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ABSTRACT
Background. Hepatocellular carcinoma (HCC) remains one of the leading causes of
cancer-related death worldwide. Despite recent advances in imaging techniques and
therapeutic intervention for HCC, the low overall 5-year survival rate of HCC patients
remains unsatisfactory. This study aims to find a gene signature to predict clinical
outcomes in HCC.
Methods. Bioinformatics analysis including Cox’s regression analysis, Kaplan-Meier
(KM) and receiver operating characteristic curve (ROC) analysis and the random
survival forest algorithm were performed to mine the expression profiles of 553
hepatocellular carcinoma (HCC) patients from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) public database.
Results. We selected a signature comprising eight protein-coding genes (DCAF13,
FAM163A, GPR18, LRP10, PVRIG, S100A9, SGCB, and TNNI3K) in the training
dataset (AUC= 0.77 at five years, n= 332). The signature stratified patients into high-
and low-risk groups with significantly different survival in the training dataset (median
2.20 vs. 8.93 years, log-rank test P < 0.001) and in the test dataset (median 2.68 vs.
4.24 years, log-rank test P = 0.004, n= 221, GSE14520). Further multivariate Cox
regression analysis showed that the signature was an independent prognostic factor
for patients with HCC. Compared with TNM stage and another reported three-gene
model, the signature displayed improved survival prediction power in entire dataset
(AUC signature = 0.66 vs. AUC TNM = 0.64 vs. AUC gene model = 0.60, n= 553).
Stratification analysis shows that it can be used as an auxiliary marker for many
traditional staging models.
Conclusions. We constructed an eight-gene signature that can be a novel prognostic
marker to predict the survival of HCC patients.
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Keywords Hepatocellular carcinoma, Gene signature, Prognostic marker, Overall survival

How to cite this article Qiao G-j, Chen L, Wu J-c, Li Z-r. 2019. Identification of an eight-gene signature for survival prediction for pa-
tients with hepatocellular carcinoma based on integrated bioinformatics analysis. PeerJ 7:e6548 http://doi.org/10.7717/peerj.6548

https://peerj.com
mailto:wujincai73@163.com
mailto:lizhuori59@163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6548
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.6548


INTRODUCTION
Hepatocellular carcinoma (HCC) is the predominant type of liver cancer and has an
increasing worldwide prevalence (Bosch et al., 2004). In many countries, liver cancer
mortality rates rise in accordance with HCC incidence rates, reflecting the poor survival
of this cancer (Altekruse et al., 2014). With recent advances in therapeutic intervention of
documented cases of HCC, such as liver transplantation, surgical resection locoregional
therapies and chemotherapy, the 5-year survival of patients at early stage is higher than
50% (Yu et al., 2012), and the median overall survival is 60 months (Roessler et al., 2010).
However, up to 70% of HCC patients undergoing resection or ablation experience tumour
recurrence within 5 years (Roessler et al., 2012), and more than 70% of patients are unable
to benefit from these interventions due to potential liver dysfunction and/or advanced
disease performance. The median survival time of patients who suffer from unresectable
disease is approximately 6–20 months, and their 5-year survival is less than 5% (Mikhail,
Cosgrove & Zeidan, 2014). Therefore, discovering prognostic biomarkers to accurately
predict clinical outcome is urgently needed for hepatocellular carcinoma patients.

Numerous attempts have beenmade to find survival prediction biomarkers and establish
guidelines forHCC long-term prognosis. The potential markers of HCCprognosis reported
in the literature are divided into the following categories: (1) single molecules as an
independent prognostic indicator, such as serum alpha-fetoprotein (AFP), des-gamma-
carboxy-prothrombin (DCP) or other novel markers that are currently being studied
(Calderaro et al., 2017; Li et al., 2017); and (2) gene signature constructed by several to
dozens of prognostic genes through analysing high-throughput gene expression profiles.
With the development of sequencing and precision medicine, HCC survival related gene
signatures have become a research hotspot. The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) public databases, with a broad range of hepatocellular
carcinoma gene expression data, facilitatemolecular analysis forHCCprognostic biomarker
screening. However, auxiliary markers for the traditional staging models, such as TNM
stage, T stage, and BCLC stage, are lacking.

