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Heterodonty in Crocodylia has not been defined quantitatively, as the teeth rarely have

been measured. This has resulted in a range of qualitative descriptors, with little

consensus on the state of dental morphology in the clade. The purpose of this study was to

quantify both shape and size morphology along the tooth row in a multispecific sample of

both extant and extinct members Crocodylia using geometric morphometrics. Data were

collected from several crown crocodylian (and one peirosaurid) dry skeletal and fossil

specimens. Digital photographs were taken of each tooth, and the margins of the tooth

were converted into landmarks/semilandmarks. Heterodonty was expressed as Foote’s

morphological disparity, and a principal components analysis visualized shape variance. All

living crocodylians are heterodont to varying degrees. The majority of the shape variance

was represented by a ‘caniniform’ to ‘molariform’ transition. Heterodonty varied

significantly between positions; size undulated whereas shape was significantly linear from

mesial to distal, suggesting they are developmentally decoupled. Snout shape correlated

to tooth shape but not size, with longirostrine taxa having more caniniform teeth and

brevirostrine having more molariform. Caimanines and Crocodylus porosus had high size-

heterodonty with large pseudocanines, reflecting a prioritization of securing struggling,

compliant prey. Alligator sinensis and Osteolaemus tetraspis had large, highly molariform,

distal teeth: a consequence of high-frequency durophagy combined with prey size. Gavialis

gengeticus, Mecistops cataphractus and Tomistoma schlegelii had a caniniform arcade

with low heterodonty, almost exclusively for capturing small underwater prey with minimal

processing. Alligator prenasalis, Brachychampsa sp., and “Crocodylus” affinis were

primarily molariform. Leidyosuchus and Borealosuchus tooth sizes and shapes typical of

modern Alligator and Crocodylus respectively, although the former may have been less

durophagous. Hamadasuchus rebouli similarities to C. porosus indicate it may have dealt

with vertebrate prey, but prey processing may have been different due to its terrestrial
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habitat. Although Foote’s disparity is a reliable method for assessing heterodonty,

incomplete tooth rows may give inflated/deflated values. Our methods may be very useful

for predicting the shape of missing teeth in fossil taxa, as well as inferring dietary

behaviors and other life history characters.
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13 ABSTRACT

14 Heterodonty in Crocodylia has not been defined quantitatively, as the teeth rarely have been 

15 measured. This has resulted in a range of qualitative descriptors, with little consensus on the 

16 state of dental morphology in the clade. The purpose of this study was to quantify both shape 

17 and size morphology along the tooth row in a multispecific sample of both extant and extinct 

18 members Crocodylia using geometric morphometrics. Data were collected from several crown 

19 crocodylian (and one peirosaurid) dry skeletal and fossil specimens. Digital photographs were 

20 taken of each tooth, and the margins of the tooth were converted into 

21 landmarks/semilandmarks. Heterodonty was expressed as Foote’s morphological disparity, and 

22 a principal components analysis visualized shape variance. All living crocodylians are 

23 heterodont to varying degrees. The majority of the shape variance was represented by a 

24 ‘caniniform’ to ‘molariform’ transition. Heterodonty varied significantly between positions; size 

25 undulated whereas shape was significantly linear from mesial to distal, suggesting they are 

26 developmentally decoupled.  Snout shape correlated to tooth shape but not size, with 

27 longirostrine taxa having more caniniform teeth and brevirostrine having more molariform. 

28 Caimanines and Crocodylus porosus had high size-heterodonty with large pseudocanines, 

29 reflecting a prioritization of securing struggling, compliant prey.  Alligator sinensis and 

30 Osteolaemus tetraspis had large, highly molariform, distal teeth: a consequence of high-

31 frequency durophagy combined with prey size. Gavialis gengeticus, Mecistops cataphractus and 

32 Tomistoma schlegelii had a caniniform arcade with low heterodonty, almost exclusively for 

33 capturing small underwater prey with minimal processing.  Alligator prenasalis, Brachychampsa 

34 sp., and “Crocodylus” affinis were primarily molariform. Leidyosuchus and Borealosuchus tooth 

PeerJ reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)

Manuscript to be reviewed

DF
Highlight
"state" is a very vague term. Please consider it changing into something more descriptive, or rephrasing.

DF
Highlight
Please clearly state in the abstract how many species were used in total; how many living and ho many fossil as well.

DF
Highlight
Principal Component Analysis is normally spelled with capital initials, but that is up to debate. However, whichever spelling the authors decide to adopt, it should be kept consistent through the text - it is currently not.

DF
Highlight
This is referred as to "MD" in the text. Please keep the spelling consistent.

DF
Highlight
Countless time in the text generic names are abbreviated. This is however inconsistently done. I suggest two possible solutions: 1) Spelling the entire name every time. 2) If the authors wish to use abbreviations - may be useful for the figures -, they should add an abbreviation list of taxonomic names in the method section or in the figure caption where these are used.
I would personally prefer that generic names were consistently spelled in the text, and abbreviations could be used in the figures.

DF
Highlight
"sp." should not be italicised.
Please check through the text.



35 sizes and shapes typical of modern Alligator and Crocodylus respectively, although the former 

36 may have been less durophagous. Hamadasuchus rebouli similarities to C. porosus indicate it 

37 may have dealt with vertebrate prey, but prey processing may have been different due to its 

38 terrestrial habitat.  Although Foote’s disparity is a reliable method for assessing heterodonty, 

39 incomplete tooth rows may give inflated/deflated values.  Our methods may be very useful for 

40 predicting the shape of missing teeth in fossil taxa, as well as inferring dietary behaviors and 

41 other life history characters.

42 Keywords: Caniniform, Crown, Dentition, Diet, Geometric morphometrics, Molariform, 

43 Semilandmarks

44 INTRODUCTION

45 What constitutes heterodonty often seems like a moving target, with different 

46 qualitative definitions in place depending on the clade being studied (Shimada, 2001). In 1993, 

47 Kieser et al. referred to the exact definition of the term heterodont as “a bone of contention.” 

48 Since that time, the issue never has been fully resolved. Nowhere is this lack of clarity more 

49 pronounced than within the non-mammalian vertebrate literature, especially the members of 

50 Crocodylia. Traditionally crocodylians were considered homodont, due to a lack of discrete 

51 dental categories or variability in cusp number as in mammals (Peyer, 1968; Langston, 1973; 

52 Osborn, 1998; Larsson & Sidor, 1999; Zahradnicek et al., 2014). Ferguson (1981) refers to 

53 Alligator mississippiensis as “pseudoheterodont,” because it showed a gradual, as opposed to 

54 punctuated, change in tooth shape along the tooth row (see also Grigg and Gans, 1993; Kieser 

55 et al., 1993; Hendrickx, Mateus, & Araújo, 2015b). Size changes have motivated the term 
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56 “heterometric homodonty” for Crocodylus niloticus (Fruchard, 2012). To add to the ambiguity, 

57 certain fossil crocodylians, especially those taxa that are interpreted as herbivores or 

58 omnivores, are called “heterodont” in order to distinguish their dentition from their modern 

59 relatives (e.g. Martin, 2007; Ősi, Clark, & Weishampel, 2007; Novas et al., 2009).  

60 Semantics aside, one reason for the lack of resolution concerning crocodylian 

61 heterodonty is that their teeth have rarely been measured. There have been few studies 

62 looking at morphometrics of crocodylian teeth, and, of those studies, measurements have been 

63 Euclidean distances taken for determining replacement rates (Frey & Monninger, 2010; 

64 Bennett, 2012) or for biomechanical analyses (Monfroy, 2017).  Aside from a single study 

65 measuring Euclidean distances in a fossil notosuchian (Lecuona & Pol, 2008), little research has 

66 quantitatively investigated heterodonty either within or between species. Typically, crocodylian 

67 dentition is described qualitatively, with the goal of fossil identification, characterization for 

68 phylogenetic analysis, or paleoecological inference (e.g. Schwarz-Wings, Rees, & Lindgren, 

69 2009; Young et al., 2012; Salas-Gismondi et al., 2015; Adams, Noto, & Drumheller, 2017). 

