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Learning language of protein sequences, which captures non-local interactions between

amino acids close in the spatial structure, is a long-standing bioinformatics challenge,

which requires at least context-free grammars. However, the complex nature of protein

interactions impedes unsupervised learning of context-free grammars. Using structural

information to constrain the syntactic trees proved effective in learning probabilistic

natural and RNA languages. In this work, we establish a framework for learning

probabilistic context-free grammars for protein sequences from syntactic trees partially

constrained using amino acid contacts obtained from wet experiments and computational

predictions, whose reliability has substantially increased recently. Within the framework,

we implement the maximum-likelihood and contrastive estimators of parameters for

simple yet practical grammars. Tested on samples of protein motifs, grammars developed

within the framework showed improved precision in recognizing sequences and generated

parse trees with high fidelity to protein structures. The framework is applicable to other

biomolecular languages and beyond wherever knowledge of non-local dependencies is

available.
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Abstract8

Learning language of protein sequences, which captures non-local interactions between9

amino acids close in the spatial structure, is a long-standing bioinformatics challenge, which10

requires at least context-free grammars. However, the complex nature of protein interactions11

impedes unsupervised learning of context-free grammars. Using structural information to12

constrain the syntactic trees proved effective in learning probabilistic natural and RNA lan-13

guages. In this work, we establish a framework for learning probabilistic context-free gram-14

mars for protein sequences from syntactic trees partially constrained using amino acid contacts15

obtained from wet experiments and computational predictions, whose reliability has substan-16

tially increased recently. Within the framework, we implement the maximum-likelihood and17

contrastive estimators of parameters for simple yet practical grammars. Tested on samples18

of protein motifs, grammars developed within the framework showed improved precision in19

recognizing sequences and generated parse trees with high fidelity to protein structures. The20

framework is applicable to other biomolecular languages and beyond wherever knowledge of21

non-local dependencies is available.22
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1 Introduction25

1.1 Grammatical modeling of proteins26

The essential biopolymers of life, nucleic acids and proteins, share the basic characteristic of the27

languages: infinite number of sequences can be expressed with a finite number of monomers. In28

∗Corresponding author: witold.dyrka@pwr.edu.pl

1

PeerJ reviewing PDF | (2018:07:29730:0:1:NEW 26 Jul 2018)

Manuscript to be reviewed



the case of proteins, merely 20 amino acid species (letters) build millions of sequences (words or29

sentences) folded in thousands of different spatial structures playing various functions in living30

organisms (semantics). Physically, the protein sequence is a chain of amino acids linked by peptide31

bonds. The physicochemical properties of amino acids and their interactions across different parts32

of the sequence define its spatial structure, which in turn determines biological function to great33

extent. Similarly to words of the natural language, protein sequences may be ambiguous (the34

same amino acid sequence folds into different structures depending on the environment), and often35

include non-local dependencies and recursive structures [Searls, 2013].36

Not surprisingly the concept of protein language dates back to at least the 1960s [Pawlak, 1965],37

and since early applied works in the 1980s [Brendel and Busse, 1984, Jimenez-Montano, 1984] for-38

mal grammatical models have gradually gained importance in bioinformatics [Searls, 2002, 2013,39

Coste, 2016]. Most notably, Hidden Markov Models (HMM), which are weakly equivalent to prob-40

abilistic regular grammars, became the main tool of protein sequence analysis. Profile HMMs are41

commonly used for defining protein families [Sonnhammer et al., 1998, Finn et al., 2015] and for42

searching similar sequences [Eddy, 1998, 2011, Soeding, 2005, Remmert et al., 2012]; more ex-43

pressive HMM are also developed [Coste and Kerbellec, 2006, Bretaudeau et al., 2012]. Yet, their44

explanatory power is limited since, as regular level models, they cannot capture non-local interac-45

tions, which occur between amino acids distant in sequence but close in the spatial structure of the46

protein. Many of these interactions have a character of nested, branched and crossing dependen-47

cies, which in terms of grammatical modeling require context-free (CF) and context-sensitive (CS)48

level of expressiveness [Searls, 2013]. However, grammatical models beyond regular levels have49

been rather scarcely applied to protein analysis (a comprehensive list of references can be found50

in [Dyrka et al., 2013]). This is in contrast to RNA modeling, where CF grammatical frameworks51

are well-developed and power some of the most successful tools [Sakakibara et al., 1993, Eddy and52

Durbin, 1994, Knudsen and Hein, 1999, Sükösd et al., 2012].53

One difficulty with modeling proteins is that interactions between amino acids are often less54

specific and more collective in comparison to RNA. Moreover, the larger alphabet made of 2055

amino acid species instead of just 4 bases in nucleic acids, combined with high computational56

complexity of CF and CS grammars, impedes inference, which may lead to solutions which do not57

outperform significantly HMMs [Dyrka and Nebel, 2009, Dyrka et al., 2013]. Yet, some studies58

hinted that CF level of expressiveness brought an added value in protein modeling when grammars59

fully benefiting from CF nesting and branching rules were compared in the same framework to60

grammars effectively limited to linear (regular) rules [Dyrka, 2007, Dyrka et al., 2013]. Good61

preliminary results were also obtained on learning sub-classes of CF grammars to model protein62

families, showing the interest of taking into account long-distance correlations in comparison to63

regular models [Coste et al., 2012, 2014].64

An important advantage of CF and CS grammars is that parse trees they produce are human65

readable descriptors. In RNA modeling, the shape of parse trees can be used for secondary structure66

prediction [Dowell and Eddy, 2004]. In protein modeling, it was suggested that the shape of parse67

trees corresponded to protein spatial structure [Dyrka and Nebel, 2009], and that parse trees can68

convey biologically relevant information [Sciacca et al., 2011, Dyrka et al., 2013].69
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1.2 Grammar estimation with structural constraints70

In this piece of research the focus is on learning probabilistic context-free grammars (PCFG)71

[Booth, 1969]. Learning PCFG consists in estimating the unfixed parameters of the grammar with72

the aim of shifting the probability mass from the entire space of possible sequences and their syn-73

tactic trees to the target population, typically represented by a sample. The problem is often con-74

fined to assigning probabilities to fixed production rules of a generic underlying non-probabilistic75

