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ABSTRACT
We investigated the spatial and temporal patterns of Cautires diversification on the
Malay Peninsula and Sumatra to understand if the narrow and frequently dry
Malacca Strait separates different faunas. Moreover, we analyzed the origin of
Cautires in Malayan and Sumatran mountains. We sampled 18 localities and present
the mtDNA-based phylogeny of 76 species represented by 388 individuals.
The phylogenetic tree was dated using mtDNA evolution rates and the ancestral
ranges were estimated using the maximum likelihood approach. The phylogeny
identified multiple lineages on the Malay Peninsula since the Upper Eocene
(35 million years ago, mya) and a delayed evolution of diversity in Sumatra since the
Upper Oligocene (26 mya). A limited number of colonization events across the
Malacca Strait was identified up to the Pliocene and more intensive faunal exchange
since the Pleistocene. The early colonization events were commonly followed by
in situ diversification. As a result, the Malacca Strait now separates two faunas with a
high species-level turnover. The montane fauna diversified in a limited space and
seldom took part in colonization events across the Strait. Besides isolation by open
sea or a savannah corridor, mimetic patterns could decrease the colonization capacity
of Cautires. The Malay fauna is phylogenetically more diverse and has a higher
value if conservation priorities should be defined.

Subjects Entomology, Evolutionary Studies, Molecular Biology
Keywords Oriental region, Molecular phylogeny, Colonization, Mimicry

INTRODUCTION
Geographic isolation is an important factor in the speciation process (Lester et al., 2007;
Barraclough & Vogler, 2000) and recent studies have shown that poor dispersers have a
tendency to produce a higher number of species in a small area (Ikeda, Nishikawa &
Sota, 2012; Bray & Bocak, 2016). The number of individuals which are able to cross a
geographical barrier depends on the dispersal propensity of the animals under
consideration; for example, flightless species have a much lower chance to cross a sea
barrier than highly mobile long-distance flying insects (Emerson, Oromi & Hewitt, 2000;
Yoder & Nowak, 2006; Lohman et al., 2011; Husemann, Deppermann & Hochkirch, 2014;
Toussaint et al., 2015, 2017b; Bray & Bocak, 2016; Bocek et al., 2018). Most beetles
(Coleoptera) are winged and many of them are able to fly over long distances, especially
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those depending on ephemeral habitats or food sources, like lentic water beetles and
coprophagous beetles. Their ability to frequently cross wide sea straits and to establish
permanent populations was demonstrated in numerous phylogeographic studies (Balke
et al., 2009; Toussaint et al., 2015; Tseng et al., 2018). Further studies addressed
colonization and diversification on oceanic (Bell et al., 2015; Husemann, Deppermann &
Hochkirch, 2014) and continental islands (Michaelides et al., 2015; Fuchs et al., 2016).
Based on these studies, we can expect low turnover in the flying insects of geographically
close and repeatedly connected landmasses.

Our study area is located in the western part of the Sunda Shelf which includes the
Malay Peninsula and Sumatra separated by the shallow and narrow Malacca Strait
(Hall, 2002; Cottam, Hall & Ghani, 2013). Its present width is 40–150 km and the depth up
to 120 m. The southernmost part is packed with small islands separated by a maximum
distance eight km at the present sea level and with an extensive dry-land if the sea
level is only a few meters lower (Fig. 1; http://maps.ngdc.noaa.gov/viewers/bathymetry/;
Voris, 2000). Compared to widely accepted zoogeographical boundaries (e.g., Wallace’s,

Figure 1 Study area. The sampled localities with the list of species collected in each locality. Full-size DOI: 10.7717/peerj.6511/fig-1
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Weber’s and Lydekker’s lines), the Strait has never been considered as a serious barrier for
a faunal exchange (Mayr, 1944; Lohman et al., 2011). The Malay Peninsula and
Sumatra have a different tectonic history. Unlike the tectonically very stable Malay
Peninsula with old, eroded land blocks, Sumatra is a geologically dynamic region and was
partly submerged and disintegrated into a number of smaller islands in the Upper
Oligocene and Lower Miocene. These isolated islands became a single landmass about
15 million years ago (mya; Hall, 2002). There is no information about the extent of dry
land left when Sumatra was submerged (Hall, 2002), but the presence of ancient neotenic
lineages indicates that several parts were not inundated (Malohlava & Bocak, 2010;
Masek et al., 2014).