70 Qualitative descriptors of crocodylian tooth morphology are numerous, and include terms such 

71 as blunt, bulbous, broadened, button-shaped, conical, globular, fang, kidney-shaped, 

72 lanceolate, needle-like, robust, short, slender, spike-like, and thick (e.g. Brazaitis, 1973; 

73 Groombridge, 1982; Aoki, 1989; Brochu, 1999; Erickson, Lappin, & Vliet, 2003; Ősi, Clark, & 

74 Weishampel, 2007; Schwarz-Wings, Rees, & Lindgren, 2009; Fruchard, 2012; Salas-Gismondi et 

75 al., 2015; Berkovitz and Shellis, 2017).  
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76 Research typically has focused on crocodylian tooth development and function as 

77 opposed to quantitative morphology, including numerous studies on material characteristics 

78 (Shimada, Sato, & Moriyama, 1992; Erickson, 1996; Enax et al., 2013), implantation and 

79 replacement (Edmund, 1962; Westergaard and Ferguson, 1986, 1987, 1990; LeBlanc et al., 

80 2017), dental wear (Ősi & Barrett, 2011), jaw musculature and kinematics (Iordansky, 1964; Van 

81 Drongelen & Dullemeijer, 1982; Busbey, 1989; Cleuren & De Vree, 1992; Endo et al., 2002), bite 

82 force (Cleuren, Aerts, & Vree, 1995; Erickson, Lappin, & Vliet, 2003; Erickson et al., 2012, 2014), 

83 death rolling (Fish et al., 2007; SK Drumheller, unpublished data), and taphonomic traces on 

84 bone surfaces (Njau and Blumenschine, 2006, 2012; Drumheller and Brochu, 2014; 2016).

85 Non-mammalian dental morphometrics has seen a burst of research in the past decade. 

86 Dinosaur teeth have probably received the most attention, with multiple studies using 

87 Euclidean distances for the identification of loose fossil crowns or to infer functional 

88 paleoecology (D’Amore, 2009; Larson & Currie, 2013; Buckley and Currie, 2014; Hendrickx and 

89 Mateus, 2014; Torices, Reichel, & Currie, 2014; Hendrickx, Mateus, & Araújo, 2015a, Gerke and 

90 Wings, 2016; Larson, Brown, & Evans, 2016). Extant reptiles have been investigated 

91 quantitatively as well, including colubrid snakes (Britt, Clark, & Bennett, 2009) and varanid 

92 lizards (D’Amore, 2015). Prior to this, lamniform sharks were investigated heavily (Shimada, 

93 2002b, 2004; Shimada and Seigel, 2005). These morphometric analyses have shed light on the 

94 nature of heterodonty, dental allometry, and ecomorphology in non-mammalian vertebrates, 

95 and these methods may be applied to Crocodylia in the hopes to elaborate upon the state of 

96 heterodonty in this taxon.
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97 The purpose of this study was to quantify both shape and size morphology along the 

98 tooth row in a multispecific sample of both extant and extinct members Crocodylia using 

99 geometric morphometrics. Our goals were to; 1) introduce a multifaceted method for assessing 

100 heterodonty in a given crocodylian specimen; 2) document any developmental consistencies 

101 found within the clade as a whole; 3) distinguish crocodylian dental morphotypes between 

102 individuals; and 4) outline the advantages, limitations, and potential future uses of the method 

103 when analyzing crocodylian heterodonty.      

104 MATERIALS AND METHODS

105 Nomenclature

106 Crocodylian teeth have very few discrete homologous anatomical loci, but, because they 

107 exhibit thecodont dentition (Edmund, 1969), we defined them as having a crown with an apex, 

108 a neck, and a root within an alveolus. Nomenclature for tooth morphology used here was 

109 proposed by Smith & Dodson (2003): mesial, towards the central premaxilla and mandibular 

110 symphysis; distal, away from the central premaxilla and mandibular symphysis; lingual, towards 

111 the tongue; labial, towards the lips; basal, towards the base of the tooth/alveolus; apical, away 

112 from the alveolus/towards the apex. For simplicity the mesial-most teeth are referred to as 

113 ‘mesials’ and the distal-most as ‘distals.’

114 Tooth position was indicated by either the presence of a tooth or an empty alveolus in 

115 the host bone. Cranial teeth included premaxillary and maxillary teeth, and dentary teeth only 

116 occurred on the dentary bone. Teeth were numbered in ascending order from mesial to distal 

117 positions. Not all crocodylian specimens had the same number of tooth positions. Maxillary 
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118 teeth ranged from M1 to M11-M24, and dentary teeth ranged from D1 to D14-D26. All 

119 specimens were assumed to have 5 premaxillary positions (P1–P5). Members of Paleosuchus 

120 and Osteolaemus have only 4 premaxillary teeth during early stages of ontogeny (Brochu and 

121 Storrs, 2012; Narvaez et al., 2015), whereas several other species atrophy an alveolus (usually 

122 P2) as they grow (Webb & Messel, 1978; Brown et al., 2015; personal observation). In order to 

123 standardize, the procumbent teeth were always assigned P4 and the other teeth and atrophied 

124 positions were numbered based off of it.

125 Specimens

126 Data were collected from 25 extant, and 14 extinct, crown crocodylian specimens. In 

127 addition, we added the peirosaurid crocodylomorph Hamadasuchus rebouli. This resulting in a 

128 total of 24 species. From these we measured 1,224 teeth in total. For extant crocodylian taxa, 

129 data was collected from dry skeletal specimens from the American Museum of Natural History 

130 (AMNH). At least 40% of the tooth positions had to be represented by measureable teeth on 

131 the left and/or right for the specimen to be considered. Specimens where the only teeth 

132 available biased towards the upper or lower size extremes were excluded. As ontogeny is 

133 beyond the scope of our present study, juveniles were avoided. Fossil taxa were sampled from 

134 the Royal Ontario Museum (ROM), the University of California Museum of Paleontology 

135 (UCMP), and the Smithsonian National Museum of Natural History (USNM). Completeness of 

136 tooth row was not considered in the inclusion of fossils.  Although Caiman crocodilus is an 

137 extant species, a fossil specimen was included.

138 Data collection
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139 Methods were similar to those proposed in D’Amore (2015). Teeth were photographed 

140 using either an Olympus Stylus or a Canon Rebel T3 EOS, alternating between a macro and an 

141 18-55 mm lens depending on the size of the tooth, against a dark background with a scale 

142 (Figure 1A). Digital photographs were taken from the labial perspective, and a separate picture 

143 was taken for each tooth. Only fully erupted teeth with the neck visible were included. Tooth 

144 quality was variable in extant specimens. We included teeth with slightly worn apices, but 

145 excluded teeth that had large wear facets and chips as long as they interfered noticeably with 

146 the outline. Cracks down the long axis of the teeth were common, and were omitted if the 

147 crack distorted the shape of the tooth or resulted in a space where light could be seen from the 

148 other side.      

149 We used a sliding semilandmark analysis (Bookstein 1997; Sheets, Kim, & Mitchell 2004; 

150 Zelditch et al., 2004; Mitteroecker et al., 2013) to derive shape measurements from the tooth’s 

151 outline. Photographs were entered in TpsDig 2.16, and the margin of the tooth was traced using 

152 the curve drawing tool (Rohlf, 2010) (Figure 1B). Because the enamel margin was not always 

153 clear, each tooth was traced from apex to the point where the tooth ceases to taper on the 

154 neck for both the mesial and distal side. The two traced margins were then each transformed 

155 into 30 equidistant coordinates, and the apical coordinates were combined into one. This 

156 resulted in 3 landmarks and 56 semilandmarks (Figure 1C), the latter of which were then slid to 

157 minimize the bending energy (Perez, Bernal, & Gonzalez, 2006; Gunz & Mitteroecker, 2013) 

158 using TpsRelw 1.53 (Rohlf, 2013). This program also performed generalized least squares 

159 Procrustes superimposition on the data, and calculated centroid size (CS). Bilateral symmetry of 
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160 the jaw was assumed, and the superimposed coordinates and CS were averaged between teeth 

161 from the same position on left and right sides.  