CFG [Lari and Young, 1990]. Typically the goal is to estimate the parameters to get a grammar76

maximizing the likelihood of the (positive) sample, while, depending on the target application,77

other approaches also exist. For example, the contrastive estimation aims at obtaining grammars78

discriminating target population from its neighborhood [Smith and Eisner, 2005].79

The training sample can be made of a set of sequences or a set of syntactic trees. In the former80

case, all derivations for each sentence are considered valid. For a given underlying non-probabilistic81

CFG, probabilities of its rules can be estimated from sentences in the classical Expectation Max-82

imization framework (e.g. the Inside-Outside algorithm [Baker, 1979, Lari and Young, 1990]).83

However, the approach is not guaranteed to find the globally optimal solution [Carroll and Char-84

niak, 1992]. Heuristic methods applied for learning PCFG from positive sequences include also85

iterative biclustering of bigrams [Tu and Honavar, 2008], and genetic algorithms using a learnable86

set of rules [Kammeyer and Belew, 1996, Keller and Lutz, 1998, 2005] or a fixed covering set of87

rules [Tariman, 2004, Dyrka and Nebel, 2009].88

Much more information about the language is conveyed in the syntactic trees. If available, a set89

of trees (a treebank) can be directly used to learn a PCFG [Charniak, 1996]. Usability of structural90

information is highlighted by the result showing that a large class of non-probabilistic CFG can be91

learned from unlabeled syntactic trees (called also skeletons) of the training sample [Sakakibara,92

1992]. Algorithms for learning probabilistic CF languages, which exploit structural information93

in syntactic trees, have been proposed [Sakakibara et al., 1993, Eddy and Durbin, 1994, Carrasco94

et al., 2001, Cohen et al., 2014]. An interesting middle way between plain sequences and syntactic95

trees are partially bracketed sequences, which constrain the shape of the syntactic trees (skeletons)96

but not node labels. The approach was demonstrated to be highly effective in learning natural97

languages [Pereira and Schabes, 1992]. It was also applied to integrating uncertain information on98

pairing of nucleotides of RNA [Knudsen, 2005]. In this approach the modified bottom-up parser99

penalizes probability on derivations inconsistent with available information on nucleotide pairing100

in such way that the amount of the penalty is adjusted according to certainty of the structural101

information.102

1.3 Protein contact constraints103

To our knowledge constrained sets of syntactic trees have never been applied for estimating PCFG104

for proteins. In this research we propose to use spatial contacts between amino acids distant in se-105

quence as a source of constraints. Indeed, an interaction forming dependency between amino acids106

usually requires a contact between them, defined as spatial proximity. Until recently, extensive con-107

tact maps were only available for proteins with experimentally solved structures, while individual108

interactions could be determined through mutation-based wet experiments.109

Currently, reasonably reliable contact maps can also be obtained computationally from large110

collective alignments of evolutionary related sequences. The rationale for contact prediction is that111
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if amino acids at a pair of positions in the alignment interact then a mutation at one position of112

the pair often requires a compensatory mutation at the other position in order to maintain the inter-113

action intact. Since only proteins maintaining interactions vital for function successfully endured114

the natural selection, an observable correlation in amino acid variability at a pair of positions is115

expected to indicate interaction. However, standard correlations are transitive and therefore cannot116

be immediately used as interaction predictors. The break-through was achieved recently by Direct117

Coupling Analysis (DCA)[Weigt et al., 2009], which disentangles direct from indirect correlations118

by inferring a model on the alignment which can give information on the interaction strength of the119

pairs. There are different DCA methods based on how the model, which is usually a type of the120

Markov Random Field, is obtained [Morcos et al., 2011, Jones et al., 2012, Ekeberg et al., 2013,121

Kamisetty et al., 2013, Seemayer et al., 2014, Baldassi et al., 2014]. The state-of-the-art DCA-122

based meta-algorithms achieve mean precision in the range 42-74% for top L predicted contacts123

and 69-98% for top L/10 predicted contacts, where L is the protein length [Wang et al., 2017].124

Precision is usually lower for shorter sequences and especially for smaller alignments, however a125

few top hits may still provide relevant information [Daskalov et al., 2015].126

2 Methods127

2.1 General model128

2.1.1 Basic notations129

Let Σ be a non-empty finite set of atomic symbols (representing for instance amino acid species).130

The set of all finite strings over this alphabet is denoted by Σ∗. Let |x| denote the length of a string131

x. The set of all strings of length n is denoted by Σn = {x ∈ Σ∗ : |x| = n}. Let x = x1 . . .xn be a132

sequence in Σn.133

Unlabeled syntactic tree An unlabeled syntactic tree (UST) u for x is an ordered rooted tree134

such that the leaf nodes are labeled by x, which is denoted as yield(u) = x, and the non-leaf nodes135

are unlabeled. Let U∗ denotes the set of all USTs that yield a sequence in Σ∗, let Un = {u ∈ U∗ :136

yield(u) ∈ Σn}, where n is a positive integer, and let Ux = {u ∈ U∗ : yield(u) = x ∈ Σ∗}. Note that137

∀(x,w ∈ Σ∗, x 6= w) Ux ∩Uw = /0 and U∗ = ∪x∈Σ∗Ux. Moreover, let U denotes an arbitrary subset138

of U∗.139

Context-free grammar A context-free grammar (CFG) is a quadruple G = 〈Σ,V,v0,R〉, where140

Σ is defined as above, V is a finite set of non-terminal symbols (also called variables) disjoint from141

Σ, v0 ∈V is a special start symbol, and R is a finite set of rules rewriting from variables into strings142

of variables and/or terminals R = {ri : V → (Σ∪V )∗}. Let α = α1 . . .αk be a sequence of symbols143

in (Σ∪V )k for some natural k. A (left-most) derivation for G is a string of rules r = r1 . . .rl ∈ Rl ,144

which defines an ordered parse tree y starting from the root node labeled by v0. In each step, by145

applying a rule ri : v j → α1 . . .αk, tree y is extended by adding edges from the already existing146

left-most node labeled v j to newly added nodes labeled α1 to αk. Therefore, there is a one-to-one147

correspondence between derivation r and parse tree y. Derivation r is complete if all leaf nodes148

of the corresponding (complete) parse tree y are labeled by symbols in Σ. Sets Y∗, Yn and Yx149
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are defined as for the USTs. For a given parse tree y, u(y) denotes the unlabeled syntactic tree150

obtained by removing the non-leaf labels on y. Given a UST u, let YG(u) be the set of all parse151

trees for grammar G such that u(y) = u. For a set of USTs U , YG(U) = ∪u∈UYG(u). Note that152

