2	Title: Impact of intercropping on the coupling between soil microbial community structure,
3	activity, and nutrient-use efficiencies
4	Tengxiang Lian ^{1,2} , Yinghui Mu ^{1,2} , Jian Jin ³ , Qibin Ma ^{1,2} , Yanbo Cheng ^{1,2} , Zhandong Cai ^{1,2} , Hai
5	Nian ^{1,2} *
6	1. The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,
7	South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of
8	China
9	2. The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of
10	Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's
11	Republic of China
12	3. Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology
13	Chinese Academy of Sciences, Harbin 150081, China
14	
15	*Corresponding author: Hai Nian
16	Corresponding address: No.483 Wushan Road, Guangzhou, Guangdong, 510642, China.
17	Tel.: +8602085288024
18	Fax: +8602085288024

Title page

1

E-mail address: hnian@scau.edu.cn

Abstract

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Sugarcane-soybean intercropping has been widely used to control disease and improve nutrition in the field. However, the response of the soil microbial community diversity and structure to intercropping is not well understood. Since microbial diversity corresponds to soil quality and plant health, a pot experiment was conducted with sugarcane intercropped with soybean. Rhizosphere soil was collected 40 days after sowing, and MiSeq sequencing was utilized to analyse the soil microbial community diversity and composition. Soil columns were used to assess the influence of intercropping on soil microbial activity (soil respiration and carbon-use efficiency: nitrogen-use efficiency ratio). PICRUSt and FUNGuild analysis were conducted to predict microbial functional profiling. Our results showed that intercropping decreased pH by approximately 8.9% and enhanced the soil organic carbon (SOC), dissolved organic carbon (DOC), and available nitrogen (N) by 5.5%, 13.4% and 10.0%, respectively. These changed changes in physiochemical physicochemical properties triggered the corresponded to increased microbial diversity and shifted shifts in soil microbial communities. Microbial community was <u>correlated</u> significantly (p < 0.05) correlated to with microbial activity that reflected in higher soil respiration rates and nutrient use efficiency in the intercropping system. Furthermore, intercropping influenced microbial functions, such as carbon fixation pathways in prokaryotes, citrate cycle (TCA cycle) of bacteria and wood saprotrophs of fungi. These overrepresented functions might accelerate nutrient conversion and control phytopathogens in soil. Keywords: Sugarcane-soybean intercropping; microbial community structure; carbon-use efficiency; nitrogen-use efficiency

1. Introduction

Sugarcane-soybean intercropping has been widely used to stabilize yields and reduce nitrogen leaching (Edwin et al., 2005; Xu et al., 2008; Li et al., 2013). Soybean with N fixation eapacity, associated with soybeans—which can improve soil fertility and field ecological conditions, are favourable for that favor sugarcane in the intercropping system (He et al., 2006). Intercropping of sugarcane with soybean, may also stimulate N fixation by the legume's microbiome (Li et al., 2013).

In an intercropping system, the roots of different plant species interact directly with each

In an intercropping system, the roots of different plant species interact directly with each other and subsequently affect root exudation, which undoubtedly alters the microbial diversity, structure, and activity (Zhou et al., 2011; Broeckling et al., 2008; Gomes et al., 2003). The changed microbial community and activity by intercropping could affect C and N dynamics (Kaur et al., 2000; Rowe et al., 2005; Sun et al., 2009), and this may be attributed to the ability of microbial communities to regulate carbon and nitrogen-use efficiency to maintain resource balances (Mooshammer et al., 2014). Thus, a comprehensive method that incorporates the carbon-use efficiency: nitrogen-use efficiency ratio and soil respiration could be used to evaluate the change in microbial activity caused by the microbial community (Zhong et al., 2015).

The influence of intercropping on the soil microbial communities in several intercropping systems have been studied, such as mulberry–soybean, *Eucalyptus–Acacia mangium* and apple tree-crown vetch intercropping (Li et al., 2013; Li et al., 2016; Rachid et al., 2015, Zheng et al., 2018). For example, Li et al. (2016) investigated the effects of mulberry–soybean intercropping

on the diversity and composition of the soil bacterial community in salt–alkali soil and found that the bacterial diversity and structure varied between monoculture and intercropping treatments. Among the bacteria, some phosphate-solubilizing bacteria, such as *Burkholderia*, *Arthrobacter*, and *Pseudomonas*, were more abundant in both soybean- and mulberry-grown soil in the intercropping system. Moreover, Rachid et al. (2015) reported that *Eucalyptus* intercropped with *Acacia mangium* increased soil fungal community diversity and changed the fungal structure, and they observed some frequency of several genera that were not found in the monoculture cultivation samples. For apple tree intercropped with crown vetch, soil bacterial community structure differed with intercrop and monoculture treatment, although bacterial richness and diversity was not impacted (Zheng et al., 2018).

