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ABSTRACT
Tree species classification using hyperspectral imagery is a challenging task due to
the high spectral similarity between species and large intra-species variability. This
paper proposes a solution using the Multiple Instance Adaptive Cosine Estimator (MI-
ACE) algorithm. MI-ACE estimates a discriminative target signature to differentiate
between a pair of tree species while accounting for label uncertainty. Multi-class
species classification is achieved by training a set of one-vs-one MI-ACE classifiers
corresponding to the classification between each pair of tree species and a majority
voting on the classification results from all classifiers. Additionally, the performance
of MI-ACE does not rely on parameter settings that require tuning resulting in a
method that is easy to use in application. Results presented are using training and testing
data provided by a data analysis competition aimed at encouraging the development
of methods for extracting ecological information through remote sensing obtained
through participation in the competition. The experimental results using one-vs-one
MI-ACE technique composed of a hierarchical classification, where a tree crown is first
classified to one of the genus classes and one of the species classes. The species-level
rank-1 classification accuracy is 86.4% and cross entropy is 0.9395 on the testing data,
provided by the competition organizer, without the release of ground truth for testing
data. Similarly, the same evaluation metrics are computed on the training data, where
the rank-1 classification accuracy is 95.62% and the cross entropy is 0.2649. The results
show that the presented approach can not only classify the majority species classes, but
also classify the rare species classes.

Subjects Plant Science, Computational Science, Data Mining and Machine Learning, Data
Science
Keywords Tree crown, Classification, Hyperspectral, Multiple instance, NEON, Species
classification, ACE, Genus classification, One-vs-one

INTRODUCTION
Hyperspectral remote sensing is an active area of research with studies in the literature
spanning classification (Demir & Erturk, 2007; Li et al., 2014), unmixing (Bioucas-Dias et
al., 2012; Zou & Zare, 2017; Zare & Ho, 2014) and segmentation (Tarabalka, Chanussot &
Benediktsson, 2010; Li, Bioucas-Dias & Plaza, 2012). This work focuses on the classification
of tree crowns in hyperspectral remotely sensed imagery to tree species. Spectral signatures
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of tree crowns across species often have high spectral similarity as well as significant intra-
species variability (Cochrane, 2000), making tree crown classification from hyperspectral
imagery a challenging task. In this work, a discriminative multiple instance hyperspectral
target characterization method, the one-vs-one Multiple Instance Adaptive Cosine
Estimator (MI-ACE) algorithm (Zare, Jiao & Glenn, 2018), is proposed for this problem.

In general, supervised machine learning algorithms can be divided into two steps:
training and testing. During training, a set of training data and associated training desired
output labels are used to learn a mapping from the input training data to the desired
output labels. In our application, the training data are the pixels (i.e., the hyperspectral
signatures corresponding to each spatial location in the image) and their correspoding
training labels are their corresponding tree species (e.g., Pinus palustris, Quercus laevis).
In the testing step, this mapping is then used to predict the species classes for unseen,
unlabeled test data. However, precise pixel level training labels are often expensive or,
even, infeasible to obtain (Blum &Mitchell, 1998). In the case of tree crown classification,
pixel level ground truth labeling for tree crowns can be extremely challenging to collect.
When looking at aerial hyperspectral imagery, given overlapping tree crowns and mixed
pixels in which individual pixels contain responses from multiple neighboring tree species
due to the image spatial resolution, manually labeling individual tree crowns is generally
infeasible as the precise outline of each tree cannot be easily identified. Marconi et al. (2018)
organized data science challenges for airborne remote sensing data. One of these challenges
was to perform species classification of individual trees given airborne hyperspectral
data. The challenge provided competitors (Anderson, 2018; Sumsion et al., 2018; Dalponte,
Frizzera & Gianelle, 2018) with training and testing hyperspectral signatures extracted
from individual tree crowns in the National Ecological Observatory Network (NEON)
hyperspectral data collected at the Ordway-Swisher Biological Station in north-central
Florida. These signatures were extracted from the imagery and labeled by the competition
organizers by generating individual tree crown polygons using a tablet computer, GIS
software, and an external GPS device in the field as described by Marconi et al. (2018).
The team loaded the aerial hyperspectral imagery onto tablet computers in the field and
simultaneously visually assessed the scene in person and the aerial imagery to mark and
digitize the outlines of individual tree crowns. This was a time consuming process that
required some subjectivity in assessing the field and the overhead view. The difficulty of
this process and the subjectivity needed may result in some individual pixels in tree crown
polygons being mislabeled. It is assumed that there is at least one pixel that is labeled
correctly in each individual tree crown (although we do not know which one(s)). This
type of label imprecision is known as Multiple Instance style labels in the machine learning
literature (Maron & Lozano-Pérez, 1998). The MI-ACE algorithm presented in this paper
is designed to be robust to this sort of imprecise label without the need for any parameter
tuning or any additional steps for outlier removal.

