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Heterodonty in Crocodylia has not been defined quantitatively, as the teeth rarely have
been measured. This has resulted in a range of qualitative descriptors, with little
consensus on the state of dental morphology in the clade. The purpose of this study was to
quantify both shape and size morphology along the tooth row in a multispecific sample of
both extant and extinct members Crocodylia using geometric morphometrics. Data were
collected from several crown crocodylian (and one peirosaurid) dry skeletal and fossil
specimens. Digital photographs were taken of each tooth, and the margins of the tooth
were converted into landmarks/semilandmarks. Heterodonty was expressed as Foote’s
morphological disparity, and a principal components analysis visualized shape variance. All
living crocodylians are heterodont to varying degrees. The majority of the shape variance
was represented by a ‘caniniform’ to ‘molariform’ transition. Heterodonty varied
significantly between positions; size undulated whereas shape was significantly linear from
mesial to distal, suggesting they are developmentally decoupled. Snout shape correlated
to tooth shape but not size, with longirostrine taxa having more caniniform teeth and
brevirostrine having more molariform. Caimanines and Crocodylus porosus had high size-
heterodonty with large pseudocanines, reflecting a prioritization of securing struggling,
compliant prey. Alligator sinensis and Osteolaemus tetraspis had large, highly molariform,
distal teeth: a consequence of high-frequency durophagy combined with prey size. Gavialis
gengeticus, Mecistops cataphractus and Tomistoma schlegelii had a caniniform arcade
with low heterodonty, almost exclusively for capturing small underwater prey with minimal
processing. Alligator prenasalis, Brachychampsa sp., and “Crocodylus” affinis were
primarily molariform. Leidyosuchus and Borealosuchus tooth sizes and shapes typical of
modern Alligator and Crocodylus respectively, although the former may have been less
durophagous. Hamadasuchus rebouli similarities to C. porosus indicate it may have dealt
with vertebrate prey, but prey processing may have been different due to its terrestrial

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

habitat. Although Foote’s disparity is a reliable method for assessing heterodonty,
incomplete tooth rows may give inflated/deflated values. Our methods may be very useful
for predicting the shape of missing teeth in fossil taxa, as well as inferring dietary
behaviors and other life history characters.
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ABSTRACT

Heterodonty in Crocodylia has not been defined quantitatively, as the teeth rarely have been
measured. This has resulted in a range of qualitative descriptors, with little consensus on the
state of dental morphology in the clade. The purpose of this study was to quantify both shape
and size morphology along the tooth row in a multispecific sample of both extant and extinct
members Crocodylia using geometric morphometrics. Data were collected from several crown
crocodylian (and one peirosaurid) dry skeletal and fossil specimens. Digital photographs were
taken of each tooth, and the margins of the tooth were converted into
landmarks/semilandmarks. Heterodonty was expressed as Foote’simorphological disparity, and
alprincipal components analysis visualized shape variance. All living crocodylians are
heterodont to varying degrees. The majority of the shape variance was represented by a
‘caniniform’ to ‘molariform’ transition. Heterodonty varied significantly between positions; size
undulated whereas shape was significantly linear from mesial to distal, suggesting they are
developmentally decoupled. Snout shape correlated to tooth shape but not size, with
longirostrine taxa having more caniniform teeth and brevirostrine having more molariform.
Caimanines and(Crocodylus porosus had high size-heterodonty with large pseudocanines,
reflecting a prioritization of securing struggling, compliant prey. Alligator sinensis and
Osteolaemus tetraspis had large, highly molariform, distal teeth: a consequence of high-
frequency durophagy combined with prey size. Gavialis gengeticus, Mecistops cataphractus and
Tomistoma schlegelii had a caniniform arcade with low heterodonty, almost exclusively for
capturing small underwater prey with minimal processing. Alligator prenasalis, Brachychampsa

sp., and “Crocodylus” affinis were primarily molariform. Leidyosuchus and Borealosuchus tooth
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sizes and shape@ical of modern Alligator and Crocodylus respectively, although the former
may have been less durophagous. Hamadasuchus rebouli similarities to(C porosus indicate it
may have dealt with vertebrate prey, but prey processing may have been different due to its
terrestrial habitat. Although Foote’s disparity is a reliable method for assessing heterodonty,
incomplete tooth rows may give inflated/deflated values. Our methods may be very useful for
predicting the shape of missing teeth in fossil taxa, as well as inferring dietary behaviors and

other life history characters.

Keywords: Caniniform, Crown, Dentition, Diet, Geometric morphometrics, Molariform,

Semilandmarks

INTRODUCTION

=

gualitative definitions in place depending on the clade being studied (Shimada, 2001). In 1993,

What constitutes heterodonty often seems like a moving target, with different

Kieser et al. referred to the exact definition of the term heterodont as “a bone of contention.”
Since that time, the issue never has been fully resolved. Nowhere is this lack of clarity more
pronounced than within the non-mammalian vertebrate literature, especially the members of
Crocodylia. Traditionally crocodylians were considered homodont, due to a lack of discrete
dental categories or variability in cusp number as in mammals (Peyer, 1968; Langston, 1973;
Osborn, 1998; Larsson & Sidor, 1999; Zahradnicek et al., 2014). Ferguson (1981) refers to
Alligator mississippiensis as “pseudoheterodont,” because it showed a gradual, as opposed to
punctuated, change in tooth shape along the tooth row (see also Grigg and Gans, 1993; Kieser

et al., 1993; Hendrickx, IMateus; & Araljo, 2015b). Size changes have motivated the term
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“heterometric homodonty” for Crocodylus niloticus (Fruchard, 2012). To add to the ambiguity,
certain fossil crocodylians, especially those taxa that are interpreted as herbivores or
omnivores, are called “heterodont” in order to distinguish their dentition from their modern

relatives (e.g. Martin, 2007; Osi, Clark, & Weishampel, 2007; Novas et al., 2009). @

Semantics aside, one reason for the lack of resolution concerning crocodylian
heterodonty is that their teeth have rarely been measured. There have been few studies
looking at morphometrics of crocodylian teeth, and, of those studies, measurements have been
Euclidean distances taken for determining replacement rates (Frey & Monninger, 2010;
Bennett, 2012) or for biomechanical analyses (Monfroy, 2017). Aside from a single study
measuring Euclidean distances in a fossil notosuchian (Lecuona & Pol, 2008), little research has
guantitatively investigated heterodonty either within or between species. Typically, crocodylian
dentition is described qualitatively, with the goal of fossil identification, characterization for
phylogenetic analysis, or paleoecological inference (e.g. Schwarz-Wings, Rees, & Lindgren,
2009; Young et al., 2012; Salas-Gismondi et al., 2015; Adams, Noto, & Drumheller, 2017).
Qualitative descriptors of crocodylian tooth morphology are numerous, and include terms such
as blunt, bulbous, broadened, button-shaped, conical, globular, fang, kidney-shaped,
lanceolate, needle-like, robust, short, slender, spike-like, and thick (e.g. Brazaitis, 1973;
Groombridge, 1982; Aoki, 1989; Brochu, 1999; Erickson, Lappin, & Vliet, 2003; Osi, Clark, &
Weishampel, 2007; Schwarz-Wings, Rees, & Lindgren, 2009; Fruchard, 2012; Salas-Gismondi et

al., 2015; Berkovitz and Shellis, 2017).
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Research typically has focused on crocodylian tooth development and function as
opposed to quantitative morphology, including numerous studies on material characteristics
(Shimada, Sato, & Moriyama, 1992; Erickson, 1996; Enax et al., 2013), implantation and
replacement (Edmund, 1962; Westergaard and Ferguson, 1986, 1987, 1990; LeBlanc et al.,
2017), dental wear (Osi & Barrett, 2011), jaw musculature and kinematics (lordansky, 1964; Van
Drongelen & Dullemeijer, 1982; Busbey, 1989; Cleuren & De Vree, 1992; Endo et al., 2002), bite
force (Cleuren, Aerts, & Vree, 1995; Erickson, Lappin, & Vliet, 2003; Erickson et al., 2012, 2014),
death rolling (Fish et al., 2007;SK Drumheller, unpublished data), and taphonomic traces on

bone surfaces (Njau and-Blumenschine, 2006, 2012; Drumbheller and-Brochu, 2014; 2016).

Non-mammalian dental morphometrics has seen a burst of research in the past decade.
Dinosaur teeth have probably received the most attention, with multiple studies using
Euclidean distances for the identification of loose fossil crowns or to infer functional
paleoecology (D’Amore, 2009; Larson & Currie, 2013; Buckley and Currie, 2014; Hendrickx and
Mateus, 2014; Torices, Reichel, & Currie, 2014; Hendrickx, Mateus, & Araudjo, 2015a, Gerke and
Wings, 2016; Larson, Brown, & Evans, 2016). Extant reptiles have been investigated
guantitatively as well, including colubrid snakes (Britt, Clark, & Bennett, 2009) and varanid
lizards (D’Amore, 2015). Prior to this, lamniform sharks were investigated heavily (Shimada,
2002b, 2004; Shimada and Seigel, 2005). These morphometric analyses have shed light on the
nature of heterodonty, dental allometry, and ecomorphology in non-mammalian vertebrates,
and these methods may be applied to Crocodylia in the hopes to elaborate upon the state of

heterodonty in this taxon.
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The purpose of this studywas to quantify both shape and size morphology along the
tooth row in a multispecific sample of both extant and extinct members Crocodylia using
geometric morphometrics. Our goals were tc@ introduce a multifaceted method for assessing
heterodonty in a given crocodylian specimen; 2) document any developmental consistencies
found within the clade as a whole; 3) distinguish crocodylian dental morphotypes between
individuals; and 4) outline the advantages, limitations, and potential future uses of the method

when analyzing crocodylian heterodonty.
MATERIALS AND METHODS
Nomenclature

@ Crocodylian teeth have very few discrete homologous anatomical loci, but, because they
exhibit thecodont dentition (Edmund, 1969), we defined them as having a crown with an apex,
a neck, and a root within an alveolus. Nomenclature for tooth morphology used here was
proposed by Smith & Dodson (2003):(mesial, towards the central premaxilla and mandibular
symphysis; distal, away from the central premaxilla and mandibular symphysis; lingual, towards
the tongue; labial, towards the lips; basal, towards the base of the tooth/alveolus; apical, away
from the alveolus/towards the apex. For simplicity the mesial-most teeth are referred to as

‘mesials’ and the distal-most as ‘distals.’

Tooth position was indicated by either the presence of a tooth or an empty alveolus in
the host bone. Cranial teeth included premaxillary and maxillary teeth, and dentary teeth only
(occurred on the dentary bone. Teeth were numbered in ascending order from mesial to distal

positions. Not all crocodylian specimens had the same/number of tooth positions. Maxillary
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teeth ranged from M1 to M11-M24, and dentary teeth ranged from D1 to D14-D26./All
specimens were assumed to have 5 premaxillary positions (P1-P5). Members of Paleosuchus
and Osteolaemus have only 4 premaxillary teeth during early stages of ontogeny (Brochu and
Storrs, 2012; Narvaez et al., 2015), whereas several other species atrophy an alveolus (usually
P2) as they grow (Webb & Messel, 1978; Brown et al., 2015; jpersonal observation). In order to
standardize, the procumbent teeth were always assigned P4 and the other teeth and atrophied

positions were numberedbased off of it.
Specimens

@ Data were collected from 25 extant, and 14 extinct, crown crocodylian specimens. In
addition, we added the peirosaurid crocodylomorph Hamadasuchus rebouli-Thisresulting-ina
total of 24 species. From these we measured 1,224 teeth in total. For extant crocodylian taxa,
data was collected from dry skeletal specimens from the American Museum of Natural History
(AMNH). At least 40% of the @h positions had to be represented by measureable teeth on
the left and/or right for the specimen to be considered. Specimens where the only teeth
available biased towards the upper or lower size extremes were excluded. As ontogeny is
beyond the scope of our present study, juveniles were avoided. Fossil taxa were sampled from
the Royal Ontario Museum (ROM), the University of California Museum of Paleontology
(UCMP), and the Smithsonian National Museum of Natural History (USNM). Completeness of
tooth row was not considered in the inclusion of fossils. Although Caiman crocodilus is an

extant species, a fossil specimen wa@luded.