∀(u,v ∈U, u 6= v) YG(u)∩YG(v) = /0.153

Probabilistic context-free grammar A probabilistic context-free grammar (PCFG) is a quintu-154

ple G = 〈Σ,V,v0,R,θ〉, where θ is a finite set of probabilities of rules: θ = {θi = θ(ri) : R→ [0,1]},155

setting for each rule vk → α its probability to be chosen to rewrite vk with respect to other rules156

rewriting vk (such that ∀(vk ∈ V ) ∑vk→α θ(vk → α) = 1). Let PCFG G that enhances the under-157

lying non-probabilistic CFG G = 〈Σ,V,v0,R〉 is denoted by G = 〈G,θ〉. The probability of parse158

tree y using the probability measure induced by G is given by the probability of the corresponding159

derivation r = r1 . . .rl:160

prob(y | G ) = prob(r | G ) =
l

∏
i=1

θ(ri).161

G is said to be consistent when it defines probability distribution over Y∗:162

prob(Y∗ | G ) = ∑
y∈Y∗

prob(y | G ) = 1.163

The probability of sequence x ∈ Σ∗ given G is:164

prob(x | G ) = prob(Yx | G ) = ∑
y∈Yx

prob(y | G ),165

and the probability of UST u ∈ Ux given G is:166

prob(u | G ) = prob(YG(u) | G ) = ∑
y∈YG(u)

prob(y | G ).167

Since Yx and YG(u) define each a partition of Y∗ for x ∈ Σ∗ and for u ∈ U∗, a consistent grammar168

G defines also a probability distribution over Σ∗ and U∗.169

2.1.2 Contact constraints170

Most protein sequences fold into complex spatial structures. Two amino acids at positions i and j171

in the sequence x are said to be in contact if distance between their coordinates in spatial structure172

d(i, j) is below a given threshold τ . A full contact map for a protein of length n is a binary symmet-173

ric matrix m
full = (mi, j)n×n such that mi, j = [d(i, j)< τ], where [x] is the Iverson bracket. Usually174

only a subset of the contacts is considered (cf section 1.3). A (partial) contact map for a protein of175

length n is a binary symmetric matrix m= (mi, j)n×n such that mi, j = 1 =⇒ d(i, j)< τ . Let du(i, j)176

is the length of the path from i-th to j-th leaf in UST u for x. Given a threshold δ , UST u is said to177

be consistent with a contact map m of length n if mi, j = 1 =⇒ du(i, j)< δ .178

For a contact map m of length n, let U m
n denotes the subset of Un consistent with m, and U m

x179

denotes the subset of Ux consistent with m. Note that U m
x =U m

n ∩Ux. Analogous notations apply180

to parse trees.181
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2.1.3 Estimation182

Learning grammar G = 〈Σ,V,v0,R,θ〉 can be seen as estimating the unfixed parameters of G with183

the aim of shifting the probability mass from the entire space of unlabeled syntactic trees U∗ to184

the set of unlabeled syntactic trees for the target population Utarget. In practice, only a sample of185

the target population can be used for learning, hence estimation is performed on Usample ⊆ Utarget.186

Note that even in the most general case the set of terminal symbols Σ is implicitly determined by the187

sample; moreover the start symbol v0 is typically also fixed. A common special case confines learn-188

ing grammar G to estimating θ for a fixed quadruple of non-probabilistic parameters 〈Σ,V,v0,R〉189

(which fully determine the non-probabilistic grammar G underlying G ). Given inferred grammar190

G∗ and a query set of unlabeled syntactic trees Uquery, probability prob(Uquery | G∗) is an estimator191

of the likelihood that Uquery belongs to population Utarget.192

Maximum-likelihood grammar Let X be a sample set of sequences in Σ∗, and let M be a set of193

corresponding contact matrices. The sample set S = [XM] consists of a set of tuples (x,m), where194

x ∈ X and m ∈M. Let UM
X be the corresponding set of compatible USTs:195

U
M
X = {U m

x : (x,m) ∈ S }.196

Grammar G that concentrates probability mass on U
M
X can be estimated using the classical Bayesian197

approach:198

G∗ = argmax
G

prob(G | UM
X ) = argmax

G

prob(G ) · prob(UM
X | G )

prob(UM
X )

.199

Noting that prob(UM
X ) does not influence the result and, in the lack of prior knowledge, assuming200

prob(G ) uniformly distributed among all G , the solution is then given by the maximum likelihood201

formula:202

G∗ = argmax
G

prob(G | UM
X )≃ GML = argmax

G

prob(UM
X | G ).203

Assuming independence of U m
x s:204

GML = argmax
G

∏
U m

x ∈UM
X

prob(U m
x | G ) = argmax

G
∏

(x,m)∈S

∑
y∈Y m

x

prob(y | G ).205

In the absence of contact constraints, the maximization problem becomes equivalent to the standard206

problem of estimating grammar G given the sample X :207

G
m=0
ML = argmax

G
∏

Ux∈UX

prob(Ux | G ) = argmax
G

∏
x∈X

∑
y∈Yx

prob(y | G ),208

where m= 0 denotes a square null matrix of size equal to the length of the corresponding sequence,209

and UX = {U m=0
x : x ∈ X}.210

Contrastive estimation Often it is reasonable to expect that Uquery comes from a neighborhood211

of the target population N (Utarget) ⊂ U∗. In such cases it is practical to perform contrastive es-212

timation [Smith and Eisner, 2005], which aims at shifting the probability mass distributed by the213

6

PeerJ reviewing PDF | (2018:07:29730:0:1:NEW 26 Jul 2018)

