerbellec,55

2006, Bretaudeau et al., 2012] are probabilistic regular models that can capture local dependen-56

cies for the characterization of protein families. Yet, as regular models, they are not well suited57

to capture the interactions occurring between amino acids which are distant in sequence but close58

in the spatial structure of the protein. In that case, formal grammars beyond the regular level are59

needed. Specifically, the context-free (CF) grammars are able to represent interactions producing60

nested and branched dependencies (an example is given in Fig. 1), while the context-sensitive (CS)61

grammars can also represent overlapping and crossing dependencies [Searls, 2013]. The sequence62

recognition problem is untractable for CS grammars, but it is polynomial for CF and mildly context63

sensitive grammars [Joshi et al., 1990]. However, grammatical models beyond the regular level64

have been rather scarcely applied to protein analysis (a comprehensive list of references can be65

found in [Dyrka et al., 2013]). This is in contrast to RNA modeling, where CF grammatical frame-66

works are well-developed and power some of the most successful tools [Sakakibara et al., 1993,67

Eddy and Durbin, 1994, Knudsen and Hein, 1999, Sükösd et al., 2012].68

One difficulty with modeling proteins is that interactions between amino acids are often less69

specific and more collective in comparison to RNA. Moreover, the larger alphabet made of 2070

amino acid species instead of just 4 bases in nucleic acids, combined with high computational71
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Figure 1: A toy example of application of the probabilistic CFG to protein sequences. (a) Fictitious

subfamily of beta-hairpins [Milner-White and Poet, 1986] represented with a sample of sequences

in a simplified notation (h-hydrophobic, l-loop-friendly, x-any), and with an idealized schematic

structure. (b) Rules of a probabilistic context-free grammar modeling the subfamily. Set of terminal

symbols of the grammar (the alphabet) consists of 20 amino acid identities. Lexical non-terminals

h, l and x correspond to symbols of the simplified notation. They are mapped to terminal symbols

(amino acids) through lexical rules (here, they have uniform probabilities for the sake of simplic-

ity). Rules rewriting structural non-terminals s (the start symbol), t and u model the ladder of the

hairpin, and the two-residue loop (t → ll). The grammar allows for bulges using non-terminal b and

associated rules. (c) Fictitious query sequence (and its contact map) to be tested against the gram-

mar. Possible mappings from amino acids to lexical non-terminals are shown below the sequence.

Spatial proximity of residues is marked in the contact map with a circle. Empty circles denote

trivial contacts between adjacent residues; filled circles denote spatial contacts between residues

distant in the sequence. (d) Two possible derivations of the query sequence using the grammar. In

each step, the left-most structural non-terminal is rewritten with a grammar rule. Final steps from

lexical non-terminals to terminal symbols are combined for the sake of brevity. First derivation is

apparently ca. 1000 times more probable given the grammar. (e) Parse trees corresponding to the

two derivations. Nodes representing terminal symbols and their incoming edges are omitted for

the sake of clarity. If application of the rule s → hth is identified with generating hydrogen bonds

between the two hydrophobic residues, the parse trees correspond to the two schematic structures.

Note that only the left-hand-side tree captures all three distant contacts present in the contact map.
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complexity of CF and CS grammars, impedes inference, which may lead to solutions which do not72

significantly outperform HMMs [Dyrka and Nebel, 2009, Dyrka et al., 2013]. Yet, some studies73

hinted that CF level of expressiveness brought an added value in protein modeling when grammars74

fully benefiting from CF nesting and branching rules were compared in the same framework to75

grammars effectively limited to linear (regular) rules [Dyrka, 2007, Dyrka et al., 2013]. Good76

preliminary results were also obtained on learning sub-classes of CF grammars to model protein77

families, showing the interest of taking into account long-distance correlations in comparison to78

regular models [Coste et al., 2012, 2014]. An important advantage of CF and CS grammars is79

that grammars themselves, and especially the syntactic analyses of the sequences according to the80

grammar rules, are human readable. For CF grammars, the syntactic analysis of one sequence can81

be represented by a parse tree showing one hierarchical application of grammar rules enabling to82

recognize the sequence (see Fig. 1be example). In RNA modeling, the shape of parse trees can83

be used for secondary structure prediction [Dowell and Eddy, 2004]. In protein modeling, it was84

suggested that the shape of parse trees corresponded to protein spatial structures [Dyrka and Nebel,85

2009], and that parse trees could convey biologically relevant information [Sciacca et al., 2011,86

Dyrka et al., 2013].87

1.2 Grammar estimation with structural constraints88

In this piece of research the focus is on learning probabilistic context-free grammars (PCFG)89

[Booth, 1969]. This represents a trade-off between expressiveness of the model and computational90

complexity of the sequence recognition, which is cubic in time with regard to the input length.91

Learning PCFG aims at shifting the probability mass from the entire space of possible se-92

quences and their syntactic trees to the target population, typically represented by a sample. The93

problem is often confined to assigning probabilities to fixed production rules of a generic underlying94

non-probabilistic CFG [Lari and Young, 1990]. Typically, the goal is to estimate the probabilistic95

parameters to get a grammar maximizing the likelihood of the (positive) sample, while, depending96

on the target application, other approaches also exist. For example, the contrastive estimation aims97

at obtaining grammars discriminating target population from its neighborhood [Smith and Eisner,98

2005].99

The training sample can be made of a set of sequences or a set of syntactic trees. In the former100

case, all derivations for each sentence are considered valid. For a given underlying non-probabilistic101

CFG, probabilities of its rules can be estimated from sentences in the classical Expectation Max-102

imization framework (e.g. the Inside-Outside algorithm [Baker, 1979, Lari and Young, 1990]).103

However, the approach is not guaranteed to find the globally optimal solution [Carroll and Char-104

niak, 1992]. Heuristic methods applied for learning PCFG from positive sequences include also105

iterative biclustering of bigrams [Tu and Honavar, 2008], and genetic algorithms using a learnable106

set of rules [Kammeyer and Belew, 1996, Keller and Lutz, 1998, 2005] or a fixed covering set of107

rules [Tariman, 2004, Dyrka and Nebel, 2009].108

Much more information about the language is conveyed when syntactic trees, constraining the109

set of admissible parse trees, are given. (Throughout this paper the notion of parse tree is re-110

served for syntactic trees generated by parsing with a specific grammar.) If available, a set of111

trees (a treebank) can be directly used to learn a PCFG [Charniak, 1996]. Usability of information112

on the syntactic structure of sequences is highlighted by the result showing that a large class of113

non-probabilistic CFG can be learned from unlabeled syntactic trees (called also skeletons) of the114
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training sample [Sakakibara, 1992]. Algorithms for learning probabilistic CF languages, which115

exploit structural information from syntactic trees, have been proposed [Sakakibara et al., 1993,116

Eddy and Durbin, 1994, Carrasco et al., 2001, Cohen et al., 2014]. An interesting middle way117

between plain sequences and syntactic trees are partially bracketed sequences, which constrain the118

shape of the syntactic trees (skeletons) but not node labels. The approach was demonstrated to be119

highly effective in learning natural languages [Pereira and Schabes, 1992]. It was also applied to120

integrating uncertain information on pairing of nucleotides of RNA [Knudsen, 2005], by modifying121

the bottom-up parser to penalize probabilities of inconsistent derivations with respect to available122

information on nucleotide pairing and adjusting the amount of the penalty according to certainty of123

the structural information.124

1.3 Protein contact constraints125

To our knowledge constrained sets of syntactic trees have never been applied for estimating PCFG126

for proteins. In this research we propose to use spatial contacts between amino acids, possibly127

distant in the sequence, as a source of constraints. Indeed, an interaction forming dependency be-128

tween amino acids usually requires a contact between them, defined as spatial proximity. Until129

recently, extensive contact maps were only available for proteins with experimentally solved struc-130

tures, while individual interactions could be determined through mutation-based wet experiments.131

Currently, reasonably reliable contact maps can also be obtained computationally from large132

collective alignments of evolutionary related sequences. The rationale for contact prediction is that133

if amino acids at a pair of positions in the alignment interact then a mutation at one position of134

the pair often requires a compensatory mutation at the other position in order to maintain the inter-135

action intact. Since only proteins maintaining interactions vital for function successfully endured136

the natural selection, an observable correlation in amino acid variability at a pair of positions is137

expected to indicate interaction. However, standard correlations are transitive and therefore cannot138

be immediately used as interaction predictors. The break-through was achieved recently by Direct139

Coupling Analysis (DCA)[Weigt et al., 2009], which disentangles direct from indirect correlations140

by inferring a model on the alignment which can give information on the interaction strength of the141

pairs. There are different DCA methods based on how the model, which is usually a type of the142