Data collection

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Highlight
This assumption, although I agree with it, should be nevertheless justified and referenced.

DF
Highlight
too colloquial, please rephrase

DF
Highlight
whose personal observation? Please add initials if it is one of the authors' or names and surnames if it someone else's.

DF
Sticky Note
delete the spacing

DF
Highlight
Is there any specific reason why was this taxon added in a Crocodylia-based study? If so please explain it.

DF
Cross-Out
, representing a total of

DF
Highlight
There is a number of institutional abbreviations used in this manuscript. I think it would be appropriate to add a "Institutional Abbreviations" section in the methods.

DF
Highlight

DF
Sticky Note
as above, add an "Institutional Abbreviations" section

DF
Highlight
how was this assessed?

DF
Sticky Note
also

DF
Sticky Note
It is not clear to me if a single mandibular ramus was consider or both (the use of "and/or" rather than only "or" seems to suggest that teeth from both sides were measured). This does not affect the results but it should be more clearly stated in name of repeatability.


Peer]

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

@ Methods were similar to those proposed in D’Amore (2015). Teeth were photographed
using either an Olympus Stylus or a Canon Rebel T3 EQS, alternating between a macro and an
18-55 mm lens depending on the size of the tooth, against a dark background with a scale
(Figure 1A). Digital photographs were taken from the labial perspective, and a separate picture
was taken for each tooth. Only fully erupted teeth with the neck visible were included. Tooth
guality was variable in extant specimens. We included teeth with slightly worn apices, but
excluded teeth that had large wear facets and chips/@slong as they interfered noticeably with
the outline. Cracks down the long axis of the teeth were common, and were omitted if the
crack distorted the shape of the tooth or resulted in a space where light could be seen from the

other side.

We used a sliding semilandmark analysis (Bookstein1997; Sheets, Kim, & Mitchell 2004;
Zelditch et al., 2004; Mitteroecker et al., 2013) to derive shape measurements from the tooth’s
outline. Photographs were entered in TpsDig 2.16, and the margin of the tooth was traced using
the curve drawing tool (Rohlf, 2010) (Figure 1B). Because the enamel margin was not always
clear, each tooth was traced from apex to the point where the tooth ceases to taper on the
neck for both the mesial and distal side. The two traced margins were then each transformed
into 30 equidistant coordinates, and the apical coordinates were combined into one. This
resulted in3landmarks and 56 semilandmarks (Figure 1C), the latter of which were then slid to
minimize the bending energy (Perez, Bernal, & Gonzalez, 2006; Gunz & Mitteroecker, 2013)
using TpsRelw 1.53 (Rohlf, 2013). This program also performed generalized least squares

Procrustes superimposition on the data, and calculated centroid size (CS). Bilateral symmetry of
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the jaw was assumed, and thesuperimposed coordinates and CS were averaged between teeth

from the same position on left and right sides.

@ Rostrum shape has long been considered both an important phylogenetic and
ecomorphological feature in crocodylians (Busbey, 1995; Daniel & McHenry, 2000; Brochu,
2001; Sadleir & Makovicky, 2008; Salas-Gismondi et al., 2016). All specimens’ skulls were
photographed with a scale from the dorsal perspective. Snout shape data were derived
following Drumbheller et al., (2016) and Wilberg (2017), using a modified version of our
technique for tooth outlines. We traced the skull margin from the rostral-most point of contact
between the premaxillae to the caudal-most quadratojugal on each side in TpsDig, broke each
margin into 50 equidistant coordinates, combined the anterior-most coordinate (resulting in 3
landmarks and 97 semilandmarks total), and slid them with TpsRelw again. Head length was
derived from these landmarks, which began at the rostral-most landmark and ended in-
between the posterior-most landmarks along the mid-sagittal plane. In specimens with
damaged or missing bones on one side, bilateral symmetry was assumed and the intact side
was mirrored. Head length was used as a measure of body size in lieu of snout-vent length, and
all CS values were divided by it to normalize relative tooth size. Allognathosuchus sp. (UCMP
150180), Argochampsa rebouli (ROM 73872), and Boverisuchus vorax (UCMP 170767) did not
have intact skulls associated with their dentition. Photographs of intact skulls of conspecifics
were used instead to derive head shape and length (substituted specimens included: Yale
Peabody Museum 17111, Field Museum of Natural History PR399, and Office Chérifien des

Phosphates DEK-GE 1201)

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Highlight

DF
Sticky Note
This sentence partially answered the comment about mandibular rami. Yet, that clarification should be made anyway - and much earlier in the method section.

DF
Highlight

DF
Sticky Note
Institutional Abbreviations

DF
Sticky Note
It is not at all clear here why rostra and crania were used, and for what?
Please explain very briefly in a sentence what did you intend to achieve by using these data. (e.g. comparing tooth size/shap heterodonty with skull/rostrum shapes; to normalise with size). 
All these information are - partially - explained later in the methods. In the current state, the manuscript method section reads very fragmentary and it is really hard to follow the logical succession of steps and the analyses that were done, and why they were done. I suggest the authors try to re-organise the methods in a more coherent fashion.

DF
Highlight
2001 in the Reference list. Please sort out


Peer]

181

182

183

184

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Ordination and statistics

All analyses were conducted in Morphol v. 106d (Klingenberg 2011) and SPSS Version
19.0 [IBM Corp, Armonk, NY]. (A'10,000 permutations test was run on the Procrustes distance
between cranial and dentary teeth for extant specimens, and showed no significant differences
(P=10:2000). Therefore, all subsequent analyses were conducted with both arcades combined
(unless position is being considered). Interspecific differences in mean tooth size and shape
were analyzed using an analyses of variance (ANOVA). Size washeteroscedastic according to
Levene’s test (P = 0.0002), so we ran a Welch’s ANOVA o@'malized CSvaluesfor all members

of each species in SPSS. For shape, Procrustes ANOVA was run in Morphol.

A singular measure of heterodonty was derived for each specimen in the form of
Foote’s morphological disparity [MD = (Z;nz 1D%)/(m - 1)] (Foote, 1993; Zelditch, Sheets, &

Fink, 2003; Sheets & Zelditch, 2013). Disparity (MD) is the sum of the differences of the values
of a given tooth (i) from the mean for all teeth from that specimen (Di) squared, with the
number of tooth positions (m) factored in. We calculated disparity for both cranial and dentary
teeth together from each specimen. For size heterodonty, Di is simply the difference in CS of a
tooth from the mean of the individual (Zelditch et al., 2004). Only specimens with intact skulls
for normalization were include@r shape Di is the Procrustes distance between the tooth and

the mean, and was calculated using DisparityBox7 (Sheets, 2012).
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Although Foote’s MD is an inclusive measure of heterodonty, it is not descriptive of
multivariate measures such as shape. Therefore, principal components analyses (PCA) were
conducted to visualize the degree of shape variance within all cranial and dentary teeth
separately. All'PCs representing over 5% of the variance were considered, and shape variance
was visualized in vector diagrams (Figure 1D). Both CS values and PC scores were graphed as
box plots for all members of each species, to visualize the range of shape and size that
contribute to MD. Similar to teeth, a PCA was run for skull shape. Skull shapePCs'were
compared to the average tooth PC for each extant individual in a bivariate plot, and regressed

to determine if skull shape and tooth shape are correlated.

Shape and size were plotted against tooth position to visualize variability along the
tooth row. For size, CS was plotted against tooth position. For shape, the aforementioned tooth
PC scores were plotted against tooth position. Data were clustered into box plots to depict
trends along the dental arcade for(@ach family within our extant sample. Each box represented
a position. Note that these positions were not normalized, so specimens with more tooth
positions will be the only occupants of the distal-most categories. As positional data were often
heteroscedastic, Welch’s ANOVAs were conducted to determine if shape and/or size were
significantly different by position for each arcade in each family. Shape data were also
regressed to determine if serial homology is linear along the tooth row. To standardize these
regressions, tooth position was normalized into a percentage. (We numbered the positions
along the tooth row starting with 1 at the mesial-most position, divided each by the total

number of positions along the arcade, and then subtracted 0.5, This placed the y-intercept
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222 halfway along the arcade). Included PCs were then regressed against position-percentage, and

223 regression statistics were tabulated.
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Results:

Shape variability in the sample

=l

(PC1). It accounted for over 91.26% of the variance, and is the only PC considered further.

The majority of the shape variance was represented by the@t principal component

When visualized, the axes indicated a ‘caniniform’ to ‘molariform’ transition with increased
values. The negative-most condition was an elongate, narrow crown coupled with a gentle
concavity on the distal margin. The positive-most values depicted an apical-basal shortening
and mesial-distal broadening (Figure 2), giving the tooth a stout, rounded crown with a
relatively narrow neck. Although PC1 was treated as a continuous variable in all subsequent
analyses, we assigned names to ranges of PC scores for the purposes of description. These
descriptors include; high-caniniform (<-0.25); mid-caniniform (-0.25 to -0.15); low-caniniform (-
0.15 to -0.05); average (-0.05 to 0.05); low-molariform (0.05 to 0.15); mid-molariform (0.15-

0.25); and high-molariform (> 0.25).
Skull morphology:

@ Mean tooth shape showed@wificant trends when regressed against head shape, but
not size (Figure 3). Head shape yielded a PC1 encompassing 89.81% of shape variance, and
represented the brevirostrine-to-mesorostrine-to-longirostrine transition {broad-, middle-, and
slender-snouted conditions respectively) (Brochu, 2001; Wilberg, 2017). Significant regressions
scaled with a slope of -0.67 for extant-only crocodylians. (GERErallySpeakinglongirestrinetaxa
‘had the most caniniform teeth and brevirostrine taxa had the most molariform teeth. Scatter

increases among the broader-snouted specimens below the mean, and the relationship is less
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well represented. When extinct taxa were included, the slope decreased to just under —1.(@1t
the goodness of fit dropped from0.73 to 0.52. Most of our fossil taxa had broader teeth
relative to head shape than the extant sample, which was most likely a consequence of
sampling bias, (see DISCUSSION).

Foote’s disparity and morphotype ranges

Whenimeans were compared, ANOVA indicated significant differences in CS between
species [F(13,674) = 6.389; P< 0.000l].@erodonty varied both between and among species
(Figure 4)fAlligator tended to have lower size heterodonty than the caimanines, because the
latter had more teeth above the inter-quartile range. Crocodyloids had highly variable size
heterodonty. Several members of Crocodylus were middle ranged, but both Crocodylus porosus
specimens rose above the rest. A member O. tetraspis was the most size-heterodont, but the
others were much lower. This species had the largest teeth relatively speaking. Mecistops
cataphractus and Tomistoma schlegelii were the least heterodont crocodyloids, and had the
narrowest size ranges with the lowest maximum tooth sizes. Gavialis gengeticus was the least
size heterodont in our modern data set, with similar size ranges to the longirostrine

crocodyloids.

As with size, shape was also significantly different between species [F(1482,79572) =
19.61; P < 0.0001]2 The caimanines and most members of Crocodylus had similar shape
heterodonty, and possessed crownsranging from mid-caniniform to mid-molariform (Figure 4).
Crocodylus siamensis was more shape heterodont than its congenerics. Alligator species had

lower shape heterodonty than most caimanines, asitheir PC1 range was generally more
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molariform. Unlike size,@etraspis had shape heterodonty similar to members of Crocodylus.
Alligator sinensis,(C. siamensis, and(O- tetraspis were the only modern taxa with teeth in high-
molariform range. Similar to size, the longirostrine taxa have the least shape heterodonty.
Gavialis gangeticus teeth all ranged from average to the high-caniniform. Tomistoma schlegelii
had teeth ranging from high-caniniform to low-molariform range, whereasM. cataphractus was

more constrained between mid-caniniform and low-molariform.