Now, the predominant ecosystems in the Sundaland are humid rainforests and it is
supposed that they have been present in the area since the origin of the Asian monsoon
circulation associated with the uplift of the Himalayas ∼50 mya (Heaney, 1991).
Knowledge of the earlier distribution of rainforests is limited, but the Pleistocene cold
periods are known for their dry climate. During the glacial maxima, tropical forests shrank
and mostly persisted in the mountains along the western coast of Sumatra and on the
Malay Peninsula. Internal lowlands were covered by savannahs which are supposed to be a
significant barrier to rainforest species (Heaney, 1991; Gathorne-Hardy et al., 2002;
Lohman et al., 2011).

The Malay Peninsula and Sumatra represent a single zoogeographic region with a high
number of widespread species (Myers et al., 2000). Nevertheless, some species are
restricted to a limited part of the Sunda Shelf and their evolutionary history and
distribution can elucidate faunal exchange and speciation history in South East Asia, as
was demonstrated in recent studies of the great apes (Nater et al., 2017) or shrews
(Demos et al., 2016). We examine phylogenetic relationships within the net-winged beetle
genus Cautires Waterhouse, 1879 (Lycidae: Metriorrhynchini: Cautirina). These beetles
are flight capable, but due to weak sclerotization, they fly slowly and usually only under the
forest canopy (Linsley, Eisner & Klots, 1961; field observation). As they do not take
food in the adult stage, they live for a short time, typically a few weeks. Additionally, their
soft, highly permeable integument makes them sensitive to salt water and wide sea straits,
such as the Makassar Strait, separate different faunas even at tribe levels despite the
presence of large rivers which can bring a high amount of drifting debris and insects in
the sea during torrential rains and flooding (Bocak, Matsuda & Yagi, 2006; Sklenarova,
Chesters & Bocak, 2013; Masek et al., 2018). Although their colonization capacity has not
been studied, the earlier published phylogenies have shown that net-winged beetle faunas
with high species turnover can be separated by narrow sea straits (Malohlava & Bocak,
2010; Li, Bocak & Pang, 2015a; Li et al., 2015b; Li, Pang & Bocak, 2017b;Masek et al., 2018)
and only some flower-visiting net-winged beetles are more effective colonists (Motyka,
Masek & Bocak, 2017). Due to biological characteristics, Cautires have a lower dispersal
capacity than long living, well-sclerotized and well-flying beetles such as water or dung
beetles (Balke et al., 2009;Masek et al., 2014, 2015; Toussaint et al., 2015; Li, Pang & Bocak,
2017a ; Bocek et al., 2018). The genus was supposedly brought to Asia with drifting
India 35–55 mya, its diversification started before the colonization of the Sunda Shelf
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and resulted in ∼170 described species from the Oriental region (Kleine, 1933; Bocak, 2002;
Dudkova & Bocak, 2010; Sklenarova, Chesters & Bocak, 2013; Sklenarova, Kubecek &
Bocak, 2014). The 53 Malay and Sumatran species represent a subset of Oriental Cautires.
Morphological taxonomic studies have already identified high diversity, especially in
the Malay montane forests where Cautires are more abundant compared to seasonally dry
lowland ecosystems. Most species have restricted ranges and they do not occur across a
wide range of elevations (Jiruskova & Bocak, 2015; Jiruskova, Motyka & Bocak, 2016).
Cautires, as all net-winged beetles, are protected by smelly and bitter compounds in their
hemolymph and they are usually aposematically colored and commonly mimicked by
palatable insects (Linsley, Eisner & Klots, 1961; Eisner, Kafatos & Linsley, 1962; Eisner et al.,
2008; Moore & Brown, 1981; Guilford et al., 1987; Lingafelter, 2013). Most aposematic
patterns occur in clearly defined ranges and potentially prevent easy colonization of areas
with different aposematic signals (Chouteau & Angers, 2011; Bocak & Yagi, 2010;
Motyka, Kampova & Bocak, 2018).

The aim of this study is to investigate (1) the diversification of Cautires in the Sunda
Shelf, (2) whether the narrow and repeatedly dry Malacca Strait separates different faunas
and (3) whether turnover between neighboring Sumatra and the Malay Peninsula is
produced by in situ speciation. If the Malacca Strait limits the number of successful
colonization events, we should observe the clades that continually diversified either within
Sumatra or Malaya. Alternatively, if Cautires frequently crossed the Malacca Strait or
savannah ecosystems which replaced the strait during the Quaternary low-stand periods,
we should identify widespread species with high intraspecific genetic variability.
Additionally, multiple colonization events should be inferred within the clades of
closely related species.