In our study, the bacterial and fungal structure and activity in the intercropping and monoculture system were analysed. We hypothesized that intercropping improves soil properties, increases the microbial diversity, changes community structure and improves some microbial function (H1) and that change in microbial community will correlate with microbial activity (H2). Our results could provide insight into how intercropping management improve soil properties and microbial activity compared to monoculture.

2. Materials and methods

- 79 2.1 Experimental design and plant materials
- 80 The intercropping experiment was established in March of 2016 with three replicates of three
- 81 treatments in a randomized block design. The treatments included (1) sugarcane monoculture,
- 82 (2) soybean monoculture and (3) sugarcane intercropped with soybean. The soil used in this

study was classified as Ali-Udic Argosol with pH 5.1, soil organic carbon (SOC) 8.5 g kg⁻¹,

0.41 g kg⁻¹ total N and 0.42 g kg⁻¹ total P.

The sugarcane variety ROC22 (Saccharum officinarum) and soybean variety HuaChun5 (Glycine max L.), which are widely grown in South China, were used in this study. Plants were grown in pots in the glasshouse at South China Agriculture University, Guangzhou, China. In brief, all plants within a pot (140 cm wide × 45 cm width × 45 mm high) were filled with 30 kg of sieved soil (< 2 mm) and considered as one replicate. Two sugarcane seedlings or three soybean seeds were planted in a pot under the monoculture system, or two sugarcane seedlings with three soybean seeds were planted under the intercropping system. The row space was 0.9 m for sugarcane and 0.3 m for soybean in all treatments. The water content of the soil was adjusted to 80% of field water capacity. Plants were harvested at the flowering stage.

2.2. Soil sampling and measurements

Rhizosphere soil was recovered separately on 25 May 2016 (40 days after sowing) by shaking root for 3 min into a bag and mix thoroughly—and eContact between samples was avoided. Approximately 5 g soil from each treatment was collected and stored at -80 °C for DNA extraction. Additionally, 100 g soil was collected and stored at 4 °C for analyses of microbial and soil physiochemical physicochemical properties.

Soil pH was determined in a soil-water slurry (1:5 w:v) using a pH meter (FE20-FiveEasyTM pH, Mettler Toledo, German). Soil total nitrogen was measured using an elemental analyser (VarioEL III, Germany). Nitrate (NO₃-) and ammonium (NH₄+) were assayed using a continuous flow analytical system (SKALAR SAN+++, The Netherlands). Soil organic carbon

- (SOC), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) were measured 104 using a TOC analyser (Multi N/C 2100, Analytik Jena, Germany). Soil microbial biomass 105 carbon (MBC) and microbial biomass nitrogen (MBN) were measured by the chloroform-106 fumigation extraction method (Vance et al., 1987). The sum value of NO₃-, NH₄+ and DON was 107 considered as available nitrogen (available N). 108 2.3. Soil incubation and respiration measurements
- 109

110

111

112

113

114

115

- In brief, 20 g soil was collected from each treatment and placed into PVC cores (5 cm height, 2.5 cm diameter). The methods of the incubation experiment were reported in our previous study (Lian et al., 2016). Briefly, the PVC core and a beaker with 10 ml 1M NaOH, which used to trap CO₂, were placed into a 0.5-L sealed container. The tapped CO₂ was precipitated with 0.5 M SrCl₂ and and NaOH was neutralized with 0.1 M HCl-were used to precipitate the trapped CO₂ and neutralize NaOH, respectively. Soil respiration was estimated on 1, 3, 5, 7, 9, 11, 14, 18, 22, 26, 32, 39, 46, 53, and 60 days after incubation was initiated (Blagodatskaya et al. 2011).
- 2.4. DNA extraction and quantitative PCR (qPCR) 117
- DNA was extracted using Fast DNA SPIN Kit for Soil (Qbiogene Inc., Carlsbad, CA, USA) 118 119 according to the manufacturer's instructions. Quantitative PCR (qPCR) was conducted by targeting bacterial 16S rRNA genes and fungal ITS1 region, using the primers 515F/907R 120 (Osburn et al., 2011) and ITS1F/ITS2R (Yao et al., 2017), respectively, following the protocols 121 reported previously (Liu et al. 2015). 122
- 2.5. Illumina MiSeq sequencing analysis 123

Illumina MiSeq sequencing of the 16S rRNA genes and fungal ITS1 region was performed to examine the structure of the soil bacterial and fungal community, respectively. The raw sequences were processed and analysed using QIIME1 Pipeline Version 1.9.0. Multiple steps were conducted to remove low-quality sequences with lengths shorter than 200 bp and quality scores less than 20. For further analysis, the chimeric sequences were checked and removed using UCHIME algorithm. High-quality sequences were clustered into operational taxonomic units (OTUs) using RDP Classifier based on 97% sequence similarity. The OTUs were analysed using the SILVA and UNITE database for bacteria and fungi, respectively. Then, a phylogenetic tree was built using Fast Tree (Price et al., 2009). For a correct comparison between samples, the lowestrarefied subsequening numbers (14811 for bacterial and 29726 for fungi) were used for subsequent analysis. All sequences have been deposited into the GenBank short-read archive under accession SRP116883 (bacteria) and SRP129902 (fungi).

