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Heterodonty in Crocodylia and associated taxa has not been defined quantitatively, as the
teeth rarely have been measured. This has resulted in a range of qualitative descriptors,
with little consensus on the condition of dental morphology in the clade. The purpose of
this study is to present a method for the quantification of both size- and shape-
heterodonty in members of Crocodyliformes. Data were collected from dry skeletal and
fossil specimens of 34 crown crocodylians and one crocodyliform. Digital photographs were
taken of each tooth and the skull, and the margins of both were converted into both
landmarks and semilandmarks. We expressed heterodonty through Foote’'s morphological
disparity, and a Principal Components Analysis visualized shape variance. This analysis
reveals that all Crocodyliformes sampled are heterodont to varying degrees. The majority
of the shape variance was represented by a ‘caniniform’ to ‘molariform’ transition.
Heterodonty varied significantly between positions; size undulated whereas shape was
significantly linear from mesial to distal. Size and shape, although significantly correlated,
appear to be primarily decoupled. Skull shape correlated significantly with tooth shape.
High size-heterodonty often correlated with very large caniniform teeth, reflecting a
prioritization of securing prey. Large, highly molariform, distal teeth may be a
consequence of high-frequency durophagy combined with prey size. The slender-snouted
skull shape correlated with a caniniform arcade with low heterodonty. This was
reminiscent of other underwater-feeding tetrapods, as they focus on small prey that
requires minimal processing. Several extinct taxa were very molariform, which was
associated with low heterodonty. Hamadasuchus rebouli may have dealt with vertebrate
prey similar to large modern taxa, but prey processing may have been different due to its
terrestrial habitat. Disparity measures can be inflated or deflated if numerous teeth are
absent from the tooth row, and regression analysis may not best apply to strongly slender-
snouted taxa. Nevertheless, when these methods are used in tandem they can give a
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complete picture of crocodylian heterodonty. Future researchers may apply our proposed
method to most crocodyliform specimens with an intact enough tooth row regardless of
age, species, or rearing conditions, as this will add rigor to many life history studies of the
clade.
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ABSTRACT

Heterodonty in Crocodylia and associated taxa has not been defined quantitatively, as the teeth
rarely have been measured. This has resulted in a range of qualitative descriptors, with little
consensus on the condition of dental morphology in the clade. The purpose of this study is to
present a method for the quantification of both size- and shape-heterodonty in members of
Crocodyliformes. Data were collected from dry skeletal and fossil specimens of 34 crown
crocodylians and one crocodyliform. Digital photographs were taken of each tooth and the
skull, and the margins of both were converted into both landmarks and semilandmarks. We
expressed heterodonty through Foote’s morphological disparity, and a Principal Components
Analysis visualized shape variance. This analysis reveals that all Crocodyliformes sampled are
heterodont to varying degrees. The majority of the shape variance was represented by a
‘caniniform’ to ‘molariform’ transition. Heterodonty varied significantly between positions; size
undulated whereas shape was significantly linear from mesial to distal. Size and shape
appeared to be primarily decoupled. Skull shape correlated significantly with tooth shape. High
size-heterodonty often correlated with very large caniniform teeth, reflecting a prioritization of
securing prey. Large, highly molariform, distal teeth may be a consequence of high-frequency
durophagy combined with prey size. The slender-snouted skull shape correlated with a
caniniform arcade with low heterodonty. This was reminiscent of other underwater-feeding
tetrapods, as they focus on small prey that requires minimal processing. Several extinct taxa
were very molariform, which was associated with low heterodonty. Hamadasuchus rebouli may
have dealt with vertebrate prey similar to large modern taxa, but prey processing may have

been different due to its terrestrial habitat. Disparity measures can be inflated or deflated if
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numerous teeth are absent from the tooth row, and regression analysis may not best apply to
strongly slender-snouted taxa. Nevertheless, when these methods are used in tandem they can
give a complete picture of crocodylian heterodonty. Future researchers may apply our
proposed method to most crocodyliform specimens with an intact enough tooth row regardless
of age, species, or rearing conditions, as this will add rigor to many life history studies of the

clade.

INTRODUCTION

What constitutes heterodonty often seems like a moving target, with different qualitative
definitions in place depending on the clade being studied (Shimada, 2001). Kieser et al. (1993,
p.195) referred to the definition of heterodonty as “a bone of contention,” and since then the
issue never has been fully resolved. Arguably, this lack of clarity is most pronounced within
members of Crocodylia. Researchers have often referred to crocodylians as homodont
(Langston, 1973; Osborn, 1998; Larsson & Sidor, 1999; Zahradnicek et al., 2014). Peyer (1968
p.17) defined the term as lacking the discrete dental categories seen in mammals (incisors,
canines, premolars, molars), even though he admitted, “a sharp distinction between homodont
and heterodont is not possible.” Ferguson (1981) referred to Alligator mississippiensis as
“pseudoheterodont,” because it showed a gradual, as opposed to punctuated, change in tooth
shape along the tooth row (see also Grigg and Gans, 1993; Hendrickx, Mateus, & Araujo,

2015a). Size variability along the tooth row has motivated the term “heterometric homodonty”
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for Crocodylus niloticus (Fruchard, 2012). Others have applied anisodonty to the clade, which is
apparent size, but not shape, heterodonty (Vullo et al., 2016). Certain fossil crocodylians, often
interpreted as herbivores or omnivores, exhibit multi-cusped and/or grinding teeth, and are
specifically called “heterodont crocodylians” by researchers (e.g. Martin, 2007; Osi, Clark, &
Weishampel, 2007; Novas et al., 2009). Lastly, some researchers have argued certain modern
crocodylians are heterodont, and argue dental categories do in fact exist (Aoki, 1989; Kieser et

al., 1993).

Semantics aside, one reason for the lack of resolution concerning crocodylian
heterodonty is that their teeth rarely have been measured. Few studies have performed
guantitative shape analyses of crocodylian teeth. Of these, linear-distance measures have been
used for fossil identification (Frey & Monninger, 2010), replacement rates (Bennett, 2012), and
biomechanical analyses (Monfroy, 2017). Aside from a study evaluating two fossil notosuchians
(Lecuona & Pol, 2008), and a preliminary geometric morphometric investigation of Crocodylus
niloticus (Farrugia, Polly, & Njau, 2016), no studies have quantitatively investigated heterodonty
either within or between species. Typically, crocodylian dentition is described qualitatively, with
the goal of characterization for phylogenetic analysis, or paleoecological inference (e.g.
Schwarz-Wings, Rees, & Lindgren, 2009; Young et al., 2012; Salas-Gismondi et al., 2015; Adams,
Noto, & Drumbheller, 2017). Qualitative descriptors of crocodylian tooth morphology are
numerous, and include terms such as “blunt, bulbous, broadened, button-shaped, conical,
globular, fang, kidney-shaped, lanceolate, needle-like, procumbent, pseudocanine, robust,
short, slender, spike-like,” and “thick” (e.g. Brazaitis, 1973; Groombridge, 1982; Aoki, 1989;

Brochu, 1999; Erickson, Lappin, & Vliet, 2003; Osi, Clark, & Weishampel, 2007; Schwarz-Wings,
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Rees, & Lindgren, 2009; Fruchard, 2012; Gignac & Erickson, 2014; Salas-Gismondi et al., 2015;
Berkovitz and Shellis, 2017). There is clearly a gap in our knowledge concerning the nature of
dental morphology in this clade, and closing this gap may be crucial for a more complete
understanding of performance, behavior, and trophic ecology within Crocodylia, as well as

more distantly related, crocodylian-line archosaurs.