162 Rostrum shape has long been considered both an important phylogenetic and 

163 ecomorphological feature in crocodylians (Busbey, 1995; Daniel & McHenry, 2000; Brochu, 

164 2001; Sadleir & Makovicky, 2008; Salas-Gismondi et al., 2016). All specimens’ skulls were 

165 photographed with a scale from the dorsal perspective. Snout shape data were derived 

166 following Drumheller et al., (2016) and Wilberg (2017), using a modified version of our 

167 technique for tooth outlines. We traced the skull margin from the rostral-most point of contact 

168 between the premaxillae to the caudal-most quadratojugal on each side in TpsDig, broke each 

169 margin into 50 equidistant coordinates, combined the anterior-most coordinate (resulting in 3 

170 landmarks and 97 semilandmarks total), and slid them with TpsRelw again. Head length was 

171 derived from these landmarks, which began at the rostral-most landmark and ended in-

172 between the posterior-most landmarks along the mid-sagittal plane. In specimens with 

173 damaged or missing bones on one side, bilateral symmetry was assumed and the intact side 

174 was mirrored. Head length was used as a measure of body size in lieu of snout-vent length, and 

175 all CS values were divided by it to normalize relative tooth size. Allognathosuchus sp. (UCMP 

176 150180), Argochampsa rebouli (ROM 73872), and Boverisuchus vorax (UCMP 170767) did not 

177 have intact skulls associated with their dentition. Photographs of intact skulls of conspecifics 

178 were used instead to derive head shape and length (substituted specimens included: Yale 

179 Peabody Museum 17111, Field Museum of Natural History PR399, and Office Chérifien des 

180 Phosphates DEK-GE 1201)
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181

182

183 Ordination and statistics     

184 All analyses were conducted in MorphoJ v. 106d (Klingenberg 2011) and SPSS Version 

185 19.0 [IBM Corp, Armonk, NY].  A 10,000 permutations test was run on the Procrustes distance 

186 between cranial and dentary teeth for extant specimens, and showed no significant differences 

187 (P = 0.2000).  Therefore, all subsequent analyses were conducted with both arcades combined 

188 (unless position is being considered).  Interspecific differences in mean tooth size and shape 

189 were analyzed using an analyses of variance (ANOVA).  Size was heteroscedastic according to 

190 Levene’s test (P = 0.0002), so we ran a Welch’s ANOVA of normalized CS values for all members 

191 of each species in SPSS. For shape, Procrustes ANOVA was run in MorphoJ.

192  A singular measure of heterodonty was derived for each specimen in the form of 

193 Foote’s morphological disparity  (Foote, 1993; Zelditch, Sheets, & [𝑀𝐷= (∑𝑚𝑖= 1𝐷2𝑖)/(𝑚 ‒ 1)]
194 Fink, 2003; Sheets & Zelditch, 2013). Disparity (MD) is the sum of the differences of the values 

195 of a given tooth (i) from the mean for all teeth from that specimen (Di) squared, with the 

196 number of tooth positions (m) factored in. We calculated disparity for both cranial and dentary 

197 teeth together from each specimen. For size heterodonty, Di is simply the difference in CS of a 

198 tooth from the mean of the individual (Zelditch et al., 2004). Only specimens with intact skulls 

199 for normalization were included. For shape Di is the Procrustes distance between the tooth and 

200 the mean, and was calculated using DisparityBox7 (Sheets, 2012).  
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201 Although Foote’s MD is an inclusive measure of heterodonty, it is not descriptive of 

202 multivariate measures such as shape. Therefore, principal components analyses (PCA) were 

203 conducted to visualize the degree of shape variance within all cranial and dentary teeth 

204 separately. All PCs representing over 5% of the variance were considered, and shape variance 

205 was visualized in vector diagrams (Figure 1D). Both CS values and PC scores were graphed as 

206 box plots for all members of each species, to visualize the range of shape and size that 

207 contribute to MD. Similar to teeth, a PCA was run for skull shape. Skull shape PCs were 

208 compared to the average tooth PC for each extant individual in a bivariate plot, and regressed 

209 to determine if skull shape and tooth shape are correlated.

210 Shape and size were plotted against tooth position to visualize variability along the 

211 tooth row. For size, CS was plotted against tooth position. For shape, the aforementioned tooth 

212 PC scores were plotted against tooth position. Data were clustered into box plots to depict 

213 trends along the dental arcade for each family within our extant sample. Each box represented 

214 a position.  Note that these positions were not normalized, so specimens with more tooth 

215 positions will be the only occupants of the distal-most categories. As positional data were often 

216 heteroscedastic, Welch’s ANOVAs were conducted to determine if shape and/or size were 

217 significantly different by position for each arcade in each family. Shape data were also 

218 regressed to determine if serial homology is linear along the tooth row. To standardize these 

219 regressions, tooth position was normalized into a percentage. (We numbered the positions 

220 along the tooth row starting with 1 at the mesial-most position, divided each by the total 

221 number of positions along the arcade, and then subtracted 0.5. This placed the y-intercept 
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222 halfway along the arcade). Included PCs were then regressed against position-percentage, and 

223 regression statistics were tabulated.  
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224 Results:

225 Shape variability in the sample

226 The majority of the shape variance was represented by the first principal component 

227 (PC1). It accounted for over 91.26% of the variance, and is the only PC considered further. 

228 When visualized, the axes indicated a ‘caniniform’ to ‘molariform’ transition with increased 

229 values.  The negative-most condition was an elongate, narrow crown coupled with a gentle 

230 concavity on the distal margin. The positive-most values depicted an apical-basal shortening 

231 and mesial-distal broadening (Figure 2), giving the tooth a stout, rounded crown with a 

232 relatively narrow neck. Although PC1 was treated as a continuous variable in all subsequent 

233 analyses, we assigned names to ranges of PC scores for the purposes of description. These 

234 descriptors include; high-caniniform (<-0.25); mid-caniniform (-0.25 to -0.15); low-caniniform (-

235 0.15 to -0.05); average (-0.05 to 0.05); low-molariform (0.05 to 0.15); mid-molariform (0.15-

236 0.25); and high-molariform (> 0.25). 

237  Skull morphology: 

238 Mean tooth shape showed significant trends when regressed against head shape, but 

239 not size (Figure 3). Head shape yielded a PC1 encompassing 89.81% of shape variance, and 

240 represented the brevirostrine-to-mesorostrine-to-longirostrine transition (broad-, middle-, and 

241 slender-snouted conditions respectively) (Brochu, 2001; Wilberg, 2017). Significant regressions 

242 scaled with a slope of -0.67 for extant-only crocodylians. Generally speaking, longirostrine taxa 

243 had the most caniniform teeth and brevirostrine taxa had the most molariform teeth. Scatter 

244 increases among the broader-snouted specimens below the mean, and the relationship is less 
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245 well represented. When extinct taxa were included, the slope decreased to just under -1.0. but 

246 the goodness of fit dropped from 0.73 to 0.52. Most of our fossil taxa had broader teeth 

247 relative to head shape than the extant sample, which was most likely a consequence of 

248 sampling bias (see DISCUSSION).

249 Foote’s disparity and morphotype ranges

250 When means were compared, ANOVA indicated significant differences in CS between 

251 species [F(13,674) = 6.389; P < 0.0001]. Heterodonty varied both between and among species 

252 (Figure 4). Alligator tended to have lower size heterodonty than the caimanines, because the 

253 latter had more teeth above the inter-quartile range. Crocodyloids had highly variable size 

254 heterodonty. Several members of Crocodylus were middle ranged, but both Crocodylus porosus 

255 specimens rose above the rest. A member O. tetraspis was the most size-heterodont, but the 

256 others were much lower. This species had the largest teeth relatively speaking. Mecistops 

257 cataphractus and Tomistoma schlegelii were the least heterodont crocodyloids, and had the 

258 narrowest size ranges with the lowest maximum tooth sizes. Gavialis gengeticus was the least 

259 size heterodont in our modern data set, with similar size ranges to the longirostrine 

260 crocodyloids.   

261 As with size, shape was also significantly different between species [F(1482,79572) = 

262 19.61; P < 0.0001].  The caimanines and most members of Crocodylus had similar shape 

263 heterodonty, and possessed crowns ranging from mid-caniniform to mid-molariform (Figure 4).  

264 Crocodylus siamensis was more shape heterodont than its congenerics.  Alligator species had 

265 lower shape heterodonty than most caimanines, as their PC1 range was generally more 
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266 molariform. Unlike size, O. tetraspis had shape heterodonty similar to members of Crocodylus. 

267 Alligator sinensis, C. siamensis, and O. tetraspis were the only modern taxa with teeth in high-

268 molariform range. Similar to size, the longirostrine taxa have the least shape heterodonty. 

269 Gavialis gangeticus teeth all ranged from average to the high-caniniform. Tomistoma schlegelii 

270 had teeth ranging from high-caniniform to low-molariform range, whereas M. cataphractus was 

271 more constrained between mid-caniniform and low-molariform. 

272 Concerning fossil taxa, C. crocodilus was similar to modern caimanines concerning 

273 heterodonty, although the maximum tooth size was lower (Figure 4).  Alligator prenasalis, 

274 Brachychampsa sp., and “C.” affinis had some of the lowest shape and size heterodonty in our 

275 sample. Tooth shape was limited from average to high-molariform, as they all lacked any 

276 disparately large teeth. Leidyosuchus heterodonty fell within the range of living alligatoroids, 

277 but the majority of the teeth were on the small end. Borealosuchus sternbergii had a range of 

278 tooth sizes typical of modern Crocodylus. Heterodonty was highly variable in this species. 