Markov Random Field, is obtained [Morcos et al., 2011, Jones et al., 2012, Ekeberg et al., 2013,143

Kamisetty et al., 2013, Seemayer et al., 2014, Baldassi et al., 2014]. The state-of-the-art DCA-144

based meta-algorithms achieve mean precision in the range 42-74% for top L predicted contacts145

and 69-98% for top L/10 predicted contacts, where L is the protein length [Wang et al., 2017].146

Precision is usually lower for shorter sequences and especially for smaller alignments, however a147

few top hits may still provide relevant information [Daskalov et al., 2015a].148

1.4 Contributions of this research149

In the broader plan, this research aims at developing a protein sequence analysis method advancing150

the current state of the art represented by the profile HMMs in being not limited to alignment-151

defined protein sequence families, and capable of capturing interactions between amino acids. The152

ideal approach would be based on the probabilistic (mildly) context-sensitive grammars, however153

their computational complexity significantly hampers practical solutions. Therefore, an intermedi-154

ate approach based on the probabilistic context-free grammars is considered here, which is compu-155
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tationally cheaper and can represent the non-crossing (and non-overlapping) interactions between156

amino acids. Still, the main difficulty is efficient estimation of the grammars. Our solution is to157

accommodate information of protein contacts as syntactic structural constraints for the model es-158

timation and, if possible, for the sequence analysis. The first contribution of this work consists159

on developing a theoretical framework for defining the maximum-likelihood and contrastive esti-160

mators of PCFG using contact constraints (section 2.1). Building on this general framework, the161

second contribution of this work is extension of our previous probabilistic context-free grammatical162

model for protein sequences [Dyrka, 2007, Dyrka and Nebel, 2009, Dyrka et al., 2013], proposed163

in section 2.2. The extended model is evaluated with reference to the original one in the same164

evolutionary framework for inferring probabilities of grammar rules [Dyrka and Nebel, 2009], as165

described in section 2.3. The assessment focuses on capability of acquiring contact constraints by166

the grammar (descriptive performance), and its effect on discriminative performance (section 3).167

After the evaluation, an example of using the method in a practical setting is presented. Finally, the168

potential of our approach beyond the current state of the art is demonstrated by creating a grammat-169

ical model of a meta-family of protein motifs. This piece of work finishes with discussion of the170

results (section 4), followed by conclusions with analysis of limitations and perspectives for future171

work (section 5).172

2 Methods173

We first show in section 2.1 how contact constraints can formally be introduced to get new generic174

maximum-likelihood and contrastive estimation schemes, and present then in section 2.2 a practical175

implementation of these schemes on a simple generic form of grammars representing contacts.176

2.1 Estimation schemes using contact constraints177

This section provides the mathematical basis for our method for training probabilistic context-free178

grammars (PCFG) from protein sequences annotated with pairwise contacts. Standard notations179

used in the field of grammar inference are introduced, complemented with a less common notion180

of the unlabeled syntactic tree which is the syntactic tree stripped from the syntactic variables181

(section 2.1.1). We propose to define the syntactic tree of a protein sequence as consistent with182

the contact map if for each pair of positions in contact, the path between corresponding leaves in183

the tree is shorter than given threshold (Eq. 1 in section 2.1.2). Finally, the maximum-likelihood184

and the contrastive estimators formulæ are derived for training PCFG over the sets of unlabeled185

syntactic trees consistent with contact maps (Eq. 2, 3, and 4 in section 2.1.3).186

2.1.1 Basic notations187

Let Σ be a non-empty finite set of atomic symbols (representing for instance amino acid species).188

The set of all finite strings over this alphabet is denoted by Σ∗. Let |x| denote the length of a string189

x. The set of all strings of length n is denoted by Σn = {x ∈ Σ∗ : |x| = n}. Let x = x1 . . .xn be a190

sequence in Σn.191
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Unlabeled syntactic tree An unlabeled syntactic tree (UST) u for x is an ordered rooted tree192

such that the leaf nodes are labeled by x, which is denoted as yield(u) = x, and the non-leaf nodes193

are unlabeled. Let U∗ denotes the set of all USTs that yield a sequence in Σ∗, let Un = {u ∈ U∗ :194

yield(u) ∈ Σn}, where n is a positive integer, and let Ux = {u ∈ U∗ : yield(u) = x ∈ Σ∗}. Note that195

∀(x,w ∈ Σ∗, x 6= w) Ux ∩Uw = /0 and U∗ = ∪x∈Σ∗Ux. Moreover, let U denotes an arbitrary subset196

of U∗.197

Context-free grammar A context-free grammar (CFG) is a quadruple G = 〈Σ,V,v0,R〉, where198

Σ is defined as above, V is a finite set of non-terminal symbols (also called variables) disjoint199

from Σ, v0 ∈ V is a special start symbol, and R is a finite set of rules rewriting from variables into200

strings of variables and/or terminals R = {ri : V → (Σ∪V )∗} (see Fig. 1b). Let α = α1 . . .αk be a201

sequence of symbols in (Σ∪V )k for some natural k. A (left-most) derivation for G is a string of202

rules r = r1 . . .rl ∈ Rl , which defines an ordered parse tree y starting from the root node labeled by203

v0. In each step, by applying a rule ri : v j → α1 . . .αk, tree y is extended by adding edges from the204

already existing left-most node labeled v j to newly added nodes labeled α1 to αk. Therefore, there205

is a one-to-one correspondence between derivation r and parse tree y (see Fig. 1de). Derivation r206

is complete if all leaf nodes of the corresponding (complete) parse tree y are labeled by symbols in207

Σ. Sets Y∗, Yn and Yx denote parse tree sets generated with G analogously as for the USTs. For208

a given parse tree y, u(y) denotes the unlabeled syntactic tree obtained by removing the non-leaf209

labels on y. Given a UST u, let YG(u) be the set of all parse trees for grammar G such that u(y) = u.210

For a set of USTs U , YG(U) = ∪u∈UYG(u). Note that ∀(u,v ∈U, u 6= v) YG(u)∩YG(v) = /0.211

Probabilistic context-free grammar A probabilistic context-free grammar (PCFG) is a quintu-212

ple G = 〈Σ,V,v0,R,θ〉, where θ is a finite set of probabilities of rules: θ = {θi = θ(ri) : R→ [0,1]},213

setting for each rule vk → α its probability to be chosen to rewrite vk with respect to other rules214

rewriting vk (such that ∀(vk ∈ V ) ∑vk→α θ(vk → α) = 1, see Fig. 1b). Let PCFG G that enhances215

the underlying non-probabilistic CFG G = 〈Σ,V,v0,R〉 is denoted by G = 〈G,θ〉. The probabil-216

ity of parse tree y using the probability measure induced by G is given by the probability of the217

corresponding derivation r = r1 . . .rl:218

prob(y | G ) = prob(r | G ) =
l

∏
i=1

θ(ri).219

G is said to be consistent when it defines probability distribution over Y∗:220

prob(Y∗ | G ) = ∑
y∈Y∗

prob(y | G ) = 1.221

The probability of sequence x ∈ Σ∗ given G is:222

prob(x | G ) = prob(Yx | G ) = ∑
y∈Yx

prob(y | G ),223

and the probability of UST u ∈ Ux given G is:224

prob(u | G ) = prob(YG(u) | G ) = ∑
y∈YG(u)

prob(y | G ).225

Since Yx and YG(u) define each a partition of Y∗ for x ∈ Σ∗ and for u ∈ U∗, a consistent grammar226

G defines also a probability distribution over Σ∗ and U∗.227
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2.1.2 Contact constraints228

Most protein sequences fold into complex spatial structures. Two amino acids at positions i and229

j in the sequence x are said to be in contact if distance between their coordinates in spatial struc-230

ture d(i, j) is below a given threshold τ . A full contact map for a protein of length n is a bi-231

nary symmetric matrix mfull = (mi, j)n×n such that mi, j = [d(i, j) < τ], where [x] is the Iverson232

bracket (see Fig. 1c). Usually only a subset of the contacts is considered (see section 1.3). A (par-233

tial) contact map for a protein of length n is a binary symmetric matrix m = (mi, j)n×n such that234

mi, j = 1 =⇒ d(i, j)< τ . Let du(i, j) be the length of the shortest path from i-th to j-th leaf in UST235

u for x. Given a threshold δ , UST u is said to be consistent with a contact map m of length n if236

mi, j = 1 =⇒ du(i, j)< δ (1)237

.238

For a contact map m of length n, let U m
n denotes the subset of Un consistent with m, and U m

x239

denotes the subset of Ux consistent with m. Note that U m
x =U m

n ∩Ux. Analogous notations apply240

to parse trees.241

2.1.3 Estimation242

Learning grammar G = 〈Σ,V,v0,R,θ〉 can be seen as inferring the unfixed components of G with243

the aim of shifting the probability mass from the entire space of unlabeled syntactic trees U∗ to244

the set of unlabeled syntactic trees for the target population Utarget. In practice, only a sample of245

the target population can be used for learning, hence estimation is performed on Usample ⊆ Utarget.246