The lack of quantitative studies on heterodonty in crocodylians and associated taxa is
not due to a lack of applicable methodology, as there has been a burst of morphometric
research in non-mammalian teeth in the past decade. Dinosaur teeth have probably received
the most attention, with multiple studies using linear-distance measures for the identification
of loose fossil crowns or to infer functional paleoecology (D’Amore, 2009; Larson & Currie,
2013; Buckley and Currie, 2014; Hendrickx and Mateus, 2014; Torices, Reichel, & Currie, 2014;
Hendrickx, Mateus, & Araujo, 2015b, Gerke and Wings, 2016; Larson, Brown, & Evans, 2016).
Extant reptiles have been investigated quantitatively as well, including colubrid snakes (Britt,
Clark, & Bennett, 2009) and varanid lizards (D’Amore, 2015). Prior to this, lamniform sharks
were studied heavily (Shimada, 2002b, 2004; Shimada and Seigel, 2005). These morphometric
analyses have shed light on the nature of heterodonty, dental allometry, and ecomorphology in
these vertebrates, and similar methods may be applied to Crocodyliformes in the hopes to

elaborate upon the state of heterodonty in this taxon.

The purpose of this study is to present a method for the quantification of both size- and
shape-heterodonty in members of Crocodyliformes. Data were collected from a multispecific

sample of both extant and extinct specimens housed in museum collections, and their tooth
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morphology was assessed through two-dimensional geometric morphometrics. In addition to
this major goal, we also 1) outline and describe dental morphology within the specimens
sampled; 2) report any morphological consistencies found within the members of our sample;
and 3) present the advantages, limitations, and potential future uses of the method. Our
intention is to put forward a method for assessing heterodonty that may be applicable to most

crocodyliform specimens.

MATERIALS AND METHODS

Institutional abbreviations

American Museum of Natural History, New York, NY (AMNH); Royal Ontario Museum, Toronto,

ON (ROM); University of California Museum of Paleontology, Berkeley, CA (UCMP)

Nomenclature

Crocodyliform teeth have very few discrete homologous anatomical loci, but, because they
exhibit thecodont dentition (sensu Edmund, 1962, 1969), we defined them as having a crown
with an apex, a neck, and a root within an alveolus. Nomenclature for tooth morphology used
here was proposed by Smith & Dodson (2003; Figure 1A-B): mesial, towards the central
premaxilla and mandibular symphysis; distal, away from the central premaxilla and mandibular
symphysis; lingual, towards the tongue; labial, towards the lips; basal, towards the base of the
tooth or alveolus; apical, away from the alveolus or towards the apex. An ‘enlarged’ tooth is the
largest tooth in a given section of the jaw independent of shape. This type of tooth is typically

referred to as a procumbent tooth (Gignac & Erickson, 2014) or a pseudocanine (Brochu, 1999).
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Tooth position was indicated by either the presence of a tooth or an empty alveolus in
the host bone (Figure 1A). Teeth were lettered based on the host bone (premaxilla = P, maxilla
= M, dentary = D), and numbered in ascending order from mesial to distal positions (the mesial-
most dentary tooth was D1, followed by D2, D3, etc.). For consistency, all specimens were
assumed to have 5 premaxillary positions (P1-P5) (Berkovitz & Shellis, 2017). Members of
Paleosuchus and Osteolaemus have only 4 premaxillary teeth during early stages of ontogeny
(Brochu and Storrs, 2012; Narvaez et al., 2015), and an alveolus may atrophy in certain species
(usually P2) as they grow (Webb & Messel, 1978; Brown et al., 2015; DC D’Amore, personal
observation). If only four premaxillary positions were present, position P2 was assumed absent,
and skipped over during numbering. In one case, a specimen had 6 premaxillary teeth
(Alligator mississippiensis, ROM 4408). This tooth position was omitted for consistency. Our
Alligator prenasalis specimen (ROM 1375) had its distal-most cranial positions obscured by poor
preservation and matrix. We therefore based its maxillary tooth count on previous osteological
accounts (a total of 15 maxillary teeth based on Harvard Museum of Comparative Zoology

specimen #1015, Mook, 1932).

Specimens

Data were collected from 27 extant, and 8 extinct, crocodyliform specimens (Supplemental
Information Table S1). This resulted in a total of 21 species. Although Caiman crocodilus is an
extant species, a fossil specimen was also included. From these we measured 1,263 teeth in
total. Although we did not use any distinct criteria to distinguish juveniles from adults, larger

specimens were selected when possible. Specimens with the most complete tooth rows in the
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collections were selected, in that they had the/most of their tooth positions represented by
measurable teeth on at least one side of the mouth. Certain fossil specimens only had cranial
(Alligator prenasalis ROM 1375, Borealosuchus sternbergii UCMP 126099, “Crocodylus” affinis
UCMP 131090, Hamadasuchus rebouli ROM 52620, Leidyosuchus canadensis ROM 1903) or

dentary (Borealosuchus sternbergii UCMP 131769) material to sample.

Tooth data collection

Methods were similar to those proposed by D’Amore (2015). We photographed each tooth
using either an Olympus Stylus or a Canon Rebel T3 EOS camera with a non-zoom lens. Skulls
were positioned on a flat surface with a dark background such as a tabletop or camera stand,
and held stationary by an available prop such as a box or sandbag if necessary. A scale was
positioned at the same distance from the camera as the tooth. The camera was either mounted
on a camera stand, or was held stationary by a researcher (for larger specimens). Digital
photographs were taken from the labial perspective (Figure 1B). For each tooth, we positioned
the specimen so the camera lens was parallel to the host bone adjacent to the tooth. This
resulted in both carinae being visible in the shot (if present). We simultaneously positioned the
lens parallel to the apical-basal long axis, determined qualitatively as when the tooth looked its
tallest to the photographer regardless of any labio-lingual curvature. Each tooth was
photographed separately, and teeth from both sides were photographed if available. Only fully
erupted teeth with the neck visible were included (Figure 1B). Tooth quality was variable in
extant specimens. Teeth with slightly worn apices were included. As the outline of the tooth

margin was our basis of measurement, we omitted any teeth with large wear facets or chips
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that largely interrupted this margin. Cracks down the long axis of the teeth were common, and
were omitted if the crack distorted the shape of the tooth or resulted in a space where light

could be seen from the other side.

We used a sliding semilandmark analysis (Bookstein, 1997; Sheets, Kim, & Mitchell 2004;
Zelditch et al., 2004; Mitteroecker et al., 2013) to derive shape measurements from each
tooth’s outline. Photographs were entered in TpsDig 2.16, and the margin of the tooth was
traced using the curve drawing tool (Rohlf, 2010) (Figure 1B). Because the enamel margin was
not always clear, each tooth was traced from apex to the point where the tooth ceased to taper
on the neck for both the mesial and distal side. TpsDig then transformed each of the two traced
margins into 30 equidistant coordinates, and we combined the apical-most coordinates. This
resulted in 3 discrete landmarks (two at the base and one at the apex) and 56 semilandmarks
(Figure 1C). This number of coordinates has been used in previous studies of both dinosaur
(Smith, Vann, & Dodson, 2005) and monitor lizard (D’Amore, 2015) dentition, as well as claw
morphology (Tinius and Russel, 2016), in which it has been shown to accurately represent the
totality of two-dimensional shape (Tinius and Russel, 2016). We performed a generalized least
squares Procrustes (GLSP) superimposition on the data, calculated centroid size (CS), and slid
the semilandmarks to minimize the total bending energy (Perez, Bernal, & Gonzalez, 2006;

Gunz & Mitteroecker, 2013) using the program TpsRelw 1.53 (Rohlf, 2013).