Manuscript to be reviewed



grammar from the neighborhood of the of sample N (Usample) to the sample itself Usample, such214

that:215

GCE = argmax
G

∏
Ux∈Usample

prob(Ux | G )

prob(N (Ux) | G )
.216

Consider two interesting neighborhoods. First, assume that contact map m is known and shared in217

the entire target population and hence in the sample: Um
X = {U m

x : x ∈ X}. This implies the same218

length n of all sequences. Then U m
n is a reasonable neighborhood of the target population, so219

GCE(m) = argmax
G

∏
U m

x ∈Um
X

prob(U m
x | G )

prob(U m
n | G )

= argmax
G

∏x∈X ∑y∈Y m
x

prob(y | G )
[

∑y∈Y m
n

prob(y | G )
]|X |

.220

Second, assume that sequence x is known to be yielded by the target population. Now, the goal is to221

maximize likelihood that the shapes of parse trees generated for sequences in the target population222

are consistent with contact maps. Then UX is a reasonable neighborhood of the sample U
M
X , so223

GCE(X) = argmax
G

∏
(x,m)∈S

prob(U m
x | G )

prob(Ux | G )
= argmax

G
∏

(x,m)∈S

∑y∈Y m
x

prob(y | G )

∑y∈Yx
prob(y | G )

.224

2.2 Simple(r) instance225

2.2.1 Definitions226

Let G̈ = 〈Σ,V,v0,R,θ〉 be a probabilistic context-free grammar such that V = VT ⊎VN , R = Ra ⊎
Rb ⊎Rc, and

Ra = {ri : VT → Σ},
Rb = {r j : VN → (VN ∪VT ) (VN ∪VT )},
Rc = {rk : VN →VT VN VT}.

Subsets Ra, Rb and Rc are referred to as lexical, branching, and contact rules, respectively. Joint227

subset Rb ∪Rc is referred to as structural rules.228

Let m be a contact matrix compatible with the context-free grammar, i.e. no pair of positions in229

contact overlaps nor crosses boundaries of other pairs in contact (though pairs can be nested one in230

another):231

∀(i, j) mi, j = 1∧ (i ≤ k ≤ j⊕ i ≤ l ≤ j)⇒ mk,l = 0,232

where ⊕ denotes the exclusive disjunction, and positions in contact are separated from each other233

by at least 2:234

∀(i, j) i < j+2.235

Let distance threshold in tree δ = 4. Then a complete parse tree y generated by G̈ is consistent236

with m only if for all mi, j = 1 derivation237

α1,i−1 vk α j+1,n
∗
⇒ α1,i−1 xi vl x j α j+1,n238

is performed with a string of production rules239

[vk → vtvlvu][vt → xi][vt → x j],240

where αi, j ∈ (Σ∪V ) j−i+1, vk,vl ∈VN and vt ,vu ∈VT .241
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2.2.2 Parsing242

Given an input sequence x of length n and a grammar G̈ , prob(x | G̈ )≡ prob(Yx | G̈ )=∑y∈Yx
prob(y |243

G̈ ) can be calculated in O(n3) by a slightly modified probabilistic Cocke-Kasami-Younger bottom-244

up chart parser [Cocke, 1969, Kasami, 1965, Younger, 1967]. Indeed, productions in Ra ⊎ Rb245

conforms to the Chomsky Normal Form [Chomsky, 1959], while it is easy to see that productions246

in Rc requires only O(n2). The algorithm computes prob(x | G̈ ) = prob(Yx | G̈ ) in chart table P of247

dimensions n× n× |V |, which effectively sums up probabilities of all possible parse trees Yx. In248

the first step, probabilities of assigning lexical non-terminals VT for each terminal in the sequence249

x are stored in the bottom matrix P1 = P[1, :, :]. Then, the table P is iteratively filled upwards with250

probabilities P[ j, i,v] = prob(v
∗
⇒ xi . . .xi+ j−1 | v ∈V, G̈ ). Finally, prob(Y m

x | G̈ ) = P[n,1,v0].251

New extended version of the algorithm (Fig. 1) computes prob(Y m
x | G̈ ), i.e. it considers252

only parse trees Y m
x which are consistent with m. To this goal it uses an additional table C of253

dimensions ∑(m)/2×n×|VT |. After completing P1 (lines 10-12), probabilities of assigning lexical254

non-terminals VT at positions involved in contacts are moved from P1 to C (lines 13-21) such that255

each matrix Cp = C[p, :, :] corresponds to p-th contact in m. In the subsequent steps C can only be256

used to complete productions in Rc; moreover both lexical non-terminals have to come either from257

P1 or C, they can never be mixed (lines 35-40). The computational complexity of the extended258

algorithm is still O(n3) as processing of productions in Rc has to be multiplied by iterating over the259

number of contact pairs in m, which is O(n) since the cross-serial dependencies are not allowed.260

2.2.3 Calculating prob(U m
n | G̈ )261

This section shows effective computing prob(U m
n | G̈ ), which is the denominator for the contrastive262

estimation of GCE(m) (cf. section 2.1.3). Given a sequence x of length n, a corresponding matrix263

m of size n×n and a grammar G̈ , the probability of the set of trees over any sequence of length n264

consistent with m is265

prob(U m
n | G̈ )≡ ∑

x∈Σn

prob(U m
x | G̈ ) = ∑

x∈Σn
∑

y∈Y m
x

prob(y | G̈ ).266

Given grammar G̈ , any complete derivation r is a composition r = ṙ ◦ r̃, where ṙ ∈ (Ra)
∗ and267

r̃ ∈ (Rb ∪Rc)
∗. Let y be the parse tree corresponding to derivation r, and let ỹ be an incomplete268

parse tree corresponding to derivation r̃. Note that for any y corresponding to r = ṙ ◦ r̃ there exists269

one and only one ỹ corresponding to r̃. Let Ỹ m
x denote the set of such incomplete trees ỹ. Note270

that labels of the leaf nodes of ỹ are lexical non-terminals ∀(i) αi,i ∈ VT , and that ṙ represents the271

unique left-most derivation yield(ỹ)
∗
⇒ x. Thus,272

∑
x∈Σn

∑
y∈Y m

x

prob(y | G̈ ) = ∑
x∈Σn

∑
ỹ∈Ỹ m

x

prob(ỹ | G̈ ) · prob(yield(ỹ)
∗
⇒ x | G̈ ).273

Note that value of the expression will not change if the second summation is over ỹ ∈ Ỹ m
n since274