METHODS
Sampling and sequencing
Cautires net-winged beetles from the Malay Peninsula and Sumatra were included in the
dataset (Table S1). The available material contained 140 samples from Sumatra and
248 samples from the Malay Peninsula. The samples were collected in 18 localities from
lowlands to 2,400 m above sea level (Fig. 1; Table S1). The collecting was approved by the
permit No TS/PTD/5/4Jld48(41); some material was collected on public land, outside
protected areas, no protected species were collected.

The total DNA was extracted from metathoracic muscles using the DNeasy tissue
kit (Qiagen N.V., Venlo, Netherlands). Due to financial constraints that limit the genetic
sequencing of hundreds of samples and the problem of identifying suitable genomic
markers for the species-level phylogeny, only mitochondrial fragments were amplified:
rrnL–tRNA-Leu–nad1 (∼810 bp), the 3′end of cox1–tRNA-Leu–cox2 (∼1,100 bp),
and nad5–tRNA-Phe–tRNA-Glu–tRNA-Ser (∼1,310 bp). The primers and PCR
conditions followed Sklenarova, Chesters & Bocak (2013). The PCR products were purified
using PCRm96 Plates (EMD Millipore Co., Burlington, MA, USA) and sequenced by
an ABI 3130 automated sequencer using the Big Dye Sequencing Kit 1.1 (Thermo Fisher
Scientific Inc., Foster City, CA, USA). The chromatograms produced by Sanger sequencing

Jiruskova et al. (2019), PeerJ, DOI 10.7717/peerj.6511 4/21

http://dx.doi.org/10.7717/peerj.6511/supp-1
http://dx.doi.org/10.7717/peerj.6511/supp-1
http://dx.doi.org/10.7717/peerj.6511
https://peerj.com/


were edited using Sequencher 4.8 (Gene Codes Inc., Ann Arbor, MI, USA) and the new data
(GenBank accession codes AB123456–AB123456, Table S1) were aligned with the previously
published sequences representing several Metriorrhynchini genera as an outgroup
(Table S2; Sklenarova, Chesters & Bocak, 2013; Sklenarova, Kubecek & Bocak, 2014).

Species delimitation, phylogenetic analyses, reconstruction of
ancestral areas and dating
The taxonomy of South East Asian Cautires has not been revised and original descriptions
are uninformative. Only the Malay fauna was recently studied (Jiruskova & Bocak, 2015;
Jiruskova, Motyka & Bocak, 2016). Therefore, we could not formally identify many
Sumatran species and we had to delimit them here. We did not have a chance to test
intrinsic reproductive isolation. Therefore, using the biological species concept
(sensu Mayr 1942, see De Queiroz, 2005 for further discussion), we hypothesized that the
sets of individuals which differ morphologically from other individuals are intrinsically
reproductively isolated and represent separate biological species. We used external
morphology, that is, the relative size of eyes in males, coloration, the shape of the
pronotum, elytral cells and elytral costae. The characters were studied using a binocular
microscope Olympus SXZ-16 under magnification 6–100�. Further, the genitalia of all
species were dissected and cleaned from muscles and fat bodies to observe detailed
structures. Genitalia often serve as a reproductive isolating mechanism and closely related
net-winged beetle species regularly differ in their morphology (Malohlava & Bocak, 2010;
Bocak & Yagi, 2010; Masek et al., 2015; Fig. S1). Further, we used mitochondrial
rrnL, cox1 and nad5markers to identify genetic differentiation between morphology-based
species (Table S3). Although maternally inherited, these markers are commonly used to
identify species limits (Ahrens et al., 2016, but Baselga et al., 2013). The comparison
of color patterns, morphology and molecular differentiation can identify whether some
species are color polymorphic. If we identified a set of individuals with highly similar
morphology and mtDNA sequence, the difference in coloration was not considered as a
proof of intrinsic reproductive isolation and we designated the individuals belonging to
various color pattern subsets as a single putative biological species.

All individuals were dry-mounted and the color pattern of each individual was
described and each individual was assigned to one of the following groups: (1) the
pronotum and elytra completely black; (2) the pronotum and the humeral part of elytra
light brown; (3) the pronotum red, humeri or at least the humeral part of elytral costae
red; (4) the pronotum black, the basal part of elytra brightly colored, that is, red or
brown; (5) the pronotum brightly orange, at least the humeral part of elytral costae brightly
orange or whole elytra orange; (6) the pronotum black, the humeral part of elytra black,
their apical part red; (7) the whole upper side of the body yellow; (8) the pronotum
completely red or with a black patch in the middle, elytra black. The geographic
distribution of color patterns was mapped.