Note that even in the most general case the set of terminal symbols Σ is implicitly determined247

by the sample; moreover the start symbol v0 is typically also fixed. A common special case248

considered in this work confines learning grammar G to estimating θ for a fixed quadruple of249

non-probabilistic parameters 〈Σ,V,v0,R〉 (which fully determine the non-probabilistic grammar G250

underlying G ). Given inferred grammar G∗ and a query set of unlabeled syntactic trees Uquery,251

probability prob(Uquery | G∗) is an estimator of the likelihood that Uquery belongs to population252

Utarget.253

Maximum-likelihood grammar Let X be a sample set of sequences in Σ∗, and let M be a set of254

corresponding contact matrices. The sample set S = [XM] consists of a set of tuples (x,m), where255

x ∈ X and m ∈M. Let UM
X be the corresponding set of compatible USTs:256

U
M
X = {U m

x : (x,m) ∈ S }.257

Grammar G that concentrates probability mass on U
M
X can be estimated using the classical Bayesian258

approach:259

G∗ = argmax
G

prob(G | UM
X ) = argmax

G

prob(G ) · prob(UM
X | G )

prob(UM
X )

.260

Noting that prob(UM
X ) does not influence the result and, in the lack of prior knowledge, assuming261

prob(G ) uniformly distributed among all G , the solution is then given by the maximum likelihood262

formula:263

G∗ = argmax
G

prob(G | UM
X )≃ GML = argmax

G

prob(UM
X | G ).264
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Assuming independence of U m
x s:265

GML = argmax
G

∏
U m

x ∈UM
X

prob(U m
x | G ) = argmax

G
∏

(x,m)∈S

∑
y∈Y m

x

prob(y | G ). (2)266

In the absence of contact constraints, the maximization problem becomes equivalent to the standard267

problem of estimating grammar G given the sample X :268

G
m=0
ML = argmax

G
∏

Ux∈UX

prob(Ux | G ) = argmax
G

∏
x∈X

∑
y∈Yx

prob(y | G ),269

where m= 0 denotes a square null matrix of size equal to the length of the corresponding sequence,270

and UX = {U m=0
x : x ∈ X}.271

Contrastive estimation Occasionally, it is reasonable to expect that Uquery comes from a neigh-272

borhood of the target population N (Utarget) ⊂ U∗. In such cases it is practical to perform con-273

trastive estimation [Smith and Eisner, 2005], which aims at shifting the probability mass distributed274

by the grammar from the neighborhood of the of sample N (Usample) to the sample itself Usample,275

such that:276

GCE = argmax
G

∏
Ux∈Usample

prob(Ux | G )

prob(N (Ux) | G )
.277

Consider two interesting neighborhoods. First, assume that contact map m is known and shared in278

the entire target population and hence in the sample: Um
X = {U m

x : x ∈ X}. This implies the same279

length n of all sequences. Then U m
n is a reasonable neighborhood of the target population, so280

GCE(m) = argmax
G

∏
U m

x ∈Um
X

prob(U m
x | G )

prob(U m
n | G )

= argmax
G

∏x∈X ∑y∈Y m
x

prob(y | G )
[

∑y∈Y m
n

prob(y | G )
]|X |

. (3)281

Second, assume that sequence x is known to be yielded by the target population. Now, the goal is to282

maximize likelihood that the shapes of parse trees generated for sequences in the target population283

are consistent with contact maps. Then UX is a reasonable neighborhood of the sample U
M
X , so284

GCE(X) = argmax
G

∏
(x,m)∈S

prob(U m
x | G )

prob(Ux | G )
= argmax

G
∏

(x,m)∈S

∑y∈Y m
x

prob(y | G )

∑y∈Yx
prob(y | G )

. (4)285

2.2 Application to contact grammars286

We introduce here in section 2.2.1 a simple form for context-free grammars, referred to as the287

Chomsky Form with Contacts (CFC), that supplements the classical Chomsky Normal Form (CNF)288

with contact rules to enable representing non-overlapping pairwise contacts between amino acids.289

The toy grammar in Fig. 1b provides an example of CFC, with one contact rule s→ hth generating a290

pair of amino acids in contact through lexical rules rewriting the h symbols (e.g. h→V, h→ I). The291

shortest path in the syntactic tree between such a pair of residues is then of length 4, the minimal292

path length between terminals for CFC grammars. We propose to use that threshold for defining293

the consistency of a syntactic tree with a contact map. This natural choice allows for computing294

Eq. 2, 4, and 3 in polynomial (cubic) time with regard to the sequence length, as demonstrated in295

sections 2.2.2 and 2.2.3.296
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2.2.1 Definitions297

Let G̈ = 〈Σ,V,v0,R,θ〉 be a probabilistic context-free grammar such that V = VT ⊎VN , R = Ra ⊎
Rb ⊎Rc, and

Ra = {ri : VT → Σ},
Rb = {r j : VN → (VN ∪VT ) (VN ∪VT )},
Rc = {rk : VN →VT VN VT}.

Subsets Ra, Rb and Rc are referred to as lexical, branching, and contact rules, respectively. Joint298

subset Rb∪Rc is referred to as structural rules. Grammars which satisfy these conditions are hereby299

defined to be in the Chomsky Form with Contacts (CFC). It happens that the toy grammar in Fig. 1b)300

is in CFC. When a CFC grammar satisfies Rc = /0, it is in the Chomsky Normal Form (CNF).301

Non-terminal symbols in VT , which can be rewritten only into terminal symbols. are referred302

to as lexical non-terminals, while non-terminal symbols in VN are referred to as structural non-303

terminals. Comparing the CFC grammar with the profile HMM, each match state of the latter can304

be identified with a unique lexical non-terminal, and emissions from a given state - with a set of305

lexical rules rewriting the non-terminal corresponding to the state.306

Let m be a contact matrix compatible with the context-free grammar, i.e. no pair of positions in307

contact overlaps nor crosses boundaries of other pairs in contact (though pairs can be nested one in308

another):309

∀(i, j) mi, j = 1∧ (i ≤ k ≤ j⊕ i ≤ l ≤ j)⇒ mk,l = 0,310

where ⊕ denotes the exclusive disjunction, and positions in contact are separated from each other311

by at least 2:312

∀(i, j) i < j+2.313

Let distance threshold in tree δ = 4. Then a complete parse tree y generated by G̈ is consistent314

with m only if for all mi, j = 1 derivation315

α1,i−1 vk α j+1,n
∗
⇒ α1,i−1 xi vl x j α j+1,n316

is performed with a string of production rules317

[vk → vtvlvu][vt → xi][vt → x j],318

where αi, j ∈ (Σ∪V ) j−i+1, vk,vl ∈VN and vt ,vu ∈VT .319

According to this definition, the left-hand (right-hand) side parse tree in Fig. 1e is consistent320

(not consistent) with the contact map in Fig. 1c.321

2.2.2 Parsing322

Given an input sequence x of length n and a grammar in the CFC form G̈ , prob(x | G̈ )≡ prob(Yx |323

G̈ ) = ∑y∈Yx
prob(y | G̈ ) can be calculated in O(n3) by a slightly modified probabilistic Cocke-324

Kasami-Younger bottom-up chart parser [Cocke, 1969, Kasami, 1965, Younger, 1967]. Indeed,325

productions in Ra⊎Rb conforms to the Chomsky Normal Form [Chomsky, 1959], while it is easy to326

see that productions in Rc requires only O(n2). The algorithm computes prob(x | G̈ )= prob(Yx | G̈ )327

in chart table P of dimensions n× n×|V |, which effectively sums up probabilities of all possible328

parse trees Yx. In the first step, probabilities of assigning lexical non-terminals VT for each terminal329
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in the sequence x are stored in the bottom matrix P1 = P[1, :, :]. Then, the table P is iteratively filled330

upwards with probabilities P[ j, i,v] = prob(v
∗
⇒ xi . . .xi+ j−1 | v ∈V, G̈ ). Finally, prob(Y m

x | G̈ ) =331

P[n,1,v0].332

New extended version of the algorithm (Fig. 2) computes prob(Y m
x | G̈ ), i.e. it considers333

only parse trees Y m
x which are consistent with m. To this goal it uses an additional table C of334

dimensions ∑(m)/2×n×|VT |. After completing P1 (lines 10-12), probabilities of assigning lexical335

non-terminals VT at positions involved in contacts are moved from P1 to C (lines 13-21) such that336

each matrix Cp = C[p, :, :] corresponds to p-th contact in m. In the subsequent steps C can only be337

used to complete productions in Rc; moreover both lexical non-terminals have to come either from338