∀(ỹ /∈ Ỹ m
x ) prob(yield(ỹ)

∗
⇒ x | G̈ ) = 0. Combining with observation that prob(ỹ | G̈ ) does not275

depend on x, the expression can be therefore rewritten as:276

∑
x∈Σn

∑
y∈Y m

x

prob(y | G̈ ) = ∑
ỹ∈Ỹ m

n

prob(ỹ | G̈ ) · ∑
x∈Σn

prob(yield(ỹ)
∗
⇒ x | G̈ ).277
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01: function parse_cky_cm(x, m, Ra, Rb, Rc, Vt, Vn, v0)

02: # input:

03: # x - sequence, m - contact map

04: # Ra - lexical, Rb - branching, Rc - contact rules

05: # Vt - set of lexical, Vn - set of non-lexical non-terminals

06: # v0 - start symbol

07: n = length(x)

08: P[n, n, |Vn|+|Vt|] = 0.0

09: C[sum(m)/2, n, |Vt|] = 0.0

10: for i=1 to n

11: for r in Ra

12: if x[i]==r.rhs[1] P[1,i,r.lhs] = r.prob

13: num_p=0

14: for i=1 to n-2

15: for j=i+2 to n

16: if m[i,j]==1

17: for r in Ra

18: P[1,i,r.lhs] = P[1,j,r.lhs] = 0.0

19: if x[i]==r.rhs[1] C[p,i,r.lhs] = r.prob

20: if x[j]==r.rhs[1] C[p,j,r.lhs] = r.prob

21: num_p=num_p+1

22: for j=2 to n

23: for i=1 to n-j+1

24: for k=1 to j-1

25: for r in Rb

26: P[j,i,r.lhs] += r.prob

27: * P[ k,i, r.rhs[1]]

28: * P[j-k,i+k,r.rhs[2]]

29: if (j>=3)

30: for r in Rc

31: P[j,i,r.lhs] += r.prob

32: * P[1, i, r.rhs[1]]

33: * P[j-2,i+1,r.rhs[2]]

34: * P[1, i+j,r.rhs[3]]

35: for c=0 to num_p-1

36: for r in Rc

37: P[j,i,r.lhs] += r.prob

38: * C[p, i, r.rhs[1]]

39: * P[j-2,i+1,r.rhs[2]]

40: * C[p, i+j,r.rhs[3]]

41: return P[n, 1, v0]

Figure 1: Pseudocode of the modified CKY parser
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However, if G̈ is proper, then ∀(ỹ ∈ Ỹ m
n ) ∑x∈Σn prob(yield(ỹ)

∗
⇒ x | G̈ ) = 1, as:278

∑
x∈Σn

prob(yield(ỹ)
∗
⇒ x | G̈ ) = ∑

x∈Σn

n

∏
i=1

θ(αi,i → xi) =

∑
x∈Σn

θ(α1,1 → x1) · . . . ·θ(αn,n → xn) =

θ(α1,1 → a1) ·θ(α2,2 → a1) · . . . ·θ(αn−1,n−1 → a1) ·θ(αn,n → a1) +

θ(α1,1 → a1) ·θ(α2,2 → a1) · . . . ·θ(αn−1,n−1 → a1) ·θ(αn,n → a2) +

...

θ(α1,1 → a|Σ|) ·θ(α2,2 → a|Σ|) · . . . ·θ(αn−1,n−1 → a|Σ|) ·θ(αn,n → a|Σ|) =

279

280












θ(α1,1 → a1) ·θ(α2,2 → a1) · . . . ·θ(αn−1,n−1 → a1) +

θ(α1,1 → a1) ·θ(α2,2 → a1) · . . . ·θ(αn−1,n−1 → a2) +

...

θ(α1,1 → a|Σ|) ·θ(α2,2 → a|Σ|) · . . . ·θ(αn−1,n−1 → a|Σ|)













·
|Σ|

∑
s=1

θ(αn,n → as),281

where as ∈ Σ. Since G̈ is proper then ∀(v ∈ VT ) ∑
|Σ|
s=1 θ(v → as) = 1 and therefore the entire282

formula evaluates to 1, which can be easily shown by iterative regrouping. This leads to the final283

formula:284

prob(U m
n | G̈ ) = ∑

ỹ∈Ỹ m
n

prob(ỹ | G̈ ).285

Technically, ∑ỹ∈Ỹ m
n

prob(ỹ | G̈ ) can be readily calculated by the bottom-up chart parser by setting286

∀(rk ∈ Ra) θ(rk) = 1.287

2.3 Evaluation288

2.3.1 Learning289

The present PCFG-CM approach was evaluated in practice for grammatical models G̈ and Ḡ =290

G̈\Rc (the same grammar but without the contact rules) using an on-site framework for learning the291

probabilities of rules [Dyrka and Nebel, 2009, Dyrka et al., 2013]. For a given underlying CFG G̈,292

the framework estimates probabilities θ of the corresponding PCFG G̈ = 〈G̈,θ〉 from the positive293

sample using a genetic algorithm in the Pittsburgh flavor, where each individual represents a whole294

grammar. Unlike previous applications of the framework in which probabilities of the lexical rules295

were fixed according to representative physicochemical properties of amino acids, in this research296

probabilities of all rules were subject to evolution. The objective functions were implemented for297

estimators G̈ML, G̈CE(X), and G̈CE(m). Besides, the setup of the genetic algorithm closely followed298

that of [Dyrka and Nebel, 2009].299

The input non-probabilistic grammar G̈ consisted of an alphabet of twenty terminal symbols300

representing amino acid species301

Σ = {A,C,D,E,F,G,H, I,K,L,M,N,Q,P,R,S,T,V,W,Y},302
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a set of non-terminals symbols V = VT ⊎VN , where VT = {l1, l2, l3} and VN = {v0,v1,v2,v3}, and303

a set of rules R = Ra ⊎Rb ⊎Rc, which consisted of all possible allowed combinations of symbols,304

hence |Ra|= 60, |Rb|= 196, |Rc|= 144. The set of non-contact rules was identical to the standard305

grammar in [Dyrka and Nebel, 2009]. The number of non-terminal symbols was limited to a few in306

order to keep the number of parameters to be optimized by the genetic algorithm reasonably small.307