Skull data collection

The shape of the skull, and particularly the rostrum, has long been considered both an

important phylogenetic and ecomorphological feature in crocodylians (Busbey, 1995; Daniel &
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McHenry, 2001; Brochu, 2001; Sadleir & Makovicky, 2008; Salas-Gismondi et al., 2016;
Drumheller, Wilberg, & Sadlier, 2016; Wilberg, 2017). We attempted to determine if there was
a correlation between tooth morphology and head shape, as these traits may be linked. All
specimens’ skulls were photographed from the dorsal perspective using the same cameras as
above (Figure 1E). Each skull was positioned so the palate was parallel with the tabletop, and
the camera was positioned with a camera stand and leveled. A scale was included. We derived
skull shape data using a modified version of our technique for tooth outlines. Using TpsDig
again, we traced the skull margin from the rostral-most point of contact between the
premaxillae to the caudal-most quadratojugal along the margin on each side. We chose this
margin because it outlined head-shape as close to as it would have appeared in life as possible,
but avoided internal structures such as the jaw articulations or occipital condyles. Each margin
was broken into 50 equidistant coordinates, and the rostral-most coordinates were combined.
This resulted in 3 landmarks (two at the quadratojugals and one at the premaxillary junction)
and 97 semilandmarks (Figure 1E). These also underwent a GLSP superimposition and the
semilandmarks were slid to minimize the total bending energy using TpsRelw 1.53. In
specimens with damaged or missing bones on one side, bilateral symmetry was assumed and

the coordinates on the intact side were mirrored.

A body-size metric was needed for several of the following analyses, but unfortunately
few were available for all specimens. Commonly used metrics such as snout-vent length and
mass were not recorded for most dry skeletons prior to cataloging, and many specimens
(especially fossils) lacked femora (see Farlow et al., 2005). Therefore, the length of the skull was

used as a body size metric (see Fukuda et al. 2013 for potential influences on this
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measurement). We derived skull length from the same landmarks outlining the skull above; it
was the linear distance from the rostral-most landmark to the posterior-most landmarks along
the mid-sagittal plane (Figure 1D). (Note: Borealosuchus sternbergii UCMP 131769 and
Crocodylus niloticus AMNH 142494 did not have intact skulls, and were therefore omitted from

all analyses involving skull data.)
Statistical approaches

All analyses were conducted in Morphol v. 106d (Klingenberg 2011), SPSS Version 19.0 [IBM
Corp, Armonk, NY], and PAST (Hammer, Harper, & Ryan, 2001). If both left and right teeth were
available at a given position, we averaged them. For size, CS values were simply averaged
together. For shape, each x-y coordinate of the GLSP superimposed landmarks and
semilandmarks was averaged with its counterpart for both teeth. To ensure that the left and
right sides were not significantly different, we ran a 10,000 permutations test on the Procrustes
distances between left and right teeth at positions that had both. The null hypothesis of
bilateral symmetry was confirmed (p = 0.6785). If only one tooth was available for a given
position, that tooth alone represented said position. We also tested the null hypothesis that
there was no statistical difference between tooth rows in Crocodyliformes, by running a 10,000
permutations test on the Procrustes distance between cranial (premaxilla and maxilla) and
dentary teeth. The specimens that only had one tooth row available were excluded from this.

No significant difference was found (p = 0.2455).

A singular measure of heterodonty was derived for each specimen in the form of

Foote’s morphological disparity [MD = (Z:nz 1D%)/(m - 1)] (Foote, 1993; Zelditch, Sheets, &
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Fink, 2003; Sheets & Zelditch, 2013). Disparity (MD) was the sum of the differences of the
values of a given tooth (i) from the mean for all teeth from that specimen (Di, also known as the
grand mean) squared, with the number of tooth positions (m) factored in. We calculated
disparity for all tooth positions for each specimen. For size-heterodonty, Di was simply the
difference in CS of a tooth from the mean of the specimen (Zelditch et al., 2004). For shape-
heterodonty Di was the Procrustes distance between the tooth and the mean, and was
calculated using DisparityBox7 (Sheets, 2012). Heterodonty then was regressed with a reduced
major axis against head length to determine if there was a significant allometric change in the

clade.

We attempted to correlate skull shape to tooth shape between individuals by using a
two-block partial least squares (PLS) analysis in Morphol. Skull shape represented one block,
and average tooth shape represented the other. Average tooth shape was constructed by
averaging the corresponding GLSP superimposed landmarks and semilandmarks of every tooth
from an individual. The scores for the first PLS of each shape block were plotted against one
another and regressed with a reduced major axis. Visualization of variation along each PLS axis

was depicted through vector diagrams (Figure 1F).

To determine if size and shape were coupled in Crocodyliformes, shape coefficients
generated by Morphol were regressed against CS using a reduced major axes. Significance and
a high goodness of fit would be indicative of strong coupling between size and shape. A

Principal Components Analysis (PCA) was then conducted to visualize the degree of shape
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variance within all cranial and dentary teeth. We only considered any PC representing over 5%

of the shape variance, which we then visualized using vector diagrams (Figure 1D).

We plotted shape and size against tooth position to visualize heterodonty along the
tooth row. For size CS was normalized by dividing it by head length, and then was plotted
against tooth position in a series of box plots. For shape, PC scores of PCs over 5% were plotted
against tooth position in a similar fashion. Each box represented a position.Note that we did
not do any adjustments to these positions, so specimens with more tooth positions will be the
only occupants of the@istalsfesticategories. To determine if significant differences in these
size and shape metrics existed between these positions, we used separate analyses of variance
(ANOVA) for each superfamily. Both metrics had unequal variances according to Levene’s test,
so we specifically ran Welch’s ANOVAs in SPSS. Any positions represented by less than 7 teeth

were excluded from the ANOVAs.

Preliminary quantitative work has suggested a linear transition in tooth shape along the
arcade (Farrugia, Polly, & Njau, 2016). We test this by regressing shape data against tooth
position using ordinary least squares regressions for each individual. To standardize these
regressions, we normalized tooth position into a percentage. We numbered the positions along
the tooth row starting with 1 at the mesial-most position, divided each by the total number of
positions along the arcade, and then subtracted 0.5 (this subtraction placed the y-intercept
halfway along the arcade). PCs for each tooth were then regressed against this, and regression
statistics were collected. Several factors may be implied by a significantly linear crocodyliform

tooth row. Slope may be linked to heterodonty, as a steeper slope would imply more shape
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change along the PC1 scores at y-axis and, consequently, greater shape-heterodonty. The y-
intercept would represent shape value for the median position, as the intercept is located half-
way along the tooth row. To visualize these coefficients, we plotted both slope and y-intercept

for each regression in scatterplots for both the cranium and the dentary.

Results:

Shape variability in the sample

There was statistically significant coupling between size and shape in Crocodyliformes, but to a
very weak degree overall. When shape coefficients were plotted against CS, they formed a
regression with a goodness of fit accounting for less than 10% of the variance (y=0.313x-0.981;

r2=0.09; p<0.0001; 95% =0.296,0.328).

Most of the shape variance in Crocodyliformes was along a single axis. The only PC
accounting for over 5% of the shape variance was the first (PC1). It accounted for over 92.11%
of the variance, and is the only PC considered further [see supplemental information for
Eigenvalues and variances (Table S2), as well as a discussion on PC2 and PC3 (Figure S1)]. PC1
scoresranged-from—0.3173to-0.3715within-oursample: The negative-most condition involved
apical-basal elongation, narrowing at the base, and a gentle concavity on the distal margin
(Figure 2). For simplicity, we will refer to this extreme as ‘caniniform’ (Erickson et al., 2012;
2014; Gignac & Erickson, 2014). The positive-most values depicted an apical-basal shortening
and mesial-distal broadening, and we will refer to the extreme as ‘molariform’ (Figure 2)

(Erickson et al., 2012; 2014; Gignac & Erickson, 2014).
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Skull vs. tooth morphology

Skull and average tooth shape were significantly correlated. For the two-block test, PLS1
encompassed 99.96% of shape covariance. Shape variability within the skull shape block
showed the snout transitioning from narrow to broad (Figure 3). Taxa that occur below a PLS1
score of -0.15 are the slender-snouted taxa as defined by Brochu (2001), including Gavialis,
Mecistops, and Tomistoma. The remainder of the species, defined as either generalized or
blunt-snouted (also by Brochu, 2001), occurred around the mean and positive half mixed
together. Shape variability within the tooth shape block was similar to the above PCA of tooth
shape, displaying a transition from caniniform to molariform with increasing values. These
blocks regressed significantly against one another, with slender-snouted taxa separating out
with the most caniniform teeth. Scatter increased around the means, indicating the correlation
was not as strong among the generalized-to-blunt snouted taxa. Alligator prenasalis,
Brachychampsa sp., and “Crocodylus” affinis were all relatively blunt-snouted, but rose
noticeable above the regression. Thislindicated they possessed much more molariform teeth
on average than their counterparts of similar skull shape.