Mitochondrial DNA fragments were separately aligned with MAFFT 7.017 plug-in
(Katoh & Standley, 2013) in Geneious R7.1.9 (Biomatters Inc., Newark, NJ, USA)
and G-Ins-i algorithm. The alignments of the protein-coding genes cox1, cox2, nad1 and
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nad5 were checked by amino acid reading frames and manually corrected where necessary.
The rrnL fragment has a complex loop structure and its alignment may be more
complicated if loops are extensive (Zhong & Zhang, 2012). The longest identified indel
contained four positions, and therefore, we did not use a structural alignment approach to
assess the homology of individual nucleotides and gaps. The concatenated supermatrix
was analyzed under the maximum likelihood (ML) criterion using IQ-TREE 1.6.0
(Nguyen et al., 2015) with 5,000 UFboot iterations and partitioned by genes. Optimal
models of evolution were identified by ModelFinder (Kalyaanamoorthy et al., 2017)
implemented in IQ-TREE (Table S2).

The dataset for subsequent analyses was pruned to a single representative of each
putative species (Figs. 2 and 3). The reduced dataset contained 76 terminals and Xylobanus
sp. as a single outgroup and was used for both dating and area reconstruction analyses.
The splits were dated in Beast 1.8.1 using the fixed topology inferred from the analysis of the
pruned dataset (Drummond et al., 2006; Suchard & Rambaut, 2009). The HKY model, Yule
Process and Lognormal Uncorrelated Relaxed Clock, as proposed in the Beast 1.8.1
manual, were set in the Beast analysis after the application of the GTR+I+G model did not
reach convergence (Drummond et al., 2012;Drummond & Bouckaert, 2015). As no fossils of
Metriorrhynchini are available, we used rates of molecular evolution proposed by
Papadopoulou, Anastasiou & Vogler (2010): the 0.0168 substitutions/site/my/lineage for
cox1 fragment, 0.0054 subs/s/my/l for rrnL fragment and 0.012 subs/s/my/l for nad5
fragment. The Markov chain Monte Carlo (MCMC) parameters were set to 5� 107 million
generations with sampling every 5,000 generations and the effective sample size values.
The pre-stationary phase was identified in Tracer 1.6 (Rambaut et al., 2014) and the initial
1.25 � 107 generations were discarded as burn-in.

Additionally, the ancestral areas were inferred using the ML framework in
BioGeoBEARS (Matzke, 2013) implemented in RASP 4.0 (Yu et al., 2015), using the
dataset containing 76 terminals (a single terminal per species). We compared all
alternative models of colonization, all also with +J (Matzke, 2014) which tests
founder-event speciation (Table S4). The localities were assigned to respective taxa and
coded for two analyses. (i) general geographic origin (A) Sumatra and (B) Malaya;
(ii) specific geographic origin: (A) Malay Highlands, (B) Malay lowlands and lower
elevation forest <1,000 a. s. l., (C) Sumatra Jambi (Tujuh and Kerinci) (D) Sumatra Barat
(Merapi, Maninjau, Talamau) and (E) Sumatra Utara (Sibayak and Sinabung) and (F) Java.
The phylogenetic distribution of aposematic patterns was noted for each terminal
and their geographic distribution was summarized on the map of the western part
of the Sunda Shelf. We do not present the formal reconstruction of the evolution of color
patterns because their distribution mostly agrees with specific geographic distribution
(see the analysis above).

RESULTS
Sanger sequencing, alignment, phylogenetic analyses
Three mtDNA fragments, rrnL, cox1 and nad5 were assembled in the dataset of 388
ingroup and 18 outgroup specimens. The ingroup was represented by 369 cox1 fragments

Jiruskova et al. (2019), PeerJ, DOI 10.7717/peerj.6511 6/21

http://dx.doi.org/10.7717/peerj.6511/supp-1
http://dx.doi.org/10.7717/peerj.6511/supp-1
http://dx.doi.org/10.7717/peerj.6511
https://peerj.com/


Figure 2 Phylogeny of Cautires. The maximum likelihood tree for Cautires recovered from the complete dataset of three mtDNA fragments and
partitioned by genes. Each putative morphospecies is represented by a single terminal. The numbers above branches indicate bootstrap support
values obtained in the IQ-TREE analysis using 5,000 UFboot iterations. The outgroups are omitted and the phylogenetic hypothesis for 388 ingroup
terminals and 19 outgroups is shown in Fig. S1. The general appearance of specimens illustrates the multiple origins of similar aposematic patterns in
distantly related species. Eight color patterns are defined in Methods. Photographs of all vouchers taken by the authors.

