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ABSTRACT
Longitudinal data with binary repeated responses are now widespread among
clinical studies and standard statistical analysis methods have become inadequate
in the answering of clinical hypotheses. Instead of such conventional approaches,
statisticians have started proposing better techniques, such as the Generalized Esti-
mating Equations (GEE) approach and Generalized Linear Mixed Models (GLMM)
technique. In this research, we undertook a comparative study of modeling binary
repeated responses using an anesthesiology dataset which has 375 patient data with
clinical variables. We modeled the relationship between hypotension and age, gender,
surgical department, positions of patients during surgery, diastolic blood pressure,
pulse, electrocardiography and doses of Marcain-heavy, chirocaine, fentanyl, and
midazolam. Moreover, parameter estimates between the GEE and the GLMM were
compared. The parameter estimates, except time-after, Marcain-Heavy, and Fentanyl
from the GLMM, are larger than those from GEE. The standard errors from the
GLMM are larger than those from GEE. GLMM appears to be more suitable ap-
proach than the GEE approach for the analysis hypotension during spinal anesthesia.

Subjects Anaesthesiology and Pain Management, Epidemiology, Statistics
Keywords Generalized estimating equations, Generalized linear mixed models, Longitudinal data

INTRODUCTION
Longitudinal studies are designed to evaluate change within an individual over time.

Repeated observations and covariates are conducted with these individuals. Because

repeated measurements are made on the same subjects at different times, multiple

assessments within subject responses are positively correlated. In analyzing longitudinal

studies, this dependence must be accounted for in order to make correct inferences

(Fitzmaurice & Laird, 1993; Fitzmaurice, Laird & Rotnitzky, 1993; Laird & Ware, 1982).

Several models have been proposed for the analysis of clustered data. A particular

feature of longitudinal data is that they are clustered. The dependent variable is measured

for each subject, and the subjects belong to a cluster, such as families, or classes. In

longitudinal studies, the dependent variable is measured repeatedly for the same subject

on different occasions, and subjects are clustered within the same unit. The dependent

variables within the same cluster are assumed to be correlated (Agresti, 2002; Fitzmaurice,

Laird & Ware, 2004).
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Most of these models are extensions of the generalized linear models with logistic,

probit, or complementary log–log link functions (Carriere & Bouyer, 2002). These link

functions are used for binary dependent variables. These models are usually classified into

marginal or random effects models. Marginal models are also called population-averaged

models, whereas random-effects models are also referred to as generalized linear mixed

models (GLMM), or multilevel models.

In a marginal model, the entire response vector is modeled marginally on a set of covari-

ates; the association structure is then typically captured via a set of association parameters,

such as correlations, odds ratios, etc. The marginal model for the mean response depends

only on the covariates of interest, not on any random effects or previous responses.

The generalized estimating equation (GEE) approach is the most popular method seen

in marginal models. GEE is an extension of generalized linear models (GLM) for the

analysis of longitudinal data. In this method, the correlation between measurements is

modeled by assuming a working correlation matrix. This assumption eases the estimation

of model parameters. Estimating the correct working correlation matrix provides

efficiency parameter estimates. Even if it isn’t correctly estimated, the model parameters

from GEE tend to be consistent (Hardin & Hilbe, 2007).

Moreover, GLMM is an extension of GLM, inasmuch as it allows random effects in

linear predictors. GLMM is useful for modeling the dependence among response variables

in longitudinal or repeated measures studies, as well as for accommodating over-dispersion

among responses. Over-dispersion refers to the presence of higher variability than expected

in dataset. Over-dispersion may occur when assuming that a dependent variable has

binomial distribution in GLMMs. This is because variance is a function of the mean for

binomial distribution. It occurs when there is a correlation between observations, or

observations are collected from clusters, or due to the heterogeneity of the subjects.

In GLMMs, the model is constructed with both a fixed and a random component.

The fixed component usually estimates the experimental effect, whereas the random

component estimates the heterogeneity across clusters in the regression coefficient

(Moscatelli, Mezzetti & Lacquaniti, 2012).

The aim of this study was to compare the regression parameters and standard error of

two analyses for longitudinal data. Additionally, in this paper we investigated the GEE and

the GLMM approaches for predictor analysis in order to identify factors associated with

hypotension during the intra-operative and post-operative period.