In this study, we obtained the expression profiles of HCC patients from a large dataset
in the TCGA and GEO database to construct a prognostic PCG signature, verified its
prediction power for survival and then demonstrated its clinical roles with the existing
staging models.

MATERIALS AND METHODS
HCC patients and mRNA expression profiles
One dataset including gene expression profiles and associated corresponding clinical
information of HCC patients analysed in this study was downloaded from The Cancer
Genome Atlas (TCGA, http://cancergenome.nih.gov/). The other dataset from GSE14520
with mRNA expression profiling was obtained from the Affymetrix HT Human Genome
U133A Array (Affymetrix, Santa Clara, CA, USA).

Gene exclusion criteria were as follows: genes with missing expression values in more
than 30% of samples or patients and genes whose expression values were 0 in all samples.
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The k-nearest neighbour method was used to calculate the remaining missing gene
expression values. As the data were from a public database, further approval by an ethics
committee was not required. This study met the publication guidelines provided by TCGA
(http://cancergenome.nih.gov/publications/publicationguidelines).

Construction of a prognostic PCG signature in the training dataset
Univariate Cox proportional hazards regression analysis was performed to screen out those
genes with a significant relationship with patients’ OS in the training dataset (Guo et al.,
2018). Then, we used the random survival forests-variable hunting (RSFVH) algorithm to
filter prognostic genes until twelve PCGs were screened out (Guo et al., 2016).

Subsequently, based on the above prognostic genes, we performed a multivariate Cox
regression analysis and constructed the risk score model as follows:

Risk Score (RS)=
∑N

i=1
(Expi ∗ Coei)

where N is the number of prognostic PCGs, Expi is the expression value of PCGs, and Coei
is the estimated regression coefficient of PCGs in the multivariate Cox regression analysis.
Twelve PCGs could form 212−1 = 4,095 combinations or signatures. The corresponding
risk scores for the patients from both training and validation dataset were calculated using
the risk score system. Receiver operating characteristic (ROC) curves were plotted based
on the risk score and survival status of each patient. Then, we removed the signature with
the maximum area under the curve (AUC) in the training dataset.

Validation experiments in cell lines
We isolated total RNA from the normal (293T, L02) or cancer (Hep-G2, Hep-3B,
PLC/PRF/5, Huh-7) cell lines with a QIAGEN RNeasy Mini Kit. Total RNA was then
reverse-transcribed by 5×PrimeScript RT Master Mix according to the manufacturer’s
recommendation. PCR was performed in the presence of 1 µl complementary DNAs
(cDNAs), 0.5 µl forward and reverse primers and 2×Taq PCR Master Mix in a total
volume of 20 µl. We used GAPDH (Forward: GGAGCGAGATCCCTCCAAAAT, Reverse:
GGCTGTTGTCATACTTCTCATGG) as an internal reference. The reaction conditions
were carried out according to the manufacturer’s instructions. PCR products were analysed
on a 2% agarose gel.

Statistical analysis
Kaplan–Meier (KM) curves were plotted when the median risk score in each dataset was
used as the cutoff value to compare survival risk between high-risk and low-risk groups.
Multivariate Cox regression analysis was performed to test whether the PCG signature
was an independent prognostic factor. Significance was defined as P < 0.05. All were
performed in R (R Core Team, 2018) with R packages pROC, survival, TimeROC and
randomForestSRC, which were downloaded from Bioconductor.

Furthermore, the co-expressed relationships between the prognostic PCGs in the
signature and all other protein-coding genes were computed using the Pearson test,
and those genes with P value < 0.05 and absolute value of the Pearson coefficient > 0.5
were selected for Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes
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Table 1 Summary of patient demographics and clinical characteristics.