2.6. Statistical analysis

Using the program R (version 3.4.4, vegan package), principal coordinate analysis (PCoA) based on OTU level was processed to assess the patterns of similarity (Bray-Curtis similarity) in the composition of the microbial community between treatments. The Chao 1 index and Shannon richness were calculated to compare soil bacterial and fungal alpha diversity (Fig. S1). A canonical correspondence analysis (CCA) was conducted to reveal the association between soil property variables and microbial community structure. Spearman correlation analysis was conducted with SPSS 24.0 to identify correlation between microbial activity and structure. PICRUSt analysis and STAMP were conducted to predict and visualize bacterial functional

profiling (Langille et al., 2013; Parks and Beiko, 2010). FUNGuild was used to identify fungi functional guilds (Nguyen et al., 2016).

ANOVA test was used with Genstat 13 (VSN International, Hemel Hemspstead, UK) to assess the effect of treatments on the SOC, total N, MBC, MBN, DOC, DON, NH₄⁺-N, NO₃⁻-N, pH, and the relative abundance of OTU inferred with FUNGuild. Furthermore, ANOVA test of least significant difference (LSD) was used to assess the different on of respiration rate and cumulative respiration. Differences were considered statistically significant at level of p < 0.05. The ratios of microbial community carbon-use efficiency and nitrogen-use efficiency were calculated as follows (Mooshammer et al., 2014):

- Carbon-use efficiency: Nitrogen-use efficiency = $B_{C:N}$: $R_{C:N}$
- where $B_{C:N}$ is the C:N ratio of the microbial community and $R_{C:N}$ is the C:N ratio of the soil.

3. Results

- 3.1 Effect of intercropping on soil physiochemical physicochemical properties
- Compared with monoculture treatments, intercropping resulted in a decreased pH decrease from 6.73 to 6.13 and from 5.97 to 5.45 for sugarcane and soybean, respectively. The SOC was higher in I-Sugarcane (intercropped sugarcane) and I-Soybean (intercropped soybean) than that in the M-Sugarcane (sugarcane monoculture) and M-Soybean (soybean monoculture). The concentration of SOC significantly increased under I-Sugarcane compared with that under M-Sugarcane. NH_4^+ , DOC, DON, MBC, and MBN levels were significantly increased for the two plant species under intercropping compared with those for the monoculture (p < 0.05), while

the NO_3 -level showed an opposite trend (p < 0.05) (Table 1).

3.2. Effect of intercropping on microbial activity

Soil respiration was enhanced in the intercropping system (Fig. 1). During the incubation, the cumulative CO₂-C levels were 6.9% and 5.3% greater in the intercropping soil than those in the monoculture for sugarcane and soybean, respectively (Fig. 1b). Moreover, the I-Sugarcane and I-Soybean treatments showed higher ratios of carbon- and nitrogen-use efficiency than that for the M-Sugarcane and M-Soybean, respectively (Fig. 1c).

Intercropping significantly increased the bacterial and fungal abundances in both plant species and the fungal abundance—in sugarcane. However, no significant difference was observed in the fungi: bacteria (F:B) ratios—in the treatments (Fig. 2). Moreover, intercropping increased Chao index of bacteria and fungi; however, significant higher Shannon richness only observed in I-Soybean compared with M-Soybean (Fig. S1d). PCoA analysis showed that the bacterial and fungal communities from different treatment were clearly separated from each other (Fig. S2). The result—which indicates crop species and culture mode that influenced the soil microbial community—was influenced by crop species and culture mode. The dominant phyla, Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria and Firmicutes for bacteria and Ascomycota, Zygomycota and Basidiomycota for fungi, were the same across treatments (Fig. 3). With the similarities dependent on the crop species and culture mode, the relationships among the treatments were observed in the cluster analyses.

The CCA analysis (Fig. 4) revealed a relationship between microbial community structure and soil property variables. Significance values for the overall solution and for the CCA1 and

Commented [ML1]: Discuss Figure 1a

CCA2 axes were 0.035, 0.041, and 0.039 for the bacterial community and 0.005, 0.01, and 0.005 for the fungal community, respectively. The soil pH, SOC, NO₃-, DOC, MBC, and MBN (p = 0.04, 0.01, 0.03, 0.008, 0.02, and 0.004, respectively, for the bacterial community; p = 0.001, 0.04, 0.04, 0.01, 0.003, and 0.02 for the fungal community) appeared to be strongly correlated with the microbial community.