Foote’s disparity and heterodonty

Size heterodonty was significantly correlated with head length, with an r? of ~0.76. The largest
individuals according to head length (members of Crocodylus niloticus and Crocodylus porosus)
possessing the greatest unadjusted size heterodonty (Figure 4A). The slope indicated that
heterodonty increased at over double the rate of size within the clade. Alligatoroids occur on

both sides of the regression. Members of Alligator had negative residual size heterodonty, with
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Alligator prenasalis as the lowest. On the other side of the regression, caimanine (Caiman,
Paleosuchus) residuals were all positive with the exception of one individual. Several members
of Crocodylus had values around zero, but one Crocodylus porosus specimen had a high residual
and a Crocodylus palustris had a low residual. One Osteolaemus tetraspis individual had the
highest size-heterodonty residual, with the other around zero. Hamadasuchus rebouli had
positive residuals, similar to the greater Crocodylus porosus and the caimanines. The slender-

snouted taxa (Gavialis, Mecistops, Tomistoma) had some of the most negative residuals.

Shape heterodonty was highly variable, and correlated significantly, albeit rather poorly
(r* ~0.16), with head length (Figure 4B). Because of this poor correlation, we do not consider
residuals as very biologically meaningful. Similar to size heterodonty, the slender-snouted taxa
had some of the lowest shape heterodonty, although Tomistoma was relatively greater than
the others. In addition, members of Brachychampsa sp. and Alligator prenasalis also had some
of the lowest shape heterodonty in our sample. Crocodylus siamensis specimens were more
shape heterodont than their congenerics, with one individual being the most shape heterodont
in our sample. Several caimanine individuals, and both Osteolaemus tetraspis specimens, also

had relatively high shape heterodonty.

Heterodonty along the tooth row

Tooth position count varied between species (see Supplemental Information Table S3). Most
alligatoroids had between 19-20 positions on the cranial tooth row. Many had a similar number
on the dentary, except members of Paleosuchus had 22 positions. Leidyosuchus canadensis had

the most (23) cranial positions of the alligatoroids. Hamadasuchus (20 cranial) and
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Borealosuchus (23 cranial and 20 dentary) specimens fit within ranges of alligatoroids.
Members of Crocodylus and Mecistops had between 18-19 cranial and 15 dentary positions.
Osteolaemus specimens had the least tooth positions for any crocodyloid (17 cranial and 14
dentary), and Tomistoma had the most (21 cranial and 19 dentary). The Gavialis specimen had
more positions than any other species sampled (28 cranial and 26 dentary). These tooth counts
are similar to previous published accounts (Brown et al., 2015; Berkovitz & Shellis, 2017). The
vast majority of the modern taxa tooth rows had over 60% their tooth positions represented by
measureable teeth (Supplemental Information Table S3). Fossil taxa ranged from having ~30%

to ~78% of their tooth row represented.

In both extant members of Alligatoroidea and Crocodyloidea, size varied significantly
between positions (Figure 5A-B). Size undulated three times along the dental arcade resulting in
significant differences between positions for both the cranium and mandible. Each undulation
peaked with an enlarged tooth. These were typically represented by P4 for both clades, and M4
for alligatoroid and M5 for crocodyloid specimens (sensu Brochu and Storrs, 2012). In addition,
members of Paleosuchus had very large P3 and M3. “Crocodylus” affinis also had a large P3.
Unlike other alligatoroid specimens, the Leidyosuchus specimen had both M4 and M5 enlarged,
and the Brachychampsa sp. had an enlarged M5 like crocodyloids (sensu Norell, Clark, &
Hutchison, 1994). A final undulation resulted in an enlarged tooth at M9-11 (Figure 5A-B).
Interspersed between these were smaller teeth, with the distal-most tooth often the smallest.
The dentary was similar to the cranium, with three undulations in size. Enlarged teeth were
found at positions D1 and D4, with a third size-peak between D11 and D14. Note that the

position of the enlarged teeth along the cranial tooth row tended to align with smaller teeth
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along the dentary tooth row, and vice versa. This resulted in an ‘interlocking’ pattern between
the size peaks of one arcade and the valleys of the other. The gavialoid specimen differed

markedly by having the two mesial-most teeth enlarged, and the remainder showed a gradual
decease in size distally (Figure 5C). Hamadasuchus rebouli had some of the largest teeth for its

head length with a dramatic variation in size.

Alligatoroids and crocodyloids both showed a similar trend concerning tooth shape.
Mesial teeth are typically the most caniniform in the mouth and distal teeth the most
molariform, resulting in positions being significantly different (Figure 5D-E). In cranial teeth P1-
M4 tend to exist primarily between PC scores and -0.25 and 0.00, followed by a gradual
increase in score values as positions become more distal. Dentary teeth represented a more
uniformly gradual caniniform-to-molariform transition. Both superfamilies were highly variable.
Alligatoroid had teeth generally more molariform, with upper outliers almost entirely
represented by Alligator prenasalis, Alligator sinensis, and Brachychampsa sp. (Figure 5D).
Crocodyloids were generally more caniniform, with mesial upper outliers represented by
“Crocodylus” affinis and lower outliers represented primarily by Tomistoma (Figure 5E). Both
Borealosuchus tooth rows had PC1 scores between -0.22 and 0.20, and Hamadasuchus ranged
between -0.19 and 0.23 (Figure 5F). Both taxa showed a similar progression from caniniformy
to molariformy as the alligatoroids and crocodyloids. Gavialis deviated from the others the
most, where most teeth had scores of < -0.20 with a steep increase towards the average in the

distal-most fifth of the arcade (Figure 5F).
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Shape heterodonty was found to be strongly linear. When each modern individual’s PC1
values were regressed against position, all regressions were significant (Supplemental
Information Table S3). The vast majority of tooth row regressions had r? values above 80%.
Gavialis had the lowest r? values (cranium=0.495, mandible=0.616), followed by the crania of
the fossil Caiman crocodilus (r?=0.728) and Tomistoma (r>=0.747). Both cranial and dentary
tooth rows typically had slopes between 0.25-0.55 (Figure 6). More shape heterodont taxa
typically had greater slopes, with Crocodylus siamensis specimens having some of the steepest
slopes (0.39-0.68). All the slender-snouted specimens had the y-intercepts between -0.25 and -
0.14, indicating strong caniniformy at the median position. The Gavialis specimen also had very
shallow slopes (<0.25). Living members of Alligator had y-intercepts between 0.029 and 0.085,
indicating molariformy at the median (Figure 6). Alligator prenasalis, Brachychampsa sp., and
“Crocodilus” affinis had the shallowest slopes (0.22-0.32) and the greatest y-intercepts (0.15-
0.24) in our sample, indicating molariform teeth consistent along the tooth row. Hamadasuchus
rebouli’s regression characteristics are similar to members of Caiman and Osteolaemus. The
slope of the fossil Caiman crocodilus differed from modern members of Caiman by being much

shallower (Figure 6).

DISCUSSION

Defining heterodonty within Crocodyliformes

The methods proposed here offer a multi-faceted approach to quantifying heterodonty in
Crocodyliformes. Foote’s morphological disparity allows for a discrete measure of heterodonty

that may be used for comparison, or normalized with other variables (as was done here with a
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body size metric). This is not limited to Crocodyliformes, and may be used to compare distantly
related taxa and/or a wide variety of dental morphotypes. This measure is ideal if one is
interested in how much heterodonty is apparent. Alternatively, if one is interested in what
characteristics make up tooth heterodonty, more traditional geometric morphometrics suffice
in describing shape variability. It isl@pportuneéthat only PC1 accounted for over 90% of the
variance, allowing for us to use it as the sole measure of shape here. If more PCs accounted for
over 5% of the shape variance, it would be appropriate to depict those other PCs in the same

manner as PC1 for a comprehensive understanding of shape.