Characteristic TCGA (n= 332) GSE14520 (n= 221)

Age (years)
>62 170 33
≤62 162 188

Sex
female 110 30
Male 222 191

Vital status
Living 225 136
Dead 107 85

(KEGG) enrichment analyses, which were performed with the clusterProfiler package (Yu
et al., 2012).

RESULTS
Patient characteristics and expression profiles
From the TCGA database, 423 HCC samples with mRNA expression profiles and clinical
data were downloaded, including 50 normal tissues and 373 cancer tissues. Simultaneously,
we obtained the mRNA expression profiles of 445 HCC samples from GSE14520 and their
clinical characteristics, including 220 normal and 225 cancers. Then, 332 TCGA and
221 GEO cancer samples with corresponding overall survival data (OS) were selected as
training and test sets to explore a prognostic PCG signature and validate the power of the
signature in predicting the survival of HCC patients, respectively. After the initial analysis
as described in the methods, a total of 16,101 PCG expression values of HCC patients were
obtained. All these gene expression values were log2 transformed. Of the enrolled 553 HCC
patients, the median age was 62 years (17–90 years), and 528 were stage I, II, III, and IV,
while the stages of 25 patients were unknown. The clinical information of the two datasets
is summarized in Table 1.

Identification of prognostic mRNAs from the training dataset
We conducted a univariate Cox proportional hazards regression analysis of the 16,101
PCGs in the training dataset and revealed a subset of 2,231 PCGs that was significantly
correlated with patients’ OS (P value < 0.05). To display these selected genes, a volcano
plot using the univariate Cox coefficient as the X-axis and −log10 (P value) as the Y -axis
was constructed (Fig. 1A). As shown in Fig. 1A, we identified 2,231 genes with significant
differences (P < 0.05), which are represented by blue dots; black dots represent the
remaining genes with no statistically significant differences. Then, we further performed
random forest supervised classification algorithm using the 2,231 genes and screened out
12 PCGs (PVRIG, CSF1, MAFG, S100A9, LRP10, TNNI3K, XRN2, GPR18, DCAF13, EID3,
SGCB, and FAM163A) strongly related to patient survival according to the permutation
important score by random survival forests-variable hunting (RSFVH) algorithm (Fig. 1B).
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Figure 1 Identification of the prognostic PCG signature in the training dataset. (A) Volcano plot of
the survival associated PCGs in univariate cox regression analysis. (B) According to important score to fil-
ter genes which were calculated by random survival forest analysis, the twelve genes with highest accura-
cies (k = 1, 2. . . 12, k represents the gene number) are shown in the plot. (C) After calculating the AUC of
4,095 signatures, the prognostic PCG-lncRNA signature with biggest prediction power (n= 8) was screen
out. (D) Validating the expression of the selected eight genes in six cell lines.

Full-size DOI: 10.7717/peerj.6548/fig-1

Construction of the prognostic PCG signature in the training dataset
These 12 screened PCGs could construct 4,095 risk score models and form 4,095 signatures.
To select a signature with the largest prediction power in the training dataset, we performed
ROC analyses using patients’ survival status and signature risk scores as variables. Through
comparing their areas under the respective ROC curves (AUC), a PCG signature comprising
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Table 2 Identities of PCGs in the prognostic signature and their univariable cox association with prognosis.

Database IDa Gene
symbol

Gene name Coefficientb Pb Gene expression
level association
with prognosis

Primer (5′–3′)

Forward(UP)/Reverse(down)

ACTGCACAGCTAAAGAACCG
ENSG00000164934 DCAF13 DDB1 and CUL4 associated

factor 13
0.389 0.002 high

TCCCAGACTACTTCCAGTCAC
TTTTACATACGGACGGCTGACA

ENSG00000143340 FAM163A
Family with sequence similar-
ity 163 member A 0.204 0.002 high