MI-ACE is a multiple instance learning (MIL) algorithm (Maron & Lozano-Pérez, 1998)
where precise instance level labels are not necessary. Instead only a bag level label indicating
the existence or absence of a target in a bag (or set) of instances is needed. In MIL, a bag is
labeled as a positive bag containing a target if at least one data point in the bag corresponds
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to target and a bag is labeled as a negative bag if none of the data in the bag correspond
to the target. The MIL problem was first proposed and investigated by Dietterich, Lathrop
& Lozano-Pérez (1997) where he proposed to use axis-parallel rectangles in the feature
space to identify and define the target concept in MIL. Here, target concept refers to a
representation of the target class in the feature space (e.g., in the case of hyperspectral target
detection, the target concept can be a target spectral signature). Since this initial approach,
several MIL methods have been published in the literature. These include the method
by Maron & Lozano-Pérez (1998) who proposed a Diverse Density (DD) framework for
solving the target concept estimation problem in MIL. Inspired by DD, Zhang & Goldman
(2002) introduced an Expectation-Maximization (EM) optimization method to DD.

As opposed to previous methods which generally try to reconstruct a representative
target concept, the MI-ACE algorithm estimates a discriminative target signature from
data with this sort of bag-level MIL labels. The discriminative target signature highlights
differences between the target and non-target classes in the data. This target signature can
then be used within the ACE detector (Kraut & Scharf, 1999; Kraut, Scharf & McWhorter,
2001; Basener, 2010) to perform pixel-level target detection and classification. As compared
with other hyperspectral target detection methods (Key, 1993;Manolakis, Marden & Shaw,
2003; Nasrabadi, 2008;Matteoli, Diani & Theiler, 2014; Theiler & Foy, 2006), MI-ACE does
not need a target signature in advance. In addition, MI-ACE does not assume a pure pixel
representations of the target in the training data, but instead is able to detect subpixel
targets. More importantly, as previously stated, MI-ACE does not need precise pixel-level
labels. Since MI-ACE needs only bag-level labels, the algorithm naturally addresses the tree
crown classification problem outlined above. Each tree crown (and the associated set of
hyperspectral signatures) are considered a bag and that bag is labeled as the corresponding
target tree species. Since MI-ACE assumes multiple instance style labels, the algorithm does
not assume that each pixel in every bag is representative of the associated tree species (but
only assumes that there exists at least one representative signature in the tree crown) and,
thus, addresses imprecision in labeling. These advantages of MI-ACE make it fit the species
classification problem over other methods, since for species classification on hyperspectral
images, (1) the target signature of each species is often difficult to obtain; (2) for some tree
crowns, there are a few pixels or even only a few subpixels containing the target class; (3)
labeling each pixel in hyperspectral image is expensive and difficult.

However, the current MI-ACE algorithm is limited in that it only applies to binary
classification problems. Thus, in this paper, MI-ACE is extended to fit the multi-class
classification problem with a proposed one-vs-one multi-classifier strategy. The one-vs-
one strategy is commonly used for generalizing a binary-class classification problem to
multi-class classification problems (Milgram, Cheriet & Sabourin, 2006; Quinlan, 1986;
Akhter, Heylen & Scheunders, 2015; Kwon & Nasrabadi, 2006; Nasrabadi, 2008).

METHODS
In this section, a brief review of MI-ACE is presented, then the proposed one-vs-one
MI-ACE tree species classification approach is outlined.
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MI-ACE target characterization
MI-ACE (Zare, Jiao & Glenn, 2018) is a discriminative target characterization method that
is based on ACE detector and multiple instance concept learning. In multiple instance
learning, sets of data points (termed bags) are labeled as either positive or negative.
Specifically, let X= [x1,...,xN ]∈Rd×N be training data where d is the dimensionality of
an instance, xi, and N is the total number of training instances. The data are grouped into
K bags, B= {B1,...,BK }, with associated binary bag-level labels, L= {L1,...,LK } where
Lj ∈ {0,1} and xji ∈Bj denotes the ith instance in bag Bj . Positive bags (i.e., Bj with Lj = 1,
denoted as B+j ) contain at least one instance composed of some target:

if Lj = 1,∃xji ∈B+j s.t. xji∼N
(
αit s+µb,σ

2
16b

)
,αit 6= 0 (1)

where 6b is the background covariance, µb is the mean of the background, s is the known
target signature which is scaled by a target abundance, a, and σ 2

1 =
1
d (x−as)

T6−1b (x−as).
However, the number of instances in a positive bag with a target component is unknown.
If Bj is a negative bag (i.e., Lj = 0, denoted as B−j ), then this indicates that B−j does not
contain any target:

if Lj = 0,xji∼N
(
µb,σ

2
16b

)
∀xji ∈B−j (2)