GENERALIZED ESTIMATING EQUATIONS (GEE)
The generalized estimating equations (GEE) approach proposed by Liang and Zeger is, as

previously noted, an extension of generalized linear models (GLM). GLM is a linear model

and in the GLMs, the response variable has a distribution pattern seen in the exponential

family. A GLM can be defined by three components. The first is the linear predictor η,

which is a linear combination of regression coefficients:

ηi = x′

iβ. (1)
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The second is the link function g(.) that relates the mean of the data to the linear predictor:

g(E(Yi)) = ηi. (2)

The last component is the response distribution for Yi from the exponential family of

distributions (Agresti, 2002; Mccullagh & Nelder, 1989).

The GEE approach is used for the analysis of correlated response data (Dahmen &

Ziegler, 2004; Liang & Zeger, 1986; Omar et al., 1999). This method does not require

distributional assumptions. GEE describes changes in the population mean and is used

to estimate population average models or marginal models (Fitzmaurice et al., 2008). An

advantage of this approach is that if the model for the mean has been correctly specified,

consistent estimators can be obtained, even if other components of the model, such as the

working correlation matrix, have been mis-specified (Hardin & Hilbe, 2003; Warton, 2011).

Let yi = (yi1,...,yij,...,yini)
T represent the response vector for the i-th subject, where we

assume that observations from the same subject are correlated or depend on each other to

some extent. Observations from different subjects are assumed to be independent. The ob-

served value yij is related to the linear predictor xT
ij β towards the appropriate link function,

g(E(yij)) = xT
ij β (3)

where g is an appropriate link function, which identifies a function of the mean that is a

linear prediction of covariates, e.g., identity for continuous response variables, or the logit

function for binary response, and β is a vector of regression coefficients. The variance is

defined by

var(yij) = φV(E(yij)) (4)

where V is a known variance function and φ is a possible unknown scale or over-dispersion

parameter. The regression coefficient estimates, β are defined by the solution of the GEE

N
i=1

∂µi

∂βT
V−1

i (Yi − µi) = 0 (5)

with Vi = ∅A
1
2
i Ri(α)A

1
2
i , where Ai is a ni × ni diagonal matrix with the variance of Yi as the

t-th diagonal element and Ri(α) is the working correlation matrix of Yi, indexed by a vector

of parameters α (Dahmen & Ziegler, 2004; Fitzmaurice et al., 2008; Kopcke et al., 2004; Liang

& Zeger, 1986; Omar et al., 1999).

GENERALIZED LINEAR MIXED MODELS (GLMM)
The Generalized Linear Mixed Model (GLMM) is an extension of the GLM for clustered

categorical data. The GLMM combines two statistical frameworks, which are the GLM and

Linear Mixed models (LMM). GLMs combine regression models for different response

types such as linear models for continuous responses, logistic models for binary responses,

and log-linear models for counts. LMMs are linear regression models that include

normally distributed random effects in addition fixed effects (Fitzmaurice et al., 2008).

Aktas Samur et al. (2014), PeerJ, DOI 10.7717/peerj.648 3/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.648


In the LMM, it is assumed that the conditional distribution of each Yij, given a vector

of random effects bi, has a normal distribution, with Var(Yij|bi) = σ 2. Furthermore, given

the random effects bi, it is assumed that the Yij are independent of one another (given bi,Yij

and Yik are assumed to be independent of each other) (Fitzmaurice, Laird & Ware, 2004).

In the GLMM, it is assumed that the conditional distribution of each Yij, given a q × 1

vector of random effects bi, belongs to the exponential family of distributions (Fitzmaurice,

Laird & Ware, 2004). The GLMM uses the inverse link function to describe the relationship

between the linear predictor and the conditional mean (Katrien & Jan, 2005). The linear

predictor for the GLMM:

g(E(Yij|bi)) = ηi = X′

ijβ + Z′

ijbi (6)

where g(.) is a known link function. The variance of each of Yij, given a vector of random

effects bi,

Var(Yij|bi) = v{E(Yij|bi)}φ (7)

where v(.) is a known variance function, a function of the conditional mean E(Yij|bi)

(Fitzmaurice, Laird & Ware, 2004). Also, given the random effects bi, it is assumed that

the Yij are independent of one another; this is the so called “conditional independence”

assumption (Fitzmaurice et al., 2008). The random effects are assumed to have some

probability distribution. Any multivariate distribution can be assumed for the bi; in

practice it is common to assume that bi have a multivariate normal distribution, with

zero mean, and q × q covariance matrix, G. In addition, the random effects, bi are assumed

to be independent of the covariates, Xi (Fitzmaurice, Laird & Ware, 2004).