279 Hamadasuchus rebouli mirrored C. porosus in both size-ranges and size-heterodonty, but had 

280 higher shape heterodonty with more molariform teeth.  Allognathosuchus sp. had the highest 

281 shape heterodonty by a large margin. Argochampsa krebsi and B. vorax both had low 

282 heterodonty, and were represented by only caniniform and molariform morphs respectively.  

283 Heterodonty along the tooth row

284 In both extant Alligatoroidea and Crocodyloidea, size varied significantly between 

285 positions. Size undulated three times along the dental arcade resulting in significant differences 

286 between positions for both the cranium and mandible (Figure 5). Each undulation peaked with 
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287 a relatively large procumbent tooth (Gignac & Erickson, 2014). The largest procumbent teeth 

288 included P4 for both clades, and M4 for alligatoroids and M5 for crocodyloids (sensu Brochu 

289 and Storrs, 2012). Members of Paleosuchus has very large P3 and M3 teeth as well. A final 

290 undulation resulted in a procumbent tooth at M9-11. In alligatoroids this final peak relatively 

291 consistent throughout the group, but in crocodyloids these teeth varied greatly in size between 

292 specimens concerning both position and degree. Interspersed between these were small teeth, 

293 with the distal-most tooth often the smallest. The mandible was similar with procumbent D1 

294 and D4, both followed by a series of small teeth. The third size-peak maximized between D11 

295 and D14, reflecting similar levels of variability to its cranial counterpart. Gavialoids differed 

296 markedly by having the two mesial-most teeth enlarged, and the remainder of the teeth show a 

297 gradual decease in size distally. 

298 Alligatoroids and crocodyloids both showed a general linear trend concerning tooth 

299 shape, making positions significantly different (Figure 5). Mesial teeth ranged from mid-

300 caniniform to average, with distals approaching high-molariform. In cranial teeth there was an 

301 apparent plateau from P1-M4, followed by a gradual increase in molariformy distally. Dentary 

302 teeth represented a more linear caniniform-to-molariform transition. Crocodyloids were much 

303 more varied than alligatoroids, with wider ranges and a series of low outliers (most of which are 

304 T. schlegii). In G. gangeticus, most of the teeth are high-caniniform with a steep increase 

305 towards average in the distal-most fifth of the arcade.  

306
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307 When each modern individual’s PC1 values were regressed against position, the 

308 resultant linear trends represented individual shape heterodonty very well (Table 1). All 

309 regressions were significant, and all except G. gangeticus had goodnesses of fit greater than 

310 70%. Both cranial and dentary tooth rows typically had slopes between 0.25-0.55. More shape 

311 heterodont taxa typically had greater slopes, where C. siamensis had the highest slopes of the 

312 sample. All the longirostrine taxa had the lowest intercepts indicating high caniniformy, and 

313 members of Alligator had high y-intercepts indicating general molariformy. 

314 Fossil taxa displayed a much more variable range of size and shape trends along their 

315 arcades (Table 2). All fossil specimens with intact teeth in the position showed a procumbent 

316 P4, but “C.” affinis also had a similarly sized P3. Unlike other alligatoroids L. canadensis had 

317 both procumbent M4 and M5. Some of the largest teeth of A. prenasalis, Brachychampsa, and 

318 “C.” affinis, were the molariform distals. These teeth typically approached the size of the largest 

319 mesial crowns.  Regressions for shape were significant for all fossil taxa except the “C.” affinis 

320 mandible (USNM 4048). The teeth of the fossil Caiman crocodilus had very similar sizes and 

321 shapes to those of modern Caiman yacare at the same positions.  They only differed in that the 

322 coefficients of its cranial regression were dissimilar. All fossil specimens with intact teeth in the 

323 position showed a procumbent P4, but “C.” affinis also has a similarly sized P3. Unlike other 

324 alligatoroids L. canadensis has both procumbent M4 and M5. Some of the largest teeth of A. 

325 prenasalis, Brachychampsa, and “C.” affinis, were the molariform distals. These teeth typically 

326 approached the size of the largest mesial crowns, which themselves had very high PC1 values. 

327 This resulted in all species having the shallowest slopes and the greatest y-intercepts. Although 

328 Allognathosuchus has similar distal teeth, a mesial crown steepened the regression. Both B. 
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329 sternbergii specimens’ cranial teeth have similar slopes, but intercepts differed by ~0.15.  

330 Hamadasuchus rebouli had the largest teeth for its skull length with a dramatic undulation in 

331 size, and the greatest slope of any fossil cranial series. Boverisuchus vorax and A. krebsi both 

332 formed significant trends with very high slopes. It should be noted that these two species have 

333 less than a third of their teeth accounted for, and are all located in a narrow region of the 

334 dentary.

335 DISCUSSION

336 Developmental trends in crocodylian heterodonty

337 Multiple measures of heterodonty allow for us to describe morphological conditions 

338 across the crocodylian specimens sampled in a thorough manner, through a combination of 

339 disparity, morphotypes ranges, and serial homology along the tooth row. All living crocodylians 

340 are heterodont to varying degrees, and these data showed significant variability of 

341 morphotypes along the dental arcade for all specimens. Although dentition varies between 

342 species, certain consistencies were seen throughout the extant members of the clade:

343 1. Similar teeth occur on both the cranial and dentary dental arcades.

344 2. The vast majority of shape variance from the labial perspective ranges from high-

345 caniniform to high molariform. Only minor distal curvature is apparent in more 

346 caniniform crowns.

347 3. There is serial homology in tooth shape from-mesial-to-distal along the tooth row, and 

348 molariformy increases in this direction. This is significantly linear for both dental 

349 arcades.
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350 4. Size variability consists of an undulating pattern with three peaks, with large 

351 procumbent crowns interspersed within smaller crowns.

352

353 Shape- and size-heterodonty are clearly decoupled, as they change in dramatically 

354 different, and seemingly independent, fashions along the arcade.  This begs the question; do 

355 developmental agents influence size and shape separately?  Although quite a bit of research 

356 has looked at how crocodylian teeth grow and replace themselves (see INTRODUCTION), 

357 surprisingly little has been done on what developmental influences affect tooth size and shape.  

358 Crocodylian teeth are replaced in waves, or Zahnreihe (Edmund, 1962; Westergaard and 

359 Ferguson, 1990; Osborn, 1998), but these waves appear to be unrelated to the morphological 

360 variables investigated here.  Keiser et al., (1993) compartmentalized the dentition along the 

361 tooth row for C. niloticus, grouping teeth into ‘incisor,’ ‘premolar,’ and ‘molar’ regions with 

362 each reflecting a procumbent tooth.  They did not offer a developmental mechanism that 

363 differentiates these categories though.  Fruchard (2012) suggested that the only difference 

364 between procumbent teeth and their smaller counterparts was that the former was 

365 “programmed to be bigger,” suggesting some sort of additional developmental signaling to 

366 enlarge teeth.  More research is needed on how tooth shape and size are established 

367 developmentally in order to truly understand what generates heterodonty. 

368 Although we were able to define heterodonty successfully, the task of assigning a 

369 singular dental morphotype to any one species of crocodylian is much more difficult. 

370 Heterodonty seems to vary within species, making the assignment of a singular heterodonty 

371 measure to an entire species dubious. As far as biological explanations for this, tooth form is 
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372 almost certainly influenced by allometry. Ontogenetic shifts in feeding niche have been 

373 documented in most crocodylian species (e.g. Groombridge, 1982; Webb, Manolis, & 

374 Buckworth, 1982; Pooley & Gans, 1976; Pooley, 1989; Delany, 1990; Santos et al., 1996; Da 

375 Silveira and Magnusson, 1999; Subalusky, A. L., Fitzgerald, L. A., & Smith, 2009 Wallace and 

376 Leslie, 2008; Borteiro et al, 2009; Hanson et al., 2014), and allometric changes in the feeding 

377 apparatus with size are often explained as a structural consequence of this (e.g. Dodson, 1975; 

378 Webb and Messel, 1978; Hutton, 1987; Erickson, Lappin, & Vliet, 2003; Verdade, 2000; Wu et 

379 al., 2006; Gignac and Erickson, 2016; Gignac and O’Brien, 2016). Concerning teeth, a qualitative 

380 increase in overall molariformy was observed in A. mississippiensis, and functioned to meet the 

381 mechanical demands of increased durophagy (Erickson, Lappin, & Vliet, 2003; Gignac & 

382 Erickson, 2014). Although our sample size is too low to confidently assess dental ontogeny 

383 within each species, we did see a similar general trend in conspecifics of different sizes. In 

384 particular, the larger of our two C. porosus had a greater y-intercepts indicating greater 

385 molariformy. This trend was also seen in the B. sternbergii cranial specimens. In addition to 

386 allometry, phenotypic changes due to environmental factors may also influence teeth. Skull 

387 shape and tooth orientation are irregularly influenced by the captive rearing (Erickson et al., 

388 2004; Drumheller et al., 2016), and how this may also influence tooth shape has yet to be 

389 determined. Many of our specimens had ‘no data’ concerning their rearing, so we do not know 

390 if captivity influenced either tooth or skull morphology.