Given this problem formulation, the goal of MI-ACE is to estimate the target signature,
s, that maximizes the corresponding adaptive cosine estimator (ACE) detection statistic
for the target instances in each positive bag and minimize the detection statistic over all
negative instances. This is accomplished by maximizing the following objective:

argmax
s

1
N+

∑
j:Lj=1

DACE(x∗j ,s)−
1
N−

∑
j:Lj=0

1
N−j

∑
xi∈B−j

DACE(xi,s) (3)

where N+ and N− are the number of positive and negative bags, respectively, N−j is the
number of instances in the jth negative bag, and x∗j is the selected instance from the positive
bag B+j that is mostly likely a target instance in the bag. The selected instance is identified
as the point with the maximum detection statistic given a target signature, s:

x∗j = argmax
xi∈B+j

DACE(xi,s) (4)

Since the first term of the objective function relies only on the selected instance from each
positive bag, the method is robust to outliers and incorrectly labeled samples. In other
words, a target point will have a small spectral distance to the target signature and, thus,
likely to be identified as the selected instance for a bag whereas outliers will be far from the
target signature and disregarded. The DACE is the ACE detection statistic,

DACE(x,s)=
(

ŝ
‖ŝ‖

)T( x̂
‖x̂‖

)
= ˆ̂sT ˆ̂x (5)

where x̂=D−
1
2UT (x−µb) and ŝ=D−

1
2UT s, U andD are the eigenvectors and eigenvalues

of the background covariance matrix, respectively.
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Figure 1 Training using one-vs-oneMI-ACE algorithm.
Full-size DOI: 10.7717/peerj.6405/fig-1

As outlined by Zare, Jiao & Glenn (2018), theMI-ACE algorithm optimizes Eq. (3) using
an alternating optimization strategy. After optimization, an estimate for a discriminative
target signature (that is used to distinguish between two classes and perform pixel level
classification using theDACE detector) is obtained. This iterative approach does not require
any parameter tuning. The MI-ACE code is available and published on our GitHub site
(Zare, Glenn & Gader, 2018).

Proposed one-vs-one MI-ACE
The original MI-ACE algorithmwas designed for target detection. Target detection can also
be viewed as a two-class classification problemwith one class being target and the other class
being non-target or background (often with heavily imbalanced class sizes). In this work,
we investigate whether MI-ACE can be extended to multi-class classification problems and
applied to tree crown species classification using a one-vs-one classification strategy. Two
MI-ACE classifiers are trained for every pair of two classes in the multi-class classification
problem. Two classifiers are trained so that each class can be considered as the target class
once in this pair. An MI-ACE classifier consists of a trained discriminative target signature
(estimated using the MI-ACE approach outlined in the previous section), a background
mean and covariance computed using the training samples from the non-target class, and
a threshold value used to assign a target or non-target label to individual data points given
their ACE detection confidence computed using the estimated target signature, background
mean and background covariance values, as is shown in Fig. 1.
During testing, each trainedMI-ACE classifier is applied to an input test point. Since each

classifier yields a classification result, the final classification for a testing bag is obtained
by aggregating all of the individual results. Specifically, a test bag is assigned the class label
associated with the class that had the largest number of votes associated with each class.
The votes are tallied by, first, averaging the confidence values estimated from each of the
individual classifiers applied to each test point in the bag and, then, thresholding these
average confidence values to obtain a binary target vs. non-target label the test bag. Then,
the class label with the largest number of votes from the binary classification results is
assigned as the final class labe, as is shown in Fig. 2.
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Figure 2 Testing using one-vs-oneMI-ACE algorithm.
Full-size DOI: 10.7717/peerj.6405/fig-2

Pseudocode for the proposed method is shown below. In the pseudocode, let X and Y be
the set of all training and testing bags, respectively, withXL being the set of all bags assigned
label L, Ym being the mth testing bag, and Ym,n being the nth data point in the mth testing
bag. Let L and R be the corresponding bag level labels for the training and testing bags,
respectively. C denotes the number of classes. M denotes the number of testing bags. The
variables si,j and τi,j represent the estimated target signature and classification threshold
for target class i and background class j, respectively, and zm,i,j denotes the confidence
value estimated by ACE detector given the estimated si,j and τi,j values for themth test bag.
The threshold value is set by determining the threshold that minimizes classification error
on the training data. This approach does not have any parameters to tune as all parameters
are estimated from the training data.

The threshold value, τi,j , is estimated from the training data by identifying the threshold
that minmizes classification error on the training data. After training a set of one-vs-one
classifiers as outlined in the psuedo-code, the estimated target signature si,j is used to
apply the ACE detector to the training data to compute their associated confidence scores.
Then, τi,j is varied between the largest and smallest computed confidence values by first
sorting the confidence values and setting the threshold to be half-way between every pair of
consecutive sorted confidence values. At each of these locations, the classification accuracy
of the training data is computed. The threshold is set at the value with the maximum
classification accuracy on the training data.