Concerning fossil taxa, C. crocodilus was similar to modern caimanines concerning
heterodonty, although the maximum tooth size was lower (Figure 4). Alligator prenasalis,
Brachychampsa sp., and “C.” affinis had some of the lowest shape and size heterodonty in our
sample. Tooth shape was limited from average to high-molariform, as they all lacked any
disparately large teeth. Leidyosuchus heterodonty fell within the range of living alligatoroids,
but the majority of the teeth were on the small end. Borealosuchus sternbergii had a range of
tooth sizes typical of modern Crocodylus. Heterodonty was highly variable in this species.
Hamadasuchus rebouli mirrored C. porosus in both size-ranges and size-heterodonty, but had
higher shape heterodonty with more molariform teeth. Allognathosuchus sp. had the highest
shape heterodonty by a large margin. Argochampsa krebsi and B. vorax both had low

heterodonty, and were represented by only caniniform and molariform morphs respectively.
Heterodonty along the tooth row

In both extant Alligatoroidea and Crocodyloidea, size varied significantly between
positions. Size undulated@ee times along the dental arcade resulting in significant differences

between positions for both the cranium and mandible{(Figure 5). Each undulation peaked with
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a relatively large procumbent tooth (Gignac & Erickson, 2014). The largest procumbent teeth
included P4 for both clades, and M4 for alligatoroids and M5 for crocodyloids (sensu Brochu
and Storrs, 2012). Members of Paleosuchus has very large P3 and M3 teeth as well. A final
undulation resulted in a procumbent tooth at M9-11. In alligatoroids this final peakrelatively
consistent throughout the group, but in crocodyloids these teeth varied greatly in size between
specimens concerning both position and degree. Interspersed between these were small teeth,
with the distal-most tooth often the smallest. The mandible was similar with procumbent D1
and D4, both followed by a series oII teeth. The third size-peak maximized between D11
and D14, reflecting similar levels of variability to its cranial counterpart. Gavialoids differed
markedly by having the two mesial-most teeth enlarged, and the remainder of the teeth show a

gradual decease in size distally.

Alligatoroids and crocodyloids both showed a general linear trend concerning tooth
shape, making positions significantly different (Figure 5). Mesial teeth ranged from mid-
caniniform to average, with distals approaching high-molariform. In cranial teeth there was an
apparent plateau from P1-M4, followed by a gradual increase in molariformy distally. Dentary
teeth represented a more linear caniniform-to-molariform transition. Crocodyloids were much
more varied than alligatoroids, with wider ranges and a series of low outliers (most of which are
T.'schlegii). In(G. gangeticus, most of the teeth are high-caniniform with a steep increase

towards average in the distal-most fifth of the arcade.
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307 When each modern individual’s PC1 values were regressed against position, the

308 resultant linear trends represented individual shape heterodonty very well (Table 1). All

309 regressions were significant, and all except(G. gangeticus had goodnesses of fit greater than
310 70%. Both cranial and dentary tooth rows typically had slopes between 0.25-0.55./More shape
311 (heterodont taxa typically had greater slopes, where(C. siamensis had the highest slopes of the
312 sample. All the longirostrine taxa had the lowest intercepts indicating high caniniformy, and

313 members of Alligator had high y-intercepts indicating general molariformy.

314 Fossil taxa displayed a much more variable range of size and shape trends along their

315 arcades (Table 2): All fossil specimens with intact teeth in the position showed a procumbent

316 P4, but(“C.”affinis also had a similarly sized P3. (RliKEIGtRERalligatoreidsIcanaaensisias
317  both procumbent M4 and M5. Some of the largest teeth of A. prenasalis, Brachychampsa, and
318  “C.” affinis, were the molariform distals. These teeth typically approached the size of the largest

@9 (ESIENEEeWRS) Regressions for shape were significant for all fossil taxa except the “C.” affinis
320 mandible (USNM 4048). The teeth of the fossil Caiman crocodilus had very similar sizes and

321 shapes to those of modern Caiman yacare at the same positions. They only differed in that the
322 coefficients of its cranial regression were dissimilar. All fossil specimens with intact teeth in the

323 position showed a procumbent P4, but“C.” affinis also has a similarly sized P3. Unlike-other

326 approached-thesize-of the largest mesial-crowns; which themselves had very high PC1 values.

327 This resulted in@'species having the shallowest slopes and the greatest y-intercepts. Although

328 Allognathosuchus has similar distal teeth, a mesial crown steepened the regression. Both(B:
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sternbergii specimens’ cranial teeth have similar sIopes,@ intercepts differed by ~0.15.
Hamadasuchus rebouli had the largest teeth for its skull length with a dramatic/undulation in
size, and the greatest slope of any fossil cranial series. Boverisuchus vorax andAZkrebsi both
formed significant trends with very high slopes. It should be noted that these two species have

less than a third of their teeth accounted for, and are all located in a narrow region of the

dentar@

DISCUSSION
Developmental trends in crocodylian heterodonty

@ Multiple measures of heterodonty allow for us to describe morphological conditions
across the crocodylian specimens sampled in a thorough manner, through a combination of
disparity, morphotypes ranges, and serial homology along the tooth row. All living crocodylians
are heterodont to varying degrees, and these data showed significant variability of
morphotypes along the dental arcade for all specimens. Although dentition varies between

species, certain consistencies were seen throughout the extant members of the clade:

1. Similar teeth occur on both the cranial and dentary dental arcades.

2. The vast majority of shape variance from the labial perspective ranges from high-
caniniform to high molariform. Only minor distal curvature is apparent in more
caniniform crowns.

3. There is serial homology in tooth shape from-mesial-to-distal along the tooth row, and
molariformy increases in this direction.@s is significantly linear for both dental

arcades.
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350 4. Size variability consists of an undulating pattern with three peaks, with large

351 procumbent crowns interspersed within smaller crowns.

352

353 Shape- and size-heterodonty are clearly decoupled, as they change in dramatically

354 different, and seemingly independent, fashions along the arcade. This begs the question; do
355 developmental agents influence size and shape separately? Although quite a bit of research
356 has looked at how crocodylian teeth grow and replace themselves INTRODUCTION),

357 surprisingly little has been done on what developmental influences affect tooth size and shape.
358 Crocodylian teeth are replaced in waves, or Zahnreihe (Edmund, 1962; Westergaard and

359 Ferguson, 1990; Osborn, 1998), but these waves appear to be unrelated to the morphological
360 variables investigated here. Keiser et al., (1993) compartmentalized the dentition along the
361 tooth row for(C niloticus, grouping teeth intoisor,’ ‘premolar,” and ‘molar’ regions with
362 each reflecting a procumbent tooth. They did not offer a developmental mechanism that

363 differentiates these categories though. Fruchard (2012) suggested that the only difference
364 between procumbent teeth and their smaller counterparts was that the former was

365 “programmed to be bigger,” suggesting some sort of additional developmental signaling to
366 enlarge teeth. More research is needed on how tooth shape and size are established

367 developmentally in order to truly understand what generates heterodonty.

368 Although we were able to define heterodonty successfully, the task of assigning a
singular dental morphotype to any one species of crocodylian is much more difficult.
‘Heterodonty seems to vary within species, making the assignment of a singular heterodonty
(MeastiretolanientirelSpeciesidubiousPAs far as biological explanations for this, tooth form is
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almost certainly influenced by allometry. Ontogenetic shifts in feeding niche have been
documented in most crocodylian species (e.g. Groombridge, 1982; Webb, Manolis, &
Buckworth, 1982; Pooley & Gans, 1976; Pooley, 1989; Delany, 1990; Santos et al., 1996; Da
SiIveira@ Magnusson, 1999; Subalusky, A. L., Fitzgerald, L. A., & Smith, 2009 Wallace and
Leslie, 2008; Borteiro et@ZOO9; Hanson et al., 2014), and allometric changes in the feeding
apparatus with size are often explained as a structural consequence of this (e.g. Dodson, 1975;
Webb and Messel, 1978; Hutton, 1987; Erickson, Lappin, & Vliet, 2003; Verdade, 2000; Wu et
al., 2006; Gigna Erickson, 2016; Gigna O’Brien, 2016). Concerning teeth, a qualitative
increase in overall molariformy was observed infA. mississippiensis, and functioned to meet the
mechanical demands of increased durophagy (Erickson, Lappin, & Vliet, 2003; Gignac &
Erickson, 2014). Although our sample size is too low to confidently assess dental ontogeny
within each species, we did see a similar general trend in conspecifics of different sizes. In
particular, the larger of our two(C. porosus had a greater y-intercepts indicating greater
molariformy. This trend was also seen in the(B: sternbergii cranial specimens. In addition to
allometry, phenotypic changes due to environmental factors may also influence teeth. Skull
shape and tooth orientation are irregularly influenced by the captive rearing (Erickson et al.,
2004; Drumheller et al., 2016), and how this may also influence tooth shape has yet to be
determined. Many of our specimens had ‘no data’ concerning their rearing, so we do not know

if captivity influenced either tooth or skull morphology.
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Adaptive explanations for interspecific variability in modern taxa

@ The method presented here@icates that significant differences in tooth morphology
exist between modern members of Crocodylia. Bite force in crocodylians is primarily influenced
by size (Erickson et al., 2012), and our data set shows that similarly sized crocodylians may have
very different tooth dimensions. This rules out maximum bite force as the sole limiting factor
dictating tooth form. Although we are reluctant to associate specific prey items with a specific
tooth forms, shape and size will influence how a tooth interacts with a particular@strate. We
therefore suggest that a biomechanical link should exist between the structural limits imposed

by tooth form and the material properties of the substrates it interacts with.

As with all jawed vertebrates, crocodylian teeth must cope with different stresses based
on their respective position along the arcade. Distal teeth will endure more force during a bite
due to their close proximity to the hinge (Cleuren, Aerts, & Vree, 1995; Erickson, Lappin, &
Vliet, 2003;@kson et al;; 2012; McHenry et al., 2006). This explains why these teeth are
always on the molariform half of the shape spectrum; the larger base-to-height ratio gives them
greater relative bending strengths (Van Valkenburgh and Ruff, 1987; Gignac & Erickson, 2014;
Monfroy, 2017).@ause force is highest in this region, food processing typically occurs here
(Busbey, 1989; Davenport et al., 1990; Cleurens and de Vree, 2000). Their short size also
ensures they do not impede jaw closure. This necessity is very apparent in({G.'gangeticus, and
explains the poor linear shape relationship along the tooth row. Having all the teeth be high- to

mid-caniniform except for the distal-most region@n attempt to reduce heterodonty as much
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as possible (Grigg and Gans, 1993), while ensuring the distals do not impede jaw closure or

break when processing food.

Particular attention should be paid to the@als in modern alligatoroids and
crocodyloids, as their relative size varies noticeably between species (Figure 6a). Most members
of these clades have a single procumbent tooth followed distally by several smaller teeth.
These are typically mid-molariform, but even the high-molariformdistals of (C.'siamensis were
some of the smallest teeth in its arcade.@gator sinensis differed from this, in that it had a row
of 4-5 relatively large, high-molariform, crowns followed by only one crown reduced in size.
Probably the most extreme condition, (O: tetraspis had(distals that were exceptionally large; the
largest crowns at positions M10-12 and D11-13 all belonged to members of this species. Aoki
(1989) qualitatively noted these unique conditions, and suggested they facilitated durophagy.
All alligatoroids and crocodyloids sampled here have been recorded to consume at least some
hard prey items though (e.g. Brazaitis, 1973; Mcllhenny, 1976; Taylor, 1979; Groombridge,
1982; Ross and Magnusson, 1989; Santos et al., 1996; Selvaraj, 2012; Nifong & Silliman, 2013),
so it is unclear what selection pressure resulted in these particular morphologies. It may be a
result of body size. Bite force tests of A. mississippiensis showed the pressure produced at its
procumbent distal (M11) to be adequate to crush its harder prey items (Erickson, Lappin, &
Vliet, 2003; Gignac & Erickson, 2014). If this is the case in most of the large crocodylians,
enlarging the distal-most crowns would be unnecessary. Alligator sinensis and(O: tetraspis, on
the other hand, may need more extreme dentition closer to the hinge; their smaller size would
make it more difficult to process foods with similar mechanical properties. Another explanation

for this@e frequency of consuming hard prey. Although bothA:sinensis and Q. tetraspis
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have broad diets, studies have shown certain populations to consume disproportionately large
numbers of sheIIed@llusks and crustaceans (Cheng et al., 1957; Groombridge, 1982; Ross@

Magnusson, 1989; Luiselli, Akani, & Capizzi, 1999; Pauwels et al., 2007).