The X-axis of the PCoA analysis of bacteria and fungi (Fig. S2) was used in the Spearman correlation analysis to detect the relationships between microbial activity and structure (Table 2). A significant relationship was observed between bacterial community and microbial activity; however, the fungal community was not significantly correlated with bacterial communities and microbial activity.

3.3 Effect of intercropping on microbial functional characteristics

Bacterial function predictions were categorized into KEEG pathways. In brief, pathways for nutrient cycles, such as carbon fixation pathways in prokaryotes and citrate cycle (TCA cycle), significant increased, while lipid metabolism, sulfur metabolism and signal transduction mechanisms significant decreased in both I-Sugarcane and I-Soybean (Fig. 5, Table S1). For fungal function, 12 fungal functional guilds, such as wood saprotroph, plant pathogen, plant saprotroph, fungal parasite and endophyte were detected (Fig. 6a). Among the top 5 fungal functional guilds, the relative abundances of wood saprotroph significant increased in I-Sugarcane, and plant pathogen significant increased in I-Sugarcane and I-Soybean, respectively (Table S2).

primers, more than 40 OTUs were detected and assigned to the functional group of wood saprotrophs. The top 4 OTUs were belonged to the phylum Ascomycota, with relative abundance ranged from 6.21% to 18.38% (Table S3). Of these, the relative abundances of OTU133 (*Trichoderma*) in I-Sugarcane were significantly higher than M-Sugarcane. Relative abundances of OTU1092 (*Aspergillus*) and OUT126 (*Acremonium*) were significantly higher in both I-Sugarcane and I-Soybean (Fig. 6b). For the functional group of plant pathogen, the top 4 OTUs were belonged to the phylum Ascomycota. Among them, relative abundances of OTU745 (*Gibberella*), OTU1092 (*Clonostachys*) and OUT126 (*Gibellulopsis*) were general lower in intercropping system. Nevertheless, the relative abundance of OTU941 (*Gibellulopsis*) was significantly higher in both I-Sugarcane and I-Soybean (Fig. 6c, Table S4).

4. Discussion

4.1 Effect of intercropping on soil microbial communities

Intercropping of sugarcane with soybean improved microbial properties of microbial respiration, bacterial and fungal abundances and diversity, which is consistent with several previous studies (Sun et al., 2009; Kaur et al., 2000; Li et al, 2016). These results may be attributed to the dThis may reflect the direct contact of crop roots in the intercropping system, which therefore stimulating stimulates the roots to release more nutrients for the microbes (Song et al., 2007). Environmental factors, such as pH and SOC, often play important roles in shaping microbial community composition and diversity (Hartman et al., 2008; Tripathi et al., 2018; Ma et al., 2018). Soil pH is a major factor in shifting microbial diversity. The occurrence of this phenomenon may be because the soil pH impacts the acid-base equilibrium of microbial cells

or regulates the availability of soil nutrients (Zhalnina et al. 2015). In this study, soil pH in intercropped soybean soils decreased compared with that in monoculture soil. Additionally, the result of CCA also showed that pH strongly correlated with (p = 0.04 and p = 0.001, for the)bacterial and fungal community, respectively) the microbial community. Together, our data indicating indicates that pH was an important factor that governed the microbial community. SOC has can also been found to be the most important factor that determines microbial community structure in natural environments (Sul et al., 2013; Ma et al., 2018), as-increased SOC might provide favors copiotrophic copiotrophes microbial community with more favorable conditions than oligotrophic group, and therefore shifted the relative abundance and structure of key microbial group (Fierer et al., 2012; Waring et al., 2013; Luo et al., 2018). In this study, the significant increased SOC in intercropping system and the significant correlation (p = 0.01and p = 0.04, for the bacterial and fungal community, respectively) between SOC and microbial community (Table 1 and Fig. 4) indicate that SOC also play an important role in shaping shaped the structure of microbial community. In addition to pH and SOC, other soil physiochemical physicochemical properties such as NO₃-, DOC, MBC, and MBN may also have significant impact on the shift of microbial community structure (Fig. 4). Shifting nutrients is known to cause a changes of microbial communities (Sun et al., 2015; Ramirez et al., 2010), since increases in available substrates might increase the activity of eause the copiotrophic copiotrophs group more active in soil (Fierer et al., 2012). 4.2. Effect of intercropping on microbial activity