The GLMMs are the GLMs that include multivariate normal random effects in the

linear predictor. Nevertheless, there is a difference between the GLM and the GLMM; this

difference is error terms. The GLM with probit link function is:

Φ−1
P(Yij = 1


= β0 + β1xij. (8)

Latent variable Y∗

ij and the model is defined as;

Y∗

ij = β0 + β1xij + vij. (9)

The error term vij is the sum of two error terms, such that:

vij = ui + εij

ui ∼ N(0,σ 2
u )

εij ∼ N(0,σ 2
ε ).

(10)

The error term εij represents the variability within subjects and the other error term ui

represents the variability between subjects. Additionally, the error term ui is also known as

the random effects parameter (Moscatelli, Mezzetti & Lacquaniti, 2012).

In GLMMs the overall variability is separated into a fixed and a random component.

The fixed component usually estimates the effect of interest, such as the experimental
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effect, whereas the random component estimates the heterogeneity between clusters

(i.e., between subjects) (Moscatelli, Mezzetti & Lacquaniti, 2012). The GLMM is used to

analyze changes in individual response means, rather than population average. This model

is therefore appropriate for modeling and for the prediction of individual response profiles.

DESCRIPTION OF THE CLINICAL DATA
All of the cases that were admitted to the Akdeniz University Hospital Anesthesiology

and Reanimation Department during the period of January 2008 to January 2011 were

evaluated retrospectively. The records of 417 patients who had spinal anesthesia within this

3 year time period were obtained. Patients below 17 years old were excluded. 375 of those

417 patients were over 17 and were therefore included in the study.

Hypotension is common during spinal anesthesia (Sharma, Gajraj & Sidawi, 1997).

According to the literature, hypotension has an incidence of 15%–33% (Carpenter et al.,

1992; Hartmann et al., 2002; Lin et al., 2008). Certain studies have shown that people who

receive anesthesia during the operation can die as a result of hypotension. According to

studies defining the factors associated with hypotension, there are particular risk factors,

such as age, gender, anesthesia drugs and doses (Carpenter et al., 1992; Hartmann et al.,

2002; Maxson, 1933; Tarkkila & Kaukinen, 1991).

The outcome variable of interest in our study was hypotension. Interestingly, there is

no universally accepted definition of hypotension in the literature. In a systematic review,

Klöhr et al. (2010) highlighted the two most frequently used definitions of hypotension.

Based on Klöhr et al. (2010), we have therefore used the following definition, which is

systolic blood pressure (SBP) <100 mmHg, or a decrease of <80% of the baseline SBP, to

define hypotension.

Hypotension =


1 (yes), if SBP < 100 or SBP < (baseline SBP) ∗ 0.8

0 (no), if SBP ≥ 100 or SBP > (baseline SBP) ∗ 0.8


.

Our independent variables were:

(i) Patient’s age (year);

(ii) Patient’s gender: Male or Female

(iii) Surgical department: general surgery, urology, obstetrics and gynecology (O&G)

(iv) Positions of patients during surgery: Lithotomy, supine

(v) Diastolic blood pressure (DBP)

(vi) Pulse

(vii) Dose of Marcain-heavy

(viii) Dose of Chirocaine

(ix) Dose of Fentanyl

(x) Dose of Midazolam

(xi) Electrocardiography (ECG).
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Figure 1 Probability of hypotension by time period. Each data point is shown as probability of hypoten-
sion in this graph. This plot reveals the variability in subject’s hypotension level at entry, hypotension level
at exit.

Table 1 Descriptive statistics of dose of anesthetic drugs.

Anesthetic drugs Min. Median IR Mean SD Max.

Marcain-heavy 0 9 12 7.11 6.18 25

Chirocaine 0 0 13 5.29 7.89 75

Midazolam 0 1 1 0.82 1.00 8

Fentanyl 0 0 0.05 0.03 0.06 0.20

Notes.
IR, Interquartile range.

There was no missing data in either the outcome or the covariates. The outcome variable

was hypotension that had been diagnosed within a 40-minute period. Hypotension was

recorded every 5 min during the surgery. Figure 1 shows the change in the probability of

hypotension at each 5-min interval.

The mean (SD) age was 48.81 years (18.91) and the summary statistics for the doses of

anesthetic drugs are given in Table 1.