Caniniform mesials are ideal for the acquisition of prey, as pointed apices reduce
surface area to puncture compliantsubstrate (Frazetta, 1988). Being farther from the hinge,
these teeth move faster during a strike and are more likely to contact prey trying to escape
(Busbey, 1989). All taxa measured here also have two sets of large mesial teeth on both
arcades, often referred to as(‘pseudocanines” (Brochu, 1999). These procumbent teeth are well
built for puncturing, likely make first contact with prey during jaw closure, and resilient against
struggling prey (lordansky, 1964). High size heterodonty in caimanines was typically a
consequence of large pseudocanines and relatively small remaining crowns; (Figure 6b). Their
pseudocanines can become so large that dentary crowns may grow entirely through the cranial
rostrum in adults (Brazaitis, 1973). The molariform distals were rather small by comparison.
This suggests these taxa prioritize securing prey over processing it. This may be a specialization
for hunting mobile and/or compliant prey (Sampaio et al., 2013), as insects and fish can make
up a large portion o@ir diet (Santos et al., 1996). The exceptionally large pseudocanines of (C.
porosus also show a prioritization for puncturing and securing soft-bodied prey in a larger
context, as this species is notorious for actively hunting large vertebrates such as sharks, cattle,
horses, and humans (e.g. Taylor, 1979; Kar & Bustard, 1981; Groombridge, 1982; Doody, 2009;
Hanson et al., 2015). Similar to caimanines, this species atrophies position P2 to make room for

enlarged D1 pseudocanines (Brown at al., 2015)
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(The longirostrine species have a reputation for eating small, aquatic prey with a focus
on fish (Peyer, 1968; Webb, Manolis, & Buckworth, 1982), and multiple lines of evidence
suggest the feeding apparatus is well designed for this function. The longirostrine shape
reduces resistance during both lateral motion and jaw adduction when feeding underwater,
and the increased snout length allows for a faster strike{(Pooley, 1989; Thorbjarnarson, 1990;
McHenry et al., 2006; Pierce et al., 2008). Highly caniniform teeth can quickly puncture fast-
moving, compliant prey, and their elongate shape may alsolower resistance. The longirostrine
cranio-dental morphotype may be prey-sizeF as larger prey could damage it while
struggling. The elongate mandibular symphysis of longirostrines results in a mechanical
disadvantage against forces produced by shaking/twisting prey as well (Walmsley et al., 2013),
and there is a reduction in masticatory musculature relative to other crocodylians (Endo et al.,
2002). The gracile nature of the dentition means a lower bending strength, also making them

more susceptible to breakage by more powerful prey (Figure

(Gdentocetesiwiiales (Rommel, 1990). This condition is believed to be ideal for catching and
holding, but not processing, small aquatic prey (MacLeod et al., 2007), as most prey items
consumed are under 10% of their body length (MacLeod et al., 2006). A convergent reduction
intheterodonty within bothups indicates a transition from a multi-functional dental arcade
to one almost exclusively for prey capture. This is clearly the condition in{G.'gangeticus, as it is
almost entirely caniniform along its tooth row and eats primarily fish (Groombridge, 1982). The

other Iongirostrinea, although also primarily caniniform, still displayed the linear shape
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change typical of other CrocodvloidS-
also been known to process larger/harder prey items, such as crustaceans, turtles, and
immature primates (Brazaitis, 1973; Groombridge, 1982; Galdikas and Yeager, 1984; Selvaraj,
2012).

Tooth shape may indicate differences in feeding behavior and processing ability, even
EheughieverlapiexistslinipreyiSelectiond A/ligator mississippiensis and(C. niloticus both consume

a wide variety of prey, including both large and small mammals, crustaceans, fish, water fowl,
snakes, turtles, and even each other (Mcllenny, 1976; Pooley & Gans, 1976; Groombridge,
1982; Delan Abercrombie, 1986; Hutton, 1987; Shoop & Ruckdeschel, 1990; Rootes &
Chabreck, 1993; Elsey et al., 2004; WaIIac Leslie, 2008; Gabrey, 2010). A comparison of
controlled feedings of each of these species showed A. mississippiensis to fracture and consume
noticeably more bovine skeletal elements than C. niloticus (Njau & Blumenschine, 2006;
Drumheller & Brochu, 2014). Our A. mississippiensis specimen was generally more molariform
than C. niloticus. These teeth would have greater bending strengths to resist breakage when

processing hard material such as bone.

@ Certain fossil taxa were reminiscent of modern counterparts. Caiman crocodilus and(C.
yacare are highly similar. This was expected as these species are closely related and were once
considered subspecies, and both eat insects, crustaceans, and fish (Brazaitis, 1973;
Groombridge, 1982; Da SiIveiraMagnusson, 1999). Any differences in size and shape

ranges appear to simply be a consequence of the former’s incomplete arcades; no distal
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maxillary or any dentary crowns were available. Both Borealosuchus and Leidyosuchus possess
dentition somewhat typical of large modern crocodylians (Figure @ Alligator mississippiensis
makes for an excellent dental analogue for one particular Leidyosuchus specimen (ROM 01903)
as heterodonty and shape regressions overlap consistently. The fact that Leidyosuchus lacks any
evidence of enlarged distal teeth may be indicative of a difference in the degree these taxa
process hard materials, although no taphonomic evidence for this currently exists associated
with Leidyosuchus. The four specimens of B. sternbergiiall varied, most likely due to an
allometric increase in molariformy (see above), but certain consistencies are apparent. Based
on linear shape change, all specimens in this genus were@jected to have mid-caniniform and
—molariform teeth, with smaller specimens@jected to additionally have the high-caniniform
mesials and larger specimens having high-molariform distals. The best analogue for this species
may be a member of Crocodylus where larger individuals have distals approaching high-

molariform range such as C. niloticus.

The fact that H. rebouli surpasses our larger C. porosus in size heterodonty, and has a
similar upper maximum in relative tooth size, indicates that it may have dealt with similar prey
from a mechanical standpoint (Figure 6e). Peirosaurids are believed to be primarily terrestrial
crocodyliforms (Tavares et al., 2017), and this dentition argues H. rebouli may have focused on
mobile, terrestrial vertebrates (Larsson & Sues, 2007). Its large pseudocanines would puncture
vertebrates tissue with similar effectiveness to those of C. porosus. Noticeable differences are
the very large distal procumbent crowns of H. rebouli, which suggest potential differences in

prey processing. These teeth may have been used for either sheering soft tissue or breaking
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bone similar to modern mammalian carnassials, as rolling on land is not an effective means of

dismemberment (Fish et al., 2007).

It has been stated that modern taxa do not have, or have secondarily lost, the degree of
molariformy commonly found in extinct representatives. Known as “globidonty” (Norell, Clark,
& Hutchison, 1994; Brochu, 1999; 2001; Osi & Barrett, 2011), this term describes enlarged,
high-molariform crowns potentially used for durophagy (Figure 6f). Allognathosuchus and
Brachychampsa are ‘textbook’ examples of globidont taxa (Case, 1925; Carpenter and Lindsey,
1980). Although we agree with Brochu (2001, 2004) that(O: tetraspis is not as extreme, its
enlarged distals do overlap with these taxa in both size and shape. Alligator prenasalis and “C.”
affinis distals are similar toA: sinensis, also creating a ridge of robust teeth (Mook, 1932). The
mechanical capabilities of these particular crowns in ‘modern globidonts’ should be similar to
the extinct taxa, which suggests similar processing abilities in the distal regions of the skull. The
similarities break down when the rest of the jaw is considered though. The modern(globidonts
also have caniniform mesials and pseudocanines, suggesting a division of labor along the tooth
row. Contrarily, almost all teeth of A. prenasalis, Brachychampsa, and(“C.” affinis on the
molariform half of the shape-spectrum. These extinct taxa probably did not need to do as much
puncturing of compliant substrate, which supports the argument that they may have foraged
for mollusks and slow moving turtles (Carpenter and-Lindsey, 1980; similar to Salas-Gismondi et
al., 2015) rather than being semi-aquatic, ambush predators. Allognathosuchus’ pseudocanine
suggests a potential division of labor along the tooth row more like imodern globidont taxa, but

a more complete tooth row is necessary to confirm.
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The nature of heterodonty in fossil taxa with less than 40% of their tooth row
represented is especially difficult to determine. Allognathosuchus was represented here by a
pseudocanine and globidont distals, but previous studies have shown a great degree of tooth
and alveolar size variation that our specimen is missing (Case, 1925; Brochu'2004). The teeth of
A. krebsi only occur between D6-D12. This region is so narrow that the slope is a poor indicator
of the shape range. AIthougI@s a gavialoid, its teeth are most similar toM. cataphractus in
shape, and'may be its most appropriate’analogue. Salas-Gismondi et al., (2016) argued that the
lack of ‘telescoped’ eyes in A. krebsi is indicative of its marine habit (see also Hua & Jouve,
2004). Mecistops cataphractus superficially shares this condition, and has been known to

frequent brackish and costal environments (Brazaitis, 1973; Ross and Magnusson, 1989).
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Foote’sIMD is a reliable method for assessing heterodonty if the tooth row is near
complete, but much of the variability in MD seen here is the result of incompleteness. Foote’s
MD relies on, among other things, the@nd mean and the@ple size.'Size heterodonty was
greatly underrepresented in one specimen of O. tetraspis (AMNH 101417) as its pseudocanines
were missing. These teeth would have deviated greatly from the Grand mean if present, and
their inclusion would most certainly have raised the value. Our Allognathosuchus specimen had
four teeth, with three being globidont and one an average-shaped pseudocanine. Theresult

- That, compounded with

the low sample size, resulted in an inflated shape MD. A similar principle may be applied to

both A. krebsi and B. vorax; because only a small area of the tooth row was represented all the
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individual tooth shape values were close to the Grand mean, so the MD values were deflated.
Slope of shape heterodonty is also influenced by the completeness of the tooth row. Several
specimens have similar PC1 values for the same positions, but their slopes differed. This is
typically due to one or both missing the mesial- or distal-most teeth. This was apparent in C.
crocodilus; even though it shared almost identical tooth morphology with C. yacare, its cranial

regression coefficients deviated because the distal 30% of its teeth were missing.

@ did not consider all three dimensions here. Living crocodylian teeth are often
discussed as conical (Edmund, 1969) or conidont (Hendrickx, Mateus, & Araujo, 2015b). Studies
of bending strengths show variation between mesial-distal and labial-lingual axes as well as
variation between species (Monfrey, 2017), indicating that functional information may be
drawn from the dimesion not considered here. This is especially important concerning fossil
taxa, as pronounced lateral compression is commonplace. Boverisuchus vorax distals plotted
similarity to globidont crowns using our method, but they are clearly ziphodont (Brochu, 2001,
2003). Future studies should consider this third dimension at least qualitatively, in order to

avoid conflating disparate tooth morphotypes such as these.

@ These limitations aside, the methods proposed here could be very useful in dealing with
incomplete fossils. It is common for fossil crocodylian specimens to be lacking many/most of
their teeth. The linear nature of tooth shape can predict the shape of these missing teeth.
Although slopes may vary between species, a record of the ranges of slopes evident in a certain
taxonomic group may be applied to a fossil with few teeth. The preserved tooth/teeth can be

plugged into the linear equation, and the shapes of missing teeth may be predicted with a high
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583 degree of certainty. This would result in a more complete representation of the extinct animal’s
584 anatomy, useful from the standpoint of both anatomical science and paleontological

585 reconstruction.

586 Quantifying the teeth of crocodylians will add rigor to future life history studies of the
587 clade. As a quantifiable trait, both tooth shape in a single position and heterodonty as a whole
588 may be incorporated into character matrices of phylogenetic analyses. As we have shown

589 heterodonty@e very real in Crocodylia, descriptors of dentition can describe alnumerical
590 range of morphology as opposed to cherry-picking an average tooth or single position.