Full-size DOI: 10.7717/peerj.6511/fig-2
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(95% completeness, 1,104 homologous positions in the MAFFT alignment), 178 rrnL
(45%, 817 positions) and 368 nad5 (95%, 1,322 positions) (Table S1). Cautires was
retrieved as a monophyletic group albeit with moderate support BS 90%, similar to
the relationships among the deepest clades (Figs. 2 and 3; Fig. S1). The shallower splits had
high bootstrap (mostly BS � 99%). A well-supported split separates the Cautires pauper
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Figure 3 Ancestral distribution of Cautires. The reconstruction of the ancestral distribution of Cautires
beetles in the Malay Peninsula and Sumatra inferred with the maximum likelihood framework imple-
mented in BioGeoBEARS and using dataset containing 76 species. The tree shown was dated using the
earlier estimated rates of molecular evolution of sequenced mitochondrial markers. The tRNA fragments
were omitted from the analysis. Full-size DOI: 10.7717/peerj.6511/fig-3
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species-group and the Cautires s. str. clade (i.e., all Cautires including the C. obsoletus
species-group as defined by Dudkova & Bocak (2010), Jiruskova & Bocak (2015)).

Species identification and distribution
Using morphology, we identified 76 species, 28 of them formally named, and the
results of morphology-based species limits were compared with their genetic divergence
(Fig. S1; Table S3). The delimitation widely agrees and in the cases of ambiguous
support, the species are morphology-based using genitalia (e.g., C. rianganus and
C. tapahensis) or the shape of the pronotum (e.g., C. corporaali and Cautires sp. AW; see
illustrations in Fig. S1). Altogether 39 species were recorded on the Malay Peninsula and
39 species in Sumatra. Only two species (Cautires sp. G and C. rianganus) were
simultaneously recorded in both landmasses. The highest local diversity was identified
in the lower montane forests of both regions: the Cameron Highlands (24 spp.),
the Sinabung and Sibayak volcanoes (10 spp.) and the Kerinci massif (22 spp.; Fig. 3,
Inset (A)–(B)). About two-thirds of species were recorded only in a single locality.

Dispersal-extinction cladogenesis including founder-event speciation (DEC+J;
Table S4) was identified as the most appropriate model of ancestral area reconstruction.
Two deeply split clades, designated as Cautires s. str. and C. pauper group, split in the
Paleocene (64.1 mya; Figs. 2 and 3; Fig. S2). The C. pauper group comprised six putative
species; five of them from Sumatra and C. pauper from the lowlands of the Malay
Peninsula (Fig. S2). Cautires s. str. started its diversification early and 20 splits were
identified from 53 to 26 mya. One deeply rooted species occurs in Sumatra (Cautires sp.
U), but as it is a single species, we cannot estimate its colonization history. Further,
three Sumatran clades, representing 18 spp. in total, split from their Malay relatives at
26.5, 17.5 and 4.7 mya (Fig. 3; Figs. S2 and S3). Three Malay species were identified within
these clades as single-species terminal lineages and their splits from the closest
Sumatran relatives cannot be reliably dated (Fig. 3). We inferred 11 range shifts from
Malaya to Sumatra, 10 range shifts in the opposite direction. Additionally, we inferred
five transfers between the Malay lowlands and mountains (Fig. S3).

Distribution of color patterns
Similar coloration was identified in a high number of unrelated taxa (Fig. 2; Fig. S4;
Table S5) and individual patterns occurred in restricted ranges: the lowland Malay
Cautires were less brightly colored and had a brown to orange-brown pronotum and the
humeral part of elytra with a gradual transition between bright and dark colored parts
(Fig. 4). Most Malay montane species were uniformly black (13 spp.), some had a dark red
colored pronotum and humeri (Fig. S5). The Sumatran low elevation species are uniformly
black, have a red colored pronotum and black elytra, a black pronotum and the red
basal part of elytra or they have a brown to orange-brown pronotum and the humeral part
of the elytra (Fig. 4; Fig. S4). The Sumatran montane species are bright colored and
they usually have a high-contrast border between dark and bright parts: 21 species are
orange and black, further species are uniformly bright colored or they have the
black pronotum and basal part of elytra in contrast with their bright red apical part.
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Distribution of all patterns is summarized in Fig. 4. The populations of a single species
were generally uniform in color pattern and the observed differences were subtle.
Seldom two patterns were found within a single population (observed in Cautires spp. AH,
AX and T) or in two geographically distant populations (C. rianganus and C. jasarensis).