In this study, 56% (n = 210) of patients were male, 44% (n = 165) were female. 38.4%

(n = 144) of patients underwent surgery at the Department of obstetrics and gynecology,

44% (n = 165) at the urology service, and 17.6% (n = 66) underwent surgery at the general

surgery service. In 41.9% (n = 157) of patients, surgery was performed in the lithotomy

position, while 58.1% (n = 218) of patients were placed in the supine position. In 97.6%

(n = 366) of patients, ECG was normal; in 2.4% (n = 9) of patients, it was abnormal. The

summary statistics of DAP and Pulse are in Table 2.
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Table 2 Descriptive statistics of DAP and Pulse by time.

DAP Pulse

Mean ± SD Median (IR) Mean ± SD Median (IR)

Baseline 83.82 ± 14.06 80(20) 87.54 ± 15.93 85(22)

5 min 78.58 ± 13.36 78(20) 84.11 ± 14.92 80(20)

10 min 76.18 ± 13.56 75(20) 82.46 ± 14.37 80(22)

15 min 75.65 ± 13.45 75(20) 81.57 ± 14.28 80(20)

20 min 75.24 ± 12.98 75(20) 80.94 ± 14.40 80(20)

25 min 75.08 ± 12.54 75(18) 80.53 ± 14.40 80(20)

30 min 74.50 ± 12.21 75(15) 79.99 ± 13.98 80(20)

35 min 74.19 ± 12.08 75(15) 79.53 ± 13.76 80(20)

40 min 73.49 ± 12.12 75(15) 78.94 ± 13.67 78(20)

In Fig. 1, the probability of hypotension does not change regularly over time. There

are different slopes. For this reason, it is assumed that every patient has a two-piece

linear spline growth curve with a knot at the time of surgery. Piecewise regression was

used to define a breakpoint for our study (Bu̇ržková & Lumley, 2007; Naumova, Must

& Laird, 2001). According to piecewise analysis, the summary of the breakpoint was

found as 15.94 ± 1.18. In the current study, hypotension was measured at five-minute

intervals, from beginning of the operation (0 min) to the 40th minute of each. We analyzed

data using the GEE and GLMM at two time points (minutes 15 and 20 respectively) to

decide the break points using the Akaike Information Criterion (AIC), which is a statistic

of selecting model within a likelihood based model, and Quasi-likelihood under the

independence model Criterion (QIC), which is a statistic for model selection for GEE

models and analogous to AIC. Since the GEE method is a non-likelihood based, AIC is not

used for GEE models.

When we compared the two models using the 20th minute time point and the 15th

minute time point, better results were observed at 20 min. For the GEE model, QIC values

were 1712.47 for 15 min and 1707.50 for the 20th minute. For the GLMM model, AIC

values were 1137.56 for the 15th minute, and 1131.10 for the 20th minute. According to

these two criteria, the model with the smaller statistic (AIC/QIC) is preferred. Therefore,

we defined the cut off point for our study as the 20th minute. Figure 2A shows the

estimated values of breakpoint according to piecewise regression analysis. Figure 2B shows

the breakpoint as the 20th minute, and using the piecewise analysis, two straight lines for

each patient were connected at the time of surgery.

COMPARISON OF THE METHODS USING
ANESTHESIOLOGY DATA
The marginal model was applied to the dataset with the GEE approach and the random

effects model with GLMM approach. We used SAS (Version 9.2) procedures GENMOD

with an independent working correlation matrix and GLIMMIX. In the GLMM, three

random effects were determined: the random intercept, and two random slopes (time
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Figure 2 The piecewise regression fit between time and probability of hypotension. (A) This figure
shows that the red trend line is calculated with piecewise linear regression analysis with breakpoint. The
blue line shows the estimated breakpoint according to piecewise regression. (B) The breakpoint is defined
as 20th minute. The line has an increasing trend also after the 20th minute.
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Table 3 The results of marginal model and random-effects models for data.