Data description
The training data released by Marconi et al. (2018) contains the hyperspectral signatures
from 305 tree crowns collected over the Ordway-Swisher Biological Station (OSBS) by
the National Ecological Observatory Network (NEON). The data from NEON included
the following data products: (1) field data from years 2015-2017: Woody plant vegetation
structure (NEON.DP1.10098); (2) hyperspectral data from year 2014: Spectrometer
orthorectified surface directional reflectance - flightline (NEON.DP1.30008); (3) LiDAR
point cloud data from year 2014: Ecosystem structure (NEON.DP3.30015); and RGB data
from year 2014: High-resolution orthorectified camera imagery (NEON.DP1.30010). In
this study, only hyperspectral data are used.
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Procedure 1 One-vs-one MI-ACE classification
1: Train two MI-ACE classifiers for each pair of class labels:

Input: X, Y, L
2: for Every pair of classes c1= 1 :C and c2= 1 :C where c2 6= c1 do
3: Train MI-ACE: (sc1,c2,τc1,c2,µc2,6c2)=MI-ACE(XL=c1,XL=c2)
4: Train MI-ACE: (sc2,c1,τc2,c1,µc1,6c1)=MI-ACE(XL=c2,XL=c1)
5: end for
6: Test using a one-vs-one voting scheme:
7: for Every test bagm= 1 :M do
8: for Every pair of classes c1= 1 :C and c2= 1 :C where c2 6= c1 do
9: for Every data point, n= 1 :Nm in bagm do
10: Apply the c1 vs. c2 classifier: zm,n,c1,c2 =ACE(Ym,n,sc1,c2)
11: end for
12: Average the confidence scores over all points in the bag: zm,c1,c2 =

1
N
∑Nm

n=1zm,n,c1,c2
13: if zm,c1,c2 >τc1,c2 then
14: Rm,c1,c2 gets one vote for class c1
15: else
16: Rm,c1,c2 gets one vote for class c2
17: end if
18: end for
19: Rm is assigned to the class with the largest number of votes.
20: end for
Output: R

Figure 3 shows a region in OSBS containing various tree species from one NEON flight
path. The left image in Fig. 3 is the high resolution RGB image collected from NEON
AOP with a 0.25 m resolution. The middle image in Fig. 3 shows the maximum height
of the canopy top from LiDAR point cloud with a 1 m resolution. The right image is the
RGB bands (wavelength 668 nm, 548 nm, 473 nm for red, green and blue) extracted from
hyperspectral image from NEON AOP using NEON imaging spectrometer with a 1 m
spatial resolution and 5 nm spectral resolution. The training tree crowns in this challenge
were extracted by the organizer from a series of regions similar to Fig. 3 from several
flight paths. However, for this tree crown classification challenge, only the individual
spectral signature of each pixel in each tree crown are stored and provided. Each tree
crown usually contains dozens of pixels. Thus, no spatial information is given nor can
any image processing approach be applied. Each training tree crown is associated with a
genus and species label. The tree crown is a manually selected image patch which may
contain, not only the labeled tree pixels, but also some noise pixels or pixels corresponding
to sand, neighboring trees or grass growing underneath the labeled tree. Therefore, the
given crown level label is imprecise for the individual pixels of which it is composed.
The signatures provided contain 426 spectral bands ranging from 383 nm to 2,512 nm.
Water absorption wavelengths, of which reflectance are set to be 1.5 as shown in Fig. 4,
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Figure 3 An example RGB (A), LiDAR (B), and (the RGB image generated from the corresponding)
Hyperspectral image (C) of a region in OSBS. Both axes are in meters.

Full-size DOI: 10.7717/peerj.6405/fig-3
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Figure 4 Average spectral signature of (A) all genera and (B) all species, colored by genera.
Full-size DOI: 10.7717/peerj.6405/fig-4

correspond to 1,345 nm to 1,430 nm, 1,800 nm to 1,0956 nm and 2,482 nm to 2,512 nm.
Each training tree crown is paired with a genus class label and a species class label. The
genus consisted of 5 classes which are Acer (AC), Liquidambar (LI), Pinus (PI), Quercus
(QU) and OTHERS (OT). OTHERS represent the tree crowns that cannot be classified to
any one of the four known genera. Each genus has a different number of associated species.
AC and LI contains only one species, which are Acer rubrum (ACRU) and Liquidambar
styraciflua (LIST), respectively. PI and QU contain more than three species individually,
which are Pinus elliottii (PIEL), Pinus palustris (PIPA), Pinus taeda (PITA) and OTHERS
(for PI), Quercus geminata (QUGE), Quercus laevis (QULA), Quercus nigra (QUNI) and
OTHERS (for QU). The number of tree polygons for each species are shown in Table 1.
There are both prevalent species, such as PIPA and QULA, and rare species, such as ACRU
and LIST in the dataset, which make the competition more challenging. In the current
implementation of this work, OTHERS in both the genus and species level are not used for
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Table 1 The number of training tree crowns for each species

Species ACRU LIST PIEL PIPA PITA QUGE QULA QUNI OTHERS

Number 6 4 5 197 14 12 54 5 8

training as the proposed approach did not have a mechanism to identify points that did
not belong to any of the labeled training classes.