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

Carbon-use efficiency, which can be calculated as Cgrowth/(Cgrowth + Crespiration) has a positive

correlation with microorganism growth and a negative correlation with respiration rates (Spohn et al., 2016). The increased microbial abundance and no significant changed available N in this study may cause an increased carbon-use efficiency and not much change in nitrogen-use efficiency. Therefore, the increased ratios of carbon- and nitrogen-use efficiency in this study may be caused by carbon-use efficiency. However, respiration and the ratios of carbon- and nitrogen-use efficiency, which represent the microbial activity, both increased in the intercropping system in this research. This may be correlated with the nonlinear relationship between microbial growth and respiration (Sinsabaugh et al., 2013). There have many other factors that affect the carbon-use efficiency such as environmental constraints and resource (Sinsabaugh et al., 2013). Higher respiration rates led to lower ratios of carbon- and nitrogen-use efficiency, as carbonuse efficiency can be calculated as Cgrowth/(Cgrowth + Crespiration) (Spohn et al., 2016). However, respiration and the ratios of earbon- and nitrogen-use efficiency, which represent the microbial activity, both increased in the intercropping system in this research. This may be correlated with available N, which was generally higher in the intercropping treatments, although no statistical significance was detected. This explanation is consistent with the Mooshammer's research, who observed that the carbon- and nitrogen-use efficiency of microorganisms can be adjusted by themselves. The adjustment is dependent on the nutritional availability that low nitrogen use efficiency and high carbon-use efficiency more likely to appear in the high N-availability environment (Mooshammer et al., 2014).

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Carbon-use efficiency is positively correlated with nutrient availability. Bacterial carbon-use

efficiency tends to increase more markedly with nutrient availability than that with fungi (Keiblinger et al., 2010), as bacteria and fungi usually be considered as copiotrophic (r-selected) and oligotrophic (K-selected) group (Geyer et al., 2016). Additionally, the ratio of fungi and bacteria might shift soil microbial community carbon-use efficiency (Sinsabaugh et al., 2013). In our research, the abundance of bacteria and fungi were significant higher in the intereropping system, although no statistical significance was detected in I-Sugarcanel-Soybean system. However, the fungi: bacteria ratio has nodid not significant difference differ among treatments. Together, more bacteria and fungi abundance and the improved nutrient availability, such as SOC and DOC, in intercropping system may lead to an increase carbon-use efficiency, which subsequently increased the ratios of carbon-use efficiency and nitrogen-use efficiency. Additionally, better nutrient availabilityconditions in the plant-soil-microbial system could improve the plant growth, and The subsequently release of exudates increases the soil microbial activity, for example, via releases of root exudates into the soil, and this subject is worth further exploring (Zhong et al., 2015; Levy et al., 2018).

4.3. The relationship between microbial activity and microbial structure

The changed microbial community structure may result in increased microbial activity in the intercropping system. Analysing dozens of species soil samples from a wide range of ecosystems across America, Fierer et al. (2007) generalized that an appropriate predictor of bacterial phyla abundances was the C mineralization rate. Thus, we assumed that the changed microbial activity may be caused by the shift in the structure of microorganisms. The correlation between the microbial activity and community structure showed that the bacterial community

was significantly correlated with ratios of carbon- and nitrogen-use efficiency and respiration. However, this significant correlation was not observed with the fungal community, which may be attributed to bacteria were hundred times more abundance than fungi (Fig. 2). Therefore, compared to bacteria, the changed fungal community might have a less effect on microbial activity. Nevertheless, the dormancy rates of bacteria are generally higher than fungi (Jones and Lennon 2010). When the dormancy rate reaches a certain level, the quantitative advantage of bacteria cannot explain the high microbial activity and this requires further verification and research. In this study, pH, NO₃-, MBN, and SOC play important roles in the change in community structure. Our findings indicate that intercropping altered the availability of carbon and nitrogen-in the soil. The changed nutrient subsequently allowed bacteria to affect the carbon- and nitrogen-use efficiency of the microorganisms.

4.4. Effect of intercropping on soil functional microorganisms

In general, the prediction of functional microorganisms matched well with our expectations. Functions such as carbon fixation pathways in prokaryotes, citrate cycle (TCA cycle) of bacteria and wood saprotrophs of fungi were found higher in the intercropping system. In contrast, plant pathogens were slightly lower in the intercropping system. The result indicated that the overrepresented functions in intercropping system potentially leading to an accumulation of metabolic products and nutrients. For example, the increased carbon fixation pathways in prokaryotes and citrate cycle (TCA cycle) suggested an acceleration of nutrient conversion (Shi et al. 2017), which might be trigged by the increased microbial activity. Furthermore, the increased OTU133 (*Trichoderma*) belong to wood saprotrophs in intercropped sugarcane may

control a wide range of phytopathogens because *Trichoderma* secretes chitinases and cellulases,
 which can hydrolyse pathogen cell walls (Bae et al., 2015).