P1 or C, they can never be mixed (lines 35-40). The computational complexity of the extended339

algorithm is still O(n3) as processing of productions in Rc has to be multiplied by iterating over the340

number of contact pairs in m, which is O(n) since the cross-serial dependencies are not allowed.341

2.2.3 Calculating prob(U m
n | G̈ )342

This section shows effective computing prob(U m
n | G̈ ), which is the denominator for the contrastive343

estimation of GCE(m) (cf. section 2.1.3). Given a sequence x of length n, a corresponding matrix344

m of size n×n and a grammar G̈ , the probability of the set of trees over any sequence of length n345

consistent with m is346

prob(U m
n | G̈ )≡ ∑

x∈Σn

prob(U m
x | G̈ ) = ∑

x∈Σn
∑

y∈Y m
x

prob(y | G̈ ).347

Given grammar G̈ , any complete derivation r is a composition r = ṙ ◦ r̃, where ṙ ∈ (Ra)
∗ and348

r̃ ∈ (Rb ∪Rc)
∗. Let y be the parse tree corresponding to derivation r, and let ỹ be an incomplete349

parse tree corresponding to derivation r̃. Note that for any y corresponding to r = ṙ ◦ r̃ there exists350

one and only one ỹ corresponding to r̃. Let Ỹ m
x denote the set of such incomplete trees ỹ. Note351

that labels of the leaf nodes of ỹ are lexical non-terminals ∀(i) αi,i ∈ VT , and that ṙ represents the352

unique left-most derivation yield(ỹ)
∗
⇒ x. Thus,353

∑
x∈Σn

∑
y∈Y m

x

prob(y | G̈ ) = ∑
x∈Σn

∑
ỹ∈Ỹ m

x

prob(ỹ | G̈ ) · prob(yield(ỹ)
∗
⇒ x | G̈ ).354

Note that value of the expression will not change if the second summation is over ỹ ∈ Ỹ m
n since355

∀(ỹ /∈ Ỹ m
x ) prob(yield(ỹ)

∗
⇒ x | G̈ ) = 0. Combining with observation that prob(ỹ | G̈ ) does not356

depend on x, the expression can be therefore rewritten as:357

∑
x∈Σn

∑
y∈Y m

x

prob(y | G̈ ) = ∑
ỹ∈Ỹ m

n

prob(ỹ | G̈ ) · ∑
x∈Σn

prob(yield(ỹ)
∗
⇒ x | G̈ ).358
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01: function parse_cky_cm(x, m, Ra, Rb, Rc, Vt, Vn, v0)

02: # input:

03: # x - sequence, m - contact map

04: # Ra - lexical, Rb - branching, Rc - contact rules

05: # Vt - set of lexical, Vn - set of non-lexical non-terminals

06: # v0 - start symbol

07: n = length(x)

08: P[n, n, |Vn|+|Vt|] = 0.0

09: C[sum(m)/2, n, |Vt|] = 0.0

10: for i=1 to n

11: for r in Ra

12: if x[i]==r.rhs[1] P[1,i,r.lhs] = r.prob

13: num_p=0

14: for i=1 to n-2

15: for j=i+2 to n

16: if m[i,j]==1

17: for r in Ra

18: P[1,i,r.lhs] = P[1,j,r.lhs] = 0.0

19: if x[i]==r.rhs[1] C[p,i,r.lhs] = r.prob

20: if x[j]==r.rhs[1] C[p,j,r.lhs] = r.prob

21: num_p=num_p+1

22: for j=2 to n

23: for i=1 to n-j+1

24: for k=1 to j-1

25: for r in Rb

26: P[j,i,r.lhs] += r.prob

27: * P[ k,i, r.rhs[1]]

28: * P[j-k,i+k,r.rhs[2]]

29: if (j>=3)

30: for r in Rc

31: P[j,i,r.lhs] += r.prob

32: * P[1, i, r.rhs[1]]

33: * P[j-2,i+1,r.rhs[2]]

34: * P[1, i+j,r.rhs[3]]

35: for c=0 to num_p-1

36: for r in Rc

37: P[j,i,r.lhs] += r.prob

38: * C[p, i, r.rhs[1]]

39: * P[j-2,i+1,r.rhs[2]]

40: * C[p, i+j,r.rhs[3]]

41: return P[n, 1, v0]

Figure 2: Pseudocode of the modified CKY parser

12

PeerJ reviewing PDF | (2018:07:29730:2:0:NEW 26 Jan 2019)

Manuscript to be reviewed



However, if G̈ is proper, then ∀(ỹ ∈ Ỹ m
n ) ∑x∈Σn prob(yield(ỹ)

∗
⇒ x | G̈ ) = 1, as:359

∑
x∈Σn

prob(yield(ỹ)
∗
⇒ x | G̈ ) = ∑

x∈Σn

n

∏
i=1

θ(αi,i → xi) =

∑
x∈Σn

θ(α1,1 → x1) · . . . ·θ(αn,n → xn) =

θ(α1,1 → a1) ·θ(α2,2 → a1) · . . . ·θ(αn−1,n−1 → a1) ·θ(αn,n → a1) +

θ(α1,1 → a1) ·θ(α2,2 → a1) · . . . ·θ(αn−1,n−1 → a1) ·θ(αn,n → a2) +

...

θ(α1,1 → a|Σ|) ·θ(α2,2 → a|Σ|) · . . . ·θ(αn−1,n−1 → a|Σ|) ·θ(αn,n → a|Σ|) =

360

361












θ(α1,1 → a1) ·θ(α2,2 → a1) · . . . ·θ(αn−1,n−1 → a1) +

θ(α1,1 → a1) ·θ(α2,2 → a1) · . . . ·θ(αn−1,n−1 → a2) +

...

θ(α1,1 → a|Σ|) ·θ(α2,2 → a|Σ|) · . . . ·θ(αn−1,n−1 → a|Σ|)













·
|Σ|

∑
s=1

θ(αn,n → as),362

where as ∈ Σ. Since G̈ is proper then ∀(v ∈ VT ) ∑
|Σ|
s=1 θ(v → as) = 1 and therefore the entire363

formula evaluates to 1, which can be easily shown by iterative regrouping. This leads to the final364

formula:365

prob(U m
n | G̈ ) = ∑

ỹ∈Ỹ m
n

prob(ỹ | G̈ ).366

Technically, ∑ỹ∈Ỹ m
n

prob(ỹ | G̈ ) can be readily calculated by the bottom-up chart parser by setting367

∀(rk ∈ Ra) θ(rk) = 1.368

2.3 Evaluation369

The present approach for learning PCFGs with the contact constraints was evaluated using our370

evolutionary framework for learning the probabilities of rules [Dyrka and Nebel, 2009, Dyrka et al.,371

2013]. The underlying non-probabilistic CFGs were based on grammars used in our previous372

research [Dyrka and Nebel, 2009], which conformed to the Chomsky Normal Form (CNF) and373

consisted of an alphabet of twenty terminal symbols representing amino acid species374

Σ = {A,C,D,E,F,G,H, I,K,L,M,N,Q,P,R,S,T,V,W,Y},375

a set of non-terminals symbols V =VT ⊎VN , where VT = {l1, l2, l3} and VN = {v0,v1,v2,v3}, and a376

set of rules R = Ra ⊎Rb, which consisted of all possible allowed combinations of symbols, hence377

|Ra| = 60, |Rb| = 196. In addition, extended grammars G̈ in the Chomsky Form with Contacts378

(CFC) were constructed with added contact rules, R = Ra⊎Rb⊎Rc, again with all combinations of379

symbols (|Rc|= 144). For the sake of transparent evaluation, combinations of symbols in the rules380

were not constrained beyond general definition of the CNF or CFC model, respectively, to avoid381

interference with the contact constraints. The number of non-terminal symbols was limited to a382

few in order to keep the number of parameters to be optimized by the genetic algorithm reasonably383
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small. The small number of non-terminals implied relatively high generality of the resulting model,384

for example, only three distinct emission profiles of amino acids were defined by the lexical rules.385

The number of three lexical non-terminals was assumed from our previous research [Dyrka and386