CTAATAGCCCTTGGATTGGTGAA
GCAGTGCTCTTAGAAGTGCAG

ENSG00000197324 LRP10 LDL receptor related protein
10

0.533 <0.001 high
CCTGATGGTGACAGTCTGTTC
AGCAAAGTTCCAATGGTCCTG

ENSG00000163069 SGCB Sarcoglycan beta 0.226 0.001 high
TCATCAATCGGAATGTATCCAGC
GGTCATAGAACACATCATGGAGG

ENSG00000163220 S100A9 S100 calcium binding protein
A9

0.202 <0.001 high
GGCCTGGCTTATGGTGGTG
CAGTTGTACCACCAAGAAGAG

ENSG00000125245 GPR18 G protein-coupled receptor 18 −0.311 0.001 low
GCACTAATAAAGGCAAGAAGC
ACGTCCCTTATGCCACTATCA

ENSG00000213413 PVRIG
PVR related immunoglobulin
domain containing −0.345 0.002 low

AGCGTAGAGTCCATTCTCAACA
TCATAAACATCAACCACCAAG

ENSG00000116783 TNNI3K TNNI3 interacting kinase −0.48 0.002 low
TTCATAAGCCCACATCAAACA

Notes.
aEnsembl database.
bDerived from the univariable Cox regression analysis in the training set.

eight genes (PVRIG, S100A9, LRP10, TNNI3K, GPR18, DCAF13, SGCB, and FAM163A)
with the max AUC was screened out (Fig. 1C, Table 2).

To validate the expression of these genes, we extracted total RNA from six cell lines (see
‘Methods’). PCR and agarose gel results using the eight gene primers shown in Table 2
revealed that these eight genes were highly abundant in normal and liver cancer-related
cell lines (Fig. 1D).

Performance evaluation of the PCG signature for survival prediction
In the training dataset, with the median value of risk score as cutoff, patients were divided
into a high-risk group (n = 166) and a low-risk group (n = 166). Kaplan–Meier survival
analyses were performed to compare the overall survival of two groups of patients. The
low-risk group had significantly better clinical outcomes than the high-risk group (2.20 vs.
8.93 years, log-rank test P < 0.001; Fig. 2A) in the training dataset. The OS rate of patients
in the high-risk group was 32.25% and that of patients in the low-risk group was 75.60%.

To validate the prognostic prediction power of the signature, we applied the PCG
signature-based risk model to the test set. The median risk scores of 221 HCCs were
calculated as the cutoff point in the test set using the Affymetrix gene chip rather than
RNA-seq. The test dataset was divided into high-risk and low-risk groups. Kaplan–Meier
curves for the high- and low-risk groups in the test dataset are shown in Fig. 2B (median
2.68 vs. 4.24 years, log-rank test P = 0.004, n= 221).
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The risk score, gene expression heat-map, and survival status of each HCC patient in
the training or test cohort are plotted in Figs. 2C and 2D. For patients with low-risk scores,
the expression of PR18, PVRIG, and TNNI3K was upregulated, and DCAF13, FAM163A,
LRP10, SGCB, and S100A9 were expressed at low levels.

Comparing the survival prediction power of the PCG signature with
other models
In clinical practice, TNM stage is an available prognostic biomarker routinely used as
a non-invasive method for predicting the survival of HCC patients. To compare the
survival prediction power of TNM stage and the signature, we performed ROC analysis.
In the training dataset, the AUCs of the PCG signature were larger than the TNM stage
(Signature-AUC Training = 0.73, 95% CI [0.68–0.78] vs. TNM-AUC Training = 0.61,
95% CI [0.54–0.67], Fig. 3A). This result was further verified in both TCGA and GEO
datasets (Signature-AUC Test = 0.66 vs. TNM-AUC Test = 0.64, n= 553, Fig. 3B). We
also compared the survival predictive power at 3, 5 and 9 years of the PCG signature with
TNM staging by TimeROC analysis in both the TCGA dataset and in the entire datasets. In
TCGA, the respective AUCs of the PCG signature and TNM staging were 0.78 (0.71–0.84)
and 0.65 (0.57–0.73) at 3 years, 0.77 (0.69–0.85) and 0.61 (0.51–0.71) at 5 years and 0.84
(0.76–0.92) and 0.51 (0.22–0.81) at 9 years (Figs. 3C and 3D). In the entire TCGA and GEO
dataset, the respective AUCs of the PCG signature and TNM staging were 0.71 (0.67–0.76)
and 0.67 (0.62–0.72) at 3 years, 0.69 (0.63–0.75) and 0.67 (0.61–0.74) at 5 years and 0.80
(0.72–0.88) and 0.52 (0.22–0.83) at 9 years (Figs. 3E and 3F).
Moreover, we also compared our eight-gene model with the three-gene prognostic