DISCUSSION
Altogether 76 putative species were defined based on morphological uniqueness and
widely confirmed by the DNA divergence (Fig. 2; Fig. S1). The mitochondrial markers are
known for incomplete lineage sorting and introgression and the species limits based
on the divergence of mitochondrial DNA do not necessarily fit with the biological species
defined using all evidence (Baselga et al., 2013). To handle this problem, we accepted as
separate species only those sets of individuals and/or populations which differ in
morphological diagnostic traits. Several terminal clades contain closely related, that is,
recently diversified, species (Fig. 3) and a detailed study of their genomes might recover
their complex origins as has been shown in other net-winged beetles (Bray & Bocak, 2016;
Bocek & Bocak, 2016) or recently in Heliconius butterflies (Edelman et al., 2018).
As we do not have genomic data, we prefer to delimit all species using morphology.

The above-described phylogeny and distribution of Cautires show that unrelated
sympatrically occurring species resemble each other (Figs. 2 and 4). As a rule, net-winged
beetles and their Batesian mimics, for example, moths, trues bugs and wasps, are highly
similar in each locality (Linsley, Eisner & Klots, 1961; Eisner, Kafatos & Linsley, 1962;
Eisner et al., 2008; Malohlava & Bocak, 2010; Bocak & Yagi, 2010; Lingafelter, 2013;
Bocek & Bocak, 2016;Motyka, Kampova & Bocak, 2018). Here, we focus our discussion on

Figure 4 Distribution of aposematic patterns. The geographic distribution of aposematic patterns of
Cautires in the Malay Peninsula and Sumatra. The list of species and color patterns from each locality
shows the number of patterns and the observed alpha-diversity, the color codes are given at characteristic
representatives of individual patterns and used in the map. All photographs of vouchers taken by
the authors. Full-size DOI: 10.7717/peerj.6511/fig-4
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the aposematic patterns of Cautires, because other lycids and lycid-like insects have not
been included in the analysis. The color differences in Cautires do not necessarily
indicate a separate species (Jiruskova & Bocak, 2015; Jiruskova, Motyka & Bocak, 2016)
and we identified a few cases of intraspecific and intrapopulation color polymorphism
indicated by the shared external morphology, the structure of genitalia and similar
mtDNA sequences and variable color patterns as the only observed difference. The model
of Müllerian mimicry does not predict multiple patterns, but polymorphism in warning
colors is commonly encountered in nature (Sherratt, 2008; Motyka, Kampova &
Bocak, 2018) and indicates the natural selection acting in concert with local community
composition (Aubier & Sherratt, 2015).

A total of 18 localities across the Malay Peninsula and Sumatra were sampled to
assess geographic genetic and phenotypic variation (Fig. 1). Although there are 76 spp.
in the current analysis compared to 53 spp. formally described species from the region,
we suppose that further species will be discovered in the future and that our
sampling remains incomplete.

Despite these limitations, the data are sufficient to consider the relative age of the
Malay and Sumatran fauna, species turnover between these regions, the number of
colonization events across the Malacca Strait in the Neogene and the distribution
of aposematic patterns.

Origin of Cautires and their diversification
Deep-rooted Oriental Cautires lineages originated out of the studied region, namely in
drifting India or in a contact zone between India and continental Asia at the time of their
collision (55–35 mya, Sklenarova, Chesters & Bocak, 2013). Additionally, synonymous
nucleotide divergence and saturation limit the robustness of deep mtDNA-based
topologies. Therefore, no splits beyond ∼30 mya are considered (Fig. 3; Fig. S3). Fossil and
tectonic calibrations are unavailable and the secondary calibration would be ambiguous
due to sparse sampling and large differences between various analyses (Hunt et al.,
2007; McKenna et al., 2015; Toussaint et al., 2017a; Bocak et al., 2016; Zhang et al., 2018;
Kusy et al., 2018). Therefore, we used the rates of mitogenome evolution and discussed
only Late Paleogene and Neogene splits. Our rate-based dating is supported by the
congruence of the evolution of the Sumatran Cautires fauna and tectonics of Sumatra
(Fig. 3).