Nebel, 2009, Dyrka et al., 2013], in which lexical rule probabilities were fixed according to rep-387

resentative physicochemical properties of amino acids. In that setting, it seemed justified to have388

distinct symbols for the low, medium and high levels of the properties. Clearly, this has to be ex-389

pected to confine specificity and limit attainable discriminatory power of the grammars. Although390

adjusting proportion of lexical and structural non-terminals could potentially improve performance391

of the grammatical model, it was not explored here, since the focus of evaluation was on the added392

value of the contact constraints for learning rule probabilities, rather than on the optimal set of393

rules.394

2.3.1 Learning395

Our evolutionary learning framework used the genetic algorithm where each individual represented396

a whole grammar, the approach known as the Pittsburgh style [Smith, 1980]. For a given underlying397

non-probabilistic CFG G̈ and the positive training sample, the framework estimated probabilities θ398

of the corresponding PCFG G̈ = 〈G̈,θ〉. Unlike previous applications of the framework in which399

probabilities of the lexical rules were fixed according to representative physicochemical properties400

of amino acids [Dyrka and Nebel, 2009, Dyrka et al., 2013], in this research probabilities of all rules401

were subject to evolution. The objective functions were implemented for the maximum-likelihood402

estimator G̈ML, and for the constrastive estimators G̈CE(X) and G̈CE(m). Besides, the setup of the403

genetic algorithm closely followed that of [Dyrka and Nebel, 2009].404

2.3.2 Performance measures405

Performance of grammars was evaluated using a variant of the 8-fold Cross-Validation scheme in406

which 6 parts are used for training, 1 part is used for validation and parameter selection, and 1 part407

is used for final testing and reporting results (the total of 56 combinations). The negative set was408

not used in the training phase. For testing, protein sequences were scored against the null model (a409

unigram), which assumed global average frequencies of amino acids, no contact information, and410

the length of query sequence. The amino acid frequencies were obtained using the online ProtScale411

tool for the UniProtKB/Swiss-Prot database [Gasteiger et al., 2005]).412

Discriminative performance Grammars were assessed on the basis of the average precision (AP)413

in the recall-precision curve (RPC). The advantage of RPC over the more common Receiver Oper-414

ating Characteristic (ROC) is robustness to unbalanced samples where negative data is much more415

numerous than positive data [Davis and Goadrich, 2006]. AP approximates the area under RPC.416

Descriptive performance Intuitively, a decent explanatory grammar generates parse trees con-417

sistent with the spatial structure of the analyzed protein. Therefore, the descriptive performance418

of grammar can be quantified as the amount of contact information encoded in the grammar and419

imposed on its derivations. In other words, it is expected that the grammar ensures that residues in420
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contact are close in the parse tree [Pyzik et al., 2018]. The most straightforward approach to mea-421

sure the descriptive performance is to use the skeleton of the most likely parse tree as a predictor422

of spatial contacts between positions in a given protein sequence, parameterized by the cutoff δ on423

path length between the leaves. The natural threshold for grammar in the CFC form is δ = 4 mean-424

ing that the pair of residues is predicted to be in contact if they are parsed with a contact rule. The425

precision at this threshold was reported for CFC grammars since the precision is the usual measure426

of contact prediction performance [Wang et al., 2017]. In addition, AP of the RPC, which sums up427

over all possible cutoffs, was computed to allow comparison with grammars without pairing rules.428

Our recent research suggests that the measure is suitable for the contact-map-based comparison of429

the overall topology of parse trees generated with various grammars [Pyzik et al., 2018]. Since our430

definition of consistency between the parse tree and the contact map imposes that inferred gram-431

mars maximize the recall rather than the precision of contact prediction, the learning process was432

assessed using the recall measured with regard to the partial contact map used in the training for433

δ = 4. Local variants of the measures of descriptive performance can be defined to focus only on434

residues that are in contact with k-th residue. This can be obtained by using only respective row435

of the contact map mk,• when calculating the value of a measure for the residue at position k. The436

local measures of descriptive performance can be used to assess the location of a residue in the437

parse tree [Pyzik et al., 2018].438

Implementation The PCFG-CM parser and the Protein Grammar Evolution framework were439

implemented in C++ using GAlib [Wall, 2005] and Eigen [Guennebaud et al., 2010]. Performance440

measures were implemented in Python 2 [van Rossum and de Boer, 1991] using Biopython [Cock441

et al., 2009], igraph [Csardi and Nepusz, 2006], NumPy [van der Walt et al., 2011], pyparsing442

[McGuire, 2008], scikit-learn [Pedregosa et al., 2011] and SciPy [Jones et al., 2001].443

Source code of PCFG-CM is available at https://git.e-science.pl/wdyrka/pcfg-cm under the GPL444

3 license.445

3 Results446

3.1 Basic evaluation447

3.1.1 Materials448

Probabilistic grammars were estimated for three samples of protein fragments related to function-449

ally relevant gapless motifs [Sigrist et al., 2002, Bailey and Elkan, 1994]. Within each sample,450

all sequences shared the same length, which avoided sequence length effects on grammar scores451

(this could be resolved by an appropriate null model). For each sample, one experimentally solved452

spatial structure in the Protein Data Bank (PDB) [Berman et al., 2000] was selected as a represen-453

tative. The three samples included amino acid sequences of two small ligand binding sites (already454

analyzed in [Dyrka and Nebel, 2009]) and a functional amyloid (Table 1):455

• CaMn: a Calcium and Manganese binding site found in the legume lectins [Sharon and Lis,456

1990]. Sequences were collected according to the PROSITE PS00307 pattern [Sigrist et al.,457
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Table 1: Datasets. Notations: sim - maximum sequence similarity, npos/nneg - number of pos-

itive/negative sequences, len - sequence length in amino acids, ncon - total number of non-local

contacts (sequence separation 3+), msiz - number of contacts selected for training

id type sim npos nneg len pdb ncon msiz

CaMn binding-site 71% 24 28560 27 2zbj 41 6

NAP binding-site 70% 64 47736 16 1mrq 11 2

HET-s amyloid 70% 160 33248 21 2kj3 10 3

2013] true positive and false negative hits. Original boundaries of the pattern were extended458

to cover the entire binding site, similarly to [Dyrka and Nebel, 2009]. The motif folds into a459

stem-like structure with multiple contacts, many of them forming nested dependencies, which460

stabilize anti-parallel beta-sheet made of two ends of the motif (Fig. 3a based on pdb:2zbj461

[de Oliveira et al., 2008]);462

• NAP: the Nicotinamide Adenine dinucleotide Phosphate binding site fragment found in an463

aldo/keto reductase family [Bohren et al., 1989]. Sequences were collected according to464

the PS00063 pattern true positive and false negative hits (four least consistent sequences465

were excluded). The motif is only a part of the binding site of the relatively large ligand.466

Intra-motif contacts seem to be insufficient for defining the fold, which depends also on467

interactions with amino acids outside the motif (Fig. 3b based on pdb:1mrq [Couture et al.,468

2003]);469

• HET-s: the HET-s-related motifs r1 and r2 involved in the prion-like signal transduction in470

fungi identified in a recent study [Daskalov et al., 2015a]. The largest subset of motif se-471

quences with length of 21 amino acids was used to avoid length effects on grammar scores.472

When interacting with a related motif r0 from a cooperating protein, motifs r1 and r2 adopt473

the beta-hairpin-like folds which stack together. While stacking of multiple motifs from sev-474

eral proteins is essential for stability of the structure, interactions between hydrophobic amino475

acids within a single hairpin are also important. In addition, correlation analysis revealed476

strong dependency between positions 17 and 21 [Daskalov et al., 2015a] (corresponding to477

L276 and E280 in Fig. 3c based on [van Melckebeke et al., 2010]).478

Negative samples were designed to roughly approximate the entire space of protein sequences.479

They were based on the negative set from [Dyrka and Nebel, 2009], which consisted of 829 single480

chain sequences of 300-500 residues retrieved from the Protein Data Bank [Berman et al., 2000] at481

identity of 30% (accessed on 12th December 2006). For each positive sample, the corresponding482

negative sample was obtained by cutting the basic negative set into overlapping subsequences of483

the length of positive sequences.484

All samples were made non-redundant at level of sequence similarity around 70% using cd-hit485

[Li and Godzik, 2006], which significantly reduced their cardinalities. The threshold balanced the486
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Table 2: Discriminative performance of grammars in terms of AP.