Combinations of symbols in rules were not constrained beyond general definition of the model G̈ in308

order to avoid interference with the contact-map constraints, for the sake of transparent evaluation309

of the PCFG-CM.310

2.3.2 Performance measures311

Performance of grammars was evaluated using a variant of the k-fold Cross-Validation scheme in312

which k− 2 parts are used for training, 1 part is used for validation and parameter selection, and313

1 part is used for final testing and reporting results. The negative set was not used in the training314

phase.315

In order to avoid composition bias, protein sequences in the test sample were scored against the316

null model (a unigram), which assumed global average frequencies of amino acids, no contact in-317

formation, and the sequence length of the query protein. The amino acid frequencies were obtained318

using the online ProtScale tool for the UniProtKB/Swiss-Prot database [Gasteiger et al., 2005]).319

Discriminative performance Grammars were assessed on the basis of the average precision (AP)320

in the recall-precision curve (RPC). The advantage of RPC over the more common Receiver Oper-321

ating Characteristic (ROC) is robustness to unbalanced samples where negative data is much more322

numerous than positive data [Davis and Goadrich, 2006]. AP approximates the area under RPC.323

Descriptive performance Intuitively, a decent explanatory grammar generates parse trees con-324

sistent with the spatial structure of the analyzed protein. The most straightforward approach to325

assess descriptive performance is to use the UST of the most likely parse tree as a predictor of326

spatial contacts between positions in the protein sequence, parameterized by the cutoff δ on path327

length between the leaves. The natural threshold for grammar G̈, which is δ = 4 (the shortest dis-328

tance between terminals generated by Rb rules), was used for calculating the precision of contact329

prediction. In addition, AP of the RPC, which sums up over all possible cutoffs, was computed to330

allow comparison with grammars without pairing rules. Eventually, the recall of contact prediction331

for the threshold δ = 4, measured with regard to the partial contact map used in the training, was332

used to assess the learning process.333

Implementation The PCFG-CM parser and the Protein Grammar Evolution framework were334

implemented in C++ using GAlib [Wall, 2005] and Eigen [Guennebaud et al., 2010]. Performance335

measures were implemented in Python 2 [van Rossum and de Boer, 1991] using Biopython [Cock336

et al., 2009], igraph [Csardi and Nepusz, 2006], NumPy [van der Walt et al., 2011], pyparsing337

[McGuire, 2008], scikit-learn [Pedregosa et al., 2011] and SciPy [Jones et al., 2001].338
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3 Results339

3.1 Materials340

Probabilistic grammars were estimated for three samples of protein fragments related to function-341

ally relevant gapless motifs [Sigrist et al., 2002, Bailey and Elkan, 1994]. Within each sample, all342

sequences shared the same length, which avoided sequence length effects on grammar scores (this343

could be resolved by an appropriate null model). For each sample, one experimentally solved spa-344

tial structure in the Protein Data Bank (PDB) [Berman et al., 2000] was selected as a representative.345

Three samples included amino acid sequence of two small ligand binding sites (already analyzed346

in [Dyrka and Nebel, 2009]) and a functional amyloid (Table 1):347

• CaMn: a Calcium and Manganese binding site found in the legume lectins [Sharon and Lis,348

1990]. Sequences were collected according to the PROSITE PS00307 pattern [Sigrist et al.,349

2013] true positive and false negative hits. Original boundaries of the pattern were extended350

to cover the entire binding site, similarly to [Dyrka and Nebel, 2009]. The motif folds into a351

stem-like structure with multiple contacts, many of them forming nested dependencies, which352

stabilize anti-parallel beta-sheet made of two ends of the motif (Fig. 2a based on pdb:2zbj353

[de Oliveira et al., 2008]);354

• NAP: the Nicotinamide Adenine dinucleotide Phosphate binding site fragment found in an355

aldo/keto reductase family [Bohren et al., 1989]. Sequences were collected according to356

the PS00063 pattern true positive and false negative hits (four least consistent sequences357

were excluded). The motif is only a part of the binding site of the relatively large ligand.358

Intra-motif contacts seem to be insufficient for defining the fold, which depends also on359

interactions with amino acids outside the motif (Fig. 2b based on pdb:1mrq [Couture et al.,360

2003]);361

• HET-s: the HET-s-related motifs r1 and r2 involved in the prion-like signal transduction in362

fungi identified in a recent study [Daskalov et al., 2015]. The largest subset of motif se-363

quences with length of 21 amino acids was used to avoid length effects on grammar scores.364

When interacting with a related motif r0 from a cooperating protein, motifs r1 and r2 adopt365

the beta-hairpin-like folds which stack together. While stacking of multiple motifs from366

several proteins is essential for stability of the structure, interactions between hydrophobic367

amino acids within a single hairpin are also important. In addition, correlation analysis re-368

vealed strong dependency between positions 17 and 21 [Daskalov et al., 2015] (Fig. 2c based369

on [van Melckebeke et al., 2010]).370

Diversity of sequences ranged from the most homogeneous CaMn to the most diverse HET-s, which371

consisted of 5 subfamilies [Daskalov et al., 2015].372

Negative samples were designed to roughly approximate the entire space of protein sequences.373