5. Conclusions

314

315

316

317

318

319

320

321

322

323

326

In conclusion, sugarcane-soybean intercropping in acidic soil increased microbial diversity and shift soil microbial communities which caused by soil physiochemical physicochemical properties (pH, SOC, NO₃-, DOC, MBC and MBN). The changed microbial bacterial community was as significant correlated to microbial activity was reflected in higher soil respiration rates and nutrient use efficiency in the intercropping system. Furthermore, intercropping influenced microbial functions, such as carbon fixation pathways in prokaryotes, citrate cycle (TCA cycle) of bacteria and wood saprotrophs of fungi. These overrepresented functions may acceleration of accelerate nutrient conversion and control phytopathogens in soil.

Acknowledgements

- 324 This work was supported by National Natural Science Foundation of China (31700091) and
- National Key R&D Program of China (2017YFD0101500).

References

- Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S. 2015. Trichoderma Metabolites
- 328 Control Phytopathogens of Phytophthora Blight. Biological Control 92: 128-138. DOI:
- 329 10.1016/j.biocontrol.2015.10.005.
- 330 Blagodatskaya E, Yuyukina T, Blagodatsky S, and Kuzyakov Y. 2011. Turnover of soil organic
- 331 matter and of microbial biomass under C3-C4 vegetation change: consideration of ¹³C

- fractionation and preferential substrate utilization. Soil Biology and Biochemistry 43:159-166
- 333 DOI: 10.1016/j.soilbio.2010.09.028.
- 334 Broeckling CD, Broz AK, Bergelson J. Manter DK. 2008. Root exudates regulate soil fungal
- community composition and diversity. Applied and Environmental Microbiology 74: 738-744,
- 336 DOI:10.1128/AEM.02188-07.
- 337 Brookes PC, Landman A, Pruden G, Jenkinson D. 1985. Chloroform fumigation and the release
- of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil.
- 339 Soil Biology and Biochemistry 17: 837-842 DOI: 10.1016/0038-0717(85)90144-0.
- 340 Fierer N, Bradford MA, and Jackson RB. 2007. Toward an ecological classification of soil
- 341 bacteria. Ecology 88: 1354-1364.
- Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. 2012. Comparative
- 343 metagenomic, phylogenetic and physiological analyses of soil microbial communities across
- nitrogen gradients. The ISME Journal 6: 1007-1017.
- 345 Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD. 2016. Microbial carbon use efficiency:
- accounting for population, community, and ecosystem-scale controls over the fate of
- metabolized organic matter. Biogeochemistry 127: 173-188 DOI: 10.1007/s10533-016-0191-y.
- 348 Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K.
- 349 2003. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics.
- 350 Applied and Environmental Microbiology 69: 3758-3766 DOI: 10.1128/AEM.69.7.3758-
- 351 3766.2003.

- Hartman WH, Richardson CJ, Vilgalys R, Bruland GL. 2008. Environmental and anthropogenic
- 353 controls over bacterial communities in wetland soils. Proceedings of the National Academy of
- 354 Sciences 105: 17842–17847 DOI: 10.1073/pnas.0808254105.
- 355 He JF, Huang GQ, Liao P, Liu XY, Su YH. 2006. Effects on disaster reduction of maize/soybean
- 356 intercropping ecological system on upland red soil. Meteorology and Disaster Reduction
- Research 29: 31-35 (in Chinese). Jones SE, Lennon JT. 2010. Dormancy contributes to the
- 358 maintenance of microbial diversity. Proceedings of the National Academy of Sciences 107:
- 359 5881-5886. DOI: 10.1073/pnas.0912765107.
- 360 Kaur B, Gupta SR and Singh G. 2000. Soil carbon, microbial activity and nitrogen availability
- in agroforestry systems on moderately alkaline soils in northern India. Applied Soil Ecology 15:
- 362 283-294 DOI: 10.1016/S0929-1393(00)00079-2.
- 363 Keiblinger KM, Hall EK, Wanek W, Szukics U, H€ ammerle I, Ellersdorfer G, Bock S, Strauss
- 364 J, Sterflinger K, and Richter, A. 2010. The effect of resource quantity and resource
- stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology 73: 430-440
- 366 DOI: 10.1111/j.1574-6941.2010.00912.x.
- Langille MGI., Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC,
- 368 Burkepile DE., Thurber RLV., Knight R, Beiko RG, Huttenhower C. 2013. Predictive functional
- 369 profiling of microbial communities using 16S rRNA marker gene sequences. Nature
- 370 Biotechnology 31: 814-821. DOI: 10.1038/nbt.2676.
- 371 Levy A, Salas IG, Mittelviefhaus M, Clingenpeel S, Herrera S P, Miao J, Wang K, Devescovi