The testing data are also NEON tree crown hyperspectral data in the same format.
There were 126 testing tree crowns. The test labels were not provided by the competition
organizers.

Data preprocessing and MI-ACE training
Prior to application of the MI-ACE algorithm, the water bands were removed to minimize
the influence of noise and reduce dimensionality of the dataset. There were in total 55
water bands that are removed, correspond to wavelength of 1,345 nm to 1,430 nm, 1,800
nm to 1,956 nm and 2,482 nm to 2,512 nm. Then, since in our current implementation
data points labeled as OTHERS genus or species are not addressed, the signatures that were
labeled as OTHERS are removed from the training set.

After removal of the water bands and the OTHERS data points, the target signatures
and classification threshold values are trained using the one-vs-one MI-ACE classification
technique. Training was conducted at two levels, the genus and the species levels. During
the training phase, each training tree crown was considered a bag for MI-ACE, thus the
training label (genus or species level) was the bag label. A one-vs-one MI-ACE was used
in which a set of MI-ACE target signatures representing the difference between every two
genera or species were estimated. For instance, a target signature was trained to distinguish
between the genus PI and the genus QU where tree crown labeled as PI was labeled target
(or ‘1’) and QU was labeled as non-target (or ‘0’). For this competition only one MI-ACE
classifier was trained for each pair of classes (as opposed to two for each pair) because
results were similar between the two approaches. Similarly, a set of target signatures were
estimated between every two species (if there were at least two species) that belonged
to the same genus. For example, a target signature was estimated using training data to
distinguish between species PIEL and PITA where the tree crowns labeled as PIEL were
labeled as target (or ‘1’) and PITA was labeled as non-target (or ‘0’).

Testing using ACE detector and voting
Testing was also conducted in two stages where a test tree crown was first classified at
the genus level and, then, further classified at the species level. An ACE detector was used
to estimate the confidence value indicating how similar a test signature is to a trained
target signature. Classification of test tree crowns consisted of the following steps. First, the
confidence values of each instance signature inside the a test tree crown were computed
using each of the six genus-level trained MI-ACE classifiers. Second, the confidence value
for each testing crownwas estimated by taking the average value over all of the instance-level
confidence values. These average confidence values were then thresholded using the trained
threshold values to obtain a binary classification result. The classification thresholds were
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determined during training to minimize the number of misclassified tree crowns in the
training data. The final classification of a tree crown is the class label with the highest
number of corresponding binary classifications. After the genus level classification, a test
tree crown can be classified at species level using the same approach among the species
associated with the genus to which the tree crown assigned.

There are three types of experimental validationmethods used in this study: test-on-train,
test-on-test and cross validation. Suppose the training dataset and testing dataset are X, Y,
respectively. Test-on-train experiments represent training the model using X and testing
also using X. Test-on-test experiments represent training the model using X and testing
using Y. Cross validation experiments represent training the model using d1 and validate
using d2, then train using d2 and validate using d1, where X= {d1,d2}, d1 and d2 are the
subsets of the training data X. Test-on-train and cross-validation experiments are included
since groundtruth labels for the test data have not been released by competition organizers.

Evaluation metrics
The metrics used by competition organizers to evaluate performance are rank-1 accuracy,
cross entropy, accuracy and specificity score, F1 score, precision and recall. The rank-
1 accuracy is the fraction of crowns whose ground truth class is assigned the highest
probability by the proposed algorithm. Intuitively, rank-1 accuracy only consider the
percentage of crowns that are correctly predicted (assigned with highest probability). The
rank-1 accuracy, r , is defined as:

r =
1
N

N∑
i=1

δ

(
argmax

k
(pi,k),gi

)
(6)

where gi is the ground truth class of crown i and pi,k is the probability assigned that crown
i belongs to class k. The δ(x,y) is an indicator function that takes value 1 if x = y and 0
otherwise. The cross entropy, c , is defined as:

c =−

∑
i,k δ(k,gi)lnpi,k

N
(7)

where gi is the ground truth class of crown i and pi,k is the probability assigned that crown
i belongs to class k. The δ(x,y) is an indicator function that takes value 1 if x = y and 0
otherwise. The accuracy for kth class, ak , is defined as:

ak =
TPk+TNk

TPk+TNk+FPk+FNk
(8)

where TPk , TNk , FPk and FNk represents the true positive, true negative, false positive and
false negative for class k, respectively. The specificity for kth class, sk , is defined as:

sk =
TNk

TNk+FPk
(9)

where TNk and FPk represents the true negative and false positive for class k, respectively.
The precision for kth class, pk , is defined as:

pk =
TPk

TPk+FPk
(10)
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where TPk and FPk represents the true positive and false positive for class k, respectively.
The recall for kth class, ek , is defined as:

ek =
TPk

TPk+FNk
(11)

where TPk and FNk represents the true positive and false negative for class k, respectively.
The F-1 score for kth class, fk , is defined as:

fk = 2
pkek

pk+ek
(12)

where pk and ek represents the precision and recall for class k, respectively.