GEE GLMM

Estimate SE p-value Estimate SE p-value

Intercept 0.3949 1.8768 0.8333 0.6016 3.1718 0.8497

Time-before 0.0732 0.0116 <.0001 0.1002 0.0253 <.0001

Time-after 0.0428 0.0062 <.0001 0.0323 0.0165 0.0500

Age (year) 0.0271 0.0091 0.0030 0.0469 0.0235 0.0463

Gender (female) 0.4146 0.5646 0.4628 1.4871 1.2435 0.2319

Operation (urology) 0.2770 0.4535 0.5413 1.4801 1.4207 0.2976

Operation (O&G) 0.6551 0.7203 0.3630 1.3287 1.0218 0.1936

Position (supine) 0.4013 0.3366 0.2331 0.7643 0.6850 0.2646

ECG (normal) −0.3070 0.7932 0.6988 −0.5147 1.7085 0.7633

DBP −0.0863 0.0134 <.0001 −0.1941 0.0224 <.0001

Pulse 0.0041 0.0096 0.6674 0.0244 0.0157 0.1204

Marcain-heavy −0.0028 0.0304 0.9264 0.0008 0.0702 0.9907

Chirocaine −0.0297 0.0238 0.2120 −0.0488 0.0549 0.3734

Fentanyl 0.2940 2.1471 0.8911 0.2909 4.7399 0.9511

Midazolam 0.1199 0.0964 0.2137 0.3738 0.2474 0.1309

before and time after). For the two approaches, we tested the covariates and interaction

terms. The interaction terms were removed from the models as they were non-significant.

The results of comparison between the two models are shown in Table 3.

The results were similar for the 2 models. Although the parameters that include

time-before, time-after, age, and DBP were common in both models, the parameter

estimates were different. Differences between regression coefficients and between standard

errors from marginal and random effects model are expected. The coefficients estimates

from the GEE are lower in magnitude than corresponding coefficients estimates from the

GLMM (Fitzmaurice, Laird & Ware, 2011) except time-after, Marcain-Heavy, Fentanyl.

Furthermore, standard errors from the GLMM are larger than those from the GEE. The

interpretation of coefficients of both models is different. When looking at Table 3, the esti-

mated regression coefficient of the marginal model corresponding to time-before suggests

that the log odds of a hypotension increase 0.0732 unit from the baseline to 20 min at every

5 min interval. The effect of gender (not significant) increased the logit of the probability of

hypotension in the population of women more than in the population of men.

logit{E(Yij)} = β1 + β2timebeforeij + β3timeafterij + β4Agei

+β5Genderi + β6Operation(U)i + β7Operation(O&G)i

+β8Positioni − β9ECGi − β10DBPij + β11Pulseij

−β12MarcainHeavyi − β13Chirocainei + β14Fentanyli

+β15Midazolami. (11)

On the other hand, the result of the random effect model corresponding to time-before

suggests that the log odds of probability of the hypotension for a patient increase 0.1002
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units from the baseline to 20 min at every 5 min interval.

logit{E(Yij|bi)} = β1 + β2timebeforeij + β3timeafterij + β4Agei

+β5Genderi + β6Operation(U)i + β7Operation(O&G)i

+β8Positioni − β9ECGi − β10DBPij + β11Pulseij

−β12MarcainHeavyi − β13Chirocainei + β14Fentanyli

+β15Midazolami + b1i + b2itimebeforeij

+b3itimeafterij. (12)

Comparison of the two estimated coefficients for time-before, eβ̂1 = 1.08 and eβ̂∗
1 = 1.11,

respectively, from marginal and random effects models clearly show the distinction

between these two methods.

Marginal models take into account the averaged relationship, but the random effects

models express the relationships on inter-individual via random effects. In our study,

although the results were similar, the estimates from the two models were different.

The differences between parameter estimates of the two models largely depend on

the between-individual heterogeneity. This heterogeneity can be described by random

intercept and random slopes (time-before, and time-after) variances in the random model.

The random intercept variance is 10.085, which is very high; this value indicates that there

is great importance in between-patient variability in the propensity for hypotension, and

it shows that within-subject association is strong. Approximately 95% of patients have a

baseline risk of hypotension that varies from 0.03% to 99%. The random slopes variances

are, respectively 0.003 and 0.007. Similarly, the 95% intervals of the random slopes

variability vary respectively from 50% to 55% and from 47% to 55%. These values show

the amount of variability in the slopes across patients. This inter-individual heterogeneity

shows the differences between the parameters estimate of the marginal model and the

random effects model.

DISCUSSION
In longitudinal studies, repeated measures are correlated data that is taken from the same

person at different times, and this correlation is important for analysis methods. There

are various methods that have been proposed for the analysis of repeated binary data. The

GEE, which is a marginal model, and the GLMM, which is a random effects model, are the

two major and most common methods for analyzing such cases.