- 372 G, Stillman K, Monteiro M, Alvarez BR, Lundberg DS, Lu TY, Lebeis S, Jin Z, McDonald M,
- Klein AP, Feltcher ME, Rio TG, Grant SR, Doty SL, Ley RE, Zhao BY, Venturi V, Pelletier DA,
- Vorholt JA, Tringe SG, Woyke T, Dangl JL. 2018. Genomic features of bacterial adaptation to
- plants. Nature Genetics, 50: 138.DOI: 10.1038/s41588-017-0012-9.
- 376 Li X, Mu Y, Cheng Y, Liu X and Nian H. 2013. Effects of intercropping sugarcane and soybean
- 377 on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiologiae
- 378 *Plantarum* 35:1113-1119 DOI: 10.1007/s11738-012-1148-y.
- Li X, Sun M, Zhang, H, Xu N, and Sun G. 2016. Use of mulberry-soybean intercropping in
- 380 salt-alkali soil impacts the diversity of the soil bacterial community. Microbial Biotechnology
- **9**: 293-304 DOI: 10.1111/1751-7915.12342.
- Lian T, Wang G, Yu Z, Li YS, Liu XB and Jin J. 2016. Carbon input from ¹³C-labelled soybean
- residues in particulate organic carbon fractions in a Mollisol. Biology and Fertility of Soils 52:
- 331-339 DOI: 10.1007/s00374-015-1080-6.
- 385 Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J, Liu XB, Wang GH. 2015. Soil carbon content
- drives the biogeographical distribution of fungal communities in the black soil zone of northeast
- 387 China. Soil Biology and Biochemistry 83: 29–39 DOI: 10.1016/j.soilbio.2015.01.009.
- Luo S, Wang S, Tian L, Shi S, Xu S, Yang, F., Li X, Wang Z, Tian C. 2018. Aggregate-related
- 389 changes in soil microbial communities under different ameliorant applications in saline-sodic
- 390 soils. Geoderma 329: 108-117. DOI: 10.1016/j.geoderma.2018.05.023.
- 391 Ma B, Lv X, Cai Y, Chang SX, Dyck MF. 2018. Liming does not counteract the influence of

- 392 long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil
- 393 Biology and Biochemistry 123: 45-53. DOI: 10.1016/j.soilbio.2018.05.003.
- 394 Maciávicente JG, Rosso LC, Ciancio A, Jansson HB and Lopezllorca LV. 2009. Colonisation
- 395 of barley roots by endophytic fusarium equiseti and pochonia chlamydosporia: effects on plant
- 396 growth and disease. Annals of Applied Biology 155: 391-401 DOI: 10.1111/j.1744-
- 397 7348.2009.00352.x.
- 398 Mooshammer, M., Wanek, W., Hammerle, I., Fuchslueger, L., Hofhansl, F., € Knoltsch, A.,
- 399 Schnecker J, Takriti M, Watzka M and Wild B. 2014. Adjustment of microbial nitrogen use
- 400 efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature
- 401 Communications 5: 3694 DOI: 10.1038/ncomms4694.
- Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG.
- 403 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological
- 404 guild. Fungal Ecology 20: 241–248. DOI: 10.1016/j.funeco.2015.06.006.
- 405 Osburn MR, Sessions AL, Pepe-Ranney C, Spear JR. 2011. Hydrogen-isotopic variability in
- 406 fatty acids from Yellowstone National Park hot spring microbial communities. Geochimica et
- 407 Cosmochimica Acta 75: 4830–4845 DOI: 10.1016/j.gca.2011.05.038.
- 408 Parks DH and Beiko RG. 2010. Identifying biologically relevant differences between
- 409 metagenomic communities. Bioinformatics 26: 715–721. DOI: 10.1093/bioinformatics/btq041.
- 410 Price MN, Dehal PS, Arkin AP. 2009. Fast Tree: computing large minimum evolution trees with
- 411 profiles instead of a distance matrix. Molecular Biology and Evolution 26: 1641-1650. DOI:

- 412 10.1093/molbev/msp077.
- 413 Rachid CTCC, Balieiro FC, Fonseca ES, Peixoto RS, Chaer GM, Tiedje JM, Rosado AS. 2015.
- 414 Intercropped silviculture systems, a key to achieving soil fungal community management in
- 415 *Eucalyptus* plantations. PloS one 10: e0118515 DOI: org/10.1371/journal.pone.0118515.
- Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N. 2010. Consistent effects of nitrogen
- 417 fertilization on soil bacterial communities in contrasting systems. Ecology, 91: 3463-3470. DOI:
- 418 10.1890/10-0426.1.Rowe EC, Van Noordwijk M, Suprayogo D and Cadisch G. 2005. Nitrogen
- 419 use efficiency of monoculture and hedgerow intercropping in the humid tropics. Plant and Soil
- 420 268: 61-74 DOI: 10.1007/s11104-004-0227-2.
- 421 Shi L, Huang Y, Zhang M, Yu Y, Lu Y, Kong F. 2017. Bacterial community dynamics and
- 422 functional variation during the long-term decomposition of cyanobacterial blooms in-vitro.
- 423 Science of the Total Environment 598: 77-86. DOI: 10.1016/j.scitotenv.2017.04.115.
- 424 Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A. 2013. Carbon use efficiency of microbial
- 425 communities: stoichiometry, methodology and modelling. Ecology Letters 16: 930-939. DOI:
- 426 10.1111/ele.12113.
- 427 Song YN, Marschner P, Li L, Bao XG, Sun JH and Zhang FS. 2007. Community composition
- 428 of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.),
- 429 maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils 44:307-314
- 430 DOI: 10.1007/s00374-007-0205-y.
- 431 Spohn M, Klaus K, Wanek W, Richter A. 2016. Microbial carbon use efficiency and biomass