Grammar CNF CFC CFC CFC

Estimation ML ML ML CE(m)

Train w/contacts n/a no yes yes

Test w/contacts no no yes no yes no yes

CaMn 0.94 0.96 0.67 0.95 0.95 0.79 0.98

NAP 0.78 0.86 0.28 0.75 0.79 0.24 0.91

HET-s 0.46 0.43 0.24 0.60 0.81 0.23 0.94

size of positive samples, distribution of their variability, and inter-fold diversity. Overall diversity487

of samples ranged from the most homogeneous CaMn (average identity of 49%) to the most diverse488

HET-s, which consisted of 5 subfamilies [Daskalov et al., 2015a] (average identity of 21%). The489

ratio between negative and positive samples was high and varied from 1190:1 for CaMn to 207:1490

for HET-s. Contact pairings were assigned manually and collectively to all sequences in each set491

based on a selected representative spatial structure in the PDB database (Fig. 3).492

3.1.2 Performance493

The implementation of the framework for learning PCFGs for protein sequences using contact494

constraints, presented in sections 2.2 and 2.3, is evaluated with reference to learning without the495

constraints. For grammars with the contact rules (CFC), probabilities of rules θ were estimated496

either using training samples made of sequences coupled with a contact map, or using sequences497

alone. For grammars without the contact rules (CNF), probabilities of rules were estimated using498

sequences alone, since these grammars cannot generate parse trees consistent with contact maps499

for the distance threshold δ = 4.500

Discriminative power. For evaluation of the discriminative power of the PCFG-CM approach,501

the rule probabilities were estimated using the maximum-likelihood estimator (denoted ML) and502

the contrastive estimator with regard to a given contact map (denoted CE(m)). The discriminative503

performance of the resulting probabilistic grammars for test data made of sequences alone and504

sequences coupled with a contact map is presented in Table 2 in terms of the average precision505

(AP).506

The baseline is the average precision of CNF and CFC grammars estimated without contact507

constraints tested on sequences alone, which ranged from 0.43-0.46 for HET-s to 0.94-0.96 for508

CaMn. The scores show negative correlation with diversity of the samples and limited effect of509

adding contact rules (though the latter may result from more difficult learning of increased number510

of parameters with added rules). Grammars with the contact rules estimated without a contact map511

performed much worse when tested on the samples coupled with a contact map. This indicated that,512
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Figure 3: Representative structures of the sample motifs. Backbones are plotted with J(S)mol using

the ”amino” color scheme [Herraez, 2006, Hanson et al., 2013]. Calculated hydrogen bonds are

shown with dashed lines colored according to the interaction partners. Hydrogen bonds not used

for defining contact maps are dimmed. Other contacts used for defining contact maps are shown

with black dotted lines. Some side chains are shown for better visibility of selected bonds and

contacts. For each structure, only a subset of interactions was chosen for defining the context-free-

compatible partial contact map based on spatial proximity, hydrogen bonds (CaMn), and mutual

correlation (HET-s). For example the pair of V264 and I277 in the HET-s structure conforms to

definition of contact, however it was omitted since it crosses another contact between L276 and

E280.
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in general, parses consistent with the constraints were not preferred by default when grammars were513

trained on sequences alone.514

For all three samples, not surprisingly, the highest AP (0.91-0.98) achieved grammars obtained515

using the contrastive estimation with regard to a contact map tested on the samples with the same516

map. The improvement relative to the baseline was most pronounced for HET-s, yet still statisti-517

cally significant (p < 0.05) for NAP. As expected, the contrastively estimated grammars performed518

poorly on sequences alone except for the CaMn sample.519

The maximum-likelihood grammars estimated with a contact map and tested on sequences cou-520

pled with the same map performed worse than the contrastively estimated grammars but compara-521

bly or significantly better (HET-s) than the baseline. The average precision of these grammars was522

consistently lower when tested on sequences alone, yet still considerable (from 0.60 for HET-s to523

0.95 for CaMn). It is notable that in the HET-s case, the maximum-likelihood grammars estimated524

with a contact map achieved better AP on sequences alone than the maximum-likelihood grammars525

estimated without a contact map.526

Universally high AP for CaMn can be contributed to the relatively strong pairing signal from527

the long stem-like part of the motif particularly suitable for modeling with the contact rules.528

Descriptive power. For evaluation of the descriptive power of the PCFG-CM approach, the rule529

probabilities were estimated using the maximum-likelihood estimator (denoted ML) and the con-530

trastive estimator with regard to the sequence set (denoted CE(X)). Descriptive value of the most531

probable parse trees generated using the resulting probabilistic grammars for test sequences with-532

out contact information is presented in Table 3. Efficiency of the learning was measured on the533

basis of the recall at the distance threshold δ = 4 with regard to the context-free compatible contact534

map m used in the training. Consistency of the most likely parse tree with the protein structure was535

measured on the basis of the precision of contact prediction at the distance threshold δ = 4 with536

regard to all contacts in the reference spatial structure with separation in sequence of at least 3.537

Both measures are not suitable for assessing grammars without contact rules. Therefore, average538

precision over all thresholds δ was used as a complementary measure of consistency of the most539

likely trees with the protein structure. Note that the AP scores achievable for a context-free parse540

tree are reduced by overlapping of pairings.541

The baseline is the result for grammars with the contact rules estimated without contact con-542

straints. The most likely parse trees generated using these grammars conveyed practically no infor-543

mation about contacts for NAP and HET-s (recall w.r.t. contact map m close to zero) and limited544

information about contacts for CaMn (moderate recall of 0.45), see Fig. 4. Learning with the545

contact constraints resulted in increase of the recall to 0.79-0.98, which testified efficiency of the546

process.547

Importantly, consistency of the most likely parse trees with the protein structure measured by548

the precision followed a similar pattern and increased from 0.13 for HET-s, 0.14 for NAP, and549

0.69 for CaMn when grammars with the contact rules were estimated without a contact map, to550

0.52-0.57, 0.64, and 0.84-0.87, respectively, when grammars were estimated with a contact map.551

Accordingly, evaluation in terms of the average precision over distance thresholds indicated that552

distances in the most likely parse trees better reflected the protein structure if grammars were trained553

with the contact constraints, as illustrated in Fig. 4.554
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Figure 4: Skeletons of most likely parse trees for selected positive test sequences obtained using

grammars in the CFC form trained without and with the contact constraints. For each case, the tree

of the median AP over all test runs and sequences is shown. Contact maps were not used for testing.

Nodes corresponding to lexical non-terminal symbols are merged with terminal nodes (leaves of

the trees) for the sake of simplicity. Terminal nodes are annotated with local AP calculated for

each position (from 0.0 (bad, red) to 1.0 (perfect, green)). The minimum sequence separation of

residues in contact of 3 or more is assumed; leaves with no intra-motif contacts outside this range

are not scored.
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Table 3: Descriptive quality of the most likely parse trees derived from sequences alone, in terms

of recall at the distance threshold δ = 4 w.r.t. the training contact map m, and precision at δ = 4

(and AP over thresholds δ ) w.r.t. the full contact map of the reference pdb structure for sequence

separation 3+. Note that the shortest length of any path between leaves in the most likely parse

trees of the CNF grammar equals 5, which makes measures using δ = 4 unutile.

Grammar CNF CFC CFC CFC

Estimation ML ML ML CE(X)

Train w/contacts n/a no yes yes

Reference pdb m pdb m pdb m pdb

CaMn (0.24) 0.45 0.69 (0.53) 0.92 0.87 (0.66) 0.98 0.84 (0.66)

NAP (0.16) 0.00 0.14 (0.12) 0.96 0.64 (0.29) 0.96 0.64 (0.29)

HET-s (0.08) 0.02 0.13 (0.14) 0.79 0.52 (0.24) 0.97 0.57 (0.27)

3.2 Sample applications555

3.2.1 Searching for related motifs556

In this section probabilistic grammars for HET-s r1 and r2 motifs, learned in the proposed esti-557

mation scheme, are applied to solving a practical problem of searching for related r0 motifs in a558

limited-size dataset (around 1000-5000 sequences) based on [Dyrka et al., 2014, Daskalov et al.,559

2015a].560

Materials. HET-s motifs r1 and r2 adopt the beta-hairpin-like fold when templated with the re-561

lated motif r0 in the N-terminus of a cooperating NLR protein [Seuring et al., 2012]. While the562

r0 motifs share a considerable sequence similarity with the interacting r1 and r2 motifs (average563

identity of around 30%), they contain significantly less aspartic acid, glutamic acid and lysine, and564

more histidine and serine [Daskalov et al., 2015a]. A set of 98 HET-s r0 motifs was previously565

manually extracted from genes of NLR proteins adjacent to genes encoding proteins containing the566

r1 and r2 motifs [Daskalov et al., 2015a]. Its subset of 77 non-redundant 21-residue long r0 motifs567

is later referred here as HET-s/r0. It can be reasonably expected that the r0 motifs can be automat-568

ically extracted from NLR proteins using grammars learned for the r1 and r2 motifs. As a proxy569

of this practical scenario, performance of discriminating the HET-s/r0 motifs against a set of 849570

full-length NLR proteins with N-terminal known to contain a non-prion forming domain [Dyrka571

et al., 2014] was evaluated. (According to the current understanding of NLRs, it is highly unlikely572

that their N-terminal domain contains both a (possibly unnoticed) prion-forming motif and domain573

of other type [Daskalov et al., 2015b].) In addition, the entire set of known 5765 fungal NLRs574