In general, parameter estimates and standard errors from random effect models are

greater than those from marginal models. The difference in the estimates between these

two models is due to the correlation between repeated measures. The interpretation

of covariates in random effects models is more difficult than in marginal models. For

random effect models, the interpretation of estimates is related to changes within subjects.

However, marginal models ignore such changes within subjects. This is due to the fact that

the target of marginal models is the population, while the target of random effect models is

the subject.
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In marginal models, the regression coefficient describes how the average rates for

any variable may be changed in the study population. The exponential of an estimate

parameter represents a population-averaged odds ratio for the response and relates to the

sub-population that includes the covariate concerning the sub-population not including

the covariate. In the random models, the regression coefficient describes how the odds

of any variable for any patient are subject to change. The exponential of the estimate

parameter is an odds ratio for a person that has a covariate, when compared to the same

person not having a covariate (Fitzmaurice, Laird & Ware, 2004; Hubbard et al., 2010).

The strength of this study lies in the longitudinal nature of the data set. Nevertheless,

there were certain limitations to analyzing both methods. The GEE method is not

difficult to apply and is now available in the major statistical analysis packages, but the

procedures are more complex for the GLMM. What’s more, the GEE model does not

allow for assessing the suitability of fit (Odueyungbo et al., 2008), whereas the GLMM does

(Moscatelli, Mezzetti & Lacquaniti, 2012).

Marginal models are popular for binary longitudinal data. However, the choice of

method, GEE or GLMM, depends on the aim of the particular study. Marginal models are

appropriate if the research focus is on population-average, but if it focuses on individual

differences, random effect models are appropriate.

In GLMMs, the fixed effects parameters β have conditional interpretations, given the

random effects. There are two types of fixed effects. The first of these is that the effect of

an explanatory variable refers to the effect on the response of a within-cluster, or within-

subject (i.e., subject-specific) 1-unit increase of that predictor. The other is that the effect

of an explanatory variable is a between-cluster. It is in this sense that random effects models

are conditional models, as both within- and between-cluster effects apply conditionally on

the random effect value (Agresti, 2002). On the other hand, effects in marginal models refer

to overall clusters (i.e., population-averaged). For the logit model, the difference between

the two models is that the population-averaged effects are smaller than the cluster-specific

effects (Agresti, 2002). There are approximate relationships between estimates from these

two models in the logistic-normal case. The effect in the marginal model multiplies that

of the conditional model by about c (Zeger, Liang & Albert, 1988); it is typically smaller in

absolute value. The discrepancy increases as σ increases (Agresti, 2002).

Figure 3 shows that when the marginal effect was compared to the subject-specific effect,

the marginal effect is smaller than the random effects. For a single explanatory variable and

some subjects, the figure shows subject specific curves for P(Yit = 1|bi) when considerable

heterogeneity exists. This corresponds to a relatively large σ for the random effects. At

any fixed value of the explanatory variable, variability occurs in the conditional means

E(Yit|bi) = P(Yit = 1|bi). The average of these is the marginal mean, E (Yit) (Agresti,

2002). Focusing on the range of probability of hypotension between 0.2 and 0.8, the

population-averaged effect, that is the logistic curve, is more linear, but the slope curves

of subject-specific curves rise more rapidly than the marginal slope of probabilities.
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Figure 3 Comparison of random effects model and marginal model. In this figure, the conditional
of probabilities of hypotension (dotted lines) and marginal probability of hypotension (solid line) are
compared for a single explanatory variable, and for several subjects.

CONCLUSION
In clinical researches, longitudinal studies with binary repeated events are frequently

undertaken. Nevertheless, traditional analyses are inefficient for such studies, and the

selection of a more efficient model, namely marginal models or random effects models,

has been the primary focus of this study. As is shown, marginal models and random effect

models are useful for longitudinal data.

In this study, we compared both methods and found that the regression parameters

from GEE are smaller than those from GLMM, while all except three variables and all

standard errors from GEE are smaller than those from GLMM.

The individual characteristics of each patient given spinal anesthesia are valuable in

terms of understanding the change of probability of hypotension. The identification

factors associated with hypotension during anesthesia, such as the type and position of

surgery, and the anesthesia drugs and doses, change vary according to the individual

differences of patients. The marginal model, GEE, does not measure the association

between the change within-subject covariate and the change in the outcome. For this

reason, GLMM appears to be more suitable for the analysis of hypotension during spinal

anesthesia.
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