591 Monospecific comparisons of multiple specimens can quantify the allometric changes in tooth
592 morphology often alluded to in the literature. The teeth of fossil taxa can be compared

593 statistically to modern taxa to determine the best analogue, and rigorous hypotheses about

paleobehavior and paleoecology may be drawn. Cfocodylians;ibothilivingiandextinctimayioe
grouped in dental categories, allowing for species and specimens to be compared to one

f B

@RGERER Frequency, size, and hardness of food items may be compared to these categories to
597 determine if a link exists between dental morphotypes and dietary patterns. (Crocodylians are
598 used in both performance and actualistic taphonomy studies frequently, and the output of
599 these studies could be correlated with tooth dimensions; tooth shape may be compared to

600 bite-force, death-rolling, and bone-modification.

®l

601 Acknowledgements

602 The American Museum of Natural History Department of Herpetology, National Museum of

603 Natural History Department of Paleobiology, Royal Ontario Museum Vertebrate Paleontology,

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Highlight

DF
Sticky Note
please rephrase

DF
Highlight

DF
Highlight

DF
Sticky Note
Excellent point! I look forward to see this done!

DF
Highlight
Please rephrase

DF
Sticky Note
A "Conclusion" section summarising the merit, limitations of the method and the main findings of the paper is needed.


Peer]

604

605

606

607

608

and University of California Museum of Paleontology curatorial staff allowed on-site access to
dry skull specimens. We would like to particularly thank D. Bohaska, M. Carrano, D. Evans, P.
Holroyd, D. Kizirian, C. Raxworthy, K. Seymour for their assistance. C. Brochu sent us pictures of

fossil skulls.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

609

610

611

612

613

614

615

616

617

619

620

621

622

623

624

625

@erencese

Adams, T. L., Noto, C. R., & Drumbheller, S. (2017). A large neosuchian crocodyliform from the
Upper Cretaceous (Cenomanian) woodbine formation of North Texas. Journal of

Vertebrate Paleontology, 37(4), e1349776.

Aoki, R. (1989). The jaw mechanics in the heterodont crocodilians. Current Herpetology in East

Asia, 1, 17-21.

Bennett, G. E. (2012). Community structure and paleoecology of crocodyliforms from the upper
Hell Creek Formation (Maastrichtian), eastern Montana, based on shed teeth.

Jeffersoniana, 28, 1-15.

Berkovitz, B. K., & Shellis, R. P. (2017). The teeth of non-mammalian vertebrates. Academic

Press.

Bookstein, F. L. (1997). Morphometric tools for landmark data: geometry and biology.

Cambridge University Press.

Borteiro, C., Gutiérrez, F., Tedros, M., & Kolenc, F. (2009). Food habits of the Broad-snouted
Caiman (Caiman latirostris: Crocodylia, Alligatoridae) in northwestern Uruguay. Studies

on Neotropical Fauna and Environment, 44(1), 31-36.

Brazaitis, P. (1973). The identification of living crocodilians. New York Zoological Society.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Cross-Out

DF
Highlight

DF
Sticky Note
The references are very poorly formatted with frequent omissions of page numbers, volume, editors, press etc. I have highlited only few of the issues here, but I suggest the authors to carefully review the entire reference list and bring it to a presentable state.

DF
Highlight

DF
Highlight
volume? page number? plates?

DF
Sticky Note
editor? page number? figures? ISBN?



Peer]

626  Britt, E. J., Clark, A. J., & Bennett, A. F. (2009). Dental morphologies in gartersnakes
627 (Thamnophis) and their connection to dietary preferences.@rnal of Herpetology, 252-

628 259.

629 Brochu, C. A. (1999). Phylogenetics, taxonomy, and historical biogeography of Alligatoroidea.

630 Journal of Vertebrate Paleontology, 19(S2), 9-100.

631 Brochu, C. A. (2001). Crocodylian snouts in space and time: phylogenetic approaches toward

632 adaptive radiation. American Zoologist, 41(3), 564-585.

633 Brochu, C. A. (2003). Phylogenetic approaches toward crocodylian history. Annual Review of

634 Earth and Planetary Sciences, 31(1), 357-397.

635 Brochu, C. A. (2004). Alligatorine phylogeny and the status of Allognathosuchus Mook, 1921.

636 Journal of Vertebrate Paleontology, 24(4), 857-873.

637 Brochu, C. A., & Storrs, G. W. (2012). A giant crocodile from the Plio-Pleistocene of Kenya, the
638 phylogenetic relationships of Neogene African crocodylines, and the antiquity of

639 Crocodylus in Africa. Journal of Vertebrate Paleontology, 32(3), 587-602.

640 Brown, C. M., VanBuren, C. S., Larson, D. W.,, Brink, K. S., Campione, N. E., Vavrek, M. J., &

641 Evans, D. C. (2015). Tooth counts through growth in diapsid reptiles: implications for
642 interpreting individual and size-related variation in the fossil record. Journal of
643 Anatomy, 226(4), 322-333.

644 Buckley, L. G., & Currie, P. J. (2014). Analysis of intraspecific and ontogenetic variation in

645 dentition of Coelophysis bauri (Late Triassic), and implications for the systematics of

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Highlight

DF
Sticky Note
Issue? Volume?

DF
Highlight


Peer]

647

649

650

651

652

654

656

658

660

661

662

664

isolated theropod teeth: Bulletin 63 (Vol. 63). New Mexico Museum of Natural History

and Science.

Busbey, A. B. (1995). The structural consequences of skull flattening in crocodilians. Functional

morphology in vertebrate paleontology, 173-192.

Busbey, A. B. (1989). Form and function of the feeding apparatus of Alligator mississippiensis.

Journal of Morphology, 202(1), 99-127.

Carpenter, K., & Lindsey, D. (1980). The dentary of Brachychampsa montana Gilmore
(Alligatorinae; Crocodylidae), a Late Cretaceous turtle-eating alligator.Journal of

Paleontology, 1213-1217.

Case, E. C. (1925). Note on a new species of the Eocene crocodilian Allognathosuchus, A.

wartheni. University of Michigan.

Cheng-kuan, C. (1957). Observations on the life history of Chinese alligator (Alligator sinensis

Fauvel). Acta Zoologica Sinica, 2(004).

Cleuren, J., Aerts, P., & Vree, F. D. (1995). Bite and joint force analysis in Caiman crocodilus.

Belgian Journal of Zoology (Belgium).

Cleuren, J., & de Vree, F. (1992). Kinematics of the jaw and hyolingual apparatus during feeding

in Caiman crocodilus. Journal o@rphology, 212(2), 141-154.

Cleuren, J., & de Vree, F. (2000). Feeding in crocodilians. Feeding: form, function, and evolution

in tetrapod vertebrates, 359-394.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Highlight

DF
Sticky Note
page number?

DF
Highlight

DF
Sticky Note
Edition? Press?

DF
Highlight

DF
Sticky Note
Issue? Volume?

DF
Highlight

DF
Sticky Note
Issue? Volume? Pages?

DF
Highlight

DF
Highlight

DF
Sticky Note
Issue? Volume? Pages?

DF
Sticky Note
Issue? Volume? Pages?

DF
Highlight

DF
Highlight

DF
Sticky Note
Morphology

DF
Sticky Note
in Book? Editor? Press?

DF
Highlight
this should go before Busbey, 1995


Peer]

665 Da Silveira, R., & Magnusson, W. E. (1999). Diets of spectacled and black caiman in the

666 Anavilhanas Archipelago, Central Amazonia, Brazil._

667 D'Amore, D. C. (2009). A functional explanation for denticulation in theropod dinosaur teeth.
668 The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology,

669 292(9), 1297-1314.

670 D'Amore, D. C. (2015). lllustrating ontogenetic change in the dentition of the Nile monitor

671 lizard, Varanus niloticus: a case study in the application of geometric morphometric
672 methods for the quantification of shape—size heterodonty. Journal otomy, 226(5),
673 403-419.

@ Daniel, W. J. T., & McHenry, C. (2001). Bite force to skull stress correlation-modelling the skull

675 of Alligator mississippiensis.

676 Davenport, J., Grove, D. J., Cannon, J., Ellis, T. R., & Stables, R. (1990). Food capture, appetite,
677 digestion rate and efficiency in hatchling and juvenile Crocodylus porosus. Journal of

678 Zoology, 220(4), 569-592.

679 Delany, M. F. (1990). Late summer diet of juvenile American alligators. Journal of Herpetology,

680 24(4), 418-421.

681 Delany, M. F., & Abercrombie, C. L. (1986). American alligator food habits in northcentral

682 Florida. The Journal of Wildlife Management,@-353.

683 Dodson, P. (1975). Functional and ecological significance of relative growth in Alligator. Journal

684 of Zoology, 175(3), 315-355.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Highlight

DF
Highlight

DF
Sticky Note
Issue? Volume?

DF
Sticky Note
Anatomy

DF
Highlight

DF
Sticky Note
Daniel, W. J. T, McHenry, C. (2001) Bite force to skull stress correlation – modelling the skull of Alligator mississippiensis. In: Grigg GC, Seebacher F, Franklin CE, editors. Crocodilian Biology and Evolution. Surrey Beatty and Sons: Chipping Norton; 2001. pp. 135–143.

DF
Highlight

DF
Sticky Note
Volume? Issue?

DF
Highlight
This publication is not references in the manuscript


Peer]

685

686

687

688

689

690

691

693

694

695

696

697

698

699

700

701

702

703

Doody, J. S. (2009). Eyes bigger than stomach: prey caching and retrieval in the saltwater

crocodile, Crocodylus porosus. Herpetological Review, 40(1), 26.

Drumbheller, S. K., & Brochu, C. A. (2014). A diagnosis of Alligator mississippiensis bite marks

with comparisons to existing crocodylian datasets. Ichnos, 21(2), 131-146.

Drumbheller, S. K., & Brochu, C. A. (2016). Phylogenetic taphonomy: a statistical and
phylogenetic approach for exploring taphonomic patterns in the fossil record using

crocodylians. Palaios, 31(10), 463-478.

Edmund, A. G. (1962). Sequence and rate of tooth replacement in the Crocodilia.R:Ont. Mus.,

Life'Sci. Div., Contr., 56, 1-42.

Edmund, A. G. (1969). Dentition. pp. 117-200 in: C. Gans, A. d'A. Bellairs & TS Parsons (eds.),

Biology of the Reptilia, Volume 1: Morphology A.

Elsey, R. M., Trosclair lll, P. L., & Linscombe, J. T. (2004). The American alligator as a predator of

mottled ducks. Southeastern Naturalist, 3(3), 381-390.

Enax, J., Fabritius, H. O., Rack, A., Prymak, O., Raabe, D., & Epple, M. (2013). Characterization of
crocodile teeth: correlation of composition, microstructure, and hardness. Journal of

@Jctural biology, 184(2), 155-163.

Endo, H., Aoki, R., Taru, H., Kimura, J., Sasaki, M., Yamamoto, M.,@ Hayashi, Y. (2002).
Comparative functional morphology of the masticatory apparatus in the long-snouted

crocodiles. Anatomia, Histologia, Embryologia, 31(4), 206-213.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Highlight

DF
Sticky Note
Spell it out

DF
Highlight

DF
Sticky Note
Structural Biology

DF
Highlight

DF
Sticky Note
Write all the authors names.


Peer]

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

Erickson, G. M. (1996). Daily deposition of dentine in juvenile Alligator and assessment of tooth
replacement rates using incremental line counts. Journal of Morphology, 228(2), 189-

194.

Erickson, G. M., Gignac, P. M., Lappin, A. K., Vliet, K. A., Brueggen, J. D., & Webb, G. J. W. (2014).
A comparative analysis of ontogenetic bite-force scaling among Crocodylia. Journal of

Zoology, 292(1), 48-55.

Erickson, G. M., Gignac, P. M., Steppan, S. J., Lappin, A. K., Vliet, K. A., Brueggen, J. D, ... &

Webb, G. J. (2012). Insights into the ecology and evolutionary success of crocodilians

»

revealed through bite-force and tooth-pressure experimentation. PLoS One, 7(3),

e31781.

Erickson, G. M., Lappin, A. K., & Vliet, K. A. (2003). The ontogeny of bite-force performance in

American alligator (Alligator mississippiensis). Journal of Zoology, 260(3), 317-327.