Regression analysis of shape is appropriate based on significance and high r? values, and
the coefficients associated with it are useful characters for comparison. Certain caveats should
be considered though. Regression may be more appropriate for the dentary than the cranium,
as the premaxillary teeth do not appear to differ from one another as much as the maxillary. In
most crocodylians this effect is mild, and r? values are still high. The effect is very pronounced in
Gavialis though, as both the premaxillary and the mesial maxillary teeth are similar in shape. It
is also interesting that this happens in the dentary as well. Future studies should consider this

when applying this method to Gavialoidea or dentally analogous taxa.

Although the task of assigning a singular dental morphotype to any one species of
crocodyliform is beyond the scope of the study, our data suggests that it would be potentially
difficult. Heterodonty seems to vary within species, making the assignment of a singular
heterodonty measure to an entire species dubious. As far as biological explanations for this,

tooth form is almost certainly influenced by allometry. Ontogenetic shifts in feeding niche have
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been documented in modern crocodylian species (e.g. Groombridge, 1982; Webb, Manolis, &
Buckworth, 1982; Pooley & Gans, 1976; Pooley, 1989; Delany, 1990; Santos et al., 1996; Da
Silveira and Magnusson, 1999; Subalusky, A. L., Fitzgerald, L. A., & Smith, 2009 Wallace and
Leslie, 2008; Borteiro et al., 2009; Hanson et al., 2014), and allometric changes in the feeding
apparatus with size are often explained as a structural consequence of this (e.g. Dodson, 1975;
Webb and Messel, 1978; Hutton, 1987; Erickson, Lappin, & Vliet, 2003; Verdade, 2000; Wu et
al., 2006; Watanabe & Slice, 2014; Gignac and Erickson, 2016; Gignac & O’Brien, 2016).
Concerning teeth, a qualitative increase in overall molariformy was observed in Alligator
mississippiensis, and functioned to meet the mechanical demands of increased durophagy
(Erickson, Lappin, & Vliet, 2003; Gignac & Erickson, 2014). Although our sample size is too low
to confidently assess dental ontogeny within each species, we did see a similar general trend in
conspecifics of different sizes. In particular, the larger of our two Crocodylus porosus had a
greater y-intercepts indicating greater molariformy. In addition to allometry, phenotypic
changes due to environmental factors may also influence teeth. Skull shape and tooth
orientation are irregularly influenced by captive rearing (Erickson et al., 2004; Drumbheller,
Wilberg, & Sadleir, 2016), and how this may also influence tooth shape has yet to be
determined. Many of our specimens had ‘no data’ concerning their rearing, so we do not know

if captivity influenced either tooth or skull morphology.

Morphological trends within Crocodyliformes

All crocodyliform specimens measured here were heterodont to varying degrees, and these

data showed significant variability of morphotypes along the dental arcade for all specimens
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(Figure 7). Although dentition varied between species, certain consistencies were seen

throughout the clade:

1. Similar teeth occurred on both the cranial and dentary dental arcades.

2. As body size increased, size-heterodonty increased reliably with it. Shape-heterodonty
shows a much less reliable negative correlation with body size.

3. The vast majority of shape variance from the labial perspective occurred along a single
shape axis, representing the transition from caniniform to molariform. Only minor distal
curvature was apparent in very caniniform crowns.

4. There was serial homology in tooth shape from-mesial-to-distal along the tooth row,
and molariformy increased in this direction. The transition was significantly linear for
both dental arcades for all specimens.

5. Size variability consisted of an undulating pattern with three peaks that interlock with
the opposing row, with enlarged crowns interspersed within smaller crowns. This
corresponded with the festooning pattern seen in the tooth bearing bones, and was less
apparent in slender-snouted taxa.

Shape- and size-heterodonty were very loosely coupled in Crocodyliformes as they changed in
dramatically different, and primarily independent, fashions along the arcade. Some correlation
did occur; the regression’s significance was probably the result of the fact that the distal-most

crowns were typically both the smallest crowns as well as the most molariform. Nevertheless,

the undulating pattern of tooth size did not align with linear shape heterodonty for the vast

majority of the tooth row, as indicated by the very low r2.
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The low degree of coupling begs the question; do developmental agents influence size
and shape separately? Although quite a bit of research has looked at how crocodylian teeth
grow and replace themselves (Edmund, 1962; Westergaard and Ferguson, 1986, 1987, 1990;
LeBlanc et al., 2017), surprisingly little has been done on what developmental influences affect
tooth size and shape. Modern crocodylians replace their teeth in waves, or Zahnreihe (Edmund,
1962; Westergaard and Ferguson, 1990; Osborn, 1998), but it is unclear how the nature of
these waves relate to the morphological variables investigated here. Keiser et al., (1993)
compartmentalized the dentition along the tooth row for Crocodylus niloticus, grouping teeth
into ‘incisor,” ‘premolar,” and ‘molar’ regions. These designations attempted to account for both
size and shape heterodonty; each was defined by an enlarged tooth, and each become
progressively more molariform. They did not offer a developmental mechanism that
differentiates these categories though. Fruchard (2012, p.7) suggested that the only difference
between enlarged teeth and their smaller counterparts was that the former was “programmed
to be bigger,” suggesting some sort of additional developmental signaling to enlarge teeth.
More research is needed on how tooth shape and size are established developmentally in order

to truly understand what generates heterodonty.

Adaptive explanations for morphological variability in modern taxa

There is a wide range of tooth morphologies present in modern Crocodylia, and, as teeth are
anatomical units used for feeding and aggression, functional inferences may be drawn based on
our present understanding of behavior and performance. Bite force in crocodylians is primarily

influenced by size (Erickson et al., 2012, 2014), and our data set shows that similarly sized
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crocodylians may have very different tooth dimensions. This rules out maximum bite force as
the sole limiting factor dictating tooth form. Although we are reluctant to associate specific
prey items with specific tooth forms, size and shape will influence how a tooth interacts with
food items possessing certain physical properties. We therefore suggest that a biomechanical
link should exist between the structural limits imposed by tooth form and the material

properties of the substrates with which it interacts.

As with all jawed vertebrates, crocodylian teeth will succumb to different speeds and
stresses based on their respective position along the arcade. Caniniform mesial teeth are ideal
for the initial acquisition of prey. Pointed apices reduce surface area to puncture compliant
foods that deform under pressure, such as muscle, fat, and fibrous connective tissue (Frazetta,
1988). Being farther from the hinge, these teeth move faster during a strike and are more likely
to contact prey trying to escape (Busbey, 1989). They will also will endure less force based on
their position, and can afford to be relatively elongate and gracile. On the other end, distal
teeth need to withstand greater forces due to their close proximity to the hinge (Cleuren, Aerts,
& Vree, 1995; Erickson, Lappin, & Vliet, 2003; McHenry et al., 2006; Erickson et al., 2012). This
explains why these teeth are typically on the molariform half of the shape spectrum; the larger
base-to-height ratio gives them greater relative bending strengths (Van Valkenburgh and Ruff,
1987; Gignac & Erickson, 2014; Monfroy, 2017). Because force is highest in this region, it is ideal
for processing food items after they are acquired (Busbey, 1989; Davenport et al., 1990;
Cleurens and de Vree, 2000). The reduced height of these teeth also ensures they do not
impede jaw closure. This necessity is very apparent in our representative member of Gavialis,

and provides a functional explanation for the poor linear shape relationship along the tooth
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row in this individual. Having all the teeth be highly caniniform except for the distal-most region
may be interpreted as an attempt to reduce heterodonty as much as possible (Grigg and Gans,
1993), while ensuring the distal crowns do not impede jaw closure or break when processing

food.