391

392

PeerJ reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)

Manuscript to be reviewed

DF
Cross-Out
&

DF
Cross-Out

DF
Sticky Note
&

DF
Cross-Out

DF
Sticky Note
&

DF
Cross-Out

DF
Cross-Out

DF
Sticky Note
&

DF
Highlight

DF
Cross-Out

DF
Cross-Out

DF
Highlight

DF
Highlight

DF
Highlight

DF
Sticky Note
al. 



393 Adaptive explanations for interspecific variability in modern taxa 

394 The method presented here indicates that significant differences in tooth morphology 

395 exist between modern members of Crocodylia. Bite force in crocodylians is primarily influenced 

396 by size (Erickson et al., 2012), and our data set shows that similarly sized crocodylians may have 

397 very different tooth dimensions. This rules out maximum bite force as the sole limiting factor 

398 dictating tooth form. Although we are reluctant to associate specific prey items with a specific 

399 tooth forms, shape and size will influence how a tooth interacts with a particular substrate. We 

400 therefore suggest that a biomechanical link should exist between the structural limits imposed 

401 by tooth form and the material properties of the substrates it interacts with.    

402 As with all jawed vertebrates, crocodylian teeth must cope with different stresses based 

403 on their respective position along the arcade. Distal teeth will endure more force during a bite 

404 due to their close proximity to the hinge (Cleuren, Aerts, & Vree, 1995; Erickson, Lappin, & 

405 Vliet, 2003; Erickson et al., 2012; McHenry et al., 2006).  This explains why these teeth are 

406 always on the molariform half of the shape spectrum; the larger base-to-height ratio gives them 

407 greater relative bending strengths (Van Valkenburgh and Ruff, 1987; Gignac & Erickson, 2014; 

408 Monfroy, 2017). Because force is highest in this region, food processing typically occurs here 

409 (Busbey, 1989; Davenport et al., 1990; Cleurens and de Vree, 2000).  Their short size also 

410 ensures they do not impede jaw closure. This necessity is very apparent in G. gangeticus, and 

411 explains the poor linear shape relationship along the tooth row. Having all the teeth be high- to 

412 mid-caniniform except for the distal-most region is an attempt to reduce heterodonty as much 
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413 as possible (Grigg and Gans, 1993), while ensuring the distals do not impede jaw closure or 

414 break when processing food.  

415 Particular attention should be paid to the distals in modern alligatoroids and 

416 crocodyloids, as their relative size varies noticeably between species (Figure 6a). Most members 

417 of these clades have a single procumbent tooth followed distally by several smaller teeth.  

418 These are typically mid-molariform, but even the high-molariform distals of C. siamensis were 

419 some of the smallest teeth in its arcade. Alligator sinensis differed from this, in that it had a row 

420 of 4-5 relatively large, high-molariform, crowns followed by only one crown reduced in size. 

421 Probably the most extreme condition, O. tetraspis had distals that were exceptionally large; the 

422 largest crowns at positions M10-12 and D11-13 all belonged to members of this species. Aoki 

423 (1989) qualitatively noted these unique conditions, and suggested they facilitated durophagy.  

424 All alligatoroids and crocodyloids sampled here have been recorded to consume at least some 

425 hard prey items though (e.g. Brazaitis, 1973; McIlhenny, 1976; Taylor, 1979; Groombridge, 

426 1982; Ross and Magnusson, 1989; Santos et al., 1996; Selvaraj, 2012; Nifong & Silliman, 2013), 

427 so it is unclear what selection pressure resulted in these particular morphologies. It may be a 

428 result of body size. Bite force tests of A. mississippiensis showed the pressure produced at its 

429 procumbent distal (M11) to be adequate to crush its harder prey items (Erickson, Lappin, & 

430 Vliet, 2003; Gignac & Erickson, 2014). If this is the case in most of the large crocodylians, 

431 enlarging the distal-most crowns would be unnecessary. Alligator sinensis and O. tetraspis, on 

432 the other hand, may need more extreme dentition closer to the hinge; their smaller size would 

433 make it more difficult to process foods with similar mechanical properties. Another explanation 

434 for this is the frequency of consuming hard prey.  Although both A. sinensis and O. tetraspis 
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435 have broad diets, studies have shown certain populations to consume disproportionately large 

436 numbers of shelled mollusks and crustaceans (Cheng et al., 1957; Groombridge, 1982; Ross and 

437 Magnusson, 1989; Luiselli, Akani, & Capizzi, 1999; Pauwels et al., 2007).

438   Caniniform mesials are ideal for the acquisition of prey, as pointed apices reduce 

439 surface area to puncture compliant substrate (Frazetta, 1988). Being farther from the hinge, 

440 these teeth move faster during a strike and are more likely to contact prey trying to escape 

441 (Busbey, 1989). All taxa measured here also have two sets of large mesial teeth on both 

442 arcades, often referred to as ‘pseudocanines’ (Brochu, 1999). These procumbent teeth are well 

443 built for puncturing, likely make first contact with prey during jaw closure, and resilient against 

444 struggling prey (Iordansky, 1964). High size heterodonty in caimanines was typically a 

445 consequence of large pseudocanines and relatively small remaining crowns, (Figure 6b). Their 

446 pseudocanines can become so large that dentary crowns may grow entirely through the cranial 

447 rostrum in adults (Brazaitis, 1973). The molariform distals were rather small by comparison.  

448 This suggests these taxa prioritize securing prey over processing it.  This may be a specialization 

449 for hunting mobile and/or compliant prey (Sampaio et al., 2013), as insects and fish can make 

450 up a large portion of their diet (Santos et al., 1996). The exceptionally large pseudocanines of C. 

451 porosus also show a prioritization for puncturing and securing soft-bodied prey in a larger 

452 context, as this species is notorious for actively hunting large vertebrates such as sharks, cattle, 

453 horses, and humans (e.g. Taylor, 1979; Kar & Bustard, 1981; Groombridge, 1982; Doody, 2009; 

454 Hanson et al., 2015).  Similar to caimanines, this species atrophies position P2 to make room for 

455 enlarged D1 pseudocanines (Brown at al., 2015)
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456 The longirostrine species have a reputation for eating small, aquatic prey with a focus 

457 on fish (Peyer, 1968; Webb, Manolis, & Buckworth, 1982), and multiple lines of evidence 

458 suggest the feeding apparatus is well designed for this function. The longirostrine shape 

459 reduces resistance during both lateral motion and jaw adduction when feeding underwater, 

460 and the increased snout length allows for a faster strike (Pooley, 1989; Thorbjarnarson, 1990; 

461 McHenry et al., 2006; Pierce et al., 2008). Highly caniniform teeth can quickly puncture fast-

462 moving, compliant prey, and their elongate shape may also lower resistance. The longirostrine 

463 cranio-dental morphotype may be prey-size prohibitive, as larger prey could damage it while 

464 struggling. The elongate mandibular symphysis of longirostrines results in a mechanical 

465 disadvantage against forces produced by shaking/twisting prey as well (Walmsley et al., 2013), 

466 and there is a reduction in masticatory musculature relative to other crocodylians (Endo et al., 

467 2002). The gracile nature of the dentition means a lower bending strength, also making them 

468 more susceptible to breakage by more powerful prey (Figure 6c).

469 The longirostrine taxa also had the lowest heterodonty of modern crocodylians, which is 

470 reminiscent the ‘homodont’ condition apparent in numerous aquatic predators such as 

471 odontocetes whales (Rommel, 1990). This condition is believed to be ideal for catching and 

472 holding, but not processing, small aquatic prey (MacLeod et al., 2007), as most prey items 

473 consumed are under 10% of their body length (MacLeod et al., 2006).  A convergent reduction 

474 in heterodonty within both groups indicates a transition from a multi-functional dental arcade 

475 to one almost exclusively for prey capture. This is clearly the condition in G. gangeticus, as it is 

476 almost entirely caniniform along its tooth row and eats primarily fish (Groombridge, 1982). The 

477 other longirostrine taxa, although also primarily caniniform, still displayed the linear shape 
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478 change typical of other crocodyloids. This may indicate a more versatile diet; these taxa have 

479 also been known to process larger/harder prey items, such as crustaceans, turtles, and 

480 immature primates (Brazaitis, 1973; Groombridge, 1982; Galdikas and Yeager, 1984; Selvaraj, 

481 2012).