We suppose that Cautires started their diversification in the region in the Oligocene
(Fig. 3). Until the Lower Pleistocene, the C. pauper group contained only Sumatran
species and only 1.5 mya a single species colonized Malaya (Figs. 2 and 3). Cautires s. str. is
a lineage of Malay origins and almost all ancestral lineages only occurred on the
Malay Peninsula or Asian continent, respectively, prior to the Upper Oligocene (26.5 mya;
Fig. 3). The Sumatran fauna consists mostly of terminal subclades nested in older,
more inclusive Malay groups similarly to Platerodrilus Pic, 1921 net-winged beetles
(Masek et al., 2015). The oldest Sumatran highly diverse clade split from Malay relatives in
the Upper Oligocene (10 Sumatran spp. and two Malay spp. in terminal positions; Fig. 3).
Further splits between Malay and Sumatran lineages are dated to the Miocene
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(17.5 and 6.2 mya) and later in the Pliocene (three events, 4.7, 4.6 and 3.6 mya). Hence, the
Sumatran Cautires diversified with an apparent delay compared to the Malay fauna
in accord with the tectonic history (Fig. 3; Hall, 2002). The origin of the oldest Sumatran
clade supports the existence of an island chain in the region from the Upper Oligocene
to the Lower Miocene (Hall, 2002; Malohlava & Bocak, 2010; Masek et al., 2015).
The colonization direction was asymmetrical from the Upper Oligocene until the end of
the Upper Pliocene. In this period, we identified six colonization events from the Malay
Peninsula to Sumatra which gave origin to multi-species clades, and no colonization
in the opposite direction (Fig. 4). This pattern agrees with the hypothesis that areas with
recent histories of size expansion should obtain higher levels of immigration (De Bruyn
et al., 2014) and it was earlier documented in net-winged beetle Scarelus Waterhouse,
1879 and Platerodrilus (Malohlava & Bocak, 2010;Masek et al., 2015). The phylogeny and
reconstruction of ancestral areas suggest a founder effect diversification model and
subsequent in situ speciation producing different faunas of neighboring landmasses
(Figs. 3 and 4; Matzke, 2014; Demos et al., 2016).

We identified colonization events in both directions during the Quaternary and this is
in line with repeated low sea levels (Voris, 2000). We propose that colonization dynamics
shifted from a tectonic to a climatic dominated regime in the last 5 million years.
Aside from two species recorded from both regions, all colonization events resulted in the
origin of a separate species or a whole local clade (Fig. 3). These colonization events
contributed to the observed species-level diversity (Fig. 2). Although the sampling is
apparently incomplete, we can conclude that most Cautires have small ranges and that
the geographic speciation mode of speciation is frequent between Sumatra and the
Malay Peninsula (Barraclough & Vogler, 2000; Ikeda, Nishikawa & Sota, 2012).
We suppose that intensive faunal exchange between these regions would result in the
presence of widespread species on both sides of the Malacca Strait. Our data do not
support such a prediction.

Further aspects of the colonization and diversification history are the origin and
uniqueness of the montane faunas. We identified 19 Cautires with distribution limited to
the montane forests in the Malay Central Range and none of them is distributed in a wide
range of elevations (Table S1; Jiruskova, Motyka & Bocak, 2016). Two clades of the
Malayan montane fauna started their in situ diversification 28.1 and 12.6 mya and they
represent about a half of the diversity reported from Malay mountains. Despite the limited
extent of mountain regions on the Malay Peninsula and a turbulent climatic history
which could have potentially caused complex altitudinal range shifts over such long
periods, these two clades are dominantly mountainous and only a single species, Cautires
sp. S, was inferred to be a member of the mountain clade yet was distributed in lower
elevations (Fig. 4; Fig. S1). Additional nine species were recorded in the Malay mountains
and the time of their split from lowland relatives cannot be exactly estimated. The Malay
Central Range is a biodiversity hotspot with ancient and diverse fauna similar to
other tropical mountains (Merckx et al., 2015). Similarly to the Malay Peninsula, we found
a high turnover between Sumatran mountains and lowlands. Only three species were
recorded simultaneously in two mountain regions of Sumatra—Cautires spp. B, N and AN.
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We conclude that the in situ diversification of montane species contributed to high alpha-
taxonomic diversity also in Sumatra (Merckx et al., 2015; Demos et al., 2016).