Particular attention should be paid to the relative size of the distal-most crowns, as they
vary considerably within our sample. Most modern alligatoroids and crocodyloids have a single
enlarged tooth followed distally by several smaller teeth. These typically were represented by
positive PC1 scores, especially concerning Alligator mississippiensis and Crocodylus siamensis,
and were also some of the smallest teeth in its arcade (Figure 7A). Both members of Alligator
sinensis differed from this though, in that they had a row of 4-5 relatively large, high-
molariform crowns (followed by only one crown reduced in size). Probably the most extreme
condition, Osteolaemus tetraspis specimens had distal crowns that were exceptionally large;
the largest relative crowns at positions M10-12 and D11-13 for modern taxa all belonged to
members of this species. These two species also have the lowest number of teeth for modern
alligatoroids and crocodyloids respectively, a reduction potentially based on the need to fit
these enlarged teeth. Aoki (1989) qualitatively noted these unique conditions, and suggested
they facilitated durophagy. All alligatoroids and crocodyloids sampled here have been recorded
to consume at least some hard prey items though (e.g. Brazaitis, 1973; Mcllhenny, 1976; Taylor,
1979; Groombridge, 1982; Ross and Magnusson, 1989; Santos et al., 1996; Selvaraj, 2012;
Nifong & Silliman, 2013), so it is unclear what selection pressure resulted in these particular
morphologies. It may be a result of body size. Bite force tests of Alligator mississippiensis

showed the pressure produced at its enlarged M11 to be adequate to crush its harder prey
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items (Erickson, Lappin, & Vliet, 2003; Gignac & Erickson, 2014). If this is the case in most of the
large crocodylians, enlarging the distal-most crowns would be unnecessary. Alligator sinensis
and Osteolaemus tetraspis, on the other hand, may need more extreme dentition closer to the
hinge; their smaller size would make it more difficult to process foods with similar mechanical
properties. Another explanation for this may be the frequency of consuming hard prey.
Although both these species have broad diets, studies have shown certain (but not all)
populations to consume disproportionately large numbers of shelled mollusks and crustaceans
(Cheng-Kuan, 1957; Groombridge, 1982; Ross and Magnusson, 1989; Luiselli, Akani, & Capizzi,

1999; Pauwels et al., 2007).

All taxa measured here also have two sets of enlarged mesial teeth on both arcades.
These teeth are well built for puncturing, likely make first contact with prey during jaw closure,
and are resilient against struggling prey (lordansky, 1964). An apparent trade-off to enlarging
these teeth is the need to reduce the size of teeth on the opposing tooth row. This character
played a large role in size-heterodonty, with different crocodylians undulating their tooth sizes
to different degrees. High relative size-heterodonty in caimanine specimens was typically a
consequence of the dramatic size difference between the enlarged teeth and the small
remaining crowns, (Figure 7B). Their dentary crowns in particular became so large they often
grew entirely through the cranial rostrum in adults (as mentioned in Brazaitis, 1973), which
suggests securing prey takes priority. The remaining crowns were rather small by comparison,
including the distal crowns: the teeth with the greatest mechanical advantage when processing
hard prey. This arrangement may be a specialization for hunting more mobile and/or compliant

prey (Sampaio et al., 2013), as insects and fish can make up a large portion of the caimanine
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541 diet (Santos et al., 1996). The Crocodylus porosus specimens had the largest M5 crowns in our
542 sample, which may also show a prioritization for puncturing and securing soft-bodied prey in a
543 larger context (Figure 7B). This species is notorious for actively hunting large vertebrates such
544 as sharks, cattle, horses, and humans (e.g. Taylor, 1979; Kar & Bustard, 1981; Groombridge,
545 1982; Doody, 2009; Hanson et al., 2015), and these teeth are ideal for puncturing and securing
546 such prey. Similar to caimanines, this species atrophies position P2 to make room for its

547 enlarged D1 crowns (Brown at al., 2015)

548 The slender-snouted species possessed generally more caniniform teeth, which may be
549 aconsequence of feeding habitat and prey preference. These taxa have a reputation for eating
550 small, aquatic prey with a focus on fish (Peyer, 1968; Webb, Manolis, & Buckworth, 1982), and
551 multiple lines of evidence suggest the feeding apparatus is well suited for this function. The
552 slender shape reduces resistance during both lateral motion and jaw adduction when feeding
553 underwater, and the increased snout length allows for a faster strike (Taylor, 1987; Pooley,
554 1989; Thorbjarnarson, 1990; McHenry et al., 2006; Pierce et al., 2008). Highly caniniform teeth
555 can quickly puncture fast-moving, compliant prey, and their elongate shape may also lower
556 their mechanical resistance (Figure 7C). The longirostrine condition, defined as a snout that is
557 both slender and elongate (Brochu, 2001), resulted in increased tooth positions; Tomistoma
558 had more teeth than any other crocodyloid, and Gavialis has the most teeth out of all

559 crocodylians sampled. This cranio-dental morphotype may be prey-size prohibitive though, as
560 larger prey could damage the slender rostrum while struggling. Their elongate mandibular

561 symphysis results in a mechanical disadvantage against the forces produced by shaking and

562 twisting prey (Walmsley et al., 2013). The gracile nature of the dentition means a lower bending

Peer] reviewing PDF | (2018:07:29741:1:1:NEW 15 Nov 2018)



Peer]

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

strength, making them more susceptible to breakage from larger and/or harder prey as well. On
rare occasions, large individuals have been known to take land-based, vertebrate prey
(Thorbjarnarson, 1990; Selvaraj, 2012). This is most likely because the overwhelming size of

these crocodylians allows their feeding apparatus to withstand the forces exerted by said prey.

The slender-snouted taxa had some of the lowest size- and shape-heterodonty of
modern crocodylians, which is reminiscent of several other clades of aquatic predators. They
share certain traits with the anisodont plesiosauromorphs (Sassoon et al., 2015; Kear et al.,
2017). Although these crocodylians are not anisodont in the strict sense (they all have some
shape heterodonty), both taxa have elongate mesial crowns transitioning to smaller distal ones.
These taxa also reflect similarities with the ‘homodont’ condition apparent in odontocete
whales (Rommel, 1990), where all the teeth in the arcade possess a similar, peg-like shape. This
condition is believed to be ideal for catching and holding, but not processing, small aquatic prey
(MacLeod et al., 2007), as most prey items consumed are under 10% of their body length
(MacLeod et al., 2006). A convergent reduction in size- and shape-heterodonty within these
independently aquatic groups may indicate a transition from a multi-functional dental arcade to
one almost exclusively for prey capture. This is clearly the condition in members of Gavialis, as
it is almost entirely caniniform along its tooth row and eats primarily fish (Groombridge, 1982,
Figure 7C). Members of Mecistops and Tomistoma, although also primarily caniniform, still
displayed the linear shape change typical of other crocodyloids. These species may consume
prey that require relatively more processing with their distal crowns, and there are numerous
reports of them eating prey such as crustaceans, turtles, and immature primates (Brazaitis,

1973; Groombridge, 1982; Galdikas and Yeager, 1984; Selvaraj, 2012).
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585 Tooth shape may indicate differences in feeding behavior and processing ability, even
586 though overlap exists in prey selection. Alligator mississippiensis and Crocodilus niloticus both
587 consume a wide variety of prey, including both large and small mammals, crustaceans, fish,
588 water fowl, snakes, turtles, and conspecifics (Mcllenny, 1976; Pooley & Gans, 1976;

589 Groombridge, 1982; Delany and Abercrombie, 1986; Hutton, 1987; Shoop & Ruckdeschel, 1990;
590 Rootes & Chabreck, 1993; Elsey, Trosclair lll, & Linscombe, 2004; Wallace and Leslie, 2008;

591 Gabrey, 2010). A comparison of controlled feedings of each of these species showed Alligator
592  mississippiensis to fracture and consume noticeably more bovine skeletal elements than