signature (0.384× RTN3 − 0.561× SOCS2 − 0.434× UPB1) (Li et al., 2017) in the entire
TCGA and GEO dataset (n= 553), as they were all composed of PCGs. KM analysis showed
the two models had good ability in stratification of HCCs (log-rank P < 0.0001); however,
our eight-gene signature performed better, as it could divide the 553 HCCs into high-risk
and low-risk groups (Fig. 4A), unlike the three-genemodel, at more than 7.5 years (Fig. 4B).
ROC analysis suggested that our signature outperformed the three-gene model in survival
prediction (0.66, 95% CI: 0.62 ∼0.7 vs. 0.6, 95% CI: 0.56 ∼0.64, Fig. 4C). In addition, by
TimeROC analysis, we compared the survival predictive power of the three- and eight-gene
signatures at 3, 5 and 9 years, showing similar results to those above (Figs. 3E and 3F).

The PCG signature is an independent prognostic factor
To assess whether the PCG signature was an independent risk factor for survival prediction,
we performed a Chi-squared test and found no association between the PCG signature
with a series of clinical parameters in the training or test groups (Table 3). Then, univariate
Cox and multivariate Cox regression analyses were performed in the training dataset and
showed that the PCG signature was an independent prognostic factor after adjusting for
other clinical features, including sex, age and pTNM (high-risk group vs. low-risk group,
HR = 7.23, 95% CI [4.19–12.47], P < 0.001, n= 332, Table 3). The same result was
observed in the GEO dataset when adjusting for other clinical features, including sex, age
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ALT, AFP, cirrhosis, BCLC staging, CLIP staging and TNM staging (high-risk group vs.
low-risk group, HR = 1.69, 95% CI [1.06–2.70], P = 0.03, n= 221, Table 3).

Stratification analysis
To obtain a better understanding of the clinical significance of the signature in HCC
patients, we correlated the signature with a series of parameters in the two groups (n= 332).
As seen in Tables 3 and 4, there was an association between the signature and TNM stage or
pathologic T stage (tumour size) in the TCGA and GEO datasets (Chi-square test P < 0.05,
Tables 4 and 5). Then, we integrated the TCGA and GEO datasets together and stratified
the TNM stage and T stage by the PCG signature risk score. Kaplan–Meier curves showed
that patients of low TNM stage (TNM I + II, n= 411) or high TNM stage (TNM III +
IV, n= 117) and tumour size ≤ 5 cm (T stage I, II) or tumour size >5 cm (T stage III, IV)
were further stratified into two different risk subgroups. The log-rank test showed that the
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Table 3 Univariable andmultivariable Cox regression analysis of the PCG signature and survival of HCC patients in the training and test
group.