- 432 turnover times depending on soil depth Implications for carbon cycling. Soil Biology and
- 433 Biochemistry 96, 74–81. DOI: 10.1016/j.soilbio.2016.01.016.
- 434 Sul WJ, Asuming-Brempong S, Wang Q, Tourlousse DM, Penton CR, Deng Y, Rodrigues J.L.,
- Adiku SG, Jones JW and Zhou J. 2013. Tropical agricultural land management influences on
- 436 soil microbial communities through its effect on soil organic carbon. Soil Biology and
- 437 Biochemistry 65: 33-38 DOI: 10.1016/j.soilbio.2013.05.007.
- 438 Sun R, Zhang XX, Guo X, Wang D, Chu H. 2015. Bacterial diversity in soils subjected to long-
- 439 term chemical fertilization can be more stably maintained with the addition of livestock manure
- than wheat straw. Soil Biology and Biochemistry 88: 9-18. DOI: 10.1016/j.soilbio.2015.05.007.
- 441 Sun YM, Zhang NN, Wang ET, Yuan HL, Yang JS and Chen WX. 2009. Influence of
- 442 intercropping and intercropping plus rhizobial inoculation on microbial activity and community
- 443 composition in rhizosphere of alfalfa (Medicago sativa L.) and Siberian wild rye (Elymus
- 444 sibiricus L.). FEMS Microbiology Ecology 70: 218-226 DOI: 10.1111/j.1574-
- 445 6941.2009.00752.x.
- Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM and Lee YK. 2018. Soil pH mediates the
- balance between stochastic and deterministic assembly of bacteria. ISME Journal 12 DOI:
- 448 10.1038/s41396-018-0082-4.
- 449 Vance E, Brookes P and Jenkinson D. 1987. An extraction method for measuring soil microbial
- 450 biomass C. Soil Biology and Biochemistry 19: 703-707 DOI: 10.1016/0038-0717(87)90052-6.
- 451 Waring BG, Averill C, Hawkes CV. 2013. Differences in fungal and bacterial physiology alter

- 452 soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecology
- 453 Letters 16: 887-894 DOI: 10.1111/ele.12125.

- 454 Xu BC, Li FM and Shan L. 2008. Switchgrass and milkvetch intercropping under 2:1 row-
- 455 replacement in semiarid region: northwest China: aboveground biomass and water use
- 456 efficiency. European Journal of Agronomy 28:485-492 DOI: 10.1016/j.eja.2007.11.011.
- 457 Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X and Wang GH. 2017. Three years of biochar amendment
- 458 alters soil physiochemical properties and fungal community composition in a black soil of
- northeast china. Soil Biology and Biochemistry 110: 56-67 DOI: 10.1016/j.soilbio.2017.03.005.
- 460 Zhalnina K. Dias R, Quadros PDD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath
 - SP, Hirsch PR, Triplett EW. 2015. Soil pH determines microbial diversity and composition in
- the park grass experiment. Microbial Ecology 69: 395–406 DOI: 10.1007/s00248-014-0530-2.
- Zheng W, Gong Q, Zhao Z, Liu J, Zhai B, Wang Z, Li Z. 2018. Changes in the soil bacterial
- community structure and enzyme activities after intercrop mulch with cover crop for eight years
- 465 in an orchard. European Journal of Soil Biology 86, 34-41. DOI: 10.1016/j.ejsobi.2018.01.009.
- 466 Zhong Y, Yan W and Shangguan Z. 2015. Impact of long-term N additions upon coupling
- 467 between soil microbial community structure and activity, and nutrient-use efficiencies. Soil
- 468 Biology and Biochemistry 91:151-159 DOI: 10.1016/j.soilbio.2015.08.030.
- 469 Zhou X, Yu G and Wu F. 2011. Effects of intercropping cucumber with onion or garlic on soil
- 470 enzyme activities, microbial communities and cucumber yield. European Journal of Soil
- 471 Biology 47: 279-287 DOI: 10.1016/j.ejsobi.2011.07.001.