593  Crocodylus niloticus (Njau & Blumenschine, 2006; Drumheller & Brochu, 2014; 2016). Our

594 Alligator mississippiensis specimens was generally more molariform than Crocodylus niloticus.
595 These teeth would have greater bending strengths to resist breakage when processing hard

596 material such as bone.
597 Fossil taxa and the appropriateness of analogues

598 Certain fossil taxa were reminiscent of modern counterparts. We expected the fossil Caiman
599 crocodilus to be similar to its congenerics, due to the fact that these specimens are closely

600 related and all consume insects, crustaceans, and fish (Brazaitis, 1973; Groombridge, 1982; Da
601 Silveira and Magnusson, 1999). Any differences in size and shape ranges appear to simply be a
602 consequence of the former’s incomplete arcades; no distal maxillary or any dentary crowns
603 were available (see Limitations below). Alligator mississippiensis specimens have similar shape
604 regression statistics to our Leidyosuchus specimen, but, unlike members of Alligator, this

605 specimen lacked enlarged distal teeth (Figure 7D). This caused size heterodonty to differ
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noticeably, and may be indicative of a difference in the degree these taxa process hard
materials (although no taphonomic evidence for this currently exists associated with
Leidyosuchus). The two specimens of Borealosuchus differed from one another in median shape
as indicated by y-intercepts, which may due to an allometric increase in molariformy. The best
analogue for this species may be a member of Crocodylus with similar slopes, but more data is

necessary to confirm this (Figure 7D).

The inclusion of Hamadasuchus, and the fact that it showed similar trends in
heterodonty to crown crocodylians, was particularly revealing. Peirosaurids are believed to be
primarily terrestrial crocodyliforms (Tavares et al., 2017), and they most likely did not occupy
the semi-aquatic, sit-and-wait predator niche dominated by modern crocodylians (Larsson &
Sues, 2007). Nevertheless, the nature of size- and shape-heterodonty is similar between the
two groups, indicating the methods proposed here are transferable outside of Crocodylia. The
fact that the Hamadasuchus specimen had similar relative size heterodonty and relative
maximum tooth size to the larger Crocodylus porosus specimen indicates that it may have dealt
with similar prey from a mechanical standpoint (Figure 7E). Its greatly enlarged mesial teeth
would puncture vertebrate tissue with similar effectiveness to those of a large Crocodylus
porosus (Figure 7B). The Hamadasuchus specimen differed in that it had very large distal
crowns, which, unlike members of Osteolaemus, are laterally flattened and considered
ziphodont (Larsson & Sidor, 1999). This suggests potential differences in prey processing. It
may have used these for either sheering soft tissue or breaking bone similar to modern
mammalian carnassials, as rolling on land is not an effective means of dismemberment (Fish et

al., 2007).
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Several authors have stated that modern taxa do not have, or have secondarily lost, an
extreme degree of molariformy commonly found in extinct representatives. ‘Globidonty’
describes the enlarged, highly molariform crowns in fossil taxa potentially used for durophagy
(Norell, Clark, & Hutchison, 1994; Brochu, 1999; 2001; Osi & Barrett, 2011). Species of
Brachychampsa are textbook examples of a globidont taxon (Case, 1925; Carpenter and
Lindsey, 1980, Figure 7F), and our specimen is the only one in the sample with distal teeth so
molariform their PC1 scores exceed 0.349. Although we agree with Brochu (2001, 2004) that
Osteolaemus tetraspis is not as extreme, the PC1 scores of its enlarged distal teeth are closer to
our Brachychampsa than another other taxon sampled (0.322-0.341). Alligator prenasalis and
“Crocodylus” dffinis distal crowns are similar to Alligator sinensis in shape, and also create a
ridge of robust teeth (Mook, 1932). The mechanical capabilities of these particular crowns in
modern taxa should be similar to the extinct, which suggests similar processing abilities in the
distal regions of the skull. The similarities break down when the rest of the jaw is considered
though. In addition to these highly molariform teeth, modern taxa also possess caniniform
mesial teeth suggesting a division of labor along the tooth row. Contrarily, almost all teeth of
members of Alligator prenasalis, Brachychampsa sp., and “Crocodylus” affinis are on the
molariform half of the shape-spectrum (Figure 7F), making both their size- and shape-
heterodonty rather low. These extinct taxa probably did not need to do as much puncturing of
compliant substrate, which supports the argument that they may have foraged for mollusks and
slow moving turtles (Carpenter and Lindsey, 1980; similar to Salas-Gismondi et al., 2015) rather

than being ambush predators.

Limitations and future work
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650 Foote’s morphological disparity is a reliable method for assessing heterodonty if the tooth row
651 is near complete, but some of the variability in heterodonty seen here is the result of

652 incompleteness. This measure of disparity relies on, among other things, the grand mean and
653 the sample size. Size heterodonty may be underrepresented if, for example, an enlarged tooth
654 is missing. This tooth would deviate greatly from the grand mean if present, so its exclusion
655 would deflate size heterodonty. As shape is linear in Crocodyliformes, missing the mesial- or
656 distal-most teeth would deflate size heterodonty. This was apparent in the fossil Caiman

657 crocodilus; even though it shared almost identical tooth morphology with modern congenerics
658 when positions were compared, its shape heterodonty was much lower because the distal 30%
659 of its teeth were missing. This also affected the shape regression, as the fossil specimen’s

660 cranium slope was much shallower than the modern members of Caiman.

661 We did not consider all three dimensions here. Living crocodylian teeth are often

662 discussed as conical (Edmund, 1969) or conidont (Hendrickx, Mateus, & Araujo, 2015b). Studies
663 of bending strengths show variation between mesial-distal and labial-lingual axes (Monfrey,

664 2017), indicating that functional information may be drawn from the dimension not measured
665 here. This is especially important concerning fossil taxa, as pronounced lateral compression is
666 commonplace. Hamadasuchus distal teeth have been referred to as ziphodont (Larsson & Sidor,
667 1999), but, as this is defined by lateral flattening, our method did not register this character.
668 Future studies should consider this third dimension at least qualitatively, in order to avoid

669 conflating disparate tooth morphotypes such as these.
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Principal component scores as shape measurements are very much dependent on the
nature of the sample. Although they are very revealing concerning shape variability, they are
not transferable between different data sets. A potential method for creating transferable
shape metrics is using our PC1 axis as a guide to derive linear distance measures that would
account for the serial shape homology seen in Crocodyliformes. Since PC1 essentially
represents molariformy vs. caniniformy from the labial perspective, it could possibly be
simplified into a comparison of linear distance measures such as maximum mesial-distal widths
and apical-basal heights. These metrics would be not only easy to collect, but also transferable

between data sets.

These limitations aside, future researchers may apply our proposed method to any
crocodyliform specimen with an intact enough tooth row. We limit our evaluation of
interspecific differences, and make no attempt to analyze other factors such as ontogenetic
changes or the effect of captive rearing (Erickson, Lappin, & Vliet, 2003; Erickson et al., 2004;
Gignac & Erickson, 2014; Drumheller, Wilberg, & Sadleir, 2016). All of these variables may be
investigated in the future using our method, as there is nothing to suggest that crocodyliform
individuals of most species, ages, and/or rearing conditions would not be able to be quantified
in a similar manner. This method could be very useful in dealing with incomplete fossils. It is
common for fossil crocodylian specimens to be lacking many, or even most, of their teeth. The
linear nature of tooth shape can predict the shape of these missing teeth. A record of the
ranges of slopes may be accumulated for fossil specimens with intact teeth. These slopes may
then be used as a reference, and be applied to a fossil with the missing teeth. The preserved

teeth can be plugged into the linear equation, and the shapes of missing teeth may be
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predicted with a high degree of certainty. This would result in a more complete representation
of the extinct animal’s anatomy, useful from the standpoint of both anatomical science and

paleontological reconstruction.