Univariable analysis Multivariable analysis

Variables HR 95%CI of HR P HR 95%CI of HR P

lower upper lower upper

TCGA dataset (n= 332)
Age >62 vs. ≤62 1.45 0.98 2.13 0.06 1.23 0.81 1.85 0.33
Sex Male vs. Female 0.75 0.51 1.1 0.14 0.76 0.5 1.15 0.2
pTNM stage I, II vs. III, IV 1.49 1.2 1.86 <0.001 1.11 0.71 1.73 0.66
PCG-signature High risk vs. low risk 7.19 4.36 11.86 <0.001 7.23 4.19 12.47 <0.001

GSE14520 set (n= 251)
Age >62 vs. ≤62 0.99 0.97 1.01 0.40 0.99 0.97 1.02 0.56
Sex Male vs.Female 1.70 0.82 3.52 0.15 1.14 0.54 2.40 0.73
ALT >500 U.L vs. ≤500 U.L 1.08 0.70 1.66 0.73 0.71 0.45 1.12 0.14
AFP >300 ng/ml vs. ≤300 ng/ml 1.63 1.06 2.50 0.03 0.69 0.35 1.37 0.29
Cirrhosis Yes vs. No 4.62 1.14 18.80 0.03 4.80 1.15 20.09 0.03
BCLC stage B,C vs.0,A 2.10 1.66 2.66 <0.001 1.63 1.05 2.53 0.03
CLIP stage >2 vs. ≤1 1.91 1.55 2.36 <0.001 1.49 0.98 2.28 0.06
pTNM stage III, IV vs. I, II 1.39 1.23 1.58 <0.001 1.01 0.83 1.24 0.91
PCG-signature High risk vs. low risk 1.87 1.21 2.88 <0.001 1.69 1.06 2.70 0.03

high-risk patients of TNM or T low stage subdivided by the signature had shorter survival
than the low-risk patients (log-rank test P < 0.001, Figs. 5A and 5C). Similarly, the TNM or
T high stage patients were also divided into a high-risk group with lower OS and a low-risk
group with higher OS (log-rank test P = 0.0019/< 0.001, Figs. 5B and 5D). In addition, the
GEO set also showed an association between the signature and BCLC staging or AFP; KM
analysis indicated that the HCCs could be subgrouped into four clusters by the signature
and BCLC staging or alpha fetoprotein (AFP) with different OS: BCLC staging 0/A and low
risk, BCLC staging B/C and low risk, BCLC staging 0/A and high risk, and BCLC staging
B/C and high risk (log-rank test P < 0.001, Fig. 5E); or AFP≤ 300 ng/ml and low risk, AFP
> 300 ng/ml and low risk, AFP ≤ 300 ng/ml and high risk, and AFP > 300 ng/ml and high
risk (log-rank test P = 0.0092, Fig. 5F).

Functional characterization of the selected prognostic PCGs
To explore the functional implications of these selected eight PCGs, we performed Pearson
correlation analyses between the eight PCGs and protein-coding genes based on their
expression levels in the TCGA and GEO datasets. A total of 776 protein-coding genes were
highly correlated with at least one of the selected PCGs (Pearson correlation coefficient
>0.5/≤0.5, P< 0.05). GO and KEGG of these co-expressed protein-coding genes were
performed and revealed that co-expressed protein-coding genes in the two datasets were
significantly enriched in 878 different terms, including 42 KEGG and 836 Go terms (P
< 0.05). Most were immunity related and showed the eight genes might be involved in the
immune system process through interacting with those co-expressed protein-coding genes
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Table 4 Association of the PCG signature with clinicoPathological characteristics in TCGAHCC pa-
tients.

Variables Training group P

Low risk* High risk*

Age 0.38
>62 90 80
≤62 77 85

Sex 1.00
Female 55 55
Male 112 110

TNM staging <0.001
I, II 137 104
III, IV 23 45
UNKNOWN 12 11

Pathologic M 0.21
M0 123 117
M1 0 3
UNKNOWN 44 45

Pathologic N 0.12
N0 173 54
N1 3 0
UNKNOWN 46 56

Pathologic T <0.001
T1-2 141 117
T3-4 24 48
UNKNOWN 2 0

Notes.
*The Chi-squared test P value <0.05 was considered significant.

that affect important biological processes such as T cell receptor signalling pathway, T cell
activity and chemokine signalling pathway (Fig. 6).