Ferguson, M. W. J. (1981). The structure and development of the palate in Alligator

mississippiensis. Archives of oral biology, 26(5), 427-443.

Fish, F. E., Bostic, S. A., Nicastro, A. J., & Beneski, J. T. (2007). Death roll of the alligator:
mechanics of twist feeding in water. Journal of experimental biology, 210(16), 2811-

2818.

Foote, M. (1993). Contributions of individual taxa to overall morphological disparity.

Paleobiology, 19(4), 403-419.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Sticky Note
Please revise the order of Erickson et al. references.


Peer]

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

=

Frey, E., & Monninger, S. (2010). Lost in action—the isolated crocodilian teeth from Enspel and

their interpretive value. Palaeobiodiversity and Palaeoenvironments, 90(1), 65-81.

Fruchard, C. (2012). The Nile crocodile, a new model for investigating heterodonty and dental

continuous renewal in vertebrates. BioSciences Master Reviews

Gerke, 0., & Wings, 0. (2016). Multivariate and cladistic analyses of isolated teeth reveal
sympatry of theropod dinosaurs in the Late Jurassic of northern Germany. PloS one,

11(7), e0158334.

Erickson, G. M., Gignac, P. M., Lappin, A. K., Vliet, K. A., Brueggen, J. D., & Webb, G. J. W. (2014).
A comparative analysis of ontogenetic bite-force scaling among Crocodylia. Journal of

Zoology, 292(1), 48-55.

Frazzetta, T. H. (1988). The mechanics of cutting and the form of shark teeth (Chondrichthyes,

Elasmobranchii). Zoomorphology, 108(2), 93-107.

Gabrey, S. W. (2010). Demographic and geographic variation in food habits of American
alligators (Alligator mississippiensis) in Louisiana. Herpetological Conservation and

Biology, 5(2), 241-250.

Galdikas, B. M., & Yeager, C. P. (1984). Brief report: Crocodile predation on a crab-eating

macaque in Borneo. American Journal of Primatology, 6(1), 49-51.

Gignac, P. M., & Erickson, G. M. (2015). Ontogenetic changes in dental form and tooth
pressures facilitate developmental niche shifts in American alligators. Journal of

Zoology, 295(2), 132-142.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)


DF
Sticky Note
Please revise the alphabetical order of the references. Something went wrong here in between E-F-G.


Peer]

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

Gignac, P., & O’Brien, H. (2016). Suchian feeding success at the interface of ontogeny and

macroevolution. Integrative and comparative biology, 56(3), 449-458.

Grigg, G., & Gans, C. (1993). Morphology and physiology of the Crocodylia. Fauna of Australia
Vol 2A Amphibia and Reptilia. Australian Government Publishing Service, Canberra.326-

336.

Groombridge, B. 1982. The IUCN Amphibia-Reptilia Red Data Book, Part 1: Testudines,

Crocodylia, Rhynocehapalia. IUCN, Gland, Switzerland.

Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: a method for quantifying curves and

surfaces. Hystrix, the Italian Journal of Mammalogy, 24(1), 103-109.

Hanson, J. O., Salisbury, S. W., Campbell, H. A., Dwyer, R. G., Jardine, T. D., & Franklin, C. E.
(2015). Feeding across the food web: The interaction between diet, movement and

body size in estuarine crocodiles (Crocodylus porosus). Austral Ecology, 40(3), 275-286.

Hendrickx, C., & Mateus, O. (2014). Abelisauridae (Dinosauria: Theropoda) from the Late
Jurassic of Portugal and dentition-based phylogeny as a contribution for the

identification of isolated theropod teeth. Zootaxa, 3759.

Hendrickx, C., Mateus, O., & Araujo, R. (2015a). The dentition of megalosaurid theropods. Acta

Palaeontologica Polonica, 60(3), 627-642.

Hendrickx, C., Mateus, O., & Araujo, R. (2015b). A proposed terminology of theropod teeth

(Dinosauria, Saurischia). Journal of Vertebrate Paleontology, 35(5), €982797.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

Hua, S., & Jouve, S. (2004). A primitive marine gavialoid from the Paleocene of Morocco.

Journal of Vertebrate Paleontology, 24(2), 341-350.

Hutton, J. M. (1987). Growth and feeding ecology of the Nile crocodile Crocodylus niloticus at

Ngezi, Zimbabwe. The Journal of Animal Ecology, 25-38.

lordansky, N. N. (1964). The jaw muscles of the crocodiles and some relating structures of the

crocodilian skull. Anatomischer Anzeiger, 115, 256-280.

Kar, S. K., & Bustard, H. R. (1983). Attacks on domestic livestock by juvenile saltwater crocodile,
Crocodylus porosus, in Bhitarkanika Wildlife Sanctuary, Orissa India. Amphibia-Reptilia,

4(1), 81-83.

Kieser, J. A., Klapsidis, C., Law, L., & Marion, M. (1993). Heterodonty and patterns of tooth

replacement in Crocodylus niloticus. Journal of Morphology, 218(2), 195-201.

Klingenberg, C. P. (2011). Morphol: an integrated software package for geometric

morphometrics. Molecular ecology resources, 11(2), 353-357.

Langston, W. (1973). The crocodilian skull in historical perspective. Biology of the Reptilia, 4,

263-284.

Larson, D. W., Brown, C. M., & Evans, D. C. (2016). Dental disparity and ecological stability in
bird-like dinosaurs prior to the end-Cretaceous mass extinction. Current Biology, 26(10),

1325-1333.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Larson, D. W., & Currie, P. J. (2013). Multivariate analyses of small theropod dinosaur teeth and

implications for paleoecological turnover through time. PLoS One, 8(1), e54329.

Larsson, H. C. E., & Sidor, C. A. (1999). Unusual crocodyliform teeth from the Late Cretaceous
(Cenomanian) of southeastern Morocco. Journal of Vertebrate Paleontology, 19(2), 398-

401.

LeBlanc, A. R., Brink, K. S., Cullen, T. M., & Reisz, R. R. (2017). Evolutionary implications of tooth
attachment versus tooth implantation: a case study using dinosaur, crocodilian, and

mammal teeth. Journal of Vertebrate Paleontology, 37(5), e1354006.

Lecuona, A., & Pol, D. (2008). Tooth morphology of Notosuchus terrestris (Notosuchia:
Mesoeucrocodylia): new evidence and implications. Comptes Rendus Palevol, 7(7), 407-

417.

Luiselli, L., Akani, G. C., & Capizzi, D. (1999). Is there any interspecific competition between
dwarf crocodiles (Osteolaemus tetraspis) and Nile monitors (Varanus niloticus ornatus)
in the swamps of central Africa? A study from south-eastern Nigeria. Journal of Zoology,

247(1), 127-131.

MaclLeod, C. D., Reidenberg, J. S., Weller, M., Santos, M. B., Herman, J., Goold, J., & Pierce, G. J.
(2007). Breaking symmetry: The marine environment, prey size, and the evolution of
asymmetry in cetacean skulls. The Anatomical Record: Advances in Integrative Anatomy

and Evolutionary Biology, 290(6), 539-545.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

799 Macleod, C. D., Santos, M. B., Lopez, A., & Pierce, G. J. (2006). Relative prey size consumption
800 in toothed whales: implications for prey selection and level of specialisation. Marine

801 Ecology Progress Series, 326, 295-307.

802 Martin, J. E. (2007). New material of the Late Cretaceous globidontan Acynodon iberoccitanus

803 (Crocodylia) from southern France. Journal of Vertebrate Paleontology, 27(2), 362-372.

804 McHenry, C. R,, Clausen, P. D., Daniel, W. J., Meers, M. B., & Pendharkar, A. (2006).

805 Biomechanics of the rostrum in crocodilians: a comparative analysis using finite-element
806 modeling. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and
807 Evolutionary Biology, 288(8), 827-849.

808 Mcllhenny, E. A. (1976). The alligator's life history. Ten Speed Pr.

809 Mitteroecker, P., Gunz, P., Windhager, S., & Schaefer, K. (2013). A brief review of shape, form,
810 and allometry in geometric morphometrics, with applications to human facial

811 morphology. Hystrix, the Italian Journal of Mammalogy, 24(1), 59-66.

812 Monfroy, Q. T. (2017). Correlation between the size, shape and position of the teeth on the

813 jaws and the bite force in Theropoda. Historical Biology, 29(8), 1089-1105.

814 Mook, C. C. (1932). A study of the osteology of Alligator prenasalis (Loomis). Museum.

815 Narvaez, |., Brochu, C. A., Escaso, F., Pérez-Garcia, A., & Ortega, F. (2015). New crocodyliforms
816 from southwestern Europe and definition of a diverse clade of European Late

817 Cretaceous basal eusuchians. PloS one, 10(11), e0140679.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

Nifong, J. C., & Silliman, B. R. (2013). Impacts of a large-bodied, apex predator (Alligator
mississippiensis Daudin 1801) on salt marsh food webs. Journal of experimental marine

biology and ecology, 440, 185-191.

Njau, J. K., & Blumenschine, R. J. (2006). A diagnosis of crocodile feeding traces on larger
mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania.

Journal of Human Evolution, 50(2), 142-162.

Njau, J. K., & Blumenschine, R. J. (2012). Crocodylian and mammalian carnivore feeding traces
on hominid fossils from FLK 22 and FLK NN 3, Plio-Pleistocene, Olduvai Gorge, Tanzania.

Journal of human evolution, 63(2), 408-417.

Norell, M., Clark, J. M., & Hutchison, J. H. (1994). The Late Cretaceous alligatoroid
Brachychampsa montana (Crocodylia): new material and putative relationships.

American Museum novitates; no. 3116.

Novas, F. E., Pais, D. F., Pol, D., Carvalho, I. D. S., Scanferla, A., Mones, A., & Riglos, M. S. (2009).
Bizarre notosuchian crocodyliform with associated eggs from the Upper Cretaceous of

Bolivia. Journal of Vertebrate Paleontology, 29(4), 1316-1320.

Osborn, J. W. (1998). Relationship between growth and the pattern of tooth initiation in

alligator embryos. Journal of dental research, 77(9), 1730-1738.

Osi, A., & Barrett, P. M. (2011). Dental wear and oral food processing in Caiman latirostris:
analogue for fossil crocodylians with crushing teeth. Neues Jahrbuch fiir Geologie und

Paldontologie-Abhandlungen, 261(2), 201-207.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

Osi, A., Clark, J. M., & Weishampel, D. B. (2007). First report on a new basal eusuchian
crocodyliform with multicusped teeth from the Upper Cretaceous (Santonian) of
Hungary. Neues Jahrbuch fiir Geologie und Paldontologie-Abhandlungen, 243(2), 169-

177.

Pauwels, O. S., Barr, B., Sanchez, M. L., & Burger, M. (2007). Diet records for the dwarf crocodile
(Osteolaemus tetraspis tetraspis) in Rabi Oil Fields and Loango National Park,

Southwestern Gabon. Hamadryad, 31(2), 258-264.

Perez, S. I., Bernal, V., & Gonzalez, P. N. (2006). Differences between sliding semi-landmark
methods in geometric morphometrics, with an application to human craniofacial and

dental variation. Journal of anatomy, 208(6), 769-784.

Peyer, B. (1968). Comparative odontology. University of Chicago Press.

Pierce, S. E., Angielczyk, K. D., & Rayfield, E. J. (2008). Patterns of morphospace occupation and
mechanical performance in extant crocodilian skulls: a combined geometric
morphometric and finite element modeling approach. Journal of morphology, 269(7),

840-864.

Pooley, A. C. (1989). Food and feeding habits. Crocodiles and alligators, 76-91.

Pooley, A. C., & Gans, C. (1976). The Nile crocodile. Scientific American, 234(4), 114-125.

Rohlf, F. J. (2010). Tps Series. Department of Ecology and Evolution, State University of New

York, Stony Brook.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

Rohlf, F. J. (2013). TpsRelw 1.53. Dept. of Ecology and Evolution, State Univ. of New York at

Stony Brook, Stony Brook (NY).