482 Tooth shape may indicate differences in feeding behavior and processing ability, even 

483 though overlap exists in prey selection. Alligator mississippiensis and C. niloticus both consume 

484 a wide variety of prey, including both large and small mammals, crustaceans, fish, water fowl, 

485 snakes, turtles, and even each other (McIlenny, 1976; Pooley & Gans, 1976; Groombridge, 

486 1982; Delany and Abercrombie, 1986; Hutton, 1987; Shoop & Ruckdeschel, 1990; Rootes & 

487 Chabreck, 1993; Elsey et al., 2004; Wallace and Leslie, 2008; Gabrey, 2010).  A comparison of 

488 controlled feedings of each of these species showed A. mississippiensis to fracture and consume 

489 noticeably more bovine skeletal elements than C. niloticus (Njau & Blumenschine, 2006; 

490 Drumheller & Brochu, 2014). Our A. mississippiensis specimen was generally more molariform 

491 than C. niloticus.  These teeth would have greater bending strengths to resist breakage when 

492 processing hard material such as bone. 

493 Fossil taxa and the appropriateness of analogues

494 Certain fossil taxa were reminiscent of modern counterparts.  Caiman crocodilus and C. 

495 yacare are highly similar. This was expected as these species are closely related and were once 

496 considered subspecies, and both eat insects, crustaceans, and fish (Brazaitis, 1973; 

497 Groombridge, 1982; Da Silveira and Magnusson, 1999). Any differences in size and shape 

498 ranges appear to simply be a consequence of the former’s incomplete arcades; no distal 
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499 maxillary or any dentary crowns were available. Both Borealosuchus and Leidyosuchus possess 

500 dentition somewhat typical of large modern crocodylians (Figure 6d).  Alligator mississippiensis 

501 makes for an excellent dental analogue for one particular Leidyosuchus specimen (ROM 01903) 

502 as heterodonty and shape regressions overlap consistently. The fact that Leidyosuchus lacks any 

503 evidence of enlarged distal teeth may be indicative of a difference in the degree these taxa 

504 process hard materials, although no taphonomic evidence for this currently exists associated 

505 with Leidyosuchus. The four specimens of B. sternbergii all varied, most likely due to an 

506 allometric increase in molariformy (see above), but certain consistencies are apparent. Based 

507 on linear shape change, all specimens in this genus were projected to have mid-caniniform and 

508 –molariform teeth, with smaller specimens projected to additionally have the high-caniniform 

509 mesials and larger specimens having high-molariform distals. The best analogue for this species 

510 may be a member of Crocodylus where larger individuals have distals approaching high-

511 molariform range such as C. niloticus.

512 The fact that H. rebouli surpasses our larger C. porosus in size heterodonty, and has a 

513 similar upper maximum in relative tooth size, indicates that it may have dealt with similar prey 

514 from a mechanical standpoint (Figure 6e). Peirosaurids are believed to be primarily terrestrial 

515 crocodyliforms (Tavares et al., 2017), and this dentition argues H. rebouli may have focused on 

516 mobile, terrestrial vertebrates (Larsson & Sues, 2007). Its large pseudocanines would puncture 

517 vertebrates tissue with similar effectiveness to those of C. porosus. Noticeable differences are 

518 the very large distal procumbent crowns of H. rebouli, which suggest potential differences in 

519 prey processing. These teeth may have been used for either sheering soft tissue or breaking 
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520 bone similar to modern mammalian carnassials, as rolling on land is not an effective means of 

521 dismemberment (Fish et al., 2007).

522 It has been stated that modern taxa do not have, or have secondarily lost, the degree of 

523 molariformy commonly found in extinct representatives. Known as “globidonty” (Norell, Clark, 

524 & Hutchison, 1994; Brochu, 1999; 2001; Ősi & Barrett, 2011), this term describes enlarged, 

525 high-molariform crowns potentially used for durophagy (Figure 6f). Allognathosuchus and 

526 Brachychampsa are ‘textbook’ examples of globidont taxa (Case, 1925; Carpenter and Lindsey, 

527 1980). Although we agree with Brochu (2001, 2004) that O. tetraspis is not as extreme, its 

528 enlarged distals do overlap with these taxa in both size and shape. Alligator prenasalis and “C.” 

529 affinis distals are similar to A. sinensis, also creating a ridge of robust teeth (Mook, 1932). The 

530 mechanical capabilities of these particular crowns in ‘modern globidonts’ should be similar to 

531 the extinct taxa, which suggests similar processing abilities in the distal regions of the skull. The 

532 similarities break down when the rest of the jaw is considered though. The modern globidonts 

533 also have caniniform mesials and pseudocanines, suggesting a division of labor along the tooth 

534 row. Contrarily, almost all teeth of A. prenasalis, Brachychampsa, and “C.” affinis on the 

535 molariform half of the shape-spectrum. These extinct taxa probably did not need to do as much 

536 puncturing of compliant substrate, which supports the argument that they may have foraged 

537 for mollusks and slow moving turtles (Carpenter and Lindsey, 1980; similar to Salas-Gismondi et 

538 al., 2015) rather than being semi-aquatic, ambush predators. Allognathosuchus’ pseudocanine 

539 suggests a potential division of labor along the tooth row more like modern globidont taxa, but 

540 a more complete tooth row is necessary to confirm.
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541 The nature of heterodonty in fossil taxa with less than 40% of their tooth row 

542 represented is especially difficult to determine. Allognathosuchus was represented here by a 

543 pseudocanine and globidont distals, but previous studies have shown a great degree of tooth 

544 and alveolar size variation that our specimen is missing (Case, 1925; Brochu 2004). The teeth of 

545 A. krebsi only occur between D6-D12. This region is so narrow that the slope is a poor indicator 

546 of the shape range. Although it is a gavialoid, its teeth are most similar to M. cataphractus in 

547 shape, and may be its most appropriate analogue. Salas-Gismondi et al., (2016) argued that the 

548 lack of ‘telescoped’ eyes in A. krebsi is indicative of its marine habit (see also Hua & Jouve, 

549 2004). Mecistops cataphractus superficially shares this condition, and has been known to 

550 frequent brackish and costal environments (Brazaitis, 1973; Ross and Magnusson, 1989).       

551 CONCLUSION

552 Foote’s MD is a reliable method for assessing heterodonty if the tooth row is near 

553 complete, but much of the variability in MD seen here is the result of incompleteness. Foote’s 

554 MD relies on, among other things, the Grand mean and the sample size. Size heterodonty was 

555 greatly underrepresented in one specimen of O. tetraspis (AMNH 101417) as its pseudocanines 

556 were missing. These teeth would have deviated greatly from the Grand mean if present, and 

557 their inclusion would most certainly have raised the value. Our Allognathosuchus specimen had 

558 four teeth, with three being globidont and one an average-shaped pseudocanine. The result 

559 was a shape Grand mean that the pseudocanine deviated from greatly. That, compounded with 

560 the low sample size, resulted in an inflated shape MD. A similar principle may be applied to 

561 both A. krebsi and B. vorax; because only a small area of the tooth row was represented all the 
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562 individual tooth shape values were close to the Grand mean, so the MD values were deflated. 

563 Slope of shape heterodonty is also influenced by the completeness of the tooth row. Several 

564 specimens have similar PC1 values for the same positions, but their slopes differed. This is 

565 typically due to one or both missing the mesial- or distal-most teeth. This was apparent in C. 

566 crocodilus; even though it shared almost identical tooth morphology with C. yacare, its cranial 

567 regression coefficients deviated because the distal 30% of its teeth were missing.

568 We did not consider all three dimensions here. Living crocodylian teeth are often 

569 discussed as conical (Edmund, 1969) or conidont (Hendrickx, Mateus, & Araújo, 2015b).  Studies 

570 of bending strengths show variation between mesial-distal and labial-lingual axes as well as 

571 variation between species (Monfrey, 2017), indicating that functional information may be 

572 drawn from the dimesion not considered here. This is especially important concerning fossil 

573 taxa, as pronounced lateral compression is commonplace. Boverisuchus vorax distals plotted 

574 similarity to globidont crowns using our method, but they are clearly ziphodont (Brochu, 2001, 

575 2003). Future studies should consider this third dimension at least qualitatively, in order to 

576 avoid conflating disparate tooth morphotypes such as these.     