They were based on the negative set from [Dyrka and Nebel, 2009], which consisted of 829 single374

chain sequences of 300-500 residues retrieved from the Protein Data Bank [Berman et al., 2000] at375

identity of 30% (accessed on 12th December 2006). For each positive sample, the corresponding376

negative sample was obtained by cutting the basic negative set into subsequences of the length of377

positive sequences.378
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Table 1: Datasets. Notations: sim - maximum sequence similarity, npos/nneg - number of pos-

itive/negative sequences, len - sequence length in amino acids, ncon - total number of non-local

contacts (sequence separation 3+), msiz - number of contacts selected for training

id type sim npos nneg len pdb ncon msiz

CaMn binding-site 71% 24 28560 27 2zbj 41 6

NAP binding-site 70% 64 47736 16 1mrq 11 2

HET-s amyloid 70% 160 33248 21 2kj3 10 3

All samples were made non-redundant at level of sequence similarity around 70%. Contact379

pairings were assigned manually and collectively to all sequences in the set based on a selected380

representative spatial structure in the PDB database (Fig. 2).381

3.2 Performance382

Probabilistic grammars with the contact rules G̈ were learned through estimation of probabilities383

of rules θ for non-probabilistic CFG G̈ using training samples made of sequences coupled with a384

contact map U
m
X , or using sequences alone UX . Probabilistic grammars without the contact rules385

Ḡ were learned using sequences alone UX , since these grammars cannot generate parse trees con-386

sistent with contact maps for the distance threshold δ = 4. Note that since there is the one-to-one387

correspondence between input sample set S = [XM] and sample of UST sets UM
X , notations devel-388

oped for the sets of USTs are used to denote the input samples.389

3.2.1 Discriminative power390

For evaluation of the discriminative power of the PCFG-CM approach, the rule probabilities were391

estimated using the maximum-likelihood estimator (denoted ML) and the contrastive estimator with392

regard to a given contact map (denoted CE(m)). The discriminative performance of the resulting393

probabilistic grammars for test data made of sequences alone UX and sequences coupled with a394

contact map U
m
X is presented in Table 2 in terms of the average precision (AP).395

The baseline is the average precision of grammars estimated without contact constraints, Ḡm=0
ML396

and G̈m=0
ML , tested on sequences alone UX , which ranged from 0.43-0.46 for HET-s to 0.94-0.96 for397

CaMn. The scores show negative correlation with diversity of the samples and limited effect of398

adding contact rules (though the latter may result from more difficult learning of increased number399

of parameters with added rules). Grammars with the contact rules estimated without a contact map400

G̈m=0
ML performed much worse when tested on the samples coupled with a contact map U

m
X . This401

indicated that, in general, parses consistent with the constraints were not preferred by default when402

grammars were trained on sequences alone.403
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a) CaMn b) NAP c) HET-s

DI NFNR G

T--G S \QR K E

N--D V--LE G--S

P PN G V R

Y Y I V--V

S P S T L

D--H K E I \E

L Y A V GN

E--G L SN

V I T

A--D >1mrq:A159-174 T

V I LAKSIGVSNFNRRQLE

I--K >2kj3:A260-280

TTNSVETVVGKGESRVLIGNE

>2zbj:A4-30

IVAVELDSYPNTDIGDPNYPHIGIDIK

Figure 2: Schematic representation of structures of the sample motifs. Context-free-compatible

contact pairings selected in this study are marked with dashes and slashes. Order of amino acids in

sequence and their coordinates in the structure are given below each diagram. Notes: 1) in CaMn,

only 4 out of 7 real hydrogen bond-related contacts in the stem-like part were included in the

contact map for the sake of simplicity; 2) in HET-s, for example, the pair of V5 and I18 conforms

to definition of contact, however it crosses another contact between L17 and E21.

Table 2: Discriminative performance of grammars in terms of AP

Grammar Ḡm=0
ML G̈m=0

ML G̈ML G̈CE(m)

Test sample UX UX U
m
X UX U

m
X UX U

m
X

CaMn 0.94 0.96 0.67 0.95 0.95 0.79 0.98

NAP 0.78 0.86 0.28 0.75 0.79 0.24 0.91

HET-s 0.46 0.43 0.24 0.60 0.81 0.23 0.94

14

PeerJ reviewing PDF | (2018:07:29730:0:1:NEW 26 Jul 2018)

Manuscript to be reviewed



For all three samples, the highest AP (0.91-0.98) achieved grammars obtained using the con-404

trastive estimation with regard to a contact map G̈CE(m) tested on the samples with the same map405

U
m
X . The improvement relative to the baseline was most pronounced for HET-s, yet still statisti-406

cally significant (p < 0.05) for NAP. As expected, the contrastively estimated grammars performed407

poorly on sequences alone UX except for the CaMn sample.408

The maximum-likelihood grammars estimated with a contact map G̈ML tested on sequences409

coupled with the same map U
m
X performed worse than the contrastively estimated grammars but410

comparably or significantly better (HET-s) than the baseline. The average precision of these411

grammars was consistently lower when tested on sequences alone UX , yet still considerable (from412

0.60 for HET-s to 0.95 for CaMn). It is notable that in the HET-s case, the maximum-likelihood413

grammars estimated with a contact map G̈ML achieved better AP on sequences alone UX than the414

maximum-likelihood grammars estimated without a contact map G̈m=0
ML .415

Universally high AP for CaMn can be contributed to the relatively strong pairing signal from416

the long stem-like part of the motif particularly suitable for modeling with the contact rules.417

3.2.2 Descriptive power418

For evaluation of the descriptive power of the PCFG-CM approach, the rule probabilities were419

estimated using the maximum-likelihood estimator (denoted ML) and the contrastive estimator420

with regard to the sequence set (denoted CE(X)). Descriptive value of the most probable parse trees421

generated using the resulting probabilistic grammars for test sequences without contact information422

UX is presented in Table 3. Efficiency of the learning was measured on the basis of the recall at423

the distance threshold δ = 4 with regard to the context-free compatible contact map m used in424

the training. Consistency of the most likely parse tree with the protein structure was measured on425

the basis of the precision of contact prediction at the distance threshold δ = 4 with regard to all426

contacts in the reference spatial structure with separation in sequence of at least 3. Both measures427

are not suitable for assessing grammars without contact rules Ḡ . Therefore, average precision over428

all thresholds δ was used as a complementary measure of consistency of the most likely trees with429

the protein structure. Note that the AP scores achievable for a context-free parse tree are reduced430

by overlapping of pairings.431

The baseline is the result for grammars with the contact rules estimated without contact con-432

straints G̈m=0
ML . The most likely parse trees generated using these grammars conveyed practically433

no information about contacts for NAP and HET-s (recall w.r.t. contact map m close to zero) and434

limited information about contacts for CaMn (moderate recall of 0.45). Increase of the recall to435