[Dyrka et al., 2014] was scanned for HET-s r0 motifs using the HET-s grammars. The results were575
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compared with hits obtained using a profile HMM trained on the same data as the HET-s grammars,576

and the inhouse HET-s profile HMM from [Dyrka et al., 2014]. Several variants of sets of grammar577

rules were investigated. Moreover, an alternative contact map with the pairing of positions 5 and 18578

instead of 17 and 21 was tested (see Fig. 3). Each setup was run six times to account for expected579

randomness in the learning process.580

Evaluation. The best fitting to the training sample was achieved with grammars which consisted581

of three lexical non-terminals, the start structural non-terminal rewritable into the branching and582

contact rules, two structural non-terminals rewritable into the branching rules, and four structural583

non-terminals rewritable into the contact rules (total of 10 non-terminals and 675 rules), and were584

estimated to optimize the maximum-likelihood using the alternative contact map. Importantly,585

learning with the alternative contact map substantially improved fitness to the training data in com-586

parison to learning without any contact constraints (probability mass over the training set increased587

roughly 300 times on average over six runs).588

The single best grammar achieved the average precision of 0.74 when used for discriminating589

HET-s/r0 motif from non-prionic NLR sequences (parsing without the contact map). The perfor-590

mance improved to AP of 0.82 when the mean score from six grammars was used for classifying.591

For the arbitrary threshold of 4 (or 5) of the mean log probability ratio between the grammars and592

the null model (meaning that a given sequence is 10,000 (resp. 100,000) times more probable with593

the HET-s grammars than with the null), the precision was 0.59 (1.00) and the recall was 0.77594

(0.58). While these scores are acceptable, especially taking into account simplicity of the gram-595

mars, they were below AP of 0.92 achieved with the profile HMM estimated on the same data596

using hmmer 3.1b2 with the standard parameters of training [Eddy, 2011]. Yet, the recall for 100%597

precision was similar as for the grammars (0.79 at the bit score of 9.7). Scoring with the profile598

HMM was performed with the –max flag and effectively no E-value threshold, and separately for599

each overlapping 21-amino acid long fragment of the negative set.600

Next, the six grammars were used for scanning the set of full-length fungal NLR sequences.601

With the threshold of the mean log probability ratio of 5, matches were found in 33 sequences.602

Out of them, 29 matches started within first twenty residues of relatively short N-terminal domains603

(up to 116 amino acids), as expected for the prion-forming domain. This included 18 HET-s r0604

motifs from [Daskalov et al., 2015a]. Among the remaining 11 sequences with candidate r0 motifs,605

the corresponding r1 and r2 patterns were identified in adjacent genes in 6 cases (with the HET-s606

grammars or manually). The set of 33 sequences extracted with the grammars included 14 out of607

15 HET-s annotations assigned with the inhouse profile HMM in [Dyrka et al., 2014].608

3.2.2 Making generalized descriptors609

In this section the generalizing potential of PCFG descriptors is illustrated by learning a single610

grammar for two non-homologous but functionally related Calcium-binding motifs.611

Materials. Calcium-binding sites, which are widely spread across many functional families of612

proteins, are formed by multiple various structural folds [Bindreither and Lackner, 2009]. Two613

prominent families are the lectin legume beta-loop-beta motif (already described in section 3.1.1614

under designation CaMn) and the EF hand alpha-loop-alpha motif [Kawasaki and Kretsinger,615
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2015]. While apparently different, they are both continuous and involve the central loop (yet616

very different) participating in coordination of the Calcium ion [Bindreither and Lackner, 2009].617

These features made them an appealing target for investigating capability of the current grammati-618

cal framework for generalizing beyond a single family of sequences.619

Our training set consisted of the entire CaMn sample (24 sequences), and the subset of EF hand620

motifs extracted - on the basis of the contact pattern - from the Calcium binding proteins of known621

spatial structure prepared for training the FEATURE model [Zhou et al., 2015]. Boundaries of the622

EF hand motifs were specified to include the residues coordinating the Calcium ion, according to623

Ligplot [Wallace et al., 1995], plus the envelope of five residues each side. The resulting samples624

had the uniform length of 22 amino acids, which partially covered two helices surrounding the625

central loop of the motif. Based on the spatial distance and the direct coupling analysis using626

Gremlin [Ovchinnikov et al., 2014], only one pair of residues (between positions 8 and 17) was627

chosen for the training contact map. Redundancy reduction at level of sequence similarity of around628

65% (using cd-hit) and pruning from corrupted sequences (due to artifacts in pdb files) resulted in629

the sample of 37 sequences. (Later, it was discovered that a single false positive sequence was630

mistakenly included in the EF hand training set.)631

Grammatical descriptors. Due to presumed higher complexity of the model, several variants of632

grammar rules were again used for training. The best fitting to the training sample was achieved633

with the same variant as in the previous example. Also in this case, learning with the contact634

constraints significantly improved fitness to the training data (probability mass distributed over the635

training set increased roughly 20 times on average over six runs).636

The diagram showing the 36 most significant rules (all with probability of at least 0.05) and637

dependencies between structural non-terminals (possible derivations) of the single best grammar638

are shown in Fig. 5a. Of note is a pair of structural non-terminal symbols u and v (orange), which639

can be used to generate paired stretches of hydrophobic (u → ava) and other residues (v → buc).640

The feature was used to model the pair of beta-strands in the stem part of CaMn (Fig. 5bc). By641

extending the cooperation between u and v with the derivation path through the structural non-642

terminal t (pink, v → atb, t → •u•), the grammar generates hydrophobic residues with periodicity643

of 3, typical to helices, as used in modeling the pair of alpha-helices of the EF hand (Fig. 5de).644

To finish a derivation, it is typically necessary to use the structural non-terminal w (green), which645

is likely to generate lexical non-terminals b and c which emit amino acids with high propensity646

to binding Calcium (aspartic and glutamic acids, aspargine, serine, and threonine [Bindreither and647

Lackner, 2009]).648

Clearly, the grammar has its limitations. The number of only three lexical non-terminals is649

likely insufficient, as suggested by the unusual merging of hydrophobic alanine with the charged650

amino acids in one group emitted through symbol b. Also detailed analysis of parse trees reveal651

inaccuracies possibly resulting from over-generalization. Most notably, the beta-hairpin generating652

rules (orange) were used to model a part of the binding loop of CaMn (Fig. 5b). Moreover, the653

residues directly involved in the Calcium binding in 1gsl, according to Ligplot (D130, W133, N135654

and D140), were not generated with the non-terminal w. Finally, contact rules used to model the655

loop of the EF hand did not generate pairs of residues which are actually in contact. Yet, the overall656

topologies of the trees were rather consistent with the structures.657
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Figure 5: Generalized grammar and parse trees for two calcium-binding motifs, the legume lectin

CaMn motif and the EF hand. (a) The diagram showing the 36 most significant rules (all with

probability at least 0.05) and dependencies between structural non-terminals (possible derivations)

of the single best grammar. Boxes with lexical rules are not connected for the sake of clarity. Colors

indicate structural non-terminal symbols apparently used to model a pair of beta-strands (orange),

a pair of helices (orange/pink), and the Calcium-binding loop (green). The graphical representation

of the grammar has been partially inspired by Unold et al. [2017]. (b) The most likely parse tree

and (c) the cartoon structure of a highly scored training sequence from the CaMn family. (d) The

cartoon structure and (e) the most likely parse tree of a highly scored training sequence from the EF

hand family. Residue numbering is relative. Derivations of lexical symbols are represented using

rules for the sake of brevity. Rule probabilities are shown in parentheses. Note that occasionally

less probably rules, not shown in (a) are used. Colors correspond to structural non-terminals used

to generate the residue according to the grammar. Structures were plotted using JSmol.
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Quantitative evaluation. The grammar was used for scanning full sequences matching the EF658

hand and legume lectin Prosite patterns and profiles (PS00018, PS50222; PS00307) from the659

aforementioned set of the Calcium binding proteins [Zhou et al., 2015]. Sequences with missing660

residues, non-canonical amino acid types and interfering ligands (except Manganese in the legume661

lectin set) were excluded. In 38 out of 40 sequences with the EF hands, and in all 6 sequences with662

the CaMn motif, the threshold of the log probability ratio of 3 between the grammar and the null663

model (meaning that a given sequence is 1000 times more probable with the grammar than with664

the null) was exceeded in at least one position when scanned with the window ranging from 20 to665

30 amino acids. In all EF hand and 5 CaMn hits, the highest score matched the position of the cor-666

responding Calcium-binding Prosite motif (in one CaMn and one EF hand case it was off center).667

In the remaining CaMn case, the highest score was at the position of another beta-loop-beta pair668

containing the characteristic alpha-chain signature PS00308. In terms of descriptive performance,669

the median average precision with regard to the full contact map was 0.23 for the EF hand and 0.65670

for the legume lectin binding site using the sequence separation 3+ and the spatial distance cutoff671

of 8Å. (The median AP increased to 0.43 and 0.72, respectively, for the distance cutoff of 10Å.)672