577 These limitations aside, the methods proposed here could be very useful in dealing with 

578 incomplete fossils. It is common for fossil crocodylian specimens to be lacking many/most of 

579 their teeth.  The linear nature of tooth shape can predict the shape of these missing teeth. 

580 Although slopes may vary between species, a record of the ranges of slopes evident in a certain 

581 taxonomic group may be applied to a fossil with few teeth. The preserved tooth/teeth can be 

582 plugged into the linear equation, and the shapes of missing teeth may be predicted with a high 
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583 degree of certainty. This would result in a more complete representation of the extinct animal’s 

584 anatomy, useful from the standpoint of both anatomical science and paleontological 

585 reconstruction.    

586 Quantifying the teeth of crocodylians will add rigor to future life history studies of the 

587 clade. As a quantifiable trait, both tooth shape in a single position and heterodonty as a whole 

588 may be incorporated into character matrices of phylogenetic analyses. As we have shown 

589 heterodonty to be very real in Crocodylia, descriptors of dentition can describe a numerical 

590 range of morphology as opposed to cherry-picking an average tooth or single position.  

591 Monospecific comparisons of multiple specimens can quantify the allometric changes in tooth 

592 morphology often alluded to in the literature.  The teeth of fossil taxa can be compared 

593 statistically to modern taxa to determine the best analogue, and rigorous hypotheses about 

594 paleobehavior and paleoecology may be drawn. Crocodylians, both living and extinct, may be 

595 grouped in dental categories, allowing for species and specimens to be compared to one 

596 another.  Frequency, size, and hardness of food items may be compared to these categories to 

597 determine if a link exists between dental morphotypes and dietary patterns.  Crocodylians are 

598 used in both performance and actualistic taphonomy studies frequently, and the output of 

599 these studies could be correlated with tooth dimensions; tooth shape may be compared to 

600 bite-force, death-rolling, and bone-modification.  
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965 TABLE LEGENDS

966 Table 1: Size, disparity, and regression information for modern crocodylian specimens.  Head 

967 lengths are in millimeters.  Morphological disparity (MD) is for all teeth for each specimen.  “N” 

968 represents number for teeth available versus number of positions total.  Regression 

969 information is for Principal Component 1 plotted against tooth position.

970 Table 2: Size, disparity, and regression information for fossil crocodylian specimens.  Head 

971 lengths are in millimeters.  Morphological disparity (MD) is for all teeth for each specimen.  “N” 

972 represents number for teeth available versus number of positions total.  Regression 

973 information is for Principal Component 1 plotted against tooth position.

974
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975 FIGURE LEGENDS

976 Figure 1: Methodology for data collection. A) skulls were selected based on number and 

977 condition of teeth present (data was not collected from this photo). B) Each tooth was 

978 photographed individually, and the margins were traced (Rohlf, 2016). C) Each outline was 

979 converted to 30 equidistant semilandmarks which were then slid.  D) Tooth shape variance was 

980 represented by vector diagrams, with the mean depicted as points and deviation by vector 

981 lines. 

982 Figure 2: Principal component one.  Vector diagrams indicate the maximum range of variance 

983 (vectors) from the mean (points) for both cranial and dentary teeth.  

984 Figure 3: Average tooth size (above) and shape (below) plotted against skull shape.  Gray error 

985 bars indicate standard deviation as a consequence of heterodonty.  Solid markers depict extant 

986 specimens, and hollow markers depict extinct.  The solid regression line indicates only extant 

987 specimens, while the dashed line indicates all specimens.  Maximum shape range is 

988 represented through vector diagrams. 

989 Figure 4: Foote’s morphological disparity (A, B) and ranges (C, D) for both size and shape. Size 

990 is represented by centroid size and shape is represented by Principal Component 1.  For each 

991 species, all teeth in the sample are represented.  For MD, multiple individuals from a single 

992 species are listed in a single column, and those with lower values are superimposed in front of 

993 those with higher values.  Ranges are a composite of all members of a species.

994 Figure 5: Heterodonty by tooth position. Centroid Size (CS) and Principal Component one (PC1) 

995 for extant Alligatoroidea (top), Crocodyloidea (middle), and Gavialoidae (bottom) plotted 
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996 against position along the arcade.  Welch’s ANOVA output comparing positions is listed for each 

997 graph with multiple specimens.

998 Figure 6: Direct comparisons between selected extant and extinct taxa.  The “size” axis 

999 represents normalized centroid size, and the “shape” axis represents principal component one.  

1000 A) modern taxa with high molariformy, B) Caimaninae with high size-heterodonty, C) 

1001 longirostrine taxa, D) mid-heterodont fossil taxa, E) crocodyloids and peirosaurids with high-

1002 heterodonty, F) fossil globidont taxa.  Note: Allognathosuchus, Argochampsa krebsi, and B. 

1003 sternbergii were not size normalized by their own skull length, as indicated by empty symbols.
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Table 1(on next page)

Size, disparity, and regression information for modern crocodylian specimens.

Head lengths are in millimeters. Morphological disparity (MD) is for all teeth for each

specimen. “N” represents number for teeth available versus number of positions total.

Regression information is for Principal Component 1 plotted against tooth position.
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Genus Species Number Head Length MD (size) MD (shape) Host bone

cranium
Alligator mississippiensis AMNH 71621 407.81 0.00052 0.0205

mandible

cranium
AMNH 23900 161.87 0.00040 0.0241

mandible

cranium
Alligator sinensis

AMNH 23907 139.89 0.00034 0.0170
mandible

cranium
AMNH 97297 206.96 0.00084 0.0300

mandible

cranium
Caiman yacare

AMNH 97300 347.30 0.00102 0.0217
mandible

cranium
AMNH 7856 486.60 0.00051 0.0208

mandible

cranium
Crocodylus acutus

AMNH 7857 436.66 0.00073 0.0251
mandible

cranium
AMNH 23471 639.27 0.00064 0.0143

mandible

cranium
Crocodylus niloticus

AMNH 142494 N/A N/A 0.0277
mandible

cranium
AMNH 75707 400.85 0.00063 0.0203

mandible

cranium
Crocodylus palustris

AMNH 96134 236.82 0.00031 0.0250
mandible

cranium
AMNH 66639 426.22 0.00071 0.0182

mandible

cranium
Crocodylus porosus

AMNH 94957 575.23 0.00115 0.0179
mandible

cranium
AMNH 49231 381.95 0.00049 0.0339

mandibleCrocodylus siamensis

AMNH 72640 251.86 0.00042 0.0289 cranium
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mandible

cranium
Gavialis gangeticus AMNH 131377 428.63 0.00023 0.0110

mandible

cranium
Mecistops cataphractus AMNH 107634 330.37 0.00035 0.0137

mandible

cranium
AMNH 101417 247.98 0.00026 0.0236

mandible

cranium
AMNH 117801 203.14 0.00121 0.0239

mandible

cranium

Osteolaemus tetraspis

AMNH 117802 149.97 0.00049 0.0264
mandible

cranium
AMNH 93812 164.41 0.00071 0.0210

mandible

cranium
Paleosuchus palpebrosus

AMNH 97328 212.42 0.00112 0.0241
mandible

cranium
AMNH 58136 228.20 0.00091 0.0291

mandible

cranium
Paleosuchus trigonatus

AMNH 137174 188.83 0.00055 0.0161
mandible

cranium
Tomistoma schlegelii AMNH 113078 449.56 0.00033 0.0180

mandible

1
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N m b r2 p 0.95 confidence