EXPERIMENTAL RESULTS
The extended MI-ACE method, one-vs-one MI-ACE, was applied to and entered into the
tree crown classification challenge organized and described byMarconi et al. (2018).

Genus level classification
Classification result when testing on training samples are shown via confusion matrix
in Tables 2 and 3 showing results where one classifier is trained for each pair of species
classes and two classifiers are trained for each pair of species classes, respectively. The
overall classification accuracy on the training dataset is 97.31% for both the one classifier
and two classifiers cases. The pixel confidence distributions and the aggregated crown
confidence distributions for each classifier are shown in Figs. 5 and 6 respectively. In Figs. 5
and 6, each subfigure represents the confidence distribution of tree crowns from one
ground truth genus type estimated by one of the six classifiers . The associated threshold
value for each classifier is shown as a vertical blue line in each subfigure. For instance,
the subfigure A in Fig. 5 shows the averaged ACE confidence value distribution of AC
tree crowns detected using AC-vs-LI classifier and the subfigure A in Fig. 6 shows the
corresponding pixel confidence value distributions. A high classification accuracy result
for the AC-vs-LI classifier will have all AC confidence values to right of the threshold value
and all LI confidence values (shown in the subfigure B) to the left of the threshold value.
As can be seen, the AC-vs-LI classifier accurately distinguishes between these two classes
on the aggregated crown-level scale. However, when considering the same plots in Fig. 6
for the pixel level confidences, we can see that there are many AC pixels to the left of the
threshold causing significant overlap with the LI pixels confidences. This indicates that the
aggregation procedure helps to improve results.

Since there were six classifiers trained and four classes in this data set, there are only a
small set of possible voting cases. These cases are: a. (3,1,1,1) votes for each class; b. (3,2,1,0)
votes for each class; c. (2,2,1,1) votes for each class and d. (2,2,2,0) votes for each class. For
cases a. and b., there is a single class with the largest amount of votes, thus, labeling of the
crown is straightforward. However, for voting cases c. and d., there are ties among 2 or 3
candidate classes. In our current implementation, we randomly assign the label of one of
the tied classes. We found that cases c. and d. are rare in our training and testing results. In
the testing on training data results, votes for all of the tree crowns fell into either case a. or
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Table 2 The classification confusionmatrix on all training data (except for OTHERS) in genus level
(one classifier per pair).

True/Predict AC LI PI QU

AC 6 0 0 0
LI 0 4 0 0
PI 0 0 212 4
QU 0 0 4 67

Table 3 The classification confusionmatrix on all training data (except for OTHERS) in genus level
(two classifiers per pair).

True/Predict AC LI PI QU

AC 6 0 0 0
LI 0 4 0 0
PI 1 0 214 1
QU 1 0 5 65

b. When applying the trained approach to the testing dataset provided by the competition,
there is only one tree crown in which there was a tie (and resulted in voting case is d). For
this tree crown, we found that it has two votes for AC, two votes for LI and two votes for
PI. Our implementation in test randomly assigned this tree crown to the AC class. Since
the ground truth labels of testing data are not released by organizer, the true genus class
of this testing tree crown is unknown. However, we found that in our classification results
on testing data, there are three tree crowns that were predicted to be in class AC by our
method. Two of these crowns were correctly classified into class AC and the other false
positive tree crown actually belonged to the OTHER class. Thus, it is likely that this tree
crown may be the tree crown with the tied result.

Cross validation studies on the training data were also conducted. There are a limited
number of training tree crowns for the AC and LI classes (only six AC and four LI tree
crowns). Due to this reason, cross validation experiments were not conducted for AC or
LI. In the training phase, the PI training (pixel-level) samples and QU (pixel-level) training
samples are considered target and background, respectively. The learned target signature
is shown in Fig. 7A, which characterizes the spectral difference between PI and QU shown
in Fig. 7B. In the testing phase, each pixel signature of PI and QU are compared with
estimated target signature using the ACE detector resulting in a confidence value shown
in Fig. 8. Since most confidence values of PI pixels are larger than QU pixels, a threshold
value (of 0.05) can be selected such that the misclassified error is minimized.