0.79-0.98 obtained for the most likely parse trees generated using grammars G̈ML and G̈CE(X) testi-436

fies efficiency of the learning process with the contact constraints.437

Importantly, consistency of the most likely parse trees with the protein structure measured by438

the precision followed a similar pattern and increased from 0.13 for HET-s, 0.14 for NAP, and 0.69439

for CaMn when grammars with the contact rules were estimated without a contact map (G̈m=0
ML ),440

to 0.52-0.57, 0.64, and 0.84-0.87, respectively, when grammars were estimated with a contact441

map (G̈ML and G̈CE(X)). Accordingly, evaluation in terms of the average precision over distance442

thresholds indicated that distances in the most likely parse trees better reflected the protein structure443

if grammars were trained with the contact constraints.444
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Table 3: Descriptive quality of the most likely parse trees derived from sequences alone, in terms

of recall at the distance threshold δ = 4 w.r.t. the training contact map m, and precision at δ = 4

(and AP over thresholds δ ) w.r.t. the full contact map of the reference pdb structure for sequence

separation 3+. Note that the shortest length of any path between leaves in the most likely parse trees

of grammars without the contact rules Ḡ equals 5, which makes measures using δ = 4 unutile.

Gram. Ḡm=0
ML G̈m=0

ML G̈ML G̈CE(X)

Ref. pdb m pdb m pdb m pdb

CaMn (0.24) 0.45 0.69 (0.53) 0.92 0.87 (0.66) 0.98 0.84 (0.66)

NAP (0.16) 0.00 0.14 (0.12) 0.96 0.64 (0.29) 0.96 0.64 (0.29)

HET-s (0.08) 0.02 0.13 (0.14) 0.79 0.52 (0.24) 0.97 0.57 (0.27)

4 Discussion445

The most effective way of training descriptors for a given sample was the contrastive estimation446

with reference to the contact map. This approach is only possible when a single contact map that447

fits all sequences in the target population can be used with the trained grammar. The maximum-448

likelihood estimators were effective when contacts were relevant to structure of the sequence (HET-449

s, CaMn). This is expected, as use of the contact rules is likely to be optimal for deriving a pair450

of amino acids in contact if they are actually correlated. Interestingly, in the case of HET-s, the451

maximum-likelihood grammar trained with the contact constraints G̈ML compared favorably with452

the maximum-likelihood grammar trained without the constraints G̈m=0
ML even when tested on se-453

quences alone (AP 0.60 versus 0.43). This indicates that if contacts are relevant for the structure of454

sequence, the PCFG-CM approach can improve robustness of learning to local optima.455

The most likely parse trees, derived for inputs defined only by sequences, reproduced a vast456

majority of contacts (recall of at least 0.79 at δ = 4) enforced by the contact-constrained training457

input. Moreover, precision of contact prediction at δ = 4 and sequence separation 3+ was above458

0.50, up to 0.87. This translated to the overall overlap with the full contact maps in the range459

of 0.27-0.39 (not shown). Note that only a fraction of contacts can be represented in the parse460

tree of context-free grammar, and not even all of them were enforced in training. The benefit461

of the contrastive estimation with reference to the sequence set was limited in comparison to the462

maximum-likelihood grammars. However, it should be noted that the shape of the most likely parse463

tree, which was used in the evaluation, does not necessarily reflect the most likely shape of parse464

tree. Unfortunately, the latter cannot be efficiently computed [Dowell and Eddy, 2004].465
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5 Conclusions466

Complex character of non-local interactions between amino acids makes learning languages of467

protein sequences challenging. In this work we proposed a solution consisting on using struc-468

tural information to constrain the syntactic trees, a technique which proved effective in learning469

probabilistic natural and RNA languages. We established a framework for learning probabilistic470

context-free grammars for protein sequences from syntactic trees partially constrained using con-471

tacts between amino acids. Within the framework, we implemented the maximum-likelihood and472

contrastive estimators for the rule probabilities of relatively simple yet practical covering grammars.473

Computational validation showed that additional knowledge present in the partial contact maps can474

be effectively incorporated into the probabilistic grammatical framework through the concept of475

syntactic tree consistent with the contact map. Grammars estimated with the contact constraints476

maintained good precision when used as classifiers, and derived the most likely parse trees display-477

ing improved fidelity to protein structures compared to the baseline grammars estimated without478

the constraints.479

The computational experiments mainly served assessing intuitions which led to development of480

the PCFG-CM approach. The full-scale practical application to bioinformatic problems such as se-481

quence search would certainly require several enhancements. For example, accurate accounting for482

various sequence lengths would likely require a more elaborated null model. Moreover, to increase483

the number of non-terminal symbols, the learning framework has to be improved. This includes484

more efficient estimation of probabilities of numerous rules and/or added capability of inferring485

rules during learning [Unold, 2005, 2012, Coste et al., 2012, 2014]. A preliminary testing suggests486

that scoring inputs with the product of probabilities obtained using grammars with the lexical rule487

probabilities fixed according to representative physicochemical properties of amino acids [Dyrka488

and Nebel, 2009], and the appropriately adjusted null model, results in more discriminative power489

compared to the current approach (not shown). An extension of the PCFG-CM framework to ac-490

count for uncertain contact information [Knudsen, 2005] should be feasible through introducing491

the concept of the fuzzy sets of syntactic trees. These application-related developments are left for492

future work.493

Though tested in the learning setting consisting in optimizing only rule probabilities, the esti-494

mators defined in the present PCFG-CM framework can be used in more general learning schemes495

inferring also the grammar structure. Indeed, such schemes may even more benefit from con-496

straining the larger search space. It is also interesting to consider extending the framework beyond497

context-free grammars as contacts in proteins are often overlapping and thus context-sensitive. In498

this case, however, the one-to-one correspondence between the parse tree and the derivation breaks,499

therefore it may be advisable to redefine the grammatical counterpart of the spatial distance in terms500

of derivation steps in order to take advantage from higher expressiveness.501

Acknowledgements WD acknowledges Olgierd Unold and Mateusz Pyzik for interesting discus-502

sions in the course of the project.503
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