DISCUSSION
Hepatocellular carcinoma (HCC) is a highly heterogeneous disease in terms of prognosis,
as hepatocellular carcinoma patients with similar TNM stage have different survival times.
As liver cancers are increasingly discovered and treated at an early stage, traditional
clinicopathological indicators such as tumour size, vascular invasion, portal vein tumour
thrombus and TNM stage have become difficult to adapt to the current needs of prediction
of individual outcomes. In the era of precision medicine, screening prognostic molecular
markers that fully reflect the biological characteristics of tumours is significant for
individualized prevention and treatment of HCC patients. In the present study, we
analysed the expression profiles of 553 pancreatic carcinoma samples from TCGA and
GEO (Calderaro et al., 2017; Roessler et al., 2010; Roessler et al., 2012) and identified a
robust eight-gene classifier associated with OS independent of clinical factors.
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Table 5 Association of the PCG signature with clinicoPathological characteristics in GSE14520 HCC
patients.

Variables Test group P

Low risk* High risk*

Age 0.29
>62 92 96
≤62 20 13

Sex 0.09
Female 20 10
Male 92 99

TNM staging <0.001
I, II 97 73
III, IV 14 35
UNKNOWN 2 0

Tumor Size <0.001
>5 cm 25 55
≤5 cm 86 54
UNKNOWN 1 0

BCLC staging 0.02
0&A 94 74
B&C 17 34
UNKNOWN 1 1

CLIP staging 0.08
>2 3 10
≤2 108 98
UNKNOWN 1 1

HBV viral status 0.90
AVR-CC 27 29
CC 81 75
N 3 3
UNKNOWN 1 2

AFP (300 ng.ml) 0.03
>300 ng 41 59
≤300 ng 69 49
UNKNOWN 2 1

ALT (50 U.L) 0.12
>50 U.L 40 51
≤ 50 U.L 72 58

Notes.
*The Chi-squared test P value <0.05 was considered significant.

The successful development and wide clinical use of Oncotype DX (Bhutiani et al., 2018;
Siow et al., 2018; Wang et al., 2018) (a distant disease recurrence score by analysing the
expression of 21 genes) in breast cancer and Coloprint (Kopetz et al., 2015; Maak et al.,
2013;Tan & Tan, 2011) (an 18-gene expression signature) in colon cancer showed that gene
expression profiling has become the most promising high-throughput molecular approach
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for identifying new prognostic markers in cancers. Similar gene expression profiles have
been developed for HCC in recent years. Ning Li et al. identified a HCC signature
including 15 hub genes from the gene expression profile of 40 HCC samples (Li, Li & Chen,
2018). A study identified a three-gene prognostic signature from the GSE14520 dataset
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(Yang et al., 2018). Hoshida et al. discovered and validated a gene-expression signature
associated with survival based on the profiles of liver tissue adjacent to the tumour in 306
HCC patients but failed to identify an outcome-associated signature from the tumor tissue
profiles (Hoshida et al., 2008). However, these studies have limitations. Some studies lacked
sufficient samples, and some failed to perform validation in independent datasets. Our
study overcame these problems by collecting 553 HCC patients and validating the PCG
signature obtained from the TCGA database in a GEO dataset produced from a different
platform.

Through bioinformatics analyses, we found an eight-gene signature that divided HCC
patients into low-risk and high-risk groups with significantly different survival times
in the training or test dataset, demonstrating its good prognostic performance. Then,
multivariate Cox regression analysis validated the power of the selected PCG signature in
predicting OS in HCC patients independent of clinical features, such as age, sex and TMN
stage. Moreover, the superior prediction ability of the eight-gene signature was confirmed
by comparing with the three-gene model (Li et al., 2017) and the TNM stage, which is
considered the traditional prognostic factor. The stratification analysis found that the PCG
signature could subdivide HCC patients with TNM stage, T stage, BCLC stage and AFP,
implying the robust prognostic power of the signature to serve as an auxiliary marker with
those staging models.