To avoid a potential source of error when closely related species are delimited, we can
alternatively consider the phylogeny of Cautires only from the Rupelian Stage of the
Oligocene (∼30 mya) to the beginning of the Pliocene (∼5 mya). Cautires s. str. already
contained 17 separate lineages at the beginning of the Oligocene, all (with one
exception) known only from the Malay Peninsula (Cautires sp. G, see Fig. 3). Before
Sumatra was uplifted, some of these lineages dispersed to proto-Sumatran islands and
diversified there. Further colonization events are hypothesized from the Malay
Peninsula to Sumatra in the Upper Miocene and the Lower Pliocene, about 5–7 mya
(Fig. 3). At the beginning of the Pliocene, the Cautires s. str. hypothetically contained
45 lineages, 17 of them Sumatran (Fig. 4). The data suggest that despite geographic
proximity, colonization events had been rare in the region for a long time and
unique Malayan and Sumatran faunas were established already before the
Pliocene/Pleistocene period.

Why does the Malacca Strait separate different faunas?
The Malacca Strait is shallow and, especially in the southern part, very narrow, so it should
not represent a major dispersal barrier for flying insects (Fig. 1; Balke et al., 2009;
Taänzler et al., 2014; Toussaint et al., 2017b). Additionally, very similar ecosystems are
currently present on the Malay Peninsula and Sumatra and we suppose that the narrow
Malacca Strait never separated ecosystems whose differences could substantially lower
the colonization success (Thomas, 1994; Morley, 2000). We cannot exclude a possibility
that some species might colonize other islands on the Sunda Shelf first and only
then colonize Sumatra or Malaya, respectively. The distinct fauna of Borneo
(Sklenarova, Chesters & Bocak, 2013; Masek et al., 2018) indicates that colonization via
Borneo did not dominate and can only marginally affect the species-level structure of both
studied faunas. Observed small ranges point to low colonization capacity which makes
the shortest distance colonization direction the most probable (Lester et al., 2007;
Bray & Bocak, 2016).

Hence, we can discuss further factors which might be responsible for the observed
distribution. The reconstruction of the paleoclimate during recent glacial maxima indicates
that the Malacca Strait was covered by semi-dry savannah (Cannon, Morley & Bush, 2009;
DiNezio & Tierney, 2013). We identified a lower abundance and diversity of Cautires
in lowland localities characterized by a more pronounced dry season than in mountain
ecosystems. The ecosystems of the exposed Shelf during glacial maxima were unfavorable
(Gathorne-Hardy et al., 2002) and although more colonization events were recovered
since the Pliocene, most species are endemic to the respective area.

Factors hypothetically decreasing the colonization potential are different aposematic
color patterns in the lowlands and individual mountain massifs of the Malay Peninsula and
Sumatra. Similarly-colored Cautires are unrelated (Fig. 2) and the geographic distribution
of various aposematic patterns is limited (Fig. 4). Based on these facts, we can
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hypothesize that dispersing Cautires regularly entered the area where their aposematic
signal was uncommon or absent. Therefore, we propose that some dispersing populations
could be wiped out by local predators unfamiliar with their allochthonous aposematic
signal before they could adapt to local mimetic complexes, that is, they could be under
antiapostatic selection decreasing colonization rates (Beatty, Beirinckx & Sherratt, 2004;
Sherratt, 2008).

CONCLUSIONS
The current analysis of Cautires morphology and the mtDNA dataset indicates that
different Cautires faunas are separated by the shallow and commonly dry Malacca Strait
and that the independent in situ speciation in respective areas is characteristic in the
Malay Peninsula and Sumatra since the Oligocene. The faunas have a high level of
endemism and a different diversification history. Most deeply-rooted lineages evolved on
the Malay Peninsula and some of them colonized Sumatra where they subsequently
diversified. Surprisingly, colonization events were uncommon despite the close geographic
position and similar ecosystems. Even the relatively recent colonization events across the
Malacca Strait in the Upper Pliocene and Pleistocene were followed by speciation.
The species colonizing a new range adopted local mimetic patterns and we suppose that
the selection against rare aposematic patterns limits the colonization capacity of
unpalatable Cautires, but simultaneously it may enhance speciation (Bocak & Yagi, 2010;
Bray & Bocak, 2016). The Malay montane fauna is of ancient origin, contains a high
proportion of endemic species and represents a biodiversity island. The survival of
South East Asian fauna is under ever-increasing human pressure (Sodhi et al., 2004) and
we demonstrate that the Malay fauna contains all deep lineages; that is, it has higher
phylogenetic diversity and therefore has a much higher value for conservation if priorities
are to be set in this region (Lawing & Matzke, 2014).
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