Two-fold cross validation was applied to the PI and QU samples. The PI and QU classes
were randomly split into two datasets (50% of PI and QU tree crowns are selected as
d1 and the rest as d2). We train on d1 and validate on d2, followed by training on d2 and
validating on d1. After training the PI-vs-QU target signature and corresponding threshold,
the histogram of the average confidence values on the validation set is shown in Fig. 9. In
this figure, the PI and QU tree crowns are colored by their ground truth classes, i.e., red for
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Figure 5 Confidence distributions of crown levels in training set. Blue vertical lines are the correspond-
ing estimated threshold values. (A) AC, (B) LI, (C) PI and (D) QU tree crowns detected using AC-vs-LI
classifier; (E) AC, (F) LI, (G) PI and (H) QU tree crowns detected using AC-vs-PI classifier; (I) AC, (J) LI,
(K) PI and (L) QU tree crowns detected using AC-vs-QU classifier; (M) AC, (N) LI, (O) PI and (P) QU
tree crowns detected using LI-vs-PI classifier; (Q) AC, (R) LI, (S) PI and (T) QU tree crowns detected us-
ing LI-vs-QU classifier; (U) AC, (V) LI, (W) PI and (X) QU tree crowns detected using PI-vs-QU classi-
fier.

Full-size DOI: 10.7717/peerj.6405/fig-5

PI and blue for QU. The threshold value estimated from training can be directly applied to
the validation set for classification of the validation training crowns.

The cross validation experiment was repeated ten times and the mean confusion matrix
is shown in Tables 4 and 5 where one classifier is trained for each pair of species classes
and two classifiers are trained for each pair of species classes, respectively. The average
classification accuracy on the PI and QU given two-fold cross validation dataset was 95.8%
and 96.78% for the one classifier and two classifiers cases, respectively, which is similar
to the test-on-train accuracy indicating robust results. From the genus level classification,
training two classifiers for each pair of classes can achieve classification accuracy slightly
higher or equal to the training one classifier for each pair of classes.
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Figure 6 Confidence distributions of pixel levels in training set. Blue vertical lines are the correspond-
ing estimated threshold values. (A) AC, (B) LI, (C) PI and (D) QU tree crowns detected using AC-vs-LI
classifier; (E) AC, (F) LI, (G) PI and (H) QU tree crowns detected using AC-vs-PI classifier; (I) AC, (J) LI,
(K) PI and (L) QU tree crowns detected using AC-vs-QU classifier; (M) AC, (N) LI, (O) PI and (P) QU
tree crowns detected using LI-vs-PI classifier; (Q) AC, (R) LI, (S) PI and (T) QU tree crowns detected us-
ing LI-vs-QU classifier; (U) AC, (V) LI, (W) PI and (X) QU tree crowns detected using PI-vs-QU classi-
fier.

Full-size DOI: 10.7717/peerj.6405/fig-6

Species level classification
After the genus level classification, the tree crowns were further classified into species. If a
tree is classified as AC or LI, it is classified also as ACRU or LIST automatically. If a tree
is classified as PI or QU, the one-vs-one MI-ACE method is used to classify it into one of
the corresponding species. The confusion matrices for species level classification (testing
on training data) are shown in Table 6. The classification (rank-1) accuracy is 95.62% on
the training dataset in species level with a cross entropy value of 0.2649.

The confusion matrices for species level classification for testing data are shown in
Fig. 10 as provided by the competition organizers. The classification (rank-1) accuracy is
86.40% and cross entropy is 0.9395 on the testing dataset. However, this accuracy includes
data points labeled as OTHERS in the testing dataset which, using our approach, were all
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Figure 7 Comparison between estimated target signature (A) and average class signatures (B). As can
be seen, the target signature tends to be positive in the wavelengths where the target class has a larger re-
sponse than the background class and negative where the target class has a smaller response. Thus, the tar-
get signature gives insight into discriminative features for the detection problem.
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Figure 8 ACE detection statistic on PI & QU pixels (green (first set): PI pixels; pink (second set): QU
pixels).

Full-size DOI: 10.7717/peerj.6405/fig-8

misclassified to one of the four genus types since we did not implement a mechanism to
distinguish outliers in this approach. If the OTHERS tree crowns (three tree crowns) are
excluded, the classification accuracy would come to 88.52% and cross entropy would be
0.7918 on the testing dataset.

The species level classification results are further evaluated using several metrics on the
testing data by the organizer, including per-class accuracy, specificity, precision, recall and
F1 score. For comparison, we also evaluated the classification performance using the same
metrics on the training data. The accuracy and specificity score, F1 score, precision, recall
for both training and testing dataset are shown in Figs. 11–14, respectively. As can be seen,
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Figure 9 Histogram of average confidence values on validation set (red: PI; blue: QU).
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Table 4 The mean classification confusionmatrix on all PI and QU training data via cross validation
(one classifier per pair).

True/Predict PI QU

PI 105.8 2.2
QU 3.8 31.2

Table 5 The mean classification confusionmatrix on all PI and QU training data via cross validation
(two classifiers per pair).