In the PCG signature, high expression of DCAF13, FAM163A, LRP10, SGCB and S100A9
was associated with short survival time (univariate Cox coefficient >0), indicating these
genes were risk factors for HCC patients. In contrast, GPR18, PVRIG and TNNI3K were
protective factors. DCAF13 (DDB1 and CUL4 associated factor 13) is a protein coding
gene located on 8q22.3 that encodes a protein containing five WD40 domain repeats
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in the central region and a C-terminal SOF1 domain (Chen et al., 2018). Although the
function of DCAF13 has not yet been demonstrated, findings indicate that DCAF13 is
associated with worse prognosis of breast cancer patients (Chin et al., 2007) and HCC
patients (Cao et al., 2017), which is consistent with our finding. FAM163A (family with
sequence similarity 163 member A), also known as NDSP (neuroblastoma-derived
secretory protein), is found on chromosome 1q25.2 and encodes a 167 amino acid
protein with a putative signal peptide (Vasudevan et al., 2009). NDSP is overexpressed
in neuroblastoma tissue compared with normal tissues and may serve as a predictor
of outcomes in neuroblastoma (Vasudevan et al., 2007). LRP10 (LDL receptor related
protein 10) is involved in apolipoprotein internalization (Brodeur et al., 2012). However,
a study mined the expression of thirteen LRPs from The Cancer Genome Atlas (TCGA)
in ten common solid malignancies and found that LRP10 was significantly associated
with decreased patient survival in three different malignancies: hepatocellular carcinoma,
lung adenocarcinoma, and pancreatic adenocarcinoma (Gonias et al., 2017). Our finding
confirms the potential role LRP10 in HCC prognosis and another reported three-gene
prognostic signature for HCCs (Li et al., 2017). S100A9 (S100 calcium binding protein A9)
belongs to a family of 25 homologous low-molecular-weight intracellular calcium-binding
proteins. S100A9 expression is significantly higher in a variety of tumours compared to
normal tissues or healthy individuals, and may be a potential marker for poor prognosis
of cancer patients (Gunaldi et al., 2015; Huang et al., 2018; Shabani et al., 2018; Yun et al.,
2015). SGCB (sarcoglycan beta), a member of the sarcoglycan family, is associated with
limb-girdle muscular dystrophy. There is no research on the role of SGCB in cancer. GPR18
(G protein-coupled receptor 18) is a member of the G-protein-coupled receptor (GPCR)
family. GPCRs are involved in regulating important biological functions, including cellular
motility, growth and differentiation, and gene transcription, and play a key role in cancer
progression. Qin et al., (2011) demonstrated that GPR18 was overexpressed in melanoma
metastases andmay be highly relevant for the malignant behaviour of melanoma. However,
in our study, GPR18 was identified as a protective factor for HCC patients. PVRIG (PVR
related immunoglobulin domain containing), also known as CD112R, is a member of the
poliovirus receptor–like proteins, preferentially expressed on T cells and NK cells (Zhu
et al., 2016). Blockade of CD112R enhanced trastuzumab-triggered antitumour response
by human NK cells and could be used to treat breast cancer (Xu et al., 2017). The third
protective factor TNNI3K (troponin I-interacting kinase) is a cardiac-specific kinase
whose biological function remains largely unknown. Although we inferred the function
of these PCGs by GO and KEGG analyses and validated their expression in six cell lines,
the biological roles of the selected 8 genes in immunity are still not clear and should be
investigated in further experimental studies.

CONCLUSIONS
We have identified an eight-gene signature associated with the survival of hepatocellular
carcinoma patients in a large HCC cohort. As a result, this signature could be used as a
promising prognostic tool to achieve risk stratification of patients with HCC in the clinic
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and could serve as an auxiliary marker with existing staging models, such as TNM stage
and T stage, which have been validated in more than 500 HCCs.
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PCG protein coding gene
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AUC area under the ROC curve
OS overall survival
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