Quantifying the teeth of Crocodyliformes will add rigor to future life history studies of
the clade. First and foremost, values may be applied to the plethora of qualitative terms used
by researchers (see Introduction). This would allow for stricter definitions of the terms when
used in the future. As a quantifiable trait, both tooth shape in a single position and
heterodonty as a whole may be incorporated into character matrices for phylogenetic analyses.
Quantitative descriptors of dentition can describe a numerical range of morphology as opposed
to cherry-picking an average tooth or single position. The teeth of fossil taxa can be compared
statistically to modern taxa to determine the best analogue, and rigorous hypotheses about
paleobehavior and paleoecology may be drawn. Crocodyliformes, both living and extinct, may
be grouped into dental categories, allowing for species and specimens to be compared to one
another (similar to snouts in Brochu, 2001). Frequency, size, and hardness of food items may
be compared to these categories to determine if a link exists between dental morphotypes and
dietary patterns (similar to Aoki, 1989). Crocodylians are used in both performance and
actualistic taphonomy studies frequently (Njau & Blumenschine, 2006; Erickson et al., 2012,
2014; Drumbheller & Brochu, 2014; 2016), and the output of these studies could be correlated
with tooth dimensions. Tooth shape may also be compared to bite-force, death-rolling, bone-

modification.

CONCLUSION
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Multiple measures of morphology have allowed us to describe heterodonty in a
thorough manner across a number of both extinct and extant crocodyliform specimens.
Through a combination of Foote’s morphological disparity and regression analysis along the
tooth row, our data indicated that crocodylians are indeed heterodont non-mammals with a
number of dental morphotypes available spanning from extreme cases of caniniform to
molariform. This variability may be functional in nature, and relate to the size, frequency, and
compliance of certain prey in their typically generalist diets. The methods used here should be
applied in the future to most crocodylian specimens to investigate dental morphology in the

context of a number of natural history related questions.
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FIGURE LEGENDS

Figure 1: Data collection methods. A) We numbered teeth based on position and host bone
(only the left teeth are labeled). Teeth P4, M5, and M10 are defined as the enlarged teeth. B)
We photographed each tooth individually, and traced the margins. C) The software converted
each outline into 30 equidistant coordinates. Three coordinates were transformed into
landmarks (magneta) and the rest into semilandmarks (green). D) We represented tooth shape
variance through vector diagrams, with points representing the mean and vectors representing
shape deviation. E) For skulls, we produced an outline from the dorsal perspective, with 50
coordinates on each margin that were transformed into landmarks (magenta) and
semilandmarks (green). F) We represented shape variance with vector diagrams similar to

above. (Specimen depicted: Crocodylus palustris AMNH 96134.) [Half page width]

Figure 2: Variability within the first Principal Component for teeth. Vector diagrams indicate
the maximum range of variance (vectors) from the mean (points) for both cranial and dentary

teeth. Landmarks are in magenta and semilandmarks are in green. [Half page width]

Figure 3: Partial Least Squared (PLS) two-block analysis of shape. A) Vector diagrams indicate
shape variance of PLS1 for skull shape (Block 1) and average tooth shape (Block 2). B) PLS1
scores for both Blocks were regressed, with colors representing major taxonomic groups. Solid

markers depict extant specimens, and hollow markers depict extinct. [Full page width]

Figure 4: Heterodonty represented by Foote’s morphological disparity. Ln scaling of

Morphological Disparity (MD) for size (A) and shape (B) are plotted against the In of skull length.
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Colors represent major taxonomic groups, solid markers depict extant specimens, and hollow

markers depict extinct. [Half page width]

Figure 5: Heterodonty by tooth position. Centroid Size (CS) and Principal Component one (PC1)
for extant Alligatoroidea, Crocodyloidea, and remaining taxa, plotted against position along the
arcade. Welch’s ANOVA output comparing positions is listed for each graph with multiple
specimens. Colors represent major taxonomic groups. See Figure 2 for a visual representation

of shape change depicted by PC1 scores. [Full page width]

Figure 6: Regression information for shape heterodonty. Slope (m) and y-intercept (b) data for
regressions of the first Principal Component plotted against tooth position for individuals. Error
bars indicate 95% confidence intervals. Colors represent major taxonomic groups, with solid

markers depicting extant specimens and hollow markers depicting extinct. Regression statistics

are available in Table S3. [Full page width]

Figure 7: Direct comparisons between selected extant and extinct taxa. The size axis
represents normalized centroid size (ranging from 0.00-0.20), and the shape axis represents
scores from the first principal component (ranging from -0.04-0.04). Taxa are grouped by A)
specimens with high molariform distal teeth, B) modern taxa that display high size heterodonty,
C) slender-snouted taxa, D) Hamadasuchus rebouli, E) Borealosuchus sternbergii and
Leidyosuchus canadensis, and F) fossil globidont taxa. (Note: B. sternbergii teeth were not size

normalized by its own skull length, as indicated by hollow bars.) Scale =5 cm. [Full page width]
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Figure 1

Data collection methods

A) We numbered teeth based on position and host bone (only the left teeth are labeled).
Teeth P4, M5, and M10 are defined as the enlarged teeth. B) We photographed each tooth
individually, and traced the margins. C) The software converted each outline into 30
equidistant coordinates. Three coordinates were transformed into landmarks (magenta) and
the rest into semilandmarks (green). D) We represented tooth shape variance through vector
diagrams, with points representing the mean and vectors representing shape deviation. E)
For skulls, we produced an outline from the dorsal perspective, with 50 coordinates on each
margin that were transformed into landmarks (magenta) and semilandmarks (green). F) We
represented shape variance with vector diagrams similar to above. (Specimen depicted:

Crocodylus palustris AMNH 96134.)
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Figure 2

Variability within the first Principal Component for teeth

Vector diagrams indicate the maximum range of variance (vectors) from the mean (points)

for both cranial and dentary teeth. Landmarks are in magenta and semilandmarks are in

green.
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Figure 3

Partial Least Squared (PLS) two-block analysis of shape

A) Vector diagrams indicate shape variance of PLS1 for skull shape (Block 1) and average
tooth shape (Block 2). B) PLS1 scores for both Blocks were regressed, with colors
representing major taxonomic groups. Solid markers depict extant specimens, and hollow

markers depict extinct.
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Figure 4

Heterodonty represented by Foote’s morphological disparity

Ln scaling of Morphological Disparity (MD) for size (A) and shape (B) are plotted against the
In of skull length. Colors represent major taxonomic groups, solid markers depict extant

specimens, and hollow markers depict extinct.
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Figure 5

Heterodonty by tooth position

Centroid Size (CS) and Principal Component one (PC1) for extant Alligatoroidea,
Crocodyloidea, and remaining taxa, plotted against position along the arcade. Welch'’s
ANOVA output comparing positions is listed for each graph with multiple specimens. Colors
represent major taxonomic groups. See Figure 2 for a visual representation of shape change

depicted by PC1 scores.
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Figure 6

Regression information for shape heterodonty

Manuscript to be reviewed

Slope (m) and y-intercept (b) data for regressions of the first Principal Component plotted

against tooth position for individuals. Error bars indicate 95% confidence intervals. Colors

represent major taxonomic groups, with solid markers depicting extant specimens and hollow

markers depicting extinct. Regression statistics are available in Table S3.
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Figure 7

Direct comparisons between selected extant and extinct taxa

The size axis represents normalized centroid size (ranging from 0.00-0.20), and the shape
axis represents scores from the first principal component (ranging from -0.04-0.04). Taxa are
grouped by A) specimens with high molariform distal teeth, B) modern taxa that display high
size heterodonty, C) slender-snouted taxa, D) Hamadasuchus rebouli, E) Borealosuchus
sternbergii and Leidyosuchus canadensis, and F) fossil globidont taxa. (Note: B. sternbergii

teeth were not size normalized by its own skull length, as indicated by hollow bars.) Scale =

5cm.
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