Rootes, W. L., & Chabreck, R. H. (1993). Cannibalism in the American alligator. Herpetologica,

99-107.

Rommel, S. (1990). Osteology of the bottlenose dolphin. The bottlenose dolphin, 29-49.

Ross, C. A., & Magnusson, W. E. (1989). Living crocodilians. Crocodiles and alligators, 58-73.

Sadleir, R. W., & Makovicky, P. J. (2008). Cranial shape and correlated characters in crocodilian

evolution. Journal of evolutionary biology, 21(6), 1578-1596.

Salas-Gismondi, R., Flynn, J. J., Baby, P., Tejada-Lara, J. V., Wesselingh, F. P., & Antoine, P. O.
(2015). A Miocene hyperdiverse crocodylian community reveals peculiar trophic
dynamics in proto-Amazonian mega-wetlands. Proceedings of the Royal Society of

London B: Biological Sciences, 282(1804), 20142490.

Salas-Gismondi, R., Flynn, J. J., Baby, P., Tejada-Lara, J. V., Claude, J., & Antoine, P. O. (2016). A
new 13 million year old gavialoid crocodylian from proto-Amazonian mega-wetlands
reveals parallel evolutionary trends in skull shape linked to longirostry. PloS one, 11(4),

e0152453.

Sampaio, P. R. M., da Silva, M. N., de Matos, S. A., de Matos, L. R. A., & Acosta, M. (2013). First
report of predation by a caiman (Paleosuchus trigonatus, Crocodylia: Alligatoridae) on a

caecilian (Caecilia marcusi, Gymnophiona: Caecilidae). Salamandra, 49(4), 227-228.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

Santos, S. A., Nogueira, M. S., Pinheiro, M. S., Campos, Z., Magnusson, W. E., Mourao, G. M.
(1996). Diets of Caiman crocodilus yacare from different habitats in the Brazilian

pantanal. Herpetological Journal, 6, 111-117.

Selvaraj, G. (2012). Herpetological notes: Tomistoma schlegelii (False Gharial). Diet. Herpetol

Rev, 43, 608-609.

Schwarz-Wings, D., Rees, J., & Lindgren, J. (2009). Lower cretaceous mesoeucrocodylians from

Scandinavia (Denmark and Sweden). Cretaceous Research, 30(5), 1345-1355.

Sheets, H. D. (2012). IMP software series. Computer software and manual]. Buffalo, New York:

Canisius College.

Sheets, H. D., Kim, K., & Mitchell, C. E. (2004). A combined landmark and outline-based
approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki. In

Morphometrics (pp. 67-82). Springer, Berlin, Heidelberg.

Sheets, H. D., & Zelditch, M. L. (2013). Studying ontogenetic trajectories using resampling

methods and landmark data. Hystrix, the Italian Journal of Mammalogy, 24(1), 67-73.

Shimada, K. (2001). On the concept of heterodonty. Journal of Fossil Research, 34(2), 52-54.

Shimada, K. (2002). Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii).

Journal of Morphology, 251(1), 38-72.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

Shimada, K., Sato, I., & Moriyama, H. (1992). Morphology of the tooth of the American Alligator
(Alligator mississippiensis): the fine structure and elemental analysis of the cementum.

Journal of morphology, 211(3), 319-329.

Shimada K (2004) The relationship between the tooth size and total body length in the
sandtiger shark, Carcharias taurus (Lamniformes: Odontaspididae). J Fossil Res 37, 76—

81.

Shimada K, Seigel JA (2005) The relationship between the tooth size and total body length in
the goblin shark, Mitsukurina owstoni (Lamniformes: Mitsukurinidae). J Fossil Res 38,

49-56.

Shoop, C. R., & Ruckdeschel, C. A. (1990). Alligators as predators on terrestrial mammals.

American Midland Naturalist, 407-412.

Smith, J. B., & Dodson, P. (2003). A proposal for a standard terminology of anatomical notation
and orientation in fossil vertebrate dentitions. Journal of Vertebrate paleontology,

23(1), 1-12.

Subalusky, A. L., Fitzgerald, L. A., & Smith, L. L. (2009). Ontogenetic niche shifts in the American
Alligator establish functional connectivity between aquatic systems. Biological

Conservation, 142(7), 1507-1514.

Tavares, S. A. S., Branco, F. R., de Souza Carvalho, I., & Maldanis, L. (2017). The
morphofunctional design of Montealtosuchus arrudacamposi (Crocodyliformes, Upper

Cretaceous) of the Bauru Basin, Brazil. Cretaceous Research, 79, 64-76.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

Taylor, J. A. (1979). The foods and feeding habits of subadult Crocodylus porosus Schneider in

northern Australia. Wildlife Research, 6(3), 347-359.

Thorbjarnarson, J. B. (1990). Notes on the feeding behavior of the gharial (Gavialis gangeticus)

under semi-natural conditions. Journal of Herpetology, 24(1), 99-100.

Torices, A., Reichel, M., & Currie, P. J. (2014). Multivariate analysis of isolated tyrannosaurid
teeth from the Danek Bonebed, Horseshoe Canyon Formation, Alberta, Canada.

Canadian Journal of Earth Sciences, 51(11), 1045-1051.

Van Drongelen, W. &Dullemeijer, P. (1982). The feeding apparatus of Caiman crocodilus; a

functional-morphological study. Anatomischer Anzeiger, 151(4), 337-366.

Valkenburgh, B. V., & Ruff, C. B. (1987). Canine tooth strength and killing behaviour in large

carnivores. Journal of Zoology, 212(3), 379-397.

Verdade, L. M. (2000). Regression equations between body and head measurements in the

broad-snouted caiman (Caiman latirostris). Revista Brasileira de Biologia, 60(3), 469-482.

Wallace, K. M., & Leslie, A. J. (2008). Diet of the Nile crocodile (Crocodylus niloticus) in the

Okavango Delta, Botswana. Journal of Herpetology, 42(2), 361-368.

Walmsley, C. W., Smits, P. D., Quayle, M. R., McCurry, M. R, Richards, H. S., Oldfield, C.C,, ... &
McHenry, C. R. (2013). Why the long face? The mechanics of mandibular symphysis

proportions in crocodiles. PLoS One, 8(1), e53873.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

Webb, G. J. W., Manolis, S. C., & Buckworth, R. (1982). Crocodylus johnstoni in the McKinlay
river area, NTI Variation in the diet, and a new method of assessing the relative

importance of prey. Australian Journal of Zoology, 30(6), 877-899.

Webb, G.J. W., & Messel, H. (1978). Movement and dispersal patterns of Crocodylus porosus in

some rivers of Arnhem Land, Northern Australia. Wildlife Research, 5(2), 263-283.

Westergaard, B., & Ferguson, M. W. J. (1986). Development of the dentition in Alligator
mississippiensis. Early embryonic development in the lower jaw. Journal of Zoology,

210(4), 575-597.

Westergaard, B., & Ferguson, M. W. J. (1987). Development of the dentition in Alligator
mississippiensis. Later development in the lower jaws of embryos, hatchlings and young

juveniles. Journal of Zoology, 212(2), 191-222.

Westergaard, B., & Ferguson, M. W. (1990). Development of the dentition in Alligator
mississippiensis: upper jaw dental and craniofacial development in embryos, hatchlings,
and young juveniles, with a comparison to lower jaw development. American Journal of

Anatomy, 187(4), 393-421.

Wilberg, E. W. (2017). Investigating patterns of crocodyliform cranial disparity through the

Mesozoic and Cenozoic. Zoological Journal of the Linnean Society, 181(1), 189-208.

Wu, X. B., Xue, H., Wu, L. S., Zhu, J. L., & Wang, R. P. (2006). Regression analysis between body
and head measurements of Chinese alligators (Alligator sinensis) in the captive

population. Animal biodiversity and conservation, 29(1), 65-71.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

951

952

953

954

955

956

957

958

959

960

961

962

963

964

Young, M. T., Brusatte, S. L., Beatty, B. L., De Andrade, M. B., & Desojo, J. B. (2012).
Tooth-on-tooth interlocking occlusion suggests macrophagy in the Mesozoic marine
crocodylomorph Dakosaurus. The Anatomical Record: Advances in Integrative Anatomy

and Evolutionary Biology, 295(7), 1147-1158.

Zahradnicek, O., Buchtova, M., Dosedelova, H., & Tucker, A. S. (2014). The development of

complex tooth shape in reptiles. Frontiers in physiology, 5, 74.

Zelditch, M. L., Sheets, H. D., & Fink, W. L. (2003). The ontogenetic dynamics of shape disparity.

Paleobiology, 29(1), 139-156.

Zelditch, M., Swiderski, D., Sheets, D. H., & Fink, W. (2004). Geometric morphometrics for

biologists: A primer: Elsevier Academic Press. Waltham, MA.

Peer] reviewing PDF | (2018:07:29741:0:1:NEW 22 Jul 2018)



Peer]

965

966

967

968

969

970

971

972

973

974

TABLE LEGENDS

Table 1: Size, disparity, and regression information for modern crocodylian specimens. Head
lengths are in millimeters. Morphological disparity (MD) is for all teeth for each specimen. “N”
represents number for teeth available versus number of positions total. Regression

information is for Principal Component 1 plotted against tooth position.

Table 2: Size, disparity, and regression information for fossil crocodylian specimens. Head
lengths are in millimeters. Morphological disparity (MD) is for all teeth for each specimen. “N”
represents number for teeth available versus number of positions total. Regression

information is for Principal Component 1 plotted against tooth position.
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FIGURE LEGENDS

Figure 1: Methodology for data collection. A) skulls were selected based on number and
condition of teeth present (data was not collected from this photo). B) Each tooth was
photographed individually, and the margins were traced (Rohlf, 2016). C) Each outline was
converted to 30 equidistant semilandmarks which were then slid. D) Tooth shape variance was
represented by vector diagrams, with the mean depicted as points and deviation by vector

lines.

Figure 2: Principal component one. Vector diagrams indicate the maximum range of variance

(vectors) from the mean (points) for both cranial and dentary teeth.

Figure 3: Average tooth size (above) and shape (below) plotted against skull shape. Gray error
bars indicate standard deviation as a consequence of heterodonty. Solid markers depict extant
specimens, and hollow markers depict extinct. The solid regression line indicates only extant
specimens, while the dashed line indicates all specimens. Maximum shape range is

represented through vector diagrams.

Figure 4: Foote’s morphological disparity (A, B) and ranges (C, D) for both size and shape. Size
is represented by centroid size and shape is represented by Principal Component 1. For each
species, all teeth in the sample are represented. For MD, multiple individuals from a single
species are listed in a single column, and those with lower values are superimposed in front of

those with higher values. Ranges are a composite of all members of a species.

Figure 5: Heterodonty by tooth position. Centroid Size (CS) and Principal Component one (PC1)

for extant Alligatoroidea (top), Crocodyloidea (middle), and Gavialoidae (bottom) plotted
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against position along the arcade. Welch’s ANOVA output comparing positions is listed for each

graph with multiple specimens.

Figure 6: Direct comparisons between selected extant and extinct taxa. The “size” axis
represents normalized centroid size, and the “shape” axis represents principal component one.
A) modern taxa with high molariformy, B) Caimaninae with high size-heterodonty, C)
longirostrine taxa, D) mid-heterodont fossil taxa, E) crocodyloids and peirosaurids with high-
heterodonty, F) fossil globidont taxa. Note: Allognathosuchus, Argochampsa krebsi, and B.

sternbergii were not size normalized by their own skull length, as indicated by empty symbols.
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Table 1(on next page)
Size, disparity, and regression information for modern crocodylian specimens.

Head lengths are in millimeters. Morphological disparity (MD) is for all teeth for each
specimen. “N” represents number for teeth available versus number of positions total.