True/Predict PI QU

PI 106.8 1.2
QU 3.4 31.6

accuracy and specificity results between training and testing data are similar whereas the
F1, precision and recall curves highlight that challenging classes in the testing data were
PIEL, PITA and QUGE.

Discussions
In the current implementation, only crisp binary classification results are estimated.
However, competition organizers evaluated results using the cross entropy evaluation
metric assuming probabilities of belonging to each class are estimated, following Eq. (7).
Class probabilities given the one-vs-one scheme can be estimated in the future using
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Table 6 The classification confusionmatrix on all training data (except for OTHERS) in species level.

True/Predict ACRU LIST PIEL PIPA PITA QUGE QULA QUNI

ACRU 6 0 0 0 0 0 0 0
LIST 0 4 0 0 0 0 0 0
PIEL 0 0 5 0 0 0 0 0
PIPA 0 0 3 188 2 2 2 0
PITA 0 0 0 0 14 0 0 0
QUGE 0 0 0 2 0 10 0 0
QULA 0 0 0 2 0 0 53 0
QUNI 0 0 1 0 0 0 0 4

Notes.
Bold styling emphasizes the number of samples that are correctly predicted.

Confusion Matrix

Finally, we attach the classification confusion matrix where element (i, j) is the sum of probabilities for

testing samples from class i predicted as class j.

Species ID A
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ACRU 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LIST 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OTHER 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

PIEL 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
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PITA 0.00 0.00 0.00 1.00 2.00 2.00 0.00 1.00 0.00

QUGE 0.00 1.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00

QULA 0.00 0.00 0.00 0.00 1.00 0.00 4.00 17.00 1.00

QUNI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

6

Figure 10 The classification confusionmatrix on all testing data (except for OTHERS) in species level
(provided by competition).
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Figure 11 Accuracy and Specificity Scores (Per-Class) for training data (A) and testing data (B—
provided by competition).
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approaches such as those proposed by Wu, Lin & Weng (2004). Furthermore, even if
individual probabilities per data are not computed, an overall uncertainty value can be
estimated from the training data. In other words, as opposed to assigning 0-1 probabilities
for the crisp class labels. In our implementation data points were assigned to the estimated
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Figure 12 F1 Scores (Per-Class) for training data (A) and testing data (B—provided by competition).
Full-size DOI: 10.7717/peerj.6405/fig-12

A
C

R
U

LI
S

T

P
IE

L

P
IP

A

P
IT

A

Q
U

G
E

Q
U

LA

Q
U

N
I

Species ID

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

A B

Figure 13 Precision (Per-Class) for training data (A) and testing data (B—provided by competition).
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Figure 14 Recall (Per-Class) for training data (A) and testing data (B—provided by competition).
Full-size DOI: 10.7717/peerj.6405/fig-14

class label with probability 1 and all others with probability 0. Instead, we could pre-
compute an optimal epsilon value, ε∗, to add to the ‘0’ probabilities and subtract from the
‘1’ probabilities to ensure values sum to one across classes to minimize cross entropy on
the training data. For instance, we found that when ε∗= 0.017, the cross entropy for our
results comes to 0.68, which is a smaller (i.e., better) than the cross entropy of 0.94 obtained
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using crisp labels and calculated by the competition organizers. The relationship between
the cross entropy and epsilon value for the training data provided shown in Fig. 15.

In addition, in the current proposed framework, each one-vs-one classifier is equally
weighted in final voting. However, the classification accuracies and the applicability of
each classifier varies. For instance, if a tree crown is in class PI, the PI-vs-QU classifier
should be more heavily weighted than the AC-vs-LI classifier. Investigation into whether
this could be determined by considering the average confidence values estimated from
the individual ACE detectors is needed. Furthermore, since some of the classes are more
spectrally distinct, some one-vs-one classifiers have better prediction performances. One
possible solution is to weight the classifiers based on the difference between the average
confidence values of target and background classes for training data. Another possible
solution is to weight based on the difference between the confidence value of testing point
and threshold value of the classifier. In some scenarios, these two solutions might be
equivalent. Finally, data fusion is also a promising approach for boosting the classification
performance. For example, height information from Lidar data could be also incorporated
into the training phase since different species generally have different average heights. In
the current implementation, only hyperspectral information was leveraged.

CONCLUSIONS
A one-vs-one version of MI-ACE is proposed in the work to address the hyperspectral tree
crown classification problem. The proposed method achieved a 86.4% overall classification
accuracy on a blind testing dataset. The 95.62% and 86.4% species level classification
accuracy on training and testing data, respectively, show that the multiple instance learning
based algorithm, one-vs-one MI-ACE is capable of learning the discriminative spectrum
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difference among different species classes and allowing for the weakly supervised, imprecise,
crown-level labels. Certainly, there aremany improvements can be investigated in the future
such asmechanisms to identify outliers and label themasmembers of theOTHERS class and
estimate a likelihood of belonging to each class (as opposed to binary classification labels).
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