Eventually, the grammar was used to scan the representative set of all sequences in the PDB673

database at identity level of around 40% made with cd-hit [Fu et al., 2012] (25,145 sequences674

in total). Out of 48 hits which exceeded the log ratio of probability of 6, the best matches in675

15 sequences contained the low complexity regions made of stretches of amino acids with high676

affinity to binding Calcium (aspartic and glutamic acids, and aspargine). In the remaining part,677

13 matches contained the PS00018 motif (out of 116 sequences with the motif in the set) and 2678

matches contained the PS00307 motif (out of 18 in the set). In addition, experimental structures of679

4 more sequences included the Calcium ion (out of 1081 in the set), in 3 cases close to the grammar-680

defined match. To summarize, excluding matches to the low complexity fragments, there was an681

external support for 18 out of 33 best hits in the scan with the grammar. Furthermore, assuming the682

log ratio of probability of 3, candidate motifs were found in 4419 sequences, including 114 matches683

to the low complexity regions, 72 matches to the PS00018 motif, 5 matches to the PS00307 motif684

and 340 matches to other Calcium-binding chains.685

4 Discussion686

4.1 Added value of contact constraints687

The primary evaluation of the PCFG-CM framework was conducted using samples of gapless align-688

ments, which were based on datasets studied in our previous research [Dyrka and Nebel, 2009,689

Daskalov et al., 2015a] to limit potential confounding factors. (However, it has to be emphasized690

that, in general, training PCFG in our framework does not require alignment of sequences, as691

demonstrated in section 3.2.2.) These initial tests focused on validating the proposed method for692

accommodating contact constraints in the training scheme for probabilistic context-free grammars.693

The evaluation showed that the most effective way of training descriptors for a given sample694

was the contrastive estimation with reference to the contact map. This approach is only possible695

when a single contact map that fits all sequences in the target population can be used with the696

trained grammar. The maximum-likelihood estimators were effective when contacts were relevant697
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to structure of the sequence (HET-s, CaMn). This is expected, as use of the contact rules is likely to698

be optimal for deriving a pair of amino acids in contact if they are actually correlated. Interestingly,699

in the case of HET-s, the maximum-likelihood grammar trained with the contact constraints com-700

pared favorably with the maximum-likelihood grammar trained without the constraints even when701

tested on sequences alone (AP 0.60 versus 0.43). This indicates that if contacts are relevant for the702

structure of sequence, the PCFG-CM approach can improve robustness of learning to local optima703

(similar effect was observed in both examples in section 3.2). Of note is very good performance of704

grammars achieved for CaMn despite a tiny size of the positive set (18 training sequences in each705

fold), which can be attributed to high homogeneity of the sample (50% identity on average).706

The most likely parse trees, derived for inputs defined only by sequences, reproduced a vast707

majority of contacts (recall of at least 0.79 at δ = 4) enforced by the contact-constrained training708

input. Moreover, precision of contact prediction at δ = 4 and sequence separation 3+ was above709

0.50, up to 0.87. This translated to the overall overlap with the full contact maps in the range of710

0.27-0.39. Note that only a fraction of contacts can be represented in the parse tree of context-711

free grammar, and not even all of them were enforced in training. The benefit of the contrastive712

estimation with reference to the sequence set was limited in comparison to the maximum-likelihood713

grammars. However, it should be noted that the shape of the most likely parse tree, which was used714

in the evaluation, does not necessarily reflect the most likely shape of parse tree. Unfortunately, the715

latter cannot be efficiently computed [Dowell and Eddy, 2004].716

4.2 Towards practical applications717

The first experiments mainly served assessing intuitions which led to development of the PCFG-718

CM approach. The next task of searching the HET-s/r0 motifs showed good precision and recall,719

which indicated that in the current form our tool can be potentially useful for finding candidate720

sequences for further analysis in datasets of moderate sizes (section 3.2.1). However, the average721

precision of evolved PCFGs was lower in comparison to profile HMMs. Therefore, improving722

specificity of the method is necessarily a premier goal for further research. The full-scale practical723

application to bioinformatic problems, such as sequence search, would certainly require several724

enhancements. This may include scoring inputs with the product of probabilities obtained us-725

ing grammars with the lexical rule probabilities fixed according to representative physicochemical726

properties of amino acids [Dyrka and Nebel, 2009], and the appropriately adjusted null model to727

accurately account for various sequence lengths and amino acid compositions. In addition an ex-728

tension of the PCFG-CM framework to account for uncertain contact information [Knudsen, 2005]729

can be obtained through introducing the concept of the fuzzy sets of syntactic trees.730

The key challenge is, however, to enable learning grammars with increased number of non-731

terminal symbols. Currently implemented inference of rule probabilities using genetic algorithm732

worked well up to roughly half thousand rules, which translated to just a couple of non-terminal733

symbols for generic covering sets of rules. This necessarily imposed substantial level of generaliza-734

tion, which has advantages (simplicity of model and lower risk of over-fitting), but also drawbacks735

when the resulting grammar is too simple to capture complexity of the data. The low number of736

non-terminal symbols also effectively limits the length of modeled sequences, since longer frag-737

ments typically have more complex structures, which require more non-terminals to obtain a rea-738

sonable grammatical description. As the size of covering set of grammar rules is determined by the739
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number of non-terminal symbols, therefore, the longer the sequence, the larger is the number of740

probabilities to be assigned. Sometimes, the problem can be partially overcome with generic con-741

straints on the covering set of rules, as shown in sample applications (section 3.2.2). In this case,742

a meta-family of motifs was modeled using a grammar with 10 non-terminal symbols, which was743

trained starting from the constrained covering set of 675 rules. Yet, in general, more efficient esti-744

mation of probabilities of numerous rules and/or added capability of inferring rules during learning745

is required [Unold, 2005, 2012, Coste et al., 2012, 2014].746

The potential of our approach beyond current state of the art was highlighted with the example747

of grammatical descriptor of a meta-family of Calcium binding sites. The PCFG evolved by our748

tool correctly generalized some common features of two distinctive folds and exhibited reasonable749

discriminative power. Both of the folds represented the loop-like structure, which can be modeled750

with the context-free grammar rules. As a result, parse trees generated by the grammar could di-751

rectly correspond to the spatial structure of protein. However, it can be noted that every full graph752

of interactions can be decomposed to a set of trees consisting of the branching and nesting interac-753

tions. Thus, contact maps based on such trees can be used to train a set of context-free grammars,754

together covering a large fraction of contacts. Another appealing solution is to modify the defini-755

tion of consistency of the parse tree with the contact map, so that it requires that only residues in756

contact can be generated with the contact rules (instead of the definition used in this work that all757

residues in contact must be generated with the contact rules). The modified definition would allow758

using contact maps including crossing and overlapping contacts in the grammar learning. Indeed,759

multiple valid parse trees generated with the grammar for a sequence can potentially represent var-760

ious branching and nesting subsets of dependencies. Nevertheless, the capability of capturing even761

only a fraction of non-local contacts, as in the current version of the framework, is already a step762

forward from the profile HMM, or probabilistic regular grammars.763

5 Conclusions764

The complex character of non-local interactions between amino acids makes learning languages765

of protein sequences challenging. In this work we proposed a solution consisting on using struc-766

tural information to constrain the syntactic trees, a technique which proved effective in learning767

probabilistic natural and RNA languages. We established a framework for learning probabilistic768

context-free grammars for protein sequences from syntactic trees partially constrained using con-769

tacts between amino acids. Within the framework, we implemented the maximum-likelihood and770

contrastive estimators for the rule probabilities of relatively simple yet practical covering grammars.771

Computational validation showed that additional knowledge present in the partial contact maps can772

be effectively incorporated into the probabilistic grammatical framework through the concept of773

syntactic tree consistent with the contact map. Grammars estimated with the contact constraints774

maintained good precision when used as classifiers, and derived the most likely parse trees display-775

ing improved fidelity to protein structures compared to the baseline grammars estimated without776

the constraints.777

Though tested in the learning setting consisting in optimizing only rule probabilities, the esti-778

mators defined in the present PCFG-CM framework can be used in more general learning schemes779

inferring also the grammar structure. Indeed, such schemes may benefit even more from con-780
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straining the larger search space. It is also interesting to consider extending the framework beyond781

context-free grammars as contacts in proteins are often overlapping and thus context-sensitive. In782

this case, however, the one-to-one correspondence between the parse tree and the derivation breaks,783

therefore it may be advisable to redefine the grammatical counterpart of the spatial distance in terms784

of derivation steps in order to take advantage from higher expressiveness.785
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