Regression information is for Principal Component 1 plotted against tooth position.
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Genus Species Number Head Length MD (size) MD (shape) Host bone
Alligator mississippiensis AMNH 71621 407.81 0.00052 00205  Cenum
mandible
AMNH 23900 161.87 0.00040 0.0241  cramum
. . . mandible
Alligator sinensis cranium
AMNH 23907 139.89 0.00034 0.0170 u
mandible
AMNH 97297 206.96 0.00084 00300  c@mum
. mandible
Caiman yacare ;
cranium
AMNH 97300 347.30 0.00102 0.0217 .
mandible
AMNH 7856 486.60 0.00051 0.0208 ~ enum
mandible
Crocodylus acutus cranium
AMNH 7857 436.66 0.00073 0.0251 .
mandible
AMNH 23471 639.27 0.00064 00143  enum
o mandible
Crocodylus niloticus cranium
AMNH 142494 N/A N/A 0.0277 .
mandible
AMNH 75707 400.85 0.00063 0.0203 camum
_ mandible
Crocodylus palustris ranium
AMNH 96134 236.82 0.00031 0.0250 .
mandible
AMNH 66639 426.22 0.00071 0.0182  cramum
mandible
Crocodylus porosus cranium
AMNH 94957 575.23 0.00115 0.0179 .
mandible
. . AMNH 49231 381.95 0.00049 0.0339 camum
Crocodylus siamensis mandible
AMNH 72640 251.86 0.00042 0.0289 cranium
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mandible
Gavialis gangeticus AMNH 131377 428.63 0.00023 00110  _enum
mandible
. cranium
Mecistops cataphractus AMNH 107634 330.37 0.00035 0.0137 .
mandible
AMNH 101417 247.98 0.00026 00236  _onum
mandible
Osteolaemus tetraspis AMNH 117801 203.14 0.00121 0.0239 cranlu.m
mandible
AMNH 117802 149.97 0.00049 0.0264 Cenum
mandible
AMNH 93812 164.41 0.00071 00210  crenum
mandible
Paleosuchus palpebrosus cranium
AMNH 97328 212.42 0.00112 0.0241 :
mandible
AMNH 58136 228.20 0.00091 0.0291 cranium
) mandible
Paleosuchus trigonatus cranium
AMNH 137174 188.83 0.00055 0.0161 :
mandible
Tomistoma schlegelii AMNH 113078 449.56 0.00033 00180  _onum

mandible
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N m b r? p 0.95 confidence
17:20 0.3718 0.0342 0.8488 <0.0001 0.2855 0.4582
18:20 0.4203 0.0390 0.8820 <0.0001 0.3388 0.5018
15:19 0.4228 0.0608 0.8398 <0.0001 0.3122 0.5334
14:19 0.3898 0.0604 0.8965 <0.0001 0.3065 0.4731
15:19 0.4037 0.0415 0.8718 <0.0001 0.3109 0.4964
15:19 0.3147 0.0779 0.8095 <0.0001 0.2232 0.4062
13:20 0.5163 -0.0207 0.8703 <0.0001 0.3841 0.6486
15:20 0.4553 -0.0080 0.9522 <0.0001 0.3942 0.5165
14:20 0.4812 -0.0605 0.8360 <0.0001 0.3472 0.6153
16:20 0.4257 -0.0180 0.8304 <0.0001 0.3154 0.5359
15:18 0.4179 -0.0520 0.8805 <0.0001 0.3257 0.5102
11:15 0.4049 -0.0424 0.9060 <0.0001 0.3066 0.5033
10:18 0.4042 -0.0580 0.7943 0.0005 0.2365 0.5720
13:15 0.4218 -0.0301 0.8908 <0.0001 0.3238 0.5199
16:19 0.3287 -0.0064 0.8035 <0.0001 0.2355 0.4219
15:15 0.3485 -0.0419 0.8417 <0.0001 0.2579 0.4391
11:19 0.3530 0.0639 0.8241 0.0001 0.2300 0.4760
11:15 0.4699 -0.0221 0.8724 <0.0001 0.3344 0.6054

9:19 0.3473 -0.0252 0.9072 0.0001 0.2480 0.4465
12:15 0.4753 0.0113 0.9176 <0.0001 0.3750 0.5756
14:19 0.4691 -0.0254 0.8365 <0.0001 0.3386 0.5995

9:15 0.3642 -0.0143 0.8966 0.0001 0.2537 0.4748
11:19 0.4053 -0.0970 0.8253 0.0001 0.2646  0.5459
10:15 0.3515 -0.1030 0.8275 0.0003 0.2207 0.4824
15:19 0.4037 -0.0142 0.8783 <0.0001 0.3137 0.4938

9:15 0.2896 -0.0392 0.7868 0.0014 0.1549 0.4244

8:19 0.6219 -0.0505 0.8926 0.0004 0.4064 0.8373
12:15 0.5154 -0.0615 0.8591 <0.0001 0.3683 0.6625
16:19 0.6298 -0.0499 0.8213 <0.0001 0.4614 0.7981
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12:15 0.3921 -0.0374 0.8814 <0.0001 0.2907 0.4934
22:28  0.0963 -0.2404 0.4500 0.0006 0.0466 0.1459
24:26  0.1942 -0.2153 0.5749 <0.0001 0.1204 0.2681
15:18  0.3457 -0.1549 0.8265 <0.0001 0.2508 0.4406
15:15 0.2757 -0.1393 0.9136 <0.0001 0.2249 0.3265
12:17  0.4274 -0.0094 0.7938 0.0001 0.2739 0.5809

9:14  0.5613 -0.0506 0.8028 0.0011 0.3127 0.8100
12:17  0.4923 -0.0301 0.8541 <0.0001 0.3489 0.6356
11:14  0.4432 0.0027 0.8192 0.0001 0.2862 0.6002
12:17  0.4296 0.0134 0.6648 0.0001 0.2547 0.6045
14:14  0.4656 0.0163 0.8694 <0.0001 0.3520 0.5791
19:20  0.4627 -0.0214 0.8683 <0.0001 0.3705 0.5549
21:22 0.3804 0.0034 0.8727 <0.0001 0.3106 0.4501
18:20  0.4648 -0.0341 0.8598 <0.0001 0.3654 0.5643
13:22 0.4898 0.0015 0.8896 <0.0001 0.3753 0.6043
16:20  0.5404 -0.0660 0.9131 <0.0001 0.4448 0.6359
21:22 0.4078 0.0248 0.7765 <0.0001 0.3028 0.5129
14:20  0.5228 -0.0732 0.8433 <0.0001 0.3811 0.6646
15:22 0.3673 -0.0074 0.7522 <0.0001 0.2410 0.4937
13:21 0.3346 -0.1641 0.7179 0.0003 0.1954 0.4738
18:19 0.2887 -0.1628 0.8109 <0.0001 0.2148 0.3626
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Table 2(on next page)
Size, disparity, and regression information for fossil crocodylian specimens.

Head lengths are in millimeters. Morphological disparity (MD) is for all teeth for each
specimen. “N” represents number for teeth available versus number of positions total.

Regression information is for Principal Component 1 plotted against tooth position.
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Genus Species Number Head Length MD (size) MD (shape) Host bone
Alligator prenasalis ROM 01375 317.20 0.00030 0.0143 cranium
Allognathosuchus  sp. UCMP 150180 N/A N/A 0.0511 mandible
Argochampsa krebsi ROM 73872 N/A N/A 0.0136 mandible
NMNH 6533 336.21 0.00003 0.0123 cranium
B UCMP 126099 209.05 0.00070 0.0201 cranium
Borealosuchus sternbergii -
UCMP 130435 N/A N/A 0.0210 mandible
UCMP 131769 N/A N/A 0.0158 mandible
Boveriosuchus vorax UCMP 170767 N/A N/A 0.0114 mandible
cranium
Brachychampsa  sp. ROM 68491 624.15 0.00032 0.0108 .
mandible
cranium
Caiman crocodilus UCMP 42844 301.93 0.00084 0.0186 i
mandible
- UCMP 131090 534.10 0.00037 0.0161 cranium
“Crocodylus” affinis -
NMNH 4048 N/A N/A 0.0118 mandible
Hamadasuchus rebouli ROM 52620 416.92 0.00108 0.0272 cranium
Leidyosuchus canadensis ROM 01903 463.35 0.00069 0.0202 cranium
Leidyosuchus sp. ROM 1425 N/A N/A 0.0136 mandible
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N m b r2 p 0.95 confidence
7:16 0.2430 0.1597 0.9638 0.0001 0.1888 0.2971
4:19 0.4690 0.0785 0.9938 0.0031 0.3561 0.5818
5:17 0.5499 -0.1334 0.9562 0.0039 0.3336 0.7661
8:23 0.4539 0.0546 0.9179 0.0002 0.3183 0.5894
7:23 0.5223 -0.0850 0.9026 0.0010 0.3250 0.7196
5:20 0.5318 -0.0320 0.9798 0.0012 0.3914 0.6721

11:20 0.3622 -0.0103 0.7930 0.0002 0.2227 0.5017
6:18 0.5937 0.0753 0.9062 0.0034 0.3286 0.8589

12:18 0.1981 0.1923 0.9162 0.0000 0.1559 0.2403
6:20 0.1559 0.2097 0.8106 0.0144 0.0513 0.2606
7:20 0.3036 -0.0521 0.7237 0.0152 0.0879 0.5193

14:20 0.4063 -0.0140 0.8369 0.0000 0.2935 0.5191

11:15 0.2000 0.1133 0.9363 0.0000 0.1607 0.2394
6:19 0.2025 0.1932 0.5669 0.0840 -0.0432 0.4483

14:20 0.5420 -0.0274 0.9550 0.0000 0.4680 0.6160

20:23 0.3967 0.0303 0.9522 0.0000 0.3527 0.4408
8:19 0.3365 0.0486 0.9570 0.0000 0.2653 0.4078
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Figure 1(on next page)
Methodology for data collection.

A) skulls were selected based on humber and condition of teeth present (data was not
collected from this photo). B) Each tooth was photographed individually, and the margins
were traced (Rohlf, 2016). C) Each outline was converted to 30 equidistant semilandmarks
which were then slid. D) Tooth shape variance was represented by vector diagrams, with the

mean depicted as points and deviation by vector lines.
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Is it possible to remove the background? The authors should also adopt different symbols for landmarks and semilandmarks and add labels indicating tooth terminology (mesial, apical, medial, neck, etc..)

Another figure similar to this should be made for the analyses of rostra.
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Figure 2(on next page)
Principal component one.

Vector diagrams indicate the maximum range of variance (vectors) from the mean (points)

for both cranial and dentary teeth.
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Is this figure really necessary? The variations along PC1 for teeth and skulls is already figured in the next figure.
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Figure 3(on next page)

Average tooth size (above) and shape (below) plotted against skull shape.

Gray error bars indicate standard deviation as a consequence of heterodonty. Solid markers
depict extant specimens, and hollow markers depict extinct. The solid regression line
indicates only extant specimens, while the dashed line indicates all specimens. Maximum

shape range is represented through vector diagrams.
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As previously said in the text the authors should consider using de-centered axes and including qualitative descriptors of the teeth and rostra along side the PC values.

Symbols should also be made larger. Ideally labels indicating few modern taxa could be added.

It should also be stated whether this figure is meant to be full page or half page 
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Figure 4 (on next page)

Foote’'s morphological disparity (A, B) and ranges (C, D) for both size and shape.
Size is represented by centroid size and shape is represented by Principal Component 1. For
each species, all teeth in the sample are represented. For MD, multiple individuals from a

single species are listed in a single column, and those with lower values are superimposed in

front of those with higher values. Ranges are a composite of all members of a species.
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Figure 5(on next page)
Heterodonty by tooth position.

Centroid Size (CS) and Principal Component one (PC1) for extant Alligatoroidea {(top),
Crocodyloidea (middle), and Gavialoidae (bottom) plotted against position along the arcade.

Welch’s ANOVA output comparing positions is listed for each graph with multiple specimens.
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Figure 6(on next page)

Direct comparisons between selected extant and extinct taxa.

The “size” axis represents normalized centroid size, and the “shape” axis represents
principal component one. A) modern taxa with high molariformy, B) Caimaninae with high
size-heterodonty, C) longirostrine taxa, D) mid-heterodont fossil taxa, E) crocodyloids and
peirosaurids with high-heterodonty, F) fossil globidont taxa. Note: Allognathosuchus,
Argochampsa krebsi, and B. sternbergii were not size normalized by their own skull length, as

indicated by empty symbols.
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