17:20 0.3718 0.0342 0.8488 <0.0001 0.2855 0.4582  

18:20 0.4203 0.0390 0.8820 <0.0001 0.3388 0.5018  

15:19 0.4228 0.0608 0.8398 <0.0001 0.3122 0.5334  

14:19 0.3898 0.0604 0.8965 <0.0001 0.3065 0.4731  

15:19 0.4037 0.0415 0.8718 <0.0001 0.3109 0.4964  

15:19 0.3147 0.0779 0.8095 <0.0001 0.2232 0.4062  

13:20 0.5163 -0.0207 0.8703 <0.0001 0.3841 0.6486  

15:20 0.4553 -0.0080 0.9522 <0.0001 0.3942 0.5165  

14:20 0.4812 -0.0605 0.8360 <0.0001 0.3472 0.6153  

16:20 0.4257 -0.0180 0.8304 <0.0001 0.3154 0.5359  

15:18 0.4179 -0.0520 0.8805 <0.0001 0.3257 0.5102  

11:15 0.4049 -0.0424 0.9060 <0.0001 0.3066 0.5033  

10:18 0.4042 -0.0580 0.7943 0.0005 0.2365 0.5720  

13:15 0.4218 -0.0301 0.8908 <0.0001 0.3238 0.5199  

16:19 0.3287 -0.0064 0.8035 <0.0001 0.2355 0.4219  

15:15 0.3485 -0.0419 0.8417 <0.0001 0.2579 0.4391  

11:19 0.3530 0.0639 0.8241  0.0001 0.2300 0.4760  

11:15 0.4699 -0.0221 0.8724 <0.0001 0.3344 0.6054  

9:19 0.3473 -0.0252 0.9072  0.0001 0.2480 0.4465  

12:15 0.4753 0.0113 0.9176 <0.0001 0.3750 0.5756  

14:19 0.4691 -0.0254 0.8365 <0.0001 0.3386 0.5995  

9:15 0.3642 -0.0143 0.8966  0.0001 0.2537 0.4748  

11:19 0.4053 -0.0970 0.8253  0.0001 0.2646 0.5459  

10:15 0.3515 -0.1030 0.8275 0.0003 0.2207 0.4824  

15:19 0.4037 -0.0142 0.8783 <0.0001 0.3137 0.4938  

9:15 0.2896 -0.0392 0.7868  0.0014 0.1549 0.4244  

8:19 0.6219 -0.0505 0.8926  0.0004 0.4064 0.8373  

12:15 0.5154 -0.0615 0.8591 <0.0001 0.3683 0.6625  

16:19 0.6298 -0.0499 0.8213 <0.0001 0.4614 0.7981  
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12:15 0.3921 -0.0374 0.8814 <0.0001 0.2907 0.4934  

22:28 0.0963 -0.2404 0.4500  0.0006 0.0466 0.1459  

24:26 0.1942 -0.2153 0.5749 <0.0001 0.1204 0.2681  

15:18 0.3457 -0.1549 0.8265 <0.0001 0.2508 0.4406  

15:15 0.2757 -0.1393 0.9136 <0.0001 0.2249 0.3265  

12:17 0.4274 -0.0094 0.7938  0.0001 0.2739 0.5809  

9:14 0.5613 -0.0506 0.8028  0.0011 0.3127 0.8100  

12:17 0.4923 -0.0301 0.8541 <0.0001 0.3489 0.6356  

11:14 0.4432 0.0027 0.8192  0.0001 0.2862 0.6002  

12:17 0.4296 0.0134 0.6648  0.0001 0.2547 0.6045  

14:14 0.4656 0.0163 0.8694 <0.0001 0.3520 0.5791  

19:20 0.4627 -0.0214 0.8683 <0.0001 0.3705 0.5549  

21:22 0.3804 0.0034 0.8727 <0.0001 0.3106 0.4501  

18:20 0.4648 -0.0341 0.8598 <0.0001 0.3654 0.5643  

13:22 0.4898 0.0015 0.8896 <0.0001 0.3753 0.6043  

16:20 0.5404 -0.0660 0.9131 <0.0001 0.4448 0.6359  

21:22 0.4078 0.0248 0.7765 <0.0001 0.3028 0.5129  

14:20 0.5228 -0.0732 0.8433 <0.0001 0.3811 0.6646  

15:22 0.3673 -0.0074 0.7522 <0.0001 0.2410 0.4937  

13:21 0.3346 -0.1641 0.7179  0.0003 0.1954 0.4738  

18:19 0.2887 -0.1628 0.8109 <0.0001 0.2148 0.3626  

3
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Table 2(on next page)

Size, disparity, and regression information for fossil crocodylian specimens.

Head lengths are in millimeters. Morphological disparity (MD) is for all teeth for each

specimen. “N” represents number for teeth available versus number of positions total.

Regression information is for Principal Component 1 plotted against tooth position.
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Genus Species Number Head Length MD (size) MD (shape) Host bone

Alligator prenasalis ROM 01375 317.20 0.00030 0.0143 cranium

Allognathosuchus sp. UCMP 150180 N/A N/A 0.0511 mandible

Argochampsa krebsi ROM 73872 N/A N/A 0.0136 mandible

NMNH 6533 336.21 0.00003 0.0123 cranium

UCMP 126099 209.05 0.00070 0.0201 cranium

UCMP 130435 N/A N/A 0.0210 mandible
Borealosuchus sternbergii

UCMP 131769 N/A N/A 0.0158 mandible

Boveriosuchus vorax UCMP 170767 N/A N/A 0.0114 mandible

cranium
Brachychampsa sp. ROM 68491 624.15 0.00032 0.0108

mandible

cranium
Caiman crocodilus UCMP 42844 301.93 0.00084 0.0186

mandible

UCMP 131090 534.10 0.00037 0.0161 cranium
“Crocodylus” affinis

NMNH 4048 N/A N/A 0.0118 mandible

Hamadasuchus rebouli ROM 52620 416.92 0.00108 0.0272 cranium

Leidyosuchus canadensis ROM 01903 463.35 0.00069 0.0202 cranium

Leidyosuchus sp. ROM 1425 N/A N/A 0.0136 mandible

1

2
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N m b r2 p 0.95 confidence

7:16 0.2430 0.1597 0.9638 0.0001 0.1888 0.2971  

4:19 0.4690 0.0785 0.9938 0.0031 0.3561 0.5818  

5:17 0.5499 -0.1334 0.9562 0.0039 0.3336 0.7661  

8:23 0.4539 0.0546 0.9179 0.0002 0.3183 0.5894  

7:23 0.5223 -0.0850 0.9026 0.0010 0.3250 0.7196  

5:20 0.5318 -0.0320 0.9798 0.0012 0.3914 0.6721  

11:20 0.3622 -0.0103 0.7930 0.0002 0.2227 0.5017  

6:18 0.5937 0.0753 0.9062 0.0034 0.3286 0.8589  

12:18 0.1981 0.1923 0.9162 0.0000 0.1559 0.2403  

6:20 0.1559 0.2097 0.8106 0.0144 0.0513 0.2606  

7:20 0.3036 -0.0521 0.7237 0.0152 0.0879 0.5193  

14:20 0.4063 -0.0140 0.8369 0.0000 0.2935 0.5191  

11:15 0.2000 0.1133 0.9363 0.0000 0.1607 0.2394  

6:19 0.2025 0.1932 0.5669 0.0840 -0.0432 0.4483  

14:20 0.5420 -0.0274 0.9550 0.0000 0.4680 0.6160  

20:23 0.3967 0.0303 0.9522 0.0000 0.3527 0.4408  

8:19 0.3365 0.0486 0.9570 0.0000 0.2653 0.4078  

3
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Figure 1(on next page)

Methodology for data collection.

A) skulls were selected based on number and condition of teeth present (data was not

collected from this photo). B) Each tooth was photographed individually, and the margins

were traced (Rohlf, 2016). C) Each outline was converted to 30 equidistant semilandmarks

which were then slid. D) Tooth shape variance was represented by vector diagrams, with the

mean depicted as points and deviation by vector lines.
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Figure 2(on next page)

Principal component one.

Vector diagrams indicate the maximum range of variance (vectors) from the mean (points)

for both cranial and dentary teeth.
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Figure 3(on next page)

Average tooth size (above) and shape (below) plotted against skull shape.

Gray error bars indicate standard deviation as a consequence of heterodonty. Solid markers

depict extant specimens, and hollow markers depict extinct. The solid regression line

indicates only extant specimens, while the dashed line indicates all specimens. Maximum

shape range is represented through vector diagrams.
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Figure 4(on next page)

Foote’s morphological disparity (A, B) and ranges (C, D) for both size and shape.

Size is represented by centroid size and shape is represented by Principal Component 1. For

each species, all teeth in the sample are represented. For MD, multiple individuals from a

single species are listed in a single column, and those with lower values are superimposed in

front of those with higher values. Ranges are a composite of all members of a species.
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Figure 5(on next page)

Heterodonty by tooth position.

Centroid Size (CS) and Principal Component one (PC1) for extant Alligatoroidea (top),

Crocodyloidea (middle), and Gavialoidae (bottom) plotted against position along the arcade.

Welch’s ANOVA output comparing positions is listed for each graph with multiple specimens.
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Figure 6(on next page)

Direct comparisons between selected extant and extinct taxa.

The “size” axis represents normalized centroid size, and the “shape” axis represents

principal component one. A) modern taxa with high molariformy, B) Caimaninae with high

size-heterodonty, C) longirostrine taxa, D) mid-heterodont fossil taxa, E) crocodyloids and

peirosaurids with high-heterodonty, F) fossil globidont taxa. Note: Allognathosuchus,

Argochampsa krebsi, and B. sternbergii were not size normalized by their own skull length, as

indicated